
CAPABILITIES(7) Linux Programmer’s Manual CAPABILITIES(7)

NAME
capabilities - overview of Linux capabilities

DESCRIPTION
For the purpose of performing permission checks, traditional UNIX implementations distinguish
two categories of processes: privileged processes (whose effective user ID is 0, referred to as supe-
ruser or root), and unprivileged processes (whose effective UID is nonzero). Privileged processes
bypass all kernel permission checks, while unprivileged processes are subject to full permission
checking based on the process’s credentials (usually: effective UID, effective GID, and supplemen-
tary group list).

Starting with kernel 2.2, Linux divides the privileges traditionally associated with superuser into
distinct units, known as capabilities, which can be independently enabled and disabled. Capabili-
ties are a per-thread attribute.

Capabilities list
The following list shows the capabilities implemented on Linux, and the operations or behaviors
that each capability permits:

CAP_AUDIT_CONTROL (since Linux 2.6.11)
Enable and disable kernel auditing; change auditing filter rules; retrieve auditing status
and filtering rules.

CAP_AUDIT_READ (since Linux 3.16)
Allow reading the audit log via a multicast netlink socket.

CAP_AUDIT_WRITE (since Linux 2.6.11)
Write records to kernel auditing log.

CAP_BLOCK_SUSPEND (since Linux 3.5)
Employ features that can block system suspend (epoll(7) EPOLLWAKEUP,
/proc/sys/wake_lock).

CAP_CHOWN
Make arbitrary changes to file UIDs and GIDs (see chown(2)).

CAP_DAC_OVERRIDE
Bypass file read, write, and execute permission checks. (DAC is an abbreviation of dis-
cretionary access control.)

CAP_DAC_READ_SEARCH
* Bypass file read permission checks and directory read and execute permission checks;
* Invoke open_by_handle_at(2).

CAP_FOWNER
* Bypass permission checks on operations that normally require the filesystem UID of the

process to match the UID of the file (e.g., chmod(2), utime(2)), excluding those opera-
tions covered by CAP_DAC_OVERRIDE and CAP_DAC_READ_SEARCH;

* set extended file attributes (see chattr(1)) on arbitrary files;
* set Access Control Lists (ACLs) on arbitrary files;
* ignore directory sticky bit on file deletion;
* specify O_NOATIME for arbitrary files in open(2) and fcntl(2).

CAP_FSETID
Don’t clear set-user-ID and set-group-ID permission bits when a file is modified; set the
set-group-ID bit for a file whose GID does not match the filesystem or any of the supple-
mentary GIDs of the calling process.

CAP_IPC_LOCK
Lock memory (mlock(2), mlockall(2), mmap(2), shmctl(2)).

Linux 2014-09-21 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chown
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open_by_handle_at
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chmod
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/utime
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/chattr
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mlock
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mlockall
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/shmctl

CAPABILITIES(7) Linux Programmer’s Manual CAPABILITIES(7)

CAP_IPC_OWNER
Bypass permission checks for operations on System V IPC objects.

CAP_KILL
Bypass permission checks for sending signals (see kill(2)). This includes use of the
ioctl(2) KDSIGACCEPT operation.

CAP_LEASE (since Linux 2.4)
Establish leases on arbitrary files (see fcntl(2)).

CAP_LINUX_IMMUTABLE
Set the FS_APPEND_FL and FS_IMMUTABLE_FL i-node flags (see chattr(1)).

CAP_MAC_ADMIN (since Linux 2.6.25)
Override Mandatory Access Control (MAC). Implemented for the Smack Linux Security
Module (LSM).

CAP_MAC_OVERRIDE (since Linux 2.6.25)
Allow MAC configuration or state changes. Implemented for the Smack LSM.

CAP_MKNOD (since Linux 2.4)
Create special files using mknod(2).

CAP_NET_ADMIN
Perform various network-related operations:
* interface configuration;
* administration of IP firewall, masquerading, and accounting;
* modify routing tables;
* bind to any address for transparent proxying;
* set type-of-service (TOS)
* clear driver statistics;
* set promiscuous mode;
* enabling multicasting;
* use setsockopt(2) to set the following socket options: SO_DEBUG, SO_MARK,

SO_PRIORITY (for a priority outside the range 0 to 6), SO_RCVBUFFORCE,
and SO_SNDBUFFORCE.

CAP_NET_BIND_SERVICE
Bind a socket to Internet domain privileged ports (port numbers less than 1024).

