
GROFF(7) Miscellaneous Information Manual GROFF(7)

NAME
groff - a short reference for the GNU roff language

DESCRIPTION
The name groff stands for GNU roff and is the free implementation of the roff type-setting sys-
tem. See roff(7) for a survey and the background of the groff system.

This document gives only short descriptions of the predefined roff language elements as used in
groff. Both the classical features and the groff extensions are provided.

Historically, the roff language was called troff. groff is compatible with the classical system and
provides proper extensions. So in GNU, the terms roff, troff, and groff language could be used as
synonyms. However troff slightly tends to refer more to the classical aspects, whereas groff
emphasizes the GNU extensions, and roff is the general term for the language.

This file is only a short version of the complete documentation that is found in the groff info(1)
file, which contains more detailed, actual, and concise information.

The general syntax for writing groff documents is relatively easy, but writing extensions to the
roff language can be a bit harder.

The roff language is line-oriented. There are only two kinds of lines, control lines and text lines.
The control lines start with a control character, by default a period “.” or a single quote “'”; all
other lines are text lines.

Control lines represent commands, optionally with arguments. They have the following syntax.
The leading control character can be followed by a command name; arguments, if any, are sepa-
rated by spaces (but not tab characters) from the command name and among themselves, for
example,

.command_name arg1 arg2

For indentation, any number of space or tab characters can be inserted between the leading con-
trol character and the command name, but the control character must be on the first position of
the line.

Text lines represent the parts that is printed. They can be modified by escape sequences, which
are recognized by a leading backslash ‘\’. These are in-line or even in-word formatting elements
or functions. Some of these take arguments separated by single quotes “'”, others are regulated
by a length encoding introduced by an open parenthesis ‘(’ or enclosed in brackets ‘[’ and ‘]’.

The roff language provides flexible instruments for writing language extension, such as macros.
When interpreting macro definitions, the roff system enters a special operating mode, called the
copy mode.

The copy mode behaviour can be quite tricky, but there are some rules that ensure a safe usage.

1. Printable backslashes must be denoted as e. To be more precise, e represents the current
escape character. To get a backslash glyph, use (rs or [rs].

2. Double all backslashes.

3. Begin all text lines with the special non-spacing character &.

This does not produce the most efficient code, but it should work as a first measure. For better
strategies, see the groff info file and groff_tmac(5).

Reading roff source files is easier, just reduce all double backslashes to a single one in all macro
definitions.

GROFF ELEMENTS
The roff language elements add formatting information to a text file. The fundamental elements
are predefined commands and variables that make roff a full-blown programming language.

There are two kinds of roff commands, possibly with arguments. Requests are written on a line
of their own starting with a dot ‘.’ or a “'”, whereas Escape sequences are in-line functions

Groff Version 1.22.3 05 November 2014 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/roff
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/groff_tmac

GROFF(7) Miscellaneous Information Manual GROFF(7)

and in-word formatting elements starting with a backslash ‘\’.

The user can define her own formatting commands using the de request. These commands are
called macros, but they are used exactly like requests. Macro packages are pre-defined sets of
macros written in the groff language. A users possibilities to create escape sequences herself is
very limited, only special characters can be mapped.

The groff language provides several kinds of variables with different interfaces. There are pre-
defined variables, but the user can define her own variables as well.

String variables store character sequences. They are set with the ds request and retrieved by
the * escape sequences. Strings can have variables.

Register variables can store numerical values, numbers with a scale unit, and occasionally string-
like objects. They are set with the nr request and retrieved by the n escape sequences.

Environments allow the user to temporarily store global formatting parameters like line length,
font size, etc. for later reuse. This is done by the ev request.

Fonts are identified either by a name or by an internal number. The current font is chosen by
the ft request or by the f escape sequences. Each device has special fonts, but the following fonts
are available for all devices. R is the standard font Roman. B is its bold counterpart. The
italic font is called I and is available everywhere, but on text devices it is displayed as an under-
lined Roman font. For the graphical output devices, there exist constant-width pendants of these
fonts, CR, CI, and CB. On text devices, all glyphs have a constant width anyway.

Glyphs are visual representation forms of characters. In groff, the distinction between those
two elements is not always obvious (and a full discussion is beyond the scope of this man page).
A first approximation is that glyphs have a specific size and colour and are taken from a specific
font; they cant be modified any more – characters are the input, and glyphs are the output. As
soon as an output line has been generated, it no longer contains characters but glyphs. In this
man page, we use either ‘glyph’ or ‘character’, whatever is more appropriate.

Moreover, there are some advanced roff elements. A diversion stores (formatted) information
into a macro for later usage. A trap is a positional condition like a certain number of lines from
page top or in a diversion or in the input. Some action can be prescribed to be run automatically
when the condition is met.

More detailed information and examples can be found in the groff info file.

CONTROL CHARACTERS
There is a small set of characters that have a special controlling task in certain conditions.

. A dot is only special at the beginning of a line or after the condition in the requests if, ie,
el, and while. There it is the control character that introduces a request (or macro). By
using the cc request, the control character can be set to a different character, making the
dot ‘.’ a non-special character.

In all other positions, it just means a dot character. In text paragraphs, it is advanta-
geous to start each sentence at a line of its own.

' The single quote has two controlling tasks. At the beginning of a line and in the condi-
tional requests it is the non-breaking control character. That means that it introduces a
request like the dot, but with the additional property that this request doesnt cause a
linebreak. By using the c2 request, the non-break control character can be set to a differ-
ent character.

As a second task, it is the most commonly used argument separator in some functional
escape sequences (but any pair of characters not part of the argument do work). In all
other positions, it denotes the single quote or apostrophe character. Groff provides a
printable representation with the (cq escape sequence.

Groff Version 1.22.3 05 November 2014 2

GROFF(7) Miscellaneous Information Manual GROFF(7)

" The double quote is used to enclose arguments in macros (but not in requests and
strings). In the ds and as requests, a leading double quote in the argument is stripped
off, making everything else afterwards the string to be defined (enabling leading white-
space). The escaped double quote introduces a comment. Otherwise, it is not special.
Groff provides a printable representation with the (dq escape sequence.

