
FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

NAME
fanotify - monitoring filesystem events

DESCRIPTION
The fanotify API provides notification and interception of filesystem events. Use cases include
virus scanning and hierarchical storage management. Currently, only a limited set of events is
supported. In particular, there is no support for create, delete, and move events. (See inotify(7)
for details of an API that does notify those events.)

Additional capabilities compared to the inotify(7) API include the ability to monitor all of the
objects in a mounted filesystem, the ability to make access permission decisions, and the possibil-
ity to read or modify files before access by other applications.

The following system calls are used with this API: fanotify_init(2), fanotify_mark(2), read(2),
write(2), and close(2).

fanotify_init(), fanotify_mark(), and notification groups
The fanotify_init(2) system call creates and initializes an fanotify notification group and returns a
file descriptor referring to it.

An fanotify notification group is a kernel-internal object that holds a list of files, directories, and
mount points for which events shall be created.

For each entry in an fanotify notification group, two bit masks exist: the mark mask and the
ignore mask. The mark mask defines file activities for which an event shall be created. The
ignore mask defines activities for which no event shall be generated. Having these two types of
masks permits a mount point or directory to be marked for receiving events, while at the same
time ignoring events for specific objects under that mount point or directory.

The fanotify_mark(2) system call adds a file, directory, or mount to a notification group and spec-
ifies which events shall be reported (or ignored), or removes or modifies such an entry.

A possible usage of the ignore mask is for a file cache. Events of interest for a file cache are modi-
fication of a file and closing of the same. Hence, the cached directory or mount point is to be
marked to receive these events. After receiving the first event informing that a file has been mod-
ified, the corresponding cache entry will be invalidated. No further modification events for this
file are of interest until the file is closed. Hence, the modify event can be added to the ignore
mask. Upon receiving the close event, the modify event can be removed from the ignore mask
and the file cache entry can be updated.

The entries in the fanotify notification groups refer to files and directories via their inode number
and to mounts via their mount ID. If files or directories are renamed or moved, the respective
entries survive. If files or directories are deleted or mounts are unmounted, the corresponding
entries are deleted.

The event queue
As events occur on the filesystem objects monitored by a notification group, the fanotify system
generates events that are collected in a queue. These events can then be read (using read(2) or
similar) from the fanotify file descriptor returned by fanotify_init(2).

Two types of events are generated: notification events and permission events. Notification events
are merely informative and require no action to be taken by the receiving application except for
closing the file descriptor passed in the event (see below). Permission events are requests to the
receiving application to decide whether permission for a file access shall be granted. For these
events, the recipient must write a response which decides whether access is granted or not.

An event is removed from the event queue of the fanotify group when it has been read. Permis-
sion events that have been read are kept in an internal list of the fanotify group until either a per-
mission decision has been taken by writing to the fanotify file descriptor or the fanotify file
descriptor is closed.

Linux 2014-05-21 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/inotify
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/inotify
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_mark
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/close
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_mark
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_init

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

Reading fanotify events
Calling read(2) for the file descriptor returned by fanotify_init(2) blocks (if the flag FAN_NON-
BLOCK is not specified in the call to fanotify_init(2)) until either a file event occurs or the call
is interrupted by a signal (see signal(7)).

After a successful read(2), the read buffer contains one or more of the following structures:

struct fanotify_event_metadata {
__u32 event_len;
__u8 vers;
__u8 reserved;
__u16 metadata_len;
__aligned_u64 mask;
__s32 fd;
__s32 pid;
};

For performance reasons, it is recommended to use a large buffer size (for example, 4096 bytes),
so that multiple events can be retrieved by a single read(2).

The return value of read(2) is the number of bytes placed in the buffer, or -1 in case of an error
(but see BUGS).

The fields of the fanotify_event_metadata structure are as follows:

event_len
This is the length of the data for the current event and the offset to the next event in the
buffer. In the current implementation, the value of event_len is always
FAN_EVENT_METADATA_LEN. However, the API is designed to allow variable-
length structures to be returned in the future.

vers This field holds a version number for the structure. It must be compared to FAN-
OTIFY_METADATA_VERSION to verify that the structures returned at runtime
match the structures defined at compile time. In case of a mismatch, the application
should abandon trying to use the fanotify file descriptor.

reserved
This field is not used.

metadata_len
This is the length of the structure. The field was introduced to facilitate the implementa-
tion of optional headers per event type. No such optional headers exist in the current
implementation.

mask This is a bit mask describing the event (see below).

fd This is an open file descriptor for the object being accessed, or FAN_NOFD if a queue
overflow occurred. The file descriptor can be used to access the contents of the monitored
file or directory. The reading application is responsible for closing this file descriptor.