CAP_NET_BROADCAST
(Unused) Make socket broadcasts, and listen to multicasts.

CAP_NET_RAW
* use RAW and PACKET sockets;
* bind to any address for transparent proxying.

CAP_SETGID
Make arbitrary manipulations of process GIDs and supplementary GID list; forge GID
when passing socket credentials via UNIX domain sockets; write a group ID mapping in a
user namespace (see user_namespaces(7)).

CAP_SETFCAP (since Linux 2.6.24)
Set file capabilities.

CAP_SETPCAP
If file capabilities are not supported: grant or remove any capability in the caller’s permit-
ted capability set to or from any other process. (This property of CAP_SETPCAP is
not available when the kernel is configured to support file capabilities, since CAP_SET-
PCAP has entirely different semantics for such kernels.)

If file capabilities are supported: add any capability from the calling thread’s bounding
set to its inheritable set; drop capabilities from the bounding set (via prctl(2)

Linux 2014-09-21 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/kill
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/chattr
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mknod
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setsockopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/user_namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl

CAPABILITIES(7) Linux Programmer’s Manual CAPABILITIES(7)

PR_CAPBSET_DROP); make changes to the securebits flags.

CAP_SETUID
Make arbitrary manipulations of process UIDs (setuid(2), setreuid(2), setresuid(2), setf-
suid(2)); forge UID when passing socket credentials via UNIX domain sockets; write a
user ID mapping in a user namespace (see user_namespaces(7)).

CAP_SYS_ADMIN
* Perform a range of system administration operations including: quotactl(2), mount(2),

umount(2), swapon(2), swapoff(2), sethostname(2), and setdomainname(2);
* perform privileged syslog(2) operations (since Linux 2.6.37, CAP_SYSLOG should be

used to permit such operations);
* perform VM86_REQUEST_IRQ vm86(2) command;
* perform IPC_SET and IPC_RMID operations on arbitrary System V IPC objects;
* override RLIMIT_NPROC resource limit;
* perform operations on trusted and security Extended Attributes (see attr(5));
* use lookup_dcookie(2);
* use ioprio_set(2) to assign IOPRIO_CLASS_RT and (before Linux 2.6.25)

IOPRIO_CLASS_IDLE I/O scheduling classes;
* forge UID when passing socket credentials;
* exceed /proc/sys/fs/file-max, the system-wide limit on the number of open files, in sys-

tem calls that open files (e.g., accept(2), execve(2), open(2), pipe(2));
* employ CLONE_* flags that create new namespaces with clone(2) and unshare(2)

(but, since Linux 3.8, creating user namespaces does not require any capability);
* call perf_event_open(2);
* access privileged perf event information;
* call setns(2) (requires CAP_SYS_ADMIN in the target namespace);
* call fanotify_init(2);
* perform KEYCTL_CHOWN and KEYCTL_SETPERM keyctl(2) operations;
* perform madvise(2) MADV_HWPOISON operation;
* employ the TIOCSTI ioctl(2) to insert characters into the input queue of a terminal

other than the caller’s controlling terminal;
* employ the obsolete nfsservctl(2) system call;
* employ the obsolete bdflush(2) system call;
* perform various privileged block-device ioctl(2) operations;
* perform various privileged filesystem ioctl(2) operations;
* perform administrative operations on many device drivers.

CAP_SYS_BOOT
Use reboot(2) and kexec_load(2).

CAP_SYS_CHROOT
Use chroot(2).

CAP_SYS_MODULE
Load and unload kernel modules (see init_module(2) and delete_module(2)); in kernels
before 2.6.25: drop capabilities from the system-wide capability bounding set.

CAP_SYS_NICE
* Raise process nice value (nice(2), setpriority(2)) and change the nice value for arbitrary

processes;
* set real-time scheduling policies for calling process, and set scheduling policies and pri-

orities for arbitrary processes (sched_setscheduler(2), sched_setparam(2),
shed_setattr(2));

* set CPU affinity for arbitrary processes (sched_setaffinity(2));
* set I/O scheduling class and priority for arbitrary processes (ioprio_set(2));
* apply migrate_pages(2) to arbitrary processes and allow processes to be migrated to

arbitrary nodes;