\ The backslash usually introduces an escape sequence (this can be changed with the ec
request). A printed version of the escape character is the e escape; a backslash glyph can
be obtained by (rs.

(The open parenthesis is only special in escape sequences when introducing an escape
name or argument consisting of exactly two characters. In groff, this behaviour can be
replaced by the [] construct.

[The opening bracket is only special in groff escape sequences; there it is used to introduce
a long escape name or long escape argument. Otherwise, it is non-special, e.g. in macro
calls.

] The closing bracket is only special in groff escape sequences; there it terminates a long
escape name or long escape argument. Otherwise, it is non-special.

space Space characters are only functional characters. They separate the arguments in requests,
macros, and strings, and the words in text lines. They are subject to groffs horizontal
spacing calculations. To get a defined space width, escape sequences like ‘\ ’ (this is the
escape character followed by a space), |, ˆ, or h should be used.

newline

In text paragraphs, newlines mostly behave like space characters. Continuation lines can
be specified by an escaped newline, i.e., by specifying a backslash ‘\’ as the last character
of a line.

tab If a tab character occurs during text the interpreter makes a horizontal jump to the next
pre-defined tab position. There is a sophisticated interface for handling tab positions.

NUMERICAL EXPRESSIONS
A numerical value is a signed or unsigned integer or float with or without an appended scaling
indicator. A scaling indicator is a one-character abbreviation for a unit of measurement. A
number followed by a scaling indicator signifies a size value. By default, numerical values do not
have a scaling indicator, i.e., they are normal numbers.

The roff language defines the following scaling indicators.

c Centimeter
i Inch
P Pica = 1/6 inch
p Point = 1/72 inch
m Em = the font size in points (approx. width of letter ‘m’)
M 100th of an Em
n En = Em/2
u Basic unit for actual output device
v Vertical line space in basic units scaled point = 1/sizescale of a point

(defined in font DESC file)
f Scale by 65536.

Numerical expressions are combinations of the numerical values defined above with the follow-
ing arithmetical operators already defined in classical troff.

+ Addition
- Subtraction
* Multiplication
/ Division

Groff Version 1.22.3 05 November 2014 3

GROFF(7) Miscellaneous Information Manual GROFF(7)

% Modulo
= Equals
== Equals
< Less than
> Greater than
<= Less or equal
>= Greater or equal
& Logical and
: Logical or
! Logical not
(Grouping of expressions
) Close current grouping

Moreover, groff added the following operators for numerical expressions:

e1>?e2 The maximum of e1 and e2.
e1<?e2 The minimum of e1 and e2.
(c;e) Evaluate e using c as the default scaling indicator.

For details see the groff info file.

CONDITIONS
Conditions occur in tests raised by the if, ie, and the while requests. The following table char-
acterizes the different types of conditions.

N A numerical expression N yields true if its value is greater than 0.
!N True if the value of N is 0 (see below).
s1s2 True if string s1 is identical to string s2.
!s1s2 True if string s1 is not identical to string s2 (see below).
cch True if there is a glyph ch available.
dname True if there is a string, macro, diversion, or request called name.
e Current page number is even.
o Current page number is odd.
mname True if there is a color called name.
n Formatter is nroff.
rreg True if there is a register named reg.
t Formatter is troff.
Ffont True if there exists a font named font.
Sstyle True if a style named style has been registered.

Note that the ! operator may only appear at the beginning of an expression, and negates the
entire expression. This maintains bug-compatibility with AT&T troff.

REQUESTS
This section provides a short reference for the predefined requests. In groff, request, macro, and
string names can be arbitrarily long. No bracketing or marking of long names is needed.

Most requests take one or more arguments. The arguments are separated by space characters (no
tabs!); there is no inherent limit for their length or number.

Some requests have optional arguments with a different behaviour. Not all of these details are
outlined here. Refer to the groff info file and groff_diff(7) for all details.

In the following request specifications, most argument names were chosen to be descriptive. Only
the following denotations need clarification.

c denotes a single character.
font a font either specified as a font name or a font number.
anything all characters up to the end of the line or within { and }.
n is a numerical expression that evaluates to an integer value.

Groff Version 1.22.3 05 November 2014 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/groff_diff

GROFF(7) Miscellaneous Information Manual GROFF(7)

N is an arbitrary numerical expression, signed or unsigned.
±N has three meanings depending on its sign, described below.

If an expression defined as ±N starts with a ‘+’ sign the resulting value of the expression is added
to an already existing value inherent to the related request, e.g. adding to a number register. If
the expression starts with a ‘-’ the value of the expression is subtracted from the request value.

Without a sign, N replaces the existing value directly. To assign a negative number either
prepend 0 or enclose the negative number in parentheses.

Request Short Reference
. Empty line, ignored. Useful for structuring documents.
.\" anything

Complete line is a comment.
.ab string

Print string on standard error, exit program.
.ad Begin line adjustment for output lines in current adjust mode.
.ad c Start line adjustment in mode c (c = l,r,c,b,n).
.af register c

Assign format c to register (c = l,i,I,a,A).
.aln alias register

Create alias name for register.
.als alias object

Create alias name for request, string, macro, or diversion object.
.am macro

Append to macro until .. is encountered.
.am macro end

Append to macro until .end is called.
.am1 macro

Same as .am but with compatibility mode switched off during macro expansion.
.am1 macro end

Same as .am but with compatibility mode switched off during macro expansion.
.ami macro

Append to a macro whose name is contained in the string register macro until .. is
encountered.

.ami macro end
Append to a macro indirectly. macro and end are string registers whose contents are
interpolated for the macro name and the end macro, respectively.

.ami1 macro
Same as .ami but with compatibility mode switched off during macro expansion.

.ami1 macro end
Same as .ami but with compatibility mode switched off during macro expansion.

.as stringvar anything
Append anything to stringvar.

.as1 stringvar anything
Same as .as but with compatibility mode switched off during string expansion.

.asciify diversion
Unformat ASCII characters, spaces, and some escape sequences in diversion.

.backtrace
Print a backtrace of the input on stderr.

.bd font N
Embolden font by N−1 units.

.bd S font N
Embolden Special Font S when current font is font.

