
haveged(8) SYSTEM ADMINISTRATION COMMANDS haveged(8)

NAME
haveged - Generate random numbers and feed linux random device.

SYNOPSIS
haveged [options]

DESCRIPTION
haveged generates an unpredictable stream of random numbers harvested from the indirect
effects of hardware events on hidden processor state (caches, branch predictors, memory transla-
tion tables, etc) using the HAVEGE (HArdware Volatile Entropy Gathering and Expansion) algo-
rithm. The algorithm operates in user space, no special privilege is required for file system access
to the output stream.

Linux pools randomness for distribution by the /dev/random and /dev/urandom device inter-
faces. The standard mechanisms of filling the /dev/random pool may not be sufficient to meet
demand on systems with high needs or limited user interaction. In those circumstances, haveged
may be run as a privileged daemon to fill the /dev/random pool whenever the supply of random
bits in /dev/random falls below the low water mark of the device.

haveged tunes itself to its environment and provides the same built-in test suite for the output
stream as used on certified hardware security devices. See NOTES below for further information.

OPTIONS
-b nnn, --buffer=nnn

Set collection buffer size to nnn KW. Default is 128KW (or 512KB).

-d nnn, --data=nnn
Set data cache size to nnn KB. Default is 16 or as determined dynamically.

-f file, --file=file
Set output file path for non-daemon use. Default is sample, use - for stdout.

-F , --Foreground
Run daemon in foreground. Do not fork and detach.

-i nnn, --inst=nnn
Set instruction cache size to nnn KB. Default is 16 or as determined dynamically.

-n nnn, --number=nnn
Set number of bytes written to the output file. The value may be specified using one of
the suffixes k, m, g, or t. The upper bound of this value is 16t (2ˆ44 Bytes = 16TB). A
value of 0 indicates unbounded output and forces output to stdout. This argument is
required if the daemon interface is not present. If the daemon interface is present, this
setting takes precedence over any --run value.

-o <spec>, --onlinetest=<spec>
Specify online tests to run. The <spec> consists of optional tot and continuous groups,
each group indicates the procedures to be run, using a<n> to indicate a AIS-31 procedure
A variant, and b to indicate AIS procedure B. The specifications are order independent
(procedure B always runs first in each group) and case insensitive. The a<n> variations
exist to mitigate the a slow autocorrelation test (test5). Normally all procedure A tests,
except the first are iterated 257 times. An a<n> option indicates test5 should only be exe-
cuted every modulo <n> times during the procedure’s 257 repetitions. The effect is so not-
icable that A8 is the usual choice.

The tot tests run only at initialization - there are no negative performance consequences
except for a slight increase in the time required to initialize. The tot tests guarantee
haveged has initialized properly. The use of both test procedures in the tot test is highly
recommended because the two test emphasize different aspects of RNG quality.

In continuous testing, the test sequence is cycled repeatedly. For example, the string
tbca8b (suitable for an AIS NTG.1 device) would run procedure B for the tot test, then

version 1.9 February 10, 2014 1

haveged(8) SYSTEM ADMINISTRATION COMMANDS haveged(8)

cycle between procedure A8 and procedure B continuously for all further output. Contin-
uous testing does not come for free, impacting both throughput and resource consump-
tion. Continual testing also opens up the possibility of a test failure. A strict retry proce-
dure recovers from spurious failure in all but the most extreme circumstances. When the
retry fails, operation will terminate unless a w has been appended to the test token to
make the test advisory only. In our example above, the string tbca8wbw would make all
continuous tests advisory. For more detailed information on AIS retries see NOTES
below.

Complete control over the test configuration is provided for flexibility. The defaults
(ta8bcb if run as a daemon and ta8b otherwise) are suitable for most circumstances.

-p file, --pidfile=file
Set file path for the daemon pid file. Default is /var/run/haveged.pid,

-r n, --run=n
Set run level for daemon interface:

n = 0 Run as daemon - must be root. Fills /dev/random when the supply of random bits
falls below the low water mark of the device.

n = 1 Display configuration info and terminate.

n > 1 Write <n> kb of output. Deprecated (use --number instead), only provided for back-
ward compatibility.

If --number is specified, values other than 0,1 are ignored. Default is 0.

-v n, --verbose=n
Set diagnostic bitmap as sum of following options:

1=Show build/tuning summary on termination, summary for online test retries.