Linux 2014-09-21 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setreuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setresuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setfsuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setfsuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/user_namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/quotactl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mount
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/umount
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/swapon
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/swapoff
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sethostname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setdomainname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/syslog
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/vm86
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/lookup_dcookie
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioprio_set
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/accept
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/pipe
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/unshare
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/perf_event_open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setns
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fanotify_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/keyctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/madvise
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/nfsservctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/bdflush
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/reboot
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/kexec_load
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chroot
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/init_module
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/delete_module
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/nice
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setpriority
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sched_setscheduler
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sched_setparam
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sched_setaffinity
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioprio_set
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/migrate_pages

CAPABILITIES(7) Linux Programmer’s Manual CAPABILITIES(7)

* apply move_pages(2) to arbitrary processes;
* use the MPOL_MF_MOVE_ALL flag with mbind(2) and move_pages(2).

CAP_SYS_PACCT
Use acct(2).

CAP_SYS_PTRACE
* Trace arbitrary processes using ptrace(2);
* apply get_robust_list(2) to arbitrary processes;
* transfer data to or from the memory of arbitrary processes using process_vm_readv(2)

and process_vm_writev(2).
* inspect processes using kcmp(2).

CAP_SYS_RAWIO
* Perform I/O port operations (iopl(2) and ioperm(2));
* access /proc/kcore;
* employ the FIBMAP ioctl(2) operation;
* open devices for accessing x86 model-specific registers (MSRs, see msr(4))
* update /proc/sys/vm/mmap_min_addr;
* create memory mappings at addresses below the value specified by

/proc/sys/vm/mmap_min_addr;
* map files in /proc/bus/pci;
* open /dev/mem and /dev/kmem;
* perform various SCSI device commands;
* perform certain operations on hpsa(4) and cciss(4) devices;
* perform a range of device-specific operations on other devices.

CAP_SYS_RESOURCE
* Use reserved space on ext2 filesystems;
* make ioctl(2) calls controlling ext3 journaling;
* override disk quota limits;
* increase resource limits (see setrlimit(2));
* override RLIMIT_NPROC resource limit;
* override maximum number of consoles on console allocation;
* override maximum number of keymaps;
* allow more than 64hz interrupts from the real-time clock;
* raise msg_qbytes limit for a System V message queue above the limit in /proc/sys/ker-

nel/msgmnb (see msgop(2) and msgctl(2));
* override the /proc/sys/fs/pipe-size-max limit when setting the capacity of a pipe using

the F_SETPIPE_SZ fcntl(2) command.
* use F_SETPIPE_SZ to increase the capacity of a pipe above the limit specified by

/proc/sys/fs/pipe-max-size;
* override /proc/sys/fs/mqueue/queues_max limit when creating POSIX message queues

(see mq_overview(7));
* employ prctl(2) PR_SET_MM operation;
* set /proc/PID/oom_score_adj to a value lower than the value last set by a process with

CAP_SYS_RESOURCE.

CAP_SYS_TIME
Set system clock (settimeofday(2), stime(2), adjtimex(2)); set real-time (hardware) clock.

CAP_SYS_TTY_CONFIG
Use vhangup(2); employ various privileged ioctl(2) operations on virtual terminals.

CAP_SYSLOG (since Linux 2.6.37)
* Perform privileged syslog(2) operations. See syslog(2) for information on which opera-

tions require privilege.
* View kernel addresses exposed via /proc and other interfaces when /proc/sys/ker-

nel/kptr_restrict has the value 1. (See the discussion of the kptr_restrict in proc(5).)

Linux 2014-09-21 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/move_pages
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mbind
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/move_pages
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/acct
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ptrace
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/get_robust_list
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/process_vm_readv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/process_vm_writev
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/kcmp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/iopl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioperm
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/4/msr
http://chuzzlewit.co.uk/WebManPDF.pl/man:/4/hpsa
http://chuzzlewit.co.uk/WebManPDF.pl/man:/4/cciss
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setrlimit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/msgop
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/msgctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/mq_overview
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/settimeofday
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/stime
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/adjtimex
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/vhangup
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/syslog
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/syslog
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/proc

CAPABILITIES(7) Linux Programmer’s Manual CAPABILITIES(7)

CAP_WAKE_ALARM (since Linux 3.0)
Trigger something that will wake up the system (set CLOCK_REALTIME_ALARM
and CLOCK_BOOTTIME_ALARM timers).

Past and current implementation
A full implementation of capabilities requires that:

1. For all privileged operations, the kernel must check whether the thread has the required capa-
bility in its effective set.