.blm Unset the blank line macro.

Groff Version 1.22.3 05 November 2014 5

GROFF(7) Miscellaneous Information Manual GROFF(7)

.blm macro
Set the blank line macro to macro.

.box End current diversion.

.box macro
Divert to macro, omitting a partially filled line.

.boxa End current diversion.

.boxa macro
Divert and append to macro, omitting a partially filled line.

.bp Eject current page and begin new page.

.bp ±N Eject current page; next page number ±N.

.br Line break.

.brp Break and spread output line. Same as p.

.break Break out of a while loop.

.c2 Reset no-break control character to “'”.

.c2 c Set no-break control character to c.

.cc Reset control character to ‘.’.

.cc c Set control character to c.

.ce Center the next input line.

.ce N Center following N input lines.

.cf filename
Copy contents of file filename unprocessed to stdout or to the diversion.

.cflags mode c1 c2 . . .
Treat characters c1, c2, . . . according to mode number.

.ch trap N
Change trap location to N.

.char c anything
Define entity c as string anything.

.chop object
Chop the last character off macro, string, or diversion object.

.class name c1 c2 . . .
Assign a set of characters, character ranges, or classes c1, c2, . . . to name.

.close stream
Close the stream.

.color Enable colors.

.color N
If N is zero disable colors, otherwise enable them.

.composite from to
Map glyph name from to glyph name to while constructing a composite glyph name.

.continue
Finish the current iteration of a while loop.

.cp Enable compatibility mode.

.cp N If N is zero disable compatibility mode, otherwise enable it.

.cs font N M
Set constant character width mode for font to N/36 ems with em M.

.cu N Continuous underline in nroff, like .ul in troff.

.da End current diversion.

.da macro
Divert and append to macro.

.de macro
Define or redefine macro until .. is encountered.

.de macro end
Define or redefine macro until .end is called.

Groff Version 1.22.3 05 November 2014 6

GROFF(7) Miscellaneous Information Manual GROFF(7)

.de1 macro
Same as .de but with compatibility mode switched off during macro expansion.

.de1 macro end
Same as .de but with compatibility mode switched off during macro expansion.

.defcolor color scheme component
Define or redefine a color with name color. scheme can be rgb, cym, cymk, gray, or
grey. component can be single components specified as fractions in the range 0 to 1
(default scaling indicator f), as a string of two-digit hexadecimal color components
with a leading #, or as a string of four-digit hexadecimal components with two lead-
ing #. The color default cant be redefined.

.dei macro
Define or redefine a macro whose name is contained in the string register macro until
.. is encountered.

.dei macro end
Define or redefine a macro indirectly. macro and end are string registers whose con-
tents are interpolated for the macro name and the end macro, respectively.

.dei1 macro
Same as .dei but with compatibility mode switched off during macro expansion.

.dei1 macro end
Same as .dei but with compatibility mode switched off during macro expansion.

.device anything
Write anything to the intermediate output as a device control function.

.devicem name
Write contents of macro or string name uninterpreted to the intermediate output as a
device control function.

.di End current diversion.

.di macro
Divert to macro.

.do name
Interpret .name with compatibility mode disabled.

.ds stringvar anything
Set stringvar to anything.

.ds1 stringvar anything
Same as .ds but with compatibility mode switched off during string expansion.

.dt N trap
Set diversion trap to position N (default scaling indicator v).

.ec Reset escape character to ‘\’.

.ec c Set escape character to c.

.ecr Restore escape character saved with .ecs.

.ecs Save current escape character.

.el anything
Else part for if-else (ie) request.

.em macro
The macro is run after the end of input.

.eo Turn off escape character mechanism.

.ev Switch to previous environment and pop it off the stack.

.ev env Push down environment number or name env to the stack and switch to it.

.evc env Copy the contents of environment env to the current environment. No pushing or
popping.

.ex Exit from roff processing.

.fam Return to previous font family.

.fam name
Set the current font family to name.

Groff Version 1.22.3 05 November 2014 7

GROFF(7) Miscellaneous Information Manual GROFF(7)

.fc Disable field mechanism.

.fc a Set field delimiter to a and pad glyph to space.

.fc a b Set field delimiter to a and pad glyph to b.

.fchar c anything
Define fallback character (or glyph) c as string anything.

.fcolor Set fill color to previous fill color.

.fcolor c
Set fill color to c.

.fi Fill output lines.

.fl Flush output buffer.

.fp n font
Mount font on position n.

.fp n internal external
Mount font with long external name to short internal name on position n.

.fschar f c anything
Define fallback character (or glyph) c for font f as string anything.

.fspecial font
Reset list of special fonts for font to be empty.

.fspecial font s1 s2 . . .
When the current font is font, then the fonts s1, s2, . . . are special.

.ft Return to previous font. Same as f[] or fP.

.ft font Change to font name or number font; same as \f[font] escape sequence.

.ftr font1 font2
Translate font1 to font2.

.fzoom font
Dont magnify font.

.fzoom font zoom
Set zoom factor for font (in multiples of 1/1000th).

.gcolor Set glyph color to previous glyph color.

.gcolor c
Set glyph color to c.

.hc Remove additional hyphenation indicator character.

.hc c Set up additional hyphenation indicator character c.

.hcode c1 code1 c2 code2 . . .
Set the hyphenation code of character c1 to code1, that of c2 to code2, etc.

.hla lang
Set the current hyphenation language to lang.

.hlm n Set the maximum number of consecutive hyphenated lines to n.

.hpf file Read hyphenation patterns from file.

.hpfa file
Append hyphenation patterns from file.

.hpfcode a b c d . . .
Set input mapping for .hpf.

.hw words
List of words with exceptional hyphenation.

.hy N Switch to hyphenation mode N.

.hym n Set the hyphenation margin to n (default scaling indicator m).

.hys n Set the hyphenation space to n.

.ie cond anything
If cond then anything else goto .el.

.if cond anything
If cond then anything; otherwise do nothing.

.ig Ignore text until .. is encountered.

Groff Version 1.22.3 05 November 2014 8

GROFF(7) Miscellaneous Information Manual GROFF(7)

.ig end Ignore text until .end is called.