When calling fanotify_init(2), the caller may specify (via the event_f_flags argument) var-
ious file status flags that are to be set on the open file description that corresponds to this
file descriptor. In addition, the (kernel-internal) FMODE_NONOTIFY file status flag
is set on the open file description. This flag suppresses fanotify event generation. Hence,
when the receiver of the fanotify event accesses the notified file or directory using this file
descriptor, no additional events will be created.

pid This is the ID of the process that caused the event. A program listening to fanotify
events can compare this PID to the PID returned by getpid(2), to determine whether the
event is caused by the listener itself, or is due to a file access by another process.

The bit mask in mask indicates which events have occurred for a single filesystem object.

Linux 2014-05-21 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/signal
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getpid

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

Multiple bits may be set in this mask, if more than one event occurred for the monitored filesys-
tem object. In particular, consecutive events for the same filesystem object and originating from
the same process may be merged into a single event, with the exception that two permission
events are never merged into one queue entry.

The bits that may appear in mask are as follows:

FAN_ACCESS
A file or a directory (but see BUGS) was accessed (read).

FAN_OPEN
A file or a directory was opened.

FAN_MODIFY
A file was modified.

FAN_CLOSE_WRITE
A file that was opened for writing (O_WRONLY or O_RDWR) was closed.

FAN_CLOSE_NOWRITE
A file or directory that was opened read-only (O_RDONLY) was closed.

FAN_Q_OVERFLOW
The event queue exceeded the limit of 16384 entries. This limit can be overridden by
specifying the FAN_UNLIMITED_QUEUE flag when calling fanotify_init(2).

FAN_ACCESS_PERM
An application wants to read a file or directory, for example using read(2) or readdir(2).
The reader must write a response (as described below) that determines whether the per-
mission to access the filesystem object shall be granted.

FAN_OPEN_PERM
An application wants to open a file or directory. The reader must write a response that
determines whether the permission to open the filesystem object shall be granted.

To check for any close event, the following bit mask may be used:

FAN_CLOSE
A file was closed. This is a synonym for:

FAN_CLOSE_WRITE | FAN_CLOSE_NOWRITE

The following macros are provided to iterate over a buffer containing fanotify event metadata
returned by a read(2) from an fanotify file descriptor:

FAN_EVENT_OK(meta, len)
This macro checks the remaining length len of the buffer meta against the length of the
metadata structure and the event_len field of the first metadata structure in the buffer.

FAN_EVENT_NEXT(meta, len)
This macro uses the length indicated in the event_len field of the metadata structure
pointed to by meta to calculate the address of the next metadata structure that follows
meta. len is the number of bytes of metadata that currently remain in the buffer. The
macro returns a pointer to the next metadata structure that follows meta, and reduces len
by the number of bytes in the the metadata structure that has been skipped over (i.e., it
subtracts meta->event_len from len).

In addition, there is:

FAN_EVENT_METADATA_LEN
This macro returns the size (in bytes) of the structure fanotify_event_metadata. This is
the minimum size (and currently the only size) of any event metadata.

Linux 2014-05-21 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/readdir
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

Monitoring an fanotify file descriptor for events
When an fanotify event occurs, the fanotify file descriptor indicates as readable when passed to
epoll(7), poll(2), or select(2).

Dealing with permission events
For permission events, the application must write(2) a structure of the following form to the fan-
otify file descriptor:

struct fanotify_response {
__s32 fd;
__u32 response;
};

The fields of this structure are as follows:

fd This is the file descriptor from the structure fanotify_event_metadata.

response
This field indicates whether or not the permission is to be granted. Its value must be
either FAN_ALLOW to allow the file operation or FAN_DENY to deny the file opera-
tion.

If access is denied, the requesting application call will receive an EPERM error.

Closing the fanotify file descriptor
When all file descriptors referring to the fanotify notification group are closed, the fanotify group
is released and its resources are freed for reuse by the kernel. Upon close(2), outstanding permis-
sion events will be set to allowed.

/proc/[pid]/fdinfo
The file /proc/[pid]/fdinfo/[fd] contains information about fanotify marks for file descriptor fd of
process pid. See the kernel source file Documentation/filesystems/proc.txt for details.

ERRORS
In addition to the usual errors for read(2), the following errors can occur when reading from the
fanotify file descriptor:

EINVAL
The buffer is too small to hold the event.

EMFILE
The per-process limit on the number of open files has been reached. See the description
of RLIMIT_NOFILE in getrlimit(2).