2=Show online test retry details

4=Show timing for collections

8=Show collection loop layout

16=Show collection loop code offsets

32=Show all online test completion detail

Default is 0. Use -1 for all diagnostics.

-w nnn, --write=nnn
Set write_wakeup_threshold of daemon interface to nnn bits. Applies only to run level 0.

-?, --help
This summary of program options.

NOTES
haveged tunes the HAVEGE algorithm for maximum effectiveness using a hierarchy of defaults,
command line options, virtual file system information, and cpuid information where available.
Under most circumstances, user input is not required for excellent results.

Run-time testing provides assurance of correct haveged operation. The run-time test suite is mod-
eled upon the AIS-31 specification of the German Common Criteria body, BIS. This specification
is typically applied to hardware devices, requiring formal certification and mandated start-up and
continuous operational testing. Because haveged runs on many different hardware platforms, certi-
fication cannot be a goal, but the AIS-31 test suite provides the means to assess haveged output
with the same operational tests applied to certified hardware devices.

AIS test procedure A performs 6 tests to check for statistically inconspicuous behavior. AIS test

version 1.9 February 10, 2014 2

haveged(8) SYSTEM ADMINISTRATION COMMANDS haveged(8)

procedure B performs more theoretical tests such as checking multi-step transition probabilities
and making an empirical entropy estimate. Procedure A is the much more resource and compute
intensive of the two but is still recommended for the haveged start-up tests. Procedure B is well
suited to use of haveged as a daemon because the test entropy estimate confirms the entropy esti-
mate haveged uses when adding entropy to the /dev/random device.

No test is perfect. There is a 10e-4 probability that a perfect generator will fail either of the test
procedures. AIS-31 mandates a strict retry policy to filter out false alarms and haveged always
logs test procedure failures. Retries are expected but rarely observed except when large data sets
are generated with continuous testing. See the libhavege(3) notes for more detailed information.

FILES
If running as a daemon, access to the following files is required

/dev/random

/proc/sys/kernel/osrelease

/proc/sys/kernel/random/poolsize

/proc/sys/kernel/random/write_wakeup_threshold

DIAGNOSTICS
Haveged returns 0 for success and non-zero for failure. The failure return code is 1 general failure
unless execution is terminated by signal <n>, in which case the return code will be 128 + <n>.
The following diagnostics are issued to stderr upon non-zero termination:

Cannot fork into the background
Call to daemon(3) failed.

Cannot open file <s> for writing.
Could not open sample file <s> for writing.

Cannot write data in file:
Could not write data to the sample file.

Couldn’t get pool size.
Unable to read /proc/sys/kernel/random/poolsize

Couldn’t initialize HAVEGE rng
Invalid data or instruction cache size.

Couldn’t open PID file <s> for writing
Unable to write daemon PID

Couldn’t open random device
Could not open /dev/random for read-write.

Couldn’t query entropy-level from kernel: error
Call to ioctl(2) failed.

Couldn’t open PID file <path> for writing
Error writing /var/run/haveged.pid

Fail:set_watermark()
Unable to write to /proc/sys/kernel/random/write_wakeup_threshold

RNDADDENTROPY failed!
Call to ioctl(2) to add entropy failed

RNG failed
The random number generator failed self-test or encountered a fatal error.

Select error

version 1.9 February 10, 2014 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/daemon
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl

haveged(8) SYSTEM ADMINISTRATION COMMANDS haveged(8)

Call to select(2) failed.

Stopping due to signal <n>
Signal <n> caught.

Unable to setup online tests
Memory unavailable for online test resources.

EXAMPLES
Write 1.5MB of random data to the file /tmp/random

haveged -n 1.5M -f /tmp/random

Generate a /tmp/keyfile for disk encryption with LUKS
haveged -n 2048 -f /tmp/keyfile

Overwrite partition /dev/sda1 with random data. Be careful, all data on the partition will be lost!
haveged -n 0 | dd of=/dev/sda1

Generate random ASCII passwords of the length 16 characters
(haveged -n 1000 -f - 2>/dev/null | tr -cd ’[:graph:]’ | fold -w 16 && echo) | head

Write endless stream of random bytes to the pipe. Utility pv measures the speed by which data
are written to the pipe.

haveged -n 0 | pv > /dev/null

Evaluate speed of haveged to generate 1GB of random data
haveged -n 1g -f - | dd of=/dev/null