2. The kernel must provide system calls allowing a thread’s capability sets to be changed and
retrieved.

3. The filesystem must support attaching capabilities to an executable file, so that a process
gains those capabilities when the file is executed.

Before kernel 2.6.24, only the first two of these requirements are met; since kernel 2.6.24, all three
requirements are met.

Thread capability sets
Each thread has three capability sets containing zero or more of the above capabilities:

Permitted:
This is a limiting superset for the effective capabilities that the thread may assume. It is
also a limiting superset for the capabilities that may be added to the inheritable set by a
thread that does not have the CAP_SETPCAP capability in its effective set.

If a thread drops a capability from its permitted set, it can never reacquire that capabil-
ity (unless it execve(2)s either a set-user-ID-root program, or a program whose associated
file capabilities grant that capability).

Inheritable:
This is a set of capabilities preserved across an execve(2). It provides a mechanism for a
process to assign capabilities to the permitted set of the new program during an
execve(2).

Effective:
This is the set of capabilities used by the kernel to perform permission checks for the
thread.

A child created via fork(2) inherits copies of its parent’s capability sets. See below for a discus-
sion of the treatment of capabilities during execve(2).

Using capset(2), a thread may manipulate its own capability sets (see below).

Since Linux 3.2, the file /proc/sys/kernel/cap_last_cap exposes the numerical value of the highest
capability supported by the running kernel; this can be used to determine the highest bit that
may be set in a capability set.

File capabilities
Since kernel 2.6.24, the kernel supports associating capability sets with an executable file using
setcap(8). The file capability sets are stored in an extended attribute (see setxattr(2)) named
security.capability. Writing to this extended attribute requires the CAP_SETFCAP capability.
The file capability sets, in conjunction with the capability sets of the thread, determine the capa-
bilities of a thread after an execve(2).

The three file capability sets are:

Permitted (formerly known as forced):
These capabilities are automatically permitted to the thread, regardless of the thread’s
inheritable capabilities.

Linux 2014-09-21 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/capset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/setcap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve

CAPABILITIES(7) Linux Programmer’s Manual CAPABILITIES(7)

Inheritable (formerly known as allowed):
This set is ANDed with the thread’s inheritable set to determine which inheritable capa-
bilities are enabled in the permitted set of the thread after the execve(2).

Effective:
This is not a set, but rather just a single bit. If this bit is set, then during an execve(2)
all of the new permitted capabilities for the thread are also raised in the effective set. If
this bit is not set, then after an execve(2), none of the new permitted capabilities is in the
new effective set.

Enabling the file effective capability bit implies that any file permitted or inheritable
capability that causes a thread to acquire the corresponding permitted capability during
an execve(2) (see the transformation rules described below) will also acquire that capabil-
ity in its effective set. Therefore, when assigning capabilities to a file (setcap(8),
cap_set_file(3), cap_set_fd(3)), if we specify the effective flag as being enabled for any
capability, then the effective flag must also be specified as enabled for all other capabili-
ties for which the corresponding permitted or inheritable flags is enabled.

Transformation of capabilities during execve()
During an execve(2), the kernel calculates the new capabilities of the process using the following
algorithm:

P’(permitted) = (P(inheritable) & F(inheritable)) |
(F(permitted) & cap_bset)

P’(effective) = F(effective) ? P’(permitted) : 0

P’(inheritable) = P(inheritable) [i.e., unchanged]

where:

P denotes the value of a thread capability set before the execve(2)

P’ denotes the value of a capability set after the execve(2)

F denotes a file capability set

cap_bset is the value of the capability bounding set (described below).

Capabilities and execution of programs by root
In order to provide an all-powerful root using capability sets, during an execve(2):

1. If a set-user-ID-root program is being executed, or the real user ID of the process is 0 (root)
then the file inheritable and permitted sets are defined to be all ones (i.e., all capabilities
enabled).

2. If a set-user-ID-root program is being executed, then the file effective bit is defined to be one
(enabled).

The upshot of the above rules, combined with the capabilities transformations described above, is
that when a process execve(2)s a set-user-ID-root program, or when a process with an effective
UID of 0 execve(2)s a program, it gains all capabilities in its permitted and effective capability
sets, except those masked out by the capability bounding set. This provides semantics that are
the same as those provided by traditional UNIX systems.