.in Change to previous indentation value.

.in ±N Change indentation according to ±N (default scaling indicator m).

.it N trap
Set an input-line count trap for the next N lines.

.itc N trap
Same as .it but count lines interrupted with c as one line.

.kern Enable pairwise kerning.

.kern n If n is zero, disable pairwise kerning, otherwise enable it.

.lc Remove leader repetition glyph.

.lc c Set leader repetition glyph to c.

.length register anything
Write the length of the string anything to register.

.linetabs
Enable line-tabs mode (i.e., calculate tab positions relative to output line).

.linetabs n
If n is zero, disable line-tabs mode, otherwise enable it.

.lf N Set input line number to N.

.lf N file
Set input line number to N and filename to file.

.lg N Ligature mode on if N>0.

.ll Change to previous line length.

.ll ±N Set line length according to ±N (default length 6.5i, default scaling indicator m).

.lsm Unset the leading spaces macro.

.lsm macro
Set the leading spaces macro to macro.

.ls Change to the previous value of additional intra-line skip.

.ls N Set additional intra-line skip value to N, i.e., N−1 blank lines are inserted after each
text output line.

.lt ±N Length of title (default scaling indicator m).

.mc Margin glyph off.

.mc c Print glyph c after each text line at actual distance from right margin.

.mc c N Set margin glyph to c and distance to N from right margin (default scaling indica-
tor m).

.mk register
Mark current vertical position in register.

.mso file The same as .so except that file is searched in the tmac directories.

.na No output-line adjusting.

.ne Need a one-line vertical space.

.ne N Need N vertical space (default scaling indicator v).

.nf No filling or adjusting of output-lines.

.nh No hyphenation.

.nm Number mode off.

.nm ±N [M [S [I]]]
In line number mode, set number, multiple, spacing, and indentation.

.nn Do not number next line.

.nn N Do not number next N lines.

.nop anything
Always process anything.

.nr register ±N [M]
Define or modify register using ±N with auto-increment M.

.nroff Make the built-in conditions n true and t false.

.ns Turn on no-space mode.

Groff Version 1.22.3 05 November 2014 9

GROFF(7) Miscellaneous Information Manual GROFF(7)

.nx Immediately jump to end of current file.

.nx filename
Immediately continue processing with file file.

.open stream filename
Open filename for writing and associate the stream named stream with it.

.opena stream filename
Like .open but append to it.

.os Output vertical distance that was saved by the sv request.

.output string
Emit string directly to intermediate output, allowing leading whitespace if string starts
with " (which is stripped off).

.pc Reset page number character to ‘%’.

.pc c Page number character.

.pev Print the current environment and each defined environment state to stderr.

.pi program
Pipe output to program (nroff only).

.pl Set page length to default 11i. The current page length is stored in register .p.

.pl ±N Change page length to ±N (default scaling indicator v).

.pm Print macro names and sizes (number of blocks of 128 bytes).

.pm t Print only total of sizes of macros (number of 128 bytes blocks).

.pn ±N Next page number N.

.pnr Print the names and contents of all currently defined number registers on stderr.

.po Change to previous page offset. The current page offset is available in register .o.

.po ±N Page offset N.

.ps Return to previous point size.

.ps ±N Point size; same as \s[±N].

.psbb filename
Get the bounding box of a PostScript image filename.

.pso command
This behaves like the so request except that input comes from the standard output of
command.

.ptr Print the names and positions of all traps (not including input line traps and diversion
traps) on stderr.

.pvs Change to previous post-vertical line spacing.

.pvs ±N Change post-vertical line spacing according to ±N (default scaling indicator p).

.rchar c1 c2 . . .
Remove the definitions of entities c1, c2, . . .

.rd prompt
Read insertion.

.return Return from a macro.

.return anything
Return twice, namely from the macro at the current level and from the macro one
level higher.

.rfschar f c1 c2 . . .
Remove the definitions of entities c1, c2, . . . for font f.

.rj n Right justify the next n input lines.

.rm name
Remove request, macro, or string name.

.rn old new
Rename request, macro, or string old to new.

.rnn reg1 reg2
Rename register reg1 to reg2.

Groff Version 1.22.3 05 November 2014 10

GROFF(7) Miscellaneous Information Manual GROFF(7)

.rr register
Remove register.

.rs Restore spacing; turn no-space mode off.

.rt ±N Return (upward only) to marked vertical place (default scaling indicator v).

.schar c anything
Define global fallback character (or glyph) c as string anything.

.shc Reset soft hyphen glyph to (hy.

.shc c Set the soft hyphen glyph to c.

.shift n
In a macro, shift the arguments by n positions.

.sizes s1 s2 . . . sn [0]
Set available font sizes similar to the sizes command in a DESC file.

.so filename
Include source file.

.sp Skip one line vertically.

.sp N Space vertical distance N up or down according to sign of N (default scaling indica-
tor v).

.special
Reset global list of special fonts to be empty.

.special s1 s2 . . .
Fonts s1, s2, etc. are special and are searched for glyphs not in the current font.

.spreadwarn
Toggle the spread warning on and off without changing its value.

.spreadwarn limit
Emit a warning if each space in an output line is widened by limit or more (default
scaling indicator m).

.ss N Set space glyph size to N/12 of the space width in the current font.

.ss N M Set space glyph size to N/12 and sentence space size set to M/12 of the space width in
the current font.

.sty n style
Associate style with font position n.

.substring xx n1 n2
Replace the string named xx with the substring defined by the indices n1 and n2.

.sv Save 1 v of vertical space.

.sv N Save the vertical distance N for later output with os request (default scaling indica-
tor v).

.sy command-line
Execute program command-line.

.ta T N Set tabs after every position that is a multiple of N (default scaling indicator m).

.ta n1 n2 . . . nn T r1 r2 . . . rn
Set tabs at positions n1, n2, . . ., nn, then set tabs at nn+r1, nn+r2, . . ., nn+rn, then
at nn+rn+r1, nn+rn+r2, . . ., nn+rn+rn, and so on.

.tc Remove tab repetition glyph.

.tc c Set tab repetition glyph to c.

.ti ±N Temporary indent next line (default scaling indicator m).