Create a random key file containing 65 random keys for the encryption program aespipe.
haveged -n 3705 -f - 2>/dev/null | uuencode -m - | head -n 66 | tail -n 65

Test the randomness of the generated data with dieharder test suite
haveged -n 0 | dieharder -g 200 -a

Generate 16k of data, testing with procedure A and B with detailed test results. No c result seen
because a single buffer fill did not contain enough data to complete the test.

haveged -n 16k -o tba8ca8 -v 33

Generate 16k of data as above with larger buffer. The c test now completes - enough data now
generated to complete the test.

haveged -n 16k -o tba8ca8 -v 33 -b 512

Generate 16m of data as above, observe many c test completions with default buffer size.
haveged -n 16m -o tba8ca8 -v 33

Generate large amounts of data - in this case 16TB. Enable initialization test but made continu-
ous tests advisory only to avoid a possible situation that program will terminate because of proce-
dureB failing two times in a row. The probability of procedureB to fail two times in a row can be
estimated as <TB to generate>/3000 which yields 0.5% for 16TB.

haveged -n 16T -o tba8cbw -f - | pv > /dev/null

Generate large amounts of data (16TB). Disable continuous tests for the maximum throughput
but run the online tests at the startup to make sure that generator for properly initialized:

haveged -n 16T -o tba8c -f - | pv > /dev/null

SEE ALSO
libhavege(3),

cryptsetup(8), aespipe(1), pv(1), openssl(1), uuencode(1)

REFERENCES
HArdware Volatile Entropy Gathering and Expansion: generating unpredictable random numbers
at user level by A. Seznec, N. Sendrier, INRIA Research Report, RR-4592, October 2002

version 1.9 February 10, 2014 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/pv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/openssl

haveged(8) SYSTEM ADMINISTRATION COMMANDS haveged(8)

A proposal for: Functionality classes for random number generators by W. Killmann and W.
Schindler, version 2.0, Bundesamt fur Sicherheit in der Informationstechnik (BSI), September,
2011

A Statistical Test Suite for the Validation of Random NUmber Generators and Pseudorandom
Number Generators for Cryptographic Applications, special publication SP800-22, National Insti-
tute of Standards and Technology, revised April, 2010

Additional information can also be found at http://www.issihosts.com/haveged/

AUTHORS
Gary Wuertz <gary@issiweb.com> and Jirka Hladky <hladky jiri AT gmail DOT com>

version 1.9 February 10, 2014 5

http://www.issihosts.com/haveged/

	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-b nnn, --buffer=nnn
	-d nnn, --data=nnn
	-f file, --file=file
	-F , --Foreground
	-i nnn, --inst=nnn
	-n nnn, --number=nnn
	-o <spec>, --onlinetest=<spec>
	-p file, --pidfile=file
	-r n, --run=n
	-v n, --verbose=n
	-w nnn, --write=nnn
	-?, --help

	NOTES
	FILES
	DIAGNOSTICS
	EXAMPLES
	Write 1.5MB of random data to the file /tmp/random
	Generate a /tmp/keyfile for disk encryption with LUKS
	Overwrite partition /dev/sda1 with random data. Be careful, all data on the partition will be lost!
	Generate random ASCII passwords of the length 16 characters
	Write endless stream of random bytes to the pipe. Utility pv measures the speed by which data are written to the pipe.
	Evaluate speed of haveged to generate 1GB of random data
	Create a random key file containing 65 random keys for the encryption program aespipe.
	Test the randomness of the generated data with dieharder test suite
	Generate 16k of data, testing with procedure A and B with detailed test results. No c result seen because a single buffer fill did not contain enough data to complete the test.
	Generate 16k of data as above with larger buffer. The c test now completes - enough data now generated to complete the test.
	Generate 16m of data as above, observe many c test completions with default buffer size.
	Generate large amounts of data - in this case 16TB. Enable initialization test but made continuous tests advisory only to avoid a possible situation that program will terminate because of procedureB failing two times in a row. The probability of procedureB to fail two times in a row can be estimated as <TB to generate>/3000 which yields 0.5% for 16TB.
	Generate large amounts of data (16TB). Disable continuous tests for the maximum throughput but run the online tests at the startup to make sure that generator for properly initialized:

	SEE ALSO
	libhavege(3),

	REFERENCES
	AUTHORS