Capability bounding set
The capability bounding set is a security mechanism that can be used to limit the capabilities
that can be gained during an execve(2). The bounding set is used in the following ways:

* During an execve(2), the capability bounding set is ANDed with the file permitted capability
set, and the result of this operation is assigned to the thread’s permitted capability set. The
capability bounding set thus places a limit on the permitted capabilities that may be granted
by an executable file.

Linux 2014-09-21 6

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/setcap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve

CAPABILITIES(7) Linux Programmer’s Manual CAPABILITIES(7)

* (Since Linux 2.6.25) The capability bounding set acts as a limiting superset for the capabilities
that a thread can add to its inheritable set using capset(2). This means that if a capability is
not in the bounding set, then a thread can’t add this capability to its inheritable set, even if it
was in its permitted capabilities, and thereby cannot have this capability preserved in its per-
mitted set when it execve(2)s a file that has the capability in its inheritable set.

Note that the bounding set masks the file permitted capabilities, but not the inherited capabili-
ties. If a thread maintains a capability in its inherited set that is not in its bounding set, then it
can still gain that capability in its permitted set by executing a file that has the capability in its
inherited set.

Depending on the kernel version, the capability bounding set is either a system-wide attribute, or
a per-process attribute.

Capability bounding set prior to Linux 2.6.25

In kernels before 2.6.25, the capability bounding set is a system-wide attribute that affects all
threads on the system. The bounding set is accessible via the file /proc/sys/kernel/cap-bound.
(Confusingly, this bit mask parameter is expressed as a signed decimal number in /proc/sys/ker-
nel/cap-bound.)

Only the init process may set capabilities in the capability bounding set; other than that, the
superuser (more precisely: programs with the CAP_SYS_MODULE capability) may only clear
capabilities from this set.

On a standard system the capability bounding set always masks out the CAP_SETPCAP capa-
bility. To remove this restriction (dangerous!), modify the definition of CAP_INIT_EFF_SET
in include/linux/capability.h and rebuild the kernel.

The system-wide capability bounding set feature was added to Linux starting with kernel version
2.2.11.

Capability bounding set from Linux 2.6.25 onward

From Linux 2.6.25, the capability bounding set is a per-thread attribute. (There is no longer a
system-wide capability bounding set.)

The bounding set is inherited at fork(2) from the thread’s parent, and is preserved across an
execve(2).

A thread may remove capabilities from its capability bounding set using the prctl(2)
PR_CAPBSET_DROP operation, provided it has the CAP_SETPCAP capability. Once a
capability has been dropped from the bounding set, it cannot be restored to that set. A thread
can determine if a capability is in its bounding set using the prctl(2) PR_CAPBSET_READ
operation.

Removing capabilities from the bounding set is supported only if file capabilities are compiled into
the kernel. In kernels before Linux 2.6.33, file capabilities were an optional feature configurable
via the CONFIG_SECURITY_FILE_CAPABILITIES option. Since Linux 2.6.33, the con-
figuration option has been removed and file capabilities are always part of the kernel. When file
capabilities are compiled into the kernel, the init process (the ancestor of all processes) begins
with a full bounding set. If file capabilities are not compiled into the kernel, then init begins
with a full bounding set minus CAP_SETPCAP, because this capability has a different mean-
ing when there are no file capabilities.

Removing a capability from the bounding set does not remove it from the thread’s inherited set.
However it does prevent the capability from being added back into the thread’s inherited set in
the future.

Effect of user ID changes on capabilities
To preserve the traditional semantics for transitions between 0 and nonzero user IDs, the kernel
makes the following changes to a thread’s capability sets on changes to the thread’s real, effective,

Linux 2014-09-21 7

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/capset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl

CAPABILITIES(7) Linux Programmer’s Manual CAPABILITIES(7)

saved set, and filesystem user IDs (using setuid(2), setresuid(2), or similar):

1. If one or more of the real, effective or saved set user IDs was previously 0, and as a result of
the UID changes all of these IDs have a nonzero value, then all capabilities are cleared from
the permitted and effective capability sets.

2. If the effective user ID is changed from 0 to nonzero, then all capabilities are cleared from the
effective set.

3. If the effective user ID is changed from nonzero to 0, then the permitted set is copied to the
effective set.

4. If the filesystem user ID is changed from 0 to nonzero (see setfsuid(2)), then the following
capabilities are cleared from the effective set: CAP_CHOWN, CAP_DAC_OVERRIDE,
CAP_DAC_READ_SEARCH, CAP_FOWNER, CAP_FSETID,
CAP_LINUX_IMMUTABLE (since Linux 2.6.30), CAP_MAC_OVERRIDE, and
CAP_MKNOD (since Linux 2.6.30). If the filesystem UID is changed from nonzero to 0,
then any of these capabilities that are enabled in the permitted set are enabled in the effective
set.