.tkf font s1 n1 s2 n2
Enable track kerning for font.

.tl ’left’center’right’
Three-part title.

.tm anything
Print anything on stdout.

.tm1 anything
Print anything on stdout, allowing leading whitespace if anything starts with " (which
is stripped off).

Groff Version 1.22.3 05 November 2014 11

GROFF(7) Miscellaneous Information Manual GROFF(7)

.tmc anything
Similar to .tm1 without emitting a final newline.

.tr abcd. . .
Translate a to b, c to d, etc. on output.

.trf filename
Transparently output the contents of file filename.

.trin abcd. . .
This is the same as the tr request except that the asciify request uses the character
code (if any) before the character translation.

.trnt abcd. . .
This is the same as the tr request except that the translations do not apply to text
that is transparently throughput into a diversion with !.

.troff Make the built-in conditions t true and n false.

.uf font Set underline font to font (to be switched to by .ul).

.ul N Underline (italicize in troff) N input lines.

.unformat diversion
Unformat space characters and tabs in diversion, preserving font information.

.vpt n Enable vertical position traps if n is non-zero, disable them otherwise.

.vs Change to previous vertical base line spacing.

.vs ±N Set vertical base line spacing to ±N (default scaling indicator p).

.warn n Set warnings code to n.

.warnscale si
Set scaling indicator used in warnings to si.

.wh N Remove (first) trap at position N.

.wh N trap
Set location trap; negative means from page bottom.

.while cond anything
While condition cond is true, accept anything as input.

.write stream anything
Write anything to the stream named stream.

.writec stream anything
Similar to .write without emitting a final newline.

.writem stream xx
Write contents of macro or string xx to the stream named stream.

Besides these standard groff requests, there might be further macro calls. They can originate
from a macro package (see roff(7) for an overview) or from a preprocessor.

Preprocessor macros are easy to be recognized. They enclose their code into a pair of characteris-
tic macros.

preprocessor start macro end macro

chem .cstart .cend
eqn .EQ .EN

gideal .IS .IE
grap .G1 .G2
grn .GS .GE

.IF
pic .PS .PE

refer .R1 .R2
soelim none none

tbl .TS .TE

glilypond .lilypond start .lilypond stop
gperl .Perl start .Perl stop

gpinyin .pinyin start .pinyin stop

Groff Version 1.22.3 05 November 2014 12

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/roff

GROFF(7) Miscellaneous Information Manual GROFF(7)

Note that the ‘ideal’ preprocessor is not available in groff yet.

ESCAPE SEQUENCES
Escape sequences are in-line language elements usually introduced by a backslash ‘\’ and followed
by an escape name and sometimes by a required argument. Input processing is continued directly
after the escaped character or the argument (without an intervening separation character). So
there must be a way to determine the end of the escape name and the end of the argument.

This is done by enclosing names (escape name and arguments consisting of a variable name) by a
pair of brackets [name] and constant arguments (number expressions and characters) by apostro-
phes (ASCII 0x27) like ’constant’.

There are abbreviations for short names. Two-character escape names can be specified by an
opening parenthesis like (xy or *(xy without a closing counterpart. And all one-character names
different from the special characters ‘[’ and ‘(’ can even be specified without a marker, for exam-
ple nc or $c.

Constant arguments of length 1 can omit the marker apostrophes, too, but there is no two-charac-
ter analogue.

While one-character escape sequences are mainly used for in-line functions and system related
tasks, the two-letter names following the (construct are glyphs predefined by the roff system;
these are called ‘Special Characters’ in the classical documentation. Escapes sequences of the
form \[name] denote glyphs too.

Single-Character Escapes
\" Start of a comment. Everything up to the end of the line is ignored.
\# Everything up to and including the next newline is ignored. This is interpreted in copy

mode. This is like except that the terminating newline is ignored as well.
*s The string stored in the string variable with one-character name s.
*(st The string stored in the string variable with two-character name st.
*[string]

The string stored in the string variable with name string (with arbitrary length).
*[stringvar arg1 arg2 . . .]

The string stored in the string variable with arbitrarily long name stringvar, taking arg1,
arg2, . . . as arguments.

\$0 The name by which the current macro was invoked. The als request can make a macro
have more than one name.

\$x Macro or string argument with one-digit number x in the range 1 to 9.
\$(xy Macro or string argument with two-digit number xy (larger than zero).
\$[nexp]

Macro or string argument with number nexp, where nexp is a numerical expression evalu-
ating to an integer ≥1.

\$* In a macro or string, the concatenation of all the arguments separated by spaces.
\$@ In a macro or string, the concatenation of all the arguments with each surrounded by

double quotes, and separated by spaces.
\$ˆ In a macro, the representation of all parameters as if they were an argument to the ds

request.
\\ reduces to a single backslash; useful to delay its interpretation as escape character in copy

mode. For a printable backslash, use e, or even better [rs], to be independent from the
current escape character.

\´ The acute accent ´; same as (aa. Unescaped: apostrophe, right quotation mark, single
quote (ASCII 0x27).

\` The grave accent `; same as (ga. Unescaped: left quote, backquote (ASCII 0x60).
\- The - (minus) sign in the current font.
_ The same as (ul, the underline character.
\. The same as a dot (‘.’). Necessary in nested macro definitions so that ‘..’ expands to ‘..’.

Groff Version 1.22.3 05 November 2014 13

GROFF(7) Miscellaneous Information Manual GROFF(7)

\% Default optional hyphenation character.
\! Transparent line indicator.
\?anything?

In a diversion, this transparently embeds anything in the diversion. anything is read in
copy mode. See also the escape sequences ! and ?.

\space Unpaddable space size space glyph (no line break).
\0 Digit-width space.
\| 1/6 em narrow space glyph; zero width in nroff.
\ˆ 1/12 em half-narrow space glyph; zero width in nroff.
\& Non-printable, zero-width glyph.
\) Like & except that it behaves like a glyph declared with the cflags request to be trans-

parent for the purposes of end-of-sentence recognition.
\/ Increases the width of the preceding glyph so that the spacing between that glyph and

the following glyph is correct if the following glyph is a roman glyph.
\, Modifies the spacing of the following glyph so that the spacing between that glyph and

the preceding glyph is correct if the preceding glyph is a roman glyph.
\˜ Unbreakable space that stretches like a normal inter-word space when a line is adjusted.
\: Inserts a zero-width break point (similar to % but without a soft hyphen character).
\newline

Ignored newline, for continuation lines.
\{ Begin conditional input.
\} End conditional input.
\(sc A glyph with two-character name sc; see section Special Characters.
\[name]

A glyph with name name (of arbitrary length).
\[comp1 comp2 . . .]