ENFILE
The system-wide limit on the number of open files has been reached. See
/proc/sys/fs/file-max in proc(5).

ETXTBSY
This error is returned by read(2) if O_RDWR or O_WRONLY was specified in the
event_f_flags argument when calling fanotify_init(2) and an event occurred for a moni-
tored file that is currently being executed.

In addition to the usual errors for write(2), the following errors can occur when writing to the
fanotify file descriptor:

EINVAL
Fanotify access permissions are not enabled in the kernel configuration or the value of
response in the response structure is not valid.

ENOENT
The file descriptor fd in the response structure is not valid. This may occur when a
response for the permission event has already been written.

Linux 2014-05-21 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/close
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getrlimit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/proc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

VERSIONS
The fanotify API was introduced in version 2.6.36 of the Linux kernel and enabled in version
2.6.37. Fdinfo support was added in version 3.8.

CONFORMING TO
The fanotify API is Linux-specific.

NOTES
The fanotify API is available only if the kernel was built with the CONFIG_FANOTIFY con-
figuration option enabled. In addition, fanotify permission handling is available only if the CON-
FIG_FANOTIFY_ACCESS_PERMISSIONS configuration option is enabled.

Limitations and caveats
Fanotify reports only events that a user-space program triggers through the filesystem API. As a
result, it does not catch remote events that occur on network filesystems.

The fanotify API does not report file accesses and modifications that may occur because of
mmap(2), msync(2), and munmap(2).

Events for directories are created only if the directory itself is opened, read, and closed. Adding,
removing, or changing children of a marked directory does not create events for the monitored
directory itself.

Fanotify monitoring of directories is not recursive: to monitor subdirectories under a directory,
additional marks must be created. (But note that the fanotify API provides no way of detecting
when a subdirectory has been created under a marked directory, which makes recursive monitor-
ing difficult.) Monitoring mounts offers the capability to monitor a whole directory tree.

The event queue can overflow. In this case, events are lost.

BUGS
As of Linux 3.15, the following bugs exist:

* When an event is generated, no check is made to see whether the user ID of the receiving
process has authorization to read or write the file before passing a file descriptor for that file.
This poses a security risk, when the CAP_SYS_ADMIN capability is set for programs exe-
cuted by unprivileged users.

* If a call to read(2) processes multiple events from the fanotify queue and an error occurs, the
return value will be the total length of the events successfully copied to the user-space buffer
before the error occurred. The return value will not be -1, and errno will not be set. Thus,
the reading application has no way to detect the error.

EXAMPLE
The following program demonstrates the usage of the fanotify API. It marks the mount point
passed as a command-line argument and waits for events of type FAN_PERM_OPEN and
FAN_CLOSE_WRITE. When a permission event occurs, a FAN_ALLOW response is given.

The following output was recorded while editing the file /home/user/temp/notes. Before the file
was opened, a FAN_OPEN_PERM event occurred. After the file was closed, a
FAN_CLOSE_WRITE event occurred. Execution of the program ends when the user presses
the ENTER key.

Example output
./fanotify_example /home
Press enter key to terminate.
Listening for events.
FAN_OPEN_PERM: File /home/user/temp/notes
FAN_CLOSE_WRITE: File /home/user/temp/notes

Listening for events stopped.

Linux 2014-05-21 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/msync
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/munmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

Program source
#define _GNU_SOURCE /* Needed to get O_LARGEFILE definition */
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/fanotify.h>
#include <unistd.h>

/* Read all available fanotify events from the file descriptor ’fd’ */

static void
handle_events(int fd)
{
const struct fanotify_event_metadata *metadata;
struct fanotify_event_metadata buf[200];
ssize_t len;
char path[PATH_MAX];
ssize_t path_len;
char procfd_path[PATH_MAX];
struct fanotify_response response;

/* Loop while events can be read from fanotify file descriptor */

for(;;) {

/* Read some events */

len = read(fd, (void *) &buf, sizeof(buf));
if (len == -1 && errno != EAGAIN) {
perror(read);
exit(EXIT_FAILURE);
}

/* Check if end of available data reached */

if (len <= 0)
break;

/* Point to the first event in the buffer */

metadata = buf;

/* Loop over all events in the buffer */

while (FAN_EVENT_OK(metadata, len)) {

/* Check that run-time and compile-time structures match */

if (metadata->vers != FANOTIFY_METADATA_VERSION) {
fprintf(stderr,
Mismatch of fanotify metadata version.n);
exit(EXIT_FAILURE);
}

