
GITHOOKS(5) Git Manual GITHOOKS(5)

NAME
githooks - Hooks used by Git

SYNOPSIS
$GIT_DIR/hooks/*

DESCRIPTION
Hooks are little scripts you can place in $GIT_DIR/hooks directory to trigger action at certain
points. When git init is run, a handful of example hooks are copied into the hooks directory of the
new repository, but by default they are all disabled. To enable a hook, rename it by removing its
.sample suffix.

Note
It is also a requirement for a given hook to be executable. However - in a freshly initialized repository -

the .sample files are executable by default.

This document describes the currently defined hooks.

HOOKS
applypatch−msg

This hook is invoked by git am script. It takes a single parameter, the name of the file that holds
the proposed commit log message. Exiting with non-zero status causes git am to abort before
applying the patch.

The hook is allowed to edit the message file in place, and can be used to normalize the message
into some project standard format (if the project has one). It can also be used to refuse the
commit after inspecting the message file.

The default applypatch-msg hook, when enabled, runs the commit-msg hook, if the latter is
enabled.

pre−applypatch
This hook is invoked by git am. It takes no parameter, and is invoked after the patch is applied,
but before a commit is made.

If it exits with non-zero status, then the working tree will not be committed after applying the
patch.

It can be used to inspect the current working tree and refuse to make a commit if it does not pass
certain test.

The default pre-applypatch hook, when enabled, runs the pre-commit hook, if the latter is enabled.

post−applypatch
This hook is invoked by git am. It takes no parameter, and is invoked after the patch is applied
and a commit is made.

This hook is meant primarily for notification, and cannot affect the outcome of git am.

pre−commit
This hook is invoked by git commit, and can be bypassed with --no-verify option. It takes no
parameter, and is invoked before obtaining the proposed commit log message and making a
commit. Exiting with non-zero status from this script causes the git commit to abort.

The default pre-commit hook, when enabled, catches introduction of lines with trailing
whitespaces and aborts the commit when such a line is found.

All the git commit hooks are invoked with the environment variable GIT_EDITOR=: if the
command will not bring up an editor to modify the commit message.

prepare−commit−msg
This hook is invoked by git commit right after preparing the default log message, and before the
editor is started.

Git 2.1.4 10/05/2018 1

GITHOOKS(5) Git Manual GITHOOKS(5)

It takes one to three parameters. The first is the name of the file that contains the commit log
message. The second is the source of the commit message, and can be: message (if a -m or -F
option was given); template (if a -t option was given or the configuration option commit.template
is set); merge (if the commit is a merge or a .git/MERGE_MSG file exists); squash (if a
.git/SQUASH_MSG file exists); or commit, followed by a commit SHA-1 (if a -c, -C or --amend
option was given).

If the exit status is non-zero, git commit will abort.

The purpose of the hook is to edit the message file in place, and it is not suppressed by the --no-
verify option. A non-zero exit means a failure of the hook and aborts the commit. It should not
be used as replacement for pre-commit hook.

The sample prepare-commit-msg hook that comes with Git comments out the Conflicts: part of a
merge’s commit message.

commit−msg
This hook is invoked by git commit, and can be bypassed with --no-verify option. It takes a single
parameter, the name of the file that holds the proposed commit log message. Exiting with non-
zero status causes the git commit to abort.

The hook is allowed to edit the message file in place, and can be used to normalize the message
into some project standard format (if the project has one). It can also be used to refuse the
commit after inspecting the message file.

The default commit-msg hook, when enabled, detects duplicate Signed-off-by lines, and aborts the
commit if one is found.

post−commit
This hook is invoked by git commit. It takes no parameter, and is invoked after a commit is made.

This hook is meant primarily for notification, and cannot affect the outcome of git commit.

pre−rebase
This hook is called by git rebase and can be used to prevent a branch from getting rebased. The
hook may be called with one or two parameters. The first parameter is the upstream from which
the series was forked. The second parameter is the branch being rebased, and is not set when
rebasing the current branch.

post−checkout
This hook is invoked when a git checkout is run after having updated the worktree. The hook is
given three parameters: the ref of the previous HEAD, the ref of the new HEAD (which may or
may not have changed), and a flag indicating whether the checkout was a branch checkout
(changing branches, flag=1) or a file checkout (retrieving a file from the index, flag=0). This hook
cannot affect the outcome of git checkout.

It is also run after git clone, unless the --no-checkout (-n) option is used. The first parameter
given to the hook is the null-ref, the second the ref of the new HEAD and the flag is always 1.

This hook can be used to perform repository validity checks, auto-display differences from the
previous HEAD if different, or set working dir metadata properties.

post−merge
This hook is invoked by git merge, which happens when a git pull is done on a local repository.
The hook takes a single parameter, a status flag specifying whether or not the merge being done
was a squash merge. This hook cannot affect the outcome of git merge and is not executed, if the
merge failed due to conflicts.

This hook can be used in conjunction with a corresponding pre-commit hook to save and restore
any form of metadata associated with the working tree (eg: permissions/ownership, ACLS, etc).
See contrib/hooks/setgitperms.perl for an example of how to do this.

Git 2.1.4 10/05/2018 2

GITHOOKS(5) Git Manual GITHOOKS(5)

pre−push
This hook is called by git push and can be used to prevent a push from taking place. The hook is
called with two parameters which provide the name and location of the destination remote, if a
named remote is not being used both values will be the same.

Information about what is to be pushed is provided on the hook’s standard input with lines of the
form:

<local ref> SP <local sha1> SP <remote ref> SP <remote sha1> LF

For instance, if the command git push origin master:foreign were run the hook would receive a
line like the following:

refs/heads/master 67890 refs/heads/foreign 12345

although the full, 40-character SHA-1s would be supplied. If the foreign ref does not yet exist the
<remote SHA-1> will be 40 0. If a ref is to be deleted, the <local ref> will be supplied as (delete)
and the <local SHA-1> will be 40 0. If the local commit was specified by something other than a
name which could be expanded (such as HEAD˜, or a SHA-1) it will be supplied as it was
originally given.