A composite glyph with components comp1, comp2, . . .
\a Non-interpreted leader character.
\A’anything’

If anything is acceptable as a name of a string, macro, diversion, register, environment or
font it expands to 1, and to 0 otherwise.

\b’abc. . .’
Bracket building function.

\B’anything’
If anything is acceptable as a valid numeric expression it expands to 1, and to 0 other-
wise.

\c Interrupt text processing.
\C’glyph’

The glyph called glyph; same as \[glyph], but compatible to other roff versions.
\d Forward (down) 1/2 em (1/2 line in nroff).
\D’charseq’

Draw a graphical element defined by the characters in charseq; see the groff info file for
details.

\e Printable version of the current escape character.
\E Equivalent to an escape character, but is not interpreted in copy mode.
\fF Change to font with one-character name or one-digit number F.
\fP Switch back to previous font.
\f(fo Change to font with two-character name or two-digit number fo.
\f[font]

Change to font with arbitrarily long name or number expression font.
\f[] Switch back to previous font.
\Ff Change to font family with one-character name f.
\F(fm Change to font family with two-character name fm.

Groff Version 1.22.3 05 November 2014 14

GROFF(7) Miscellaneous Information Manual GROFF(7)

\F[fam]
Change to font family with arbitrarily long name fam.

\F[] Switch back to previous font family.
\gr Return format of register with one-character name r suitable for af request.
\g(rg Return format of register with two-character name rg suitable for af request.
\g[reg]

Return format of register with arbitrarily long name reg suitable for af request.
\h’N’

Local horizontal motion; move right N (left if negative).
\H’N’

Set height of current font to N.
\kr Mark horizontal input place in one-character register r.
\k(rg Mark horizontal input place in two-character register rg.
\k[reg]

Mark horizontal input place in register with arbitrarily long name reg.
\l’Nc’

Horizontal line drawing function (optionally using character c).
\L’Nc’

Vertical line drawing function (optionally using character c).
\mc Change to color with one-character name c.
\m(cl Change to color with two-character name cl.
\m[color]

Change to color with arbitrarily long name color.
\m[] Switch back to previous color.
\Mc Change filling color for closed drawn objects to color with one-character name c.
\M(cl Change filling color for closed drawn objects to color with two-character name cl.
\M[color]

Change filling color for closed drawn objects to color with arbitrarily long name color.
\M[] Switch to previous fill color.
\nr The numerical value stored in the register variable with the one-character name r.
\n(re The numerical value stored in the register variable with the two-character name re.
\n[reg]

The numerical value stored in the register variable with arbitrarily long name reg.
\N’n’ Typeset the glyph with index n in the current font. No special fonts are searched. Useful

for adding (named) entities to a document using the char request and friends.
\o’abc. . .’

Overstrike glyphs a, b, c, etc.
\O0 Disable glyph output. Mainly for internal use.
\O1 Enable glyph output. Mainly for internal use.
\p Break and spread output line.
\r Reverse 1 em vertical motion (reverse line in nroff).
\R’name ±n’

The same as .nr name ±n.
\s±N Set/increase/decrease the point size to/by N scaled points; N is a one-digit number in the

range 1 to 9. Same as ps request.
\s(±N
\s±(N Set/increase/decrease the point size to/by N scaled points; N is a two-digit number ≥1.

Same as ps request.
\s[±N]
\s±[N]
\s’±N’
\s±’N’

Set/increase/decrease the point size to/by N scaled points. Same as ps request.

Groff Version 1.22.3 05 November 2014 15

GROFF(7) Miscellaneous Information Manual GROFF(7)

\S’N’
Slant output by N degrees.

\t Non-interpreted horizontal tab.
\u Reverse (up) 1/2 em vertical motion (1/2 line in nroff).
\v’N’

Local vertical motion; move down N (up if negative).
\Ve The contents of the environment variable with one-character name e.
\V(ev The contents of the environment variable with two-character name ev.
\V[env]

The contents of the environment variable with arbitrarily long name env.
\w’string’

The width of the glyph sequence string.
\x’N’

Extra line-space function (negative before, positive after).
\X’string’

Output string as device control function.
\Yn Output string variable or macro with one-character name n uninterpreted as device con-

trol function.
\Y(nm

Output string variable or macro with two-character name nm uninterpreted as device
control function.

\Y[name]
Output string variable or macro with arbitrarily long name name uninterpreted as device
control function.

\zc Print c with zero width (without spacing).
\Z’anything’

Print anything and then restore the horizontal and vertical position; anything may not
contain tabs or leaders.

The escape sequences e, ., , $, *, a, n, t, g, and newline are interpreted in copy mode.

Escape sequences starting with (or [do not represent single character escape sequences, but
introduce escape names with two or more characters.

If a backslash is followed by a character that does not constitute a defined escape sequence, the
backslash is silently ignored and the character maps to itself.

Special Characters
[Note: ‘Special Characters’ is a misnomer; those entities are (output) glyphs, not (input) charac-
ters.]

Common special characters are predefined by escape sequences of the form (xy with characters x
and y. In groff, it is also possible to use the writing [xy] as well.

Some of these special characters exist in the usual font while most of them are only available in
the special font. Below you can see a small selection of the most important glyphs; a complete
list can be found in groff_char(7).

