
BOOT(7) Linux Programmer’s Manual BOOT(7)

NAME
boot-scripts - general description of boot sequence

DESCRIPTION
The boot sequence varies in details among systems but can be roughly divided to the following steps: (i)
hardware boot, (ii) operating system (OS) loader, (iii) kernel startup, (iv) init and inittab, (v) boot scripts.
We will describe each of these in more detail below.

Hardware-boot
After power-on or hard reset, control is given to a program stored on read-only memory (normally PROM).
In PC we usually call this program the BIOS.

This program normally makes a basic self-test of the machine and accesses nonvolatile memory to read fur-
ther parameters. This memory in the PC is battery-backed CMOS memory, so most people refer to it as the
CMOS, although outside of the PC world, it is usually called nvram (nonvolatile ram).

The parameters stored in the nvram vary between systems, but as a minimum, the hardware boot program
should know what is the boot device, or which devices to probe as possible boot devices.

Then the hardware boot stage accesses the boot device, loads the OS loader, which is located on a fixed
position on the boot device, and transfers control to it.

Note: We do not cover here booting from network. Those who want to investigate this subject may want
to research: DHCP, TFTP, PXE, Etherboot.

OS loader
In PC, the OS loader is located in the first sector of the boot device - this is the MBR (Master Boot
Record).

In most systems, this primary loader is very limited due to various constraints. Even on non-PC systems
there are some limitations to the size and complexity of this loader, but the size limitation of the PC MBR
(512 bytes including the partition table) makes it almost impossible to squeeze a full OS loader into it.

Therefore, most operating systems make the primary loader call a secondary OS loader which may be
located on a specified disk partition.

In Linux the OS loader is normally lilo(8) or grub(8). Both of them may install either as secondary loaders
(where the DOS installed MBR points to them), or as a two part loader where they provide special MBR
containing the bootstrap code to load the second part of the loader from the root partition.

The main job of the OS loader is to locate the kernel on the disk, load it and run it. Most OS loaders allow
interactive use, to enable specification of alternative kernel (maybe a backup in case the last compiled one
isn’t functioning) and to pass optional parameters to the kernel.

Kernel startup
When the kernel is loaded, it initializes the devices (via their drivers), starts the swapper (it is a "kernel
process", called kswapd in modern Linux kernels), and mounts the root filesystem (/).

Some of the parameters that may be passed to the kernel relate to these activities (e.g: You can override the
default root filesystem). For further information on Linux kernel parameters read bootparam(7).

Only then the kernel creates the first (user land) process which is numbered 1. This process executes the
program /sbin/init, passing any parameters that weren’t handled by the kernel already.

init and inittab
When init starts it reads /etc/inittab for further instructions. This file defines what should be run in differ-
ent run-levels.

This gives the system administrator an easy management scheme, where each run-level is associated with a
set of services (e.g, S is single-user, on 2 most network services start). The administrator may change the
current run-level via init(8) and query the current run-level via runlevel(8).

However, since it is not convenient to manage individual services by editing this file, inittab only bootstraps
a set of scripts that actually start/stop the individual services.

Linux 2010-09-19 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/bootparam
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/runlevel

BOOT(7) Linux Programmer’s Manual BOOT(7)

Boot scripts
Note: The following description applies to System V release 4-based systems, which currently covers

most commercial UNIX systems (Solaris, HP-UX, Irix, Tru64) as well as the major Linux distri-
butions (Red Hat, Debian, Mandriva, SUSE, Ubuntu). Some systems (Slackware Linux, FreeBSD,
OpenBSD) have a somewhat different scheme of boot scripts.

For each managed service (mail, nfs server, cron, etc.) there is a single startup script located in a specific
directory (/etc/init.d in most versions of Linux). Each of these scripts accepts as a single argument the
word "start" -- causing it to start the service, or the word "stop" -- causing it to stop the service. The script
may optionally accept other "convenience" parameters (e.g: "restart", to stop and then start, "status" to dis-
play the service status). Running the script without parameters displays the possible arguments.

Sequencing directories
To make specific scripts start/stop at specific run-levels and in specific order, there are sequencing directo-
ries. These are normally in /etc/rc[0-6S].d. In each of these directories there are links (usually symbolic)
to the scripts in the /etc/init.d directory.

A primary script (usually /etc/rc) is called from inittab(5) and calls the services scripts via the links in the
sequencing directories. All links with names that begin with 'S' are being called with the argument "start"
(thereby starting the service). All links with names that begin with 'K' are being called with the argument
"stop" (thereby stopping the service).

To define the starting or stopping order within the same run-level, the names of the links contain order-
numbers. Also, to make the names clearer, they usually end with the name of the service they refer to.
Example: the link /etc/rc2.d/S80sendmail starts the sendmail service on runlevel 2. This happens after
/etc/rc2.d/S12syslog is run but before /etc/rc2.d/S90xfs is run.

To manage the boot order and run-levels, we have to manage these links. However, on many versions of
Linux, there are tools to help with this task (e.g: chkconfig(8)).

Boot configuration
Usually the daemons started may optionally receive command-line options and parameters. To allow sys-
tem administrators to change these parameters without editing the boot scripts themselves, configuration
files are used. These are located in a specific directory (/etc/sysconfig on Red Hat systems) and are used by
the boot scripts.

In older UNIX systems, these files contained the actual command line options for the daemons, but in mod-
ern Linux systems (and also in HP-UX), these files just contain shell variables. The boot scripts in
/etc/init.d source the configuration files, and then use the variable values.

FILES
/etc/init.d/ , /etc/rc[S0-6].d/ , /etc/sysconfig/

SEE ALSO
inittab(5), bootparam(7), init(8), runlevel(8), shutdown(8)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at http://www.kernel.org/doc/man-
pages/.

Linux 2010-09-19 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/bootparam
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/runlevel
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/shutdown
http://www.kernel.org/doc/man-pages/.
http://www.kernel.org/doc/man-pages/.

	NAME
	DESCRIPTION
	Hardware-boot
	Note:

	OS loader
	Kernel startup
	init and inittab
	Boot scripts
	Note:

	Sequencing directories
	Boot configuration

	FILES
	SEE ALSO
	COLOPHON