/* metadata->fd contains either FAN_NOFD, indicating a
queue overflow, or a file descriptor (a nonnegative
integer). Here, we simply ignore queue overflow. */

if (metadata->fd >= 0) {

Linux 2014-05-21 6

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

/* Handle open permission event */

if (metadata->mask & FAN_OPEN_PERM) {
printf(FAN_OPEN_PERM:);

/* Allow file to be opened */

response.fd = metadata->fd;
response.response = FAN_ALLOW;
write(fd, &response,
sizeof(struct fanotify_response));
}

/* Handle closing of writable file event */

if (metadata->mask & FAN_CLOSE_WRITE)
printf(FAN_CLOSE_WRITE:);

/* Retrieve and print pathname of the accessed file */

snprintf(procfd_path, sizeof(procfd_path),
/proc/self/fd/%d, metadata->fd);
path_len = readlink(procfd_path, path,
sizeof(path) - 1);
if (path_len == -1) {
perror(readlink);
exit(EXIT_FAILURE);
}

path[path_len] = ’0’;
printf(File %sn, path);

/* Close the file descriptor of the event */

close(metadata->fd);
}

/* Advance to next event */

metadata = FAN_EVENT_NEXT(metadata, len);
}
}
}

int
main(int argc, char *argv[])
{
char buf;
int fd, poll_num;
nfds_t nfds;
struct pollfd fds[2];

/* Check mount point is supplied */

if (argc != 2) {
fprintf(stderr, Usage: %s MOUNTn, argv[0]);
exit(EXIT_FAILURE);
}

printf(Press enter key to terminate.n);

/* Create the file descriptor for accessing the fanotify API */

Linux 2014-05-21 7

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

fd = fanotify_init(FAN_CLOEXEC | FAN_CLASS_CONTENT | FAN_NONBLOCK,
O_RDONLY | O_LARGEFILE);
if (fd == -1) {
perror(fanotify_init);
exit(EXIT_FAILURE);
}

/* Mark the mount for:
- permission events before opening files
- notification events after closing a write-enabled
file descriptor */

if (fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_MOUNT,
FAN_OPEN_PERM | FAN_CLOSE_WRITE, -1,
argv[1]) == -1) {
perror(fanotify_mark);
exit(EXIT_FAILURE);
}

/* Prepare for polling */

nfds = 2;

/* Console input */

fds[0].fd = STDIN_FILENO;
fds[0].events = POLLIN;

/* Fanotify input */

fds[1].fd = fd;
fds[1].events = POLLIN;

/* This is the loop to wait for incoming events */

printf(Listening for events.n);

while (1) {
poll_num = poll(fds, nfds, -1);
if (poll_num == -1) {
if (errno == EINTR) /* Interrupted by a signal */
continue; /* Restart poll() */

perror(poll); /* Unexpected error */
exit(EXIT_FAILURE);
}

if (poll_num > 0) {
if (fds[0].revents & POLLIN) {

/* Console input is available: empty stdin and quit */

while (read(STDIN_FILENO, &buf, 1) > 0 && buf != ’n’)
continue;
break;
}

if (fds[1].revents & POLLIN) {

/* Fanotify events are available */

handle_events(fd);
}

Linux 2014-05-21 8

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

}
}

printf(Listening for events stopped.n);
exit(EXIT_SUCCESS);
}

SEE ALSO
fanotify_init(2), fanotify_mark(2), inotify(7)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

Linux 2014-05-21 9

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_mark
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/inotify
http://www.kernel.org/doc/man-pages/.

	NAME
	DESCRIPTION
	fanotify_init(), fanotify_mark(), and notification groups
	The event queue
	Reading fanotify events
	event_len
	vers
	reserved
	metadata_len
	mask
	fd
	pid
	FAN_ACCESS
	FAN_OPEN
	FAN_MODIFY
	FAN_CLOSE_WRITE
	FAN_CLOSE_NOWRITE
	FAN_Q_OVERFLOW
	FAN_ACCESS_PERM
	FAN_OPEN_PERM
	FAN_CLOSE
	FAN_EVENT_OK(meta, len)
	FAN_EVENT_NEXT(meta, len)
	FAN_EVENT_METADATA_LEN

	Monitoring an fanotify file descriptor for events
	Dealing with permission events
	fd
	response

	Closing the fanotify file descriptor
	/proc/ [pid] /fdinfo

	ERRORS
	EINVAL
	EMFILE
	ENFILE
	ETXTBSY
	EINVAL
	ENOENT

	VERSIONS
	CONFORMING TO
	NOTES
	Limitations and caveats

	BUGS
	EXAMPLE
	Example output
	Program source

	SEE ALSO
	COLOPHON