\(Do Dollar $
\(Eu Euro €
\(Po British pound sterling
\(aq Apostrophe quote
\(bu Bullet sign •
\(co Copyright
\(cq Single closing quote (right) ’
\(ct Cent
\(dd Double dagger
\(de Degree °

Groff Version 1.22.3 05 November 2014 16

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/groff_char

GROFF(7) Miscellaneous Information Manual GROFF(7)

\(dg Dagger
\(dq Double quote (ASCII 34)
\(em Em-dash —
\(en En-dash –
\(hy Hyphen -
\(lq Double quote left “
\(oq Single opening quote (left) ‘
\(rg Registered sign
\(rq Double quote right ”
\(rs Printable backslash character
\(sc Section sign
\(tm Trademark symbol TM

\(ul Underline character
\(== Identical ≡
\(>= Larger or equal ≥
\(<= Less or equal ≤
\(!= Not equal ≠
\(-> Right arrow →
\(<- Left arrow ←
\(+- Plus-minus sign ±

Unicode Characters
There is the extended escape u that allows to include all available Unicode characters into some
roff file.

[uxxxx]
u is the escape name. xxxx is a hexadecimal number of 4 hex digits, such as 0041 for the
letter A, see [u0041].

[uyyyyy]
u is the escape name. yyyyy is a hexadecimal number of 5 hex digits, such as 2FA1A for
a Chinese looking character for CJK Compatibility Ideographs Supplement, see
[u2FA1A].

Both hexadecimal collections mean the corresponding Unicode code for a character.

[uhex1_hex2]
[uhex1_hex2_hex3]

hex1, hex2, and hex3 are all Unicode hexadecimal codes (4 or 5 hex digits) that are used
for overstriking, e.g. [u0041_0301] is A acute .

The availability of the Unicode characters depends on the used font. For text mode, the device
-Tutf8 is quite complete, for troff modes it might happen that some or many characters will not
be displayed. Please check your fonts.

Strings
Strings are defined by the ds request and can be retrieved by the * escape sequence.

Strings share their name space with macros. So strings and macros without arguments are
roughly equivalent; it is possible to call a string like a macro and vice-versa, but this often leads
to unpredictable results. The following string is the only one predefined in groff.

*[.T] The name of the current output device as specified by the -T command line option.

REGISTERS
Registers are variables that store a value. In groff, most registers store numerical values (see sec-
tion NUMERICAL EXPRESSIONS above), but some can also hold a string value.

Each register is given a name. Arbitrary registers can be defined and set with the nr request.

The value stored in a register can be retrieved by the escape sequences introduced by n.

Groff Version 1.22.3 05 November 2014 17

GROFF(7) Miscellaneous Information Manual GROFF(7)

Most useful are predefined registers. In the following the notation name is used to refer to regis-
ter name to make clear that we speak about registers. Please keep in mind that the \n[] deco-
ration is not part of the register name.

Read-only Registers
The following registers have predefined values that should not be modified by the user (usually,
registers starting with a dot are read-only). Mostly, they provide information on the current set-
tings or store results from request calls.

n[$$] The process ID of troff.
n[.$] Number of arguments in the current macro or string.
n[.a] Post-line extra line-space most recently utilized using x.
n[.A] Set to 1 in troff if option -A is used; always 1 in nroff.
n[.b] The emboldening offset while .bd is active.
n[.br] Within a macro, set to 1 if macro called with the ‘normal’ control character, and to 0

otherwise.
n[.c] Current input line number.
n[.C] 1 if compatibility mode is in effect, 0 otherwise.
n[.cdp] The depth of the last glyph added to the current environment. It is positive if the

glyph extends below the baseline.
n[.ce] The number of lines remaining to be centered, as set by the ce request.
n[.cht] The height of the last glyph added to the current environment. It is positive if the

glyph extends above the baseline.
n[.color]

1 if colors are enabled, 0 otherwise.
n[.csk] The skew of the last glyph added to the current environment. The skew of a glyph is

how far to the right of the center of a glyph the center of an accent over that glyph
should be placed.

n[.d] Current vertical place in current diversion; equal to register nl.
n[.ev] The name or number of the current environment (string-valued).
n[.f] Current font number.
n[.F] The name of the current input file (string-valued).
n[.fam] The current font family (string-valued).
n[.fn] The current (internal) real font name (string-valued).
n[.fp] The number of the next free font position.
n[.g] Always 1 in GNU troff. Macros should use it to test if running under groff.
n[.h] Text base-line high-water mark on current page or diversion.
n[.H] Available horizontal resolution in basic units.
n[.height]

The current font height as set with H.
n[.hla] The current hyphenation language as set by the hla request.
n[.hlc] The number of immediately preceding consecutive hyphenated lines.
n[.hlm] The maximum allowed number of consecutive hyphenated lines, as set by the hlm

request.
n[.hy] The current hyphenation flags (as set by the hy request).
n[.hym] The current hyphenation margin (as set by the hym request).
n[.hys] The current hyphenation space (as set by the hys request).
n[.i] Current indentation.
n[.in] The indentation that applies to the current output line.
n[.int] Positive if last output line contains c.
n[.j] The current adjustment mode. It can be stored and used to set adjustment. (n = 1,

b = 1, l = 0, r = 5, c = 3).
n[.k] The current horizontal output position (relative to the current indentation).
n[.kern] 1 if pairwise kerning is enabled, 0 otherwise.
n[.l] Current line length.

Groff Version 1.22.3 05 November 2014 18

GROFF(7) Miscellaneous Information Manual GROFF(7)

n[.L] The current line spacing setting as set by .ls.
n[.lg] The current ligature mode (as set by the lg request).
n[.linetabs]

The current line-tabs mode (as set by the linetabs request).
n[.ll] The line length that applies to the current output line.
n[.lt] The title length (as set by the lt request).
n[.m] The current drawing color (string-valued).
n[.M] The current background color (string-valued).
n[.n] Length of text portion on previous output line.
n[.ne] The amount of space that was needed in the last ne request that caused a trap to be

sprung. Useful in conjunction with register .trunc.
n[.ns] 1 if in no-space mode, 0 otherwise.
n[.o] Current page offset.
n[.O] The suppression nesting level (see O).
n[.p] Current page length.
n[.P] 1 if the current page is being printed, 0 otherwise (as determined by the -o command

line option).
n[.pe] 1 during page ejection, 0 otherwise.
n[.pn] The number of the next page: either the value set by a pn request, or the number of

the current page plus 1.
n[.ps] The current point size in scaled points.
n[.psr] The last-requested point size in scaled points.
n[.pvs] The current post-vertical line spacing.
n[.R] The number of unused number registers. Always 10000 in GNU troff.
n[.rj] The number of lines to be right-justified as set by the rj request.
n[.s] Current point size as a decimal fraction.
n[.slant]