If this hook exits with a non-zero status, git push will abort without pushing anything.
Information about why the push is rejected may be sent to the user by writing to standard error.

pre−receive
This hook is invoked by git-receive-pack on the remote repository, which happens when a git push
is done on a local repository. Just before starting to update refs on the remote repository, the pre-
receive hook is invoked. Its exit status determines the success or failure of the update.

This hook executes once for the receive operation. It takes no arguments, but for each ref to be
updated it receives on standard input a line of the format:

<old-value> SP <new-value> SP <ref-name> LF

where <old-value> is the old object name stored in the ref, <new-value> is the new object name to
be stored in the ref and <ref-name> is the full name of the ref. When creating a new ref, <old-
value> is 40 0.

If the hook exits with non-zero status, none of the refs will be updated. If the hook exits with
zero, updating of individual refs can still be prevented by the update hook.

Both standard output and standard error output are forwarded to git send-pack on the other end,
so you can simply echo messages for the user.

update
This hook is invoked by git-receive-pack on the remote repository, which happens when a git push
is done on a local repository. Just before updating the ref on the remote repository, the update
hook is invoked. Its exit status determines the success or failure of the ref update.

The hook executes once for each ref to be updated, and takes three parameters:
• the name of the ref being updated,
• the old object name stored in the ref,
• and the new object name to be stored in the ref.

A zero exit from the update hook allows the ref to be updated. Exiting with a non-zero status
prevents git-receive-pack from updating that ref.

This hook can be used to prevent forced update on certain refs by making sure that the object
name is a commit object that is a descendant of the commit object named by the old object
name. That is, to enforce a fast-forward only policy.

It could also be used to log the old..new status. However, it does not know the entire set of
branches, so it would end up firing one e-mail per ref when used naively, though. The post-receive

Git 2.1.4 10/05/2018 3

GITHOOKS(5) Git Manual GITHOOKS(5)

hook is more suited to that.

Another use suggested on the mailing list is to use this hook to implement access control which is
finer grained than the one based on filesystem group.

Both standard output and standard error output are forwarded to git send-pack on the other end,
so you can simply echo messages for the user.

The default update hook, when enabled—and with hooks.allowunannotated config option unset or
set to false—prevents unannotated tags to be pushed.

post−receive
This hook is invoked by git-receive-pack on the remote repository, which happens when a git push
is done on a local repository. It executes on the remote repository once after all the refs have been
updated.

This hook executes once for the receive operation. It takes no arguments, but gets the same
information as the pre-receive hook does on its standard input.

This hook does not affect the outcome of git-receive-pack, as it is called after the real work is
done.

This supersedes the post-update hook in that it gets both old and new values of all the refs in
addition to their names.

Both standard output and standard error output are forwarded to git send-pack on the other end,
so you can simply echo messages for the user.

The default post-receive hook is empty, but there is a sample script post-receive-email provided in
the contrib/hooks directory in Git distribution, which implements sending commit emails.

post−update
This hook is invoked by git-receive-pack on the remote repository, which happens when a git push
is done on a local repository. It executes on the remote repository once after all the refs have been
updated.

It takes a variable number of parameters, each of which is the name of ref that was actually
updated.

This hook is meant primarily for notification, and cannot affect the outcome of git-receive-pack.

The post-update hook can tell what are the heads that were pushed, but it does not know what
their original and updated values are, so it is a poor place to do log old..new. The post-receive
hook does get both original and updated values of the refs. You might consider it instead if you
need them.

When enabled, the default post-update hook runs git update-server-info to keep the information
used by dumb transports (e.g., HTTP) up-to-date. If you are publishing a Git repository that is
accessible via HTTP, you should probably enable this hook.

Both standard output and standard error output are forwarded to git send-pack on the other end,
so you can simply echo messages for the user.

pre−auto−gc
This hook is invoked by git gc --auto. It takes no parameter, and exiting with non-zero status
from this script causes the git gc --auto to abort.

post−rewrite
This hook is invoked by commands that rewrite commits (git commit --amend, git-rebase;
currently git-filter-branch does not call it!). Its first argument denotes the command it was
invoked by: currently one of amend or rebase. Further command-dependent arguments may be
passed in the future.

The hook receives a list of the rewritten commits on stdin, in the format

Git 2.1.4 10/05/2018 4

GITHOOKS(5) Git Manual GITHOOKS(5)

<old-sha1> SP <new-sha1> [SP <extra-info>] LF

The extra-info is again command-dependent. If it is empty, the preceding SP is also omitted.
Currently, no commands pass any extra-info.

The hook always runs after the automatic note copying (see notes.rewrite.<command> in git-
config.txt(1)) has happened, and thus has access to these notes.

The following command-specific comments apply:

rebase
For the squash and fixup operation, all commits that were squashed are listed as being
rewritten to the squashed commit. This means that there will be several lines sharing the
same new-sha1.

The commits are guaranteed to be listed in the order that they were processed by rebase.

GIT
Part of the git(1) suite

Git 2.1.4 10/05/2018 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git

	NAME
	SYNOPSIS
	DESCRIPTION
	HOOKS
	applypatch-msg
	pre-applypatch
	post-applypatch
	pre-commit
	prepare-commit-msg
	commit-msg
	post-commit
	pre-rebase
	post-checkout
	post-merge
	pre-push
	pre-receive
	update
	post-receive
	post-update
	pre-auto-gc
	post-rewrite

	GIT