If a thread that has a 0 value for one or more of its user IDs wants to prevent its permitted capa-
bility set being cleared when it resets all of its user IDs to nonzero values, it can do so using the
prctl(2) PR_SET_KEEPCAPS operation.

Programmatically adjusting capability sets
A thread can retrieve and change its capability sets using the capget(2) and capset(2) system
calls. However, the use of cap_get_proc(3) and cap_set_proc(3), both provided in the libcap
package, is preferred for this purpose. The following rules govern changes to the thread capability
sets:

1. If the caller does not have the CAP_SETPCAP capability, the new inheritable set must be
a subset of the combination of the existing inheritable and permitted sets.

2. (Since Linux 2.6.25) The new inheritable set must be a subset of the combination of the exist-
ing inheritable set and the capability bounding set.

3. The new permitted set must be a subset of the existing permitted set (i.e., it is not possible to
acquire permitted capabilities that the thread does not currently have).

4. The new effective set must be a subset of the new permitted set.

The securebits flags: establishing a capabilities-only environment
Starting with kernel 2.6.26, and with a kernel in which file capabilities are enabled, Linux imple-
ments a set of per-thread securebits flags that can be used to disable special handling of capabili-
ties for UID 0 (root). These flags are as follows:

SECBIT_KEEP_CAPS
Setting this flag allows a thread that has one or more 0 UIDs to retain its capabilities
when it switches all of its UIDs to a nonzero value. If this flag is not set, then such a
UID switch causes the thread to lose all capabilities. This flag is always cleared on an
execve(2). (This flag provides the same functionality as the older prctl(2)
PR_SET_KEEPCAPS operation.)

SECBIT_NO_SETUID_FIXUP
Setting this flag stops the kernel from adjusting capability sets when the threads’s effec-
tive and filesystem UIDs are switched between zero and nonzero values. (See the subsec-
tion Effect of User ID Changes on Capabilities.)

SECBIT_NOROOT
If this bit is set, then the kernel does not grant capabilities when a set-user-ID-root pro-
gram is executed, or when a process with an effective or real UID of 0 calls execve(2).
(See the subsection Capabilities and execution of programs by root.)

Linux 2014-09-21 8

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setresuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setfsuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/capget
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/capset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve

CAPABILITIES(7) Linux Programmer’s Manual CAPABILITIES(7)

Each of the above base flags has a companion locked flag. Setting any of the locked flags is irre-
versible, and has the effect of preventing further changes to the corresponding base flag. The
locked flags are: SECBIT_KEEP_CAPS_LOCKED,
SECBIT_NO_SETUID_FIXUP_LOCKED, and SECBIT_NOROOT_LOCKED.

The securebits flags can be modified and retrieved using the prctl(2) PR_SET_SECUREBITS
and PR_GET_SECUREBITS operations. The CAP_SETPCAP capability is required to
modify the flags.

The securebits flags are inherited by child processes. During an execve(2), all of the flags are pre-
served, except SECBIT_KEEP_CAPS which is always cleared.

An application can use the following call to lock itself, and all of its descendants, into an environ-
ment where the only way of gaining capabilities is by executing a program with associated file
capabilities:

prctl(PR_SET_SECUREBITS,
SECBIT_KEEP_CAPS_LOCKED |
SECBIT_NO_SETUID_FIXUP |
SECBIT_NO_SETUID_FIXUP_LOCKED |
SECBIT_NOROOT |
SECBIT_NOROOT_LOCKED);

Interaction with user namespaces
For a discussion of the interaction of capabilities and user namespaces, see user_namespaces(7).

CONFORMING TO
No standards govern capabilities, but the Linux capability implementation is based on the with-
drawn POSIX.1e draft standard; see Unknown.

NOTES
Since kernel 2.5.27, capabilities are an optional kernel component, and can be enabled/disabled
via the CONFIG_SECURITY_CAPABILITIES kernel configuration option.

The /proc/PID/task/TID/status file can be used to view the capability sets of a thread. The
/proc/PID/status file shows the capability sets of a process’s main thread. Before Linux 3.8,
nonexistent capabilities were shown as being enabled (1) in these sets. Since Linux 3.8, all nonex-
istent capabilities (above CAP_LAST_CAP) are shown as disabled (0).