The slant of the current font as set with S.
n[.sr] The last requested point size in points as a decimal fraction (string-valued).
n[.ss] The value of the parameters set by the first argument of the ss request.
n[.sss] The value of the parameters set by the second argument of the ss request.
n[.sty] The current font style (string-valued).
n[.t] Vertical distance to the next trap.
n[.T] Set to 1 if option -T is used.
n[.tabs] A string representation of the current tab settings suitable for use as an argument to

the ta request.
n[.trunc]

The amount of vertical space truncated by the most recently sprung vertical position
trap, or, if the trap was sprung by a ne request, minus the amount of vertical motion
produced by .ne. Useful in conjunction with the register .ne.

n[.u] Equal to 1 in fill mode and 0 in no-fill mode.
n[.U] Equal to 1 in safer mode and 0 in unsafe mode.
n[.v] Current vertical line spacing.
n[.V] Available vertical resolution in basic units.
n[.vpt] 1 if vertical position traps are enabled, 0 otherwise.
n[.w] Width of previous glyph.
n[.warn] The sum of the number codes of the currently enabled warnings.
n[.x] The major version number.
n[.y] The minor version number.
n[.Y] The revision number of groff.
n[.z] Name of current diversion.
n[.zoom] Zoom factor for current font (in multiples of 1/1000th; zero if no magnification).

Groff Version 1.22.3 05 November 2014 19

GROFF(7) Miscellaneous Information Manual GROFF(7)

Writable Registers
The following registers can be read and written by the user. They have predefined default values,
but these can be modified for customizing a document.

n[%] Current page number.
n[c.] Current input line number.
n[ct] Character type (set by width function w).
n[dl] Maximal width of last completed diversion.
n[dn] Height of last completed diversion.
n[dw] Current day of week (1–7).
n[dy] Current day of month (1–31).
n[hours] The number of hours past midnight. Initialized at start-up.
n[hp] Current horizontal position at input line.
n[llx] Lower left x-coordinate (in PostScript units) of a given PostScript image (set by

.psbb).
n[lly] Lower left y-coordinate (in PostScript units) of a given PostScript image (set by

.psbb).
n[ln] Output line number.
n[lsn] The number of leading spaces of an input line.
n[lss] The horizontal space corresponding to the leading spaces of an input line.
n[minutes]

The number of minutes after the hour. Initialized at start-up.
n[mo] Current month (1–12).
n[nl] Vertical position of last printed text base-line.
n[opmaxx]
n[opmaxy]
n[opminx]
n[opminy]

These four registers mark the top left and bottom right hand corners of a box which
encompasses all written glyphs. They are reset to -1 by O0 or O1.

n[rsb] Like register sb, but takes account of the heights and depths of glyphs.
n[rst] Like register st, but takes account of the heights and depths of glyphs.
n[sb] Depth of string below base line (generated by width function w).
n[seconds]

The number of seconds after the minute. Initialized at start-up.
n[skw] Right skip width from the center of the last glyph in the w argument.
n[slimit]

If greater than 0, the maximum number of objects on the input stack. If ≤0 there is
no limit, i.e., recursion can continue until virtual memory is exhausted.

n[ssc] The amount of horizontal space (possibly negative) that should be added to the last
glyph before a subscript (generated by width function w).

n[st] Height of string above base line (generated by width function w).
n[systat]

The return value of the system() function executed by the last sy request.
n[urx] Upper right x-coordinate (in PostScript units) of a given PostScript image (set by

.psbb).
n[ury] Upper right y-coordinate (in PostScript units) of a given PostScript image (set by

.psbb).
n[year] The current year (year 2000 compliant).
n[yr] Current year minus 1900. For Y2K compliance use register year instead.

UNDERLINING
In the RUNOFF language, the underlining was quite easy. But in roff this is much more difficult.

Groff Version 1.22.3 05 November 2014 20

GROFF(7) Miscellaneous Information Manual GROFF(7)

Underlining with .ul
There exists a groff request .ul (see above) that can underline the next or further source lines in
nroff, but in troff it produces only a font change into italic. So this request is not really useful.

Underlining with .UL from ms
In the ‘ms’ macro package in tmac/s.tmac groff_ms(7), there is the macro .UL. But this works
only in troff, not in nroff.

Underlining macro definitions
So one can use the italic nroff idea from .ul and the troff definition in ms for writing a useful
new macro, something like

.de UNDERLINE

. ie n \\$1\f[I]\\$2\f[P]\\$3

. el \\$1\Z'\\$2'\v'.25m'\D'l \w'\\$2'u 0'\v'-.25m'\[rs]\$3

..

If doclifter(1) makes trouble, change the macro name UNDERLINE into some 2-letter word,
like Ul. Moreover change the font writing from f[P] to fP.

Underlining without macro definitions
If one does not want to use macro definitions, e.g. when doclifter gets lost, use the following:

.ds u1 before

.ds u2 in

.ds u3 after

.ie n *[u1]\f[I]*[u2]\f[P]*[u3]

.el *[u1]\Z'*[u2]'\v'.25m'\D'l \w'*[u2]'u 0'\v'-.25m'*[u3]

Due to doclifter, it might be necessary to change the variable writing [xy] and *[xy] into the
strange ancient writing *(xy and (xy, and so on.

Then these lines could look like
.ds u1 before

.ds u2 in

.ds u3 after

.ie n *[u1]\fI*(u2\fP*(u3

.el *(u1\Z'*(u2'\v'.25m’\D'l \w'*(u2'u 0'\v'-.25m'*(u3

The result looks like
before in after

Underlining with Overstriking z and (ul
There is another possibility for underlining by using overstriking with zc (print c with zero width
without spacing) and (ul (underline character). This produces the underlining of 1 character,
both in nroff and in troff.

For example the underlining of a character say t looks like z[ul]t or z(ult

Longer words look then a bit strange, but a useful mode is to write each character into a