The libcap package provides a suite of routines for setting and getting capabilities that is more
comfortable and less likely to change than the interface provided by capset(2) and capget(2).
This package also provides the setcap(8) and getcap(8) programs. It can be found at
Unknown.

Before kernel 2.6.24, and since kernel 2.6.24 if file capabilities are not enabled, a thread with the
CAP_SETPCAP capability can manipulate the capabilities of threads other than itself. How-
ever, this is only theoretically possible, since no thread ever has CAP_SETPCAP in either of
these cases:

* In the pre-2.6.25 implementation the system-wide capability bounding set, /proc/sys/ker-
nel/cap-bound, always masks out this capability, and this can not be changed without modify-
ing the kernel source and rebuilding.

* If file capabilities are disabled in the current implementation, then init starts out with this
capability removed from its per-process bounding set, and that bounding set is inherited by all
other processes created on the system.

SEE ALSO
capsh(1), capget(2), prctl(2), setfsuid(2), cap_clear(3), cap_copy_ext(3), cap_from_text(3),
cap_get_file(3), cap_get_proc(3), cap_init(3), capgetp(3), capsetp(3), libcap(3), creden-
tials(7), user_namespaces(7), pthreads(7), getcap(8), setcap(8)

Linux 2014-09-21 9

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/user_namespaces
http://wt.tuxomania.net/publications/posix.1e/
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/capset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/capget
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/setcap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/getcap
http://www.kernel.org/pub/linux/libs/security/linux-privs
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/capsh
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/capget
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setfsuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/credentials
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/credentials
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/user_namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/pthreads
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/getcap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/setcap

CAPABILITIES(7) Linux Programmer’s Manual CAPABILITIES(7)

include/linux/capability.h in the Linux kernel source tree

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

Linux 2014-09-21 10

http://www.kernel.org/doc/man-pages/.

	NAME
	DESCRIPTION
	Capabilities list
	CAP_AUDIT_CONTROL (since Linux 2.6.11)
	CAP_AUDIT_READ (since Linux 3.16)
	CAP_AUDIT_WRITE (since Linux 2.6.11)
	CAP_BLOCK_SUSPEND (since Linux 3.5)
	CAP_CHOWN
	CAP_DAC_OVERRIDE
	CAP_DAC_READ_SEARCH
	CAP_FOWNER
	CAP_FSETID
	CAP_IPC_LOCK
	CAP_IPC_OWNER
	CAP_KILL
	CAP_LEASE (since Linux 2.4)
	CAP_LINUX_IMMUTABLE
	CAP_MAC_ADMIN (since Linux 2.6.25)
	CAP_MAC_OVERRIDE (since Linux 2.6.25)
	CAP_MKNOD (since Linux 2.4)
	CAP_NET_ADMIN
	CAP_NET_BIND_SERVICE
	CAP_NET_BROADCAST
	CAP_NET_RAW
	CAP_SETGID
	CAP_SETFCAP (since Linux 2.6.24)
	CAP_SETPCAP
	CAP_SETUID
	CAP_SYS_ADMIN
	CAP_SYS_BOOT
	CAP_SYS_CHROOT
	CAP_SYS_MODULE
	CAP_SYS_NICE
	CAP_SYS_PACCT
	CAP_SYS_PTRACE
	CAP_SYS_RAWIO
	CAP_SYS_RESOURCE
	CAP_SYS_TIME
	CAP_SYS_TTY_CONFIG
	CAP_SYSLOG (since Linux 2.6.37)
	CAP_WAKE_ALARM (since Linux 3.0)

	Past and current implementation
	Thread capability sets
	Permitted :
	Inheritable :
	Effective :

	File capabilities
	Permitted (formerly known as forced):
	Inheritable (formerly known as allowed):
	Effective :

	Transformation of capabilities during execve()
	Capabilities and execution of programs by root
	Capability bounding set
	Effect of user ID changes on capabilities
	Programmatically adjusting capability sets
	The securebits flags: establishing a capabilities-only environment
	SECBIT_KEEP_CAPS
	SECBIT_NO_SETUID_FIXUP
	SECBIT_NOROOT

	Interaction with user namespaces

	CONFORMING TO
	NOTES
	SEE ALSO
	COLOPHON

