SSHD (8) BSD System Manager’s Manual SSHD (8)

NAME

sshd — OpenSSH SSH daemon

SYNOPSIS

sshd [-46DdeiqTt] [-b bits] [-C connection_spec] [-¢ host_certificate_file]
[-E log_file] [-F config_file][-g login_grace_time]
[-h host_key File][-k key _gen_time][-0 option] [-p port][-u len]

DESCRIPTION

BSD

sshd (OpenSSH Daemon) is the daemon program for ssh(1). Together these programs replace rlogin and
rsh, and provide secure encrypted communications between two untrusted hosts over an insecure network.

sshd listens for connections from clients. It is normally started at boot from /etc/init.d/ssh (or
/etc/init/ssh_conf on systems using the Upstart init daemon). It forks a new daemon for each
incoming connection. The forked daemons handle key exchange, encryption, authentication, command exe-
cution, and data exchange.

sshd can be configured using command-line options or a configuration file (by default ; -- sshd_config(5))
command-line options override values specified in the configuration file. sshd rereads its configuration file
when it receives a hangup signal, SIGHUP, by executing itself with the name and options it was started with,
e.g. /usr/sbin/sshd.

The options are as follows:

-4 Forces sshd to use IPv4 addresses only.
-6 Forces sshd to use IPv6 addresses only.
-b bits

Specifies the number of bits in the ephemeral protocol version 1 server key (default 1024).

—-C connection_spec
Specify the connection parameters to use for the —T extended test mode. If provided, any Match
directives in the configuration file that would apply to the specified user, host, and address will be
set before the configuration is written to standard output. The connection parameters are supplied as
keyword=value pairs. The keywords are “user”, “host”, “laddr”, “Iport”, and “addr”. All are

required and may be supplied in any order, either with multiple —C options or as a comma-separated
list.

—-c host_certificate file
Specifies a path to a certificate file to identify sshd during key exchange. The certificate file must
match a host key file specified using the —h option or the HostKey configuration directive.

-D When this option is specified, sshd will not detach and does not become a daemon. This allows
easy monitoring of sshd.

-d Debug mode. The server sends verbose debug output to standard error, and does not put itself in the
background. The server also will not fork and will only process one connection. This option is only
intended for debugging for the server. Multiple —d options increase the debugging level. Maxi-
mum is 3.

-E log_file
Append debug logs to log_Fi le instead of the system log.

-e Write debug logs to standard error instead of the system log.

July 3, 2014 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/ssh
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/sshd_config

SSHD (8)

BSD

BSD System Manager’s Manual SSHD (8)

config_Tfile

Specifies the name of the configuration file. The default is /etc/ssh/sshd_config. sshd
refuses to start if there is no configuration file.

login_grace_time

Gives the grace time for clients to authenticate themselves (default 120 seconds). If the client fails
to authenticate the user within this many seconds, the server disconnects and exits. A value of zero
indicates no limit.

host_key file

Specifies a file from which a host key is read. This option must be given if sshd is not run as root
(as the normal host key files are normally not readable by anyone but root). The default is
/etc/ssh/ssh_host_key for protocol version 1, and /etc/ssh/ssh_host_dsa_key,
/etc/ssh/ssh_host_ecdsa_key. /etc/ssh/ssh_host_ed25519 key and
/etc/ssh/ssh_host_rsa_key for protocol version 2. It is possible to have multiple host key
files for the different protocol versions and host key algorithms.

Specifies that sshd is being run from inetd(8). sshd is normally not run from inetd because it
needs to generate the server key before it can respond to the client, and this may take tens of sec-
onds. Clients would have to wait too long if the key was regenerated every time. However, with
small key sizes (e.g. 512) using sshd from inetd may be feasible.

key gen_time

Specifies how often the ephemeral protocol version 1 server key is regenerated (default 3600 sec-
onds, or one hour). The motivation for regenerating the key fairly often is that the key is not stored
anywhere, and after about an hour it becomes impossible to recover the key for decrypting inter-
cepted communications even if the machine is cracked into or physically seized. A value of zero
indicates that the key will never be regenerated.

option

Can be used to give options in the format used in the configuration file. This is useful for specifying
options for which there is no separate command-line flag. For full details of the options, and their
values, see sshd_config(5).

port

Specifies the port on which the server listens for connections (default 22). Multiple port options are
permitted. Ports specified in the configuration file with the Port option are ignored when a com-
mand-line port is specified. Ports specified using the ListenAddress option override command-
line ports.

Quiet mode. Nothing is sent to the system log. Normally the beginning, authentication, and termi-
nation of each connection is logged.

Extended test mode. Check the validity of the configuration file, output the effective configuration
to stdout and then exit. Optionally, Match rules may be applied by specifying the connection
parameters using one or more —C options.

Test mode. Only check the validity of the configuration file and sanity of the keys. This is useful
for updating sshd reliably as configuration options may change.

len

This option is used to specify the size of the field in the utmp structure that holds the remote host
name. If the resolved host name is longer than len, the dotted decimal value will be used instead.
This allows hosts with very long host names that overflow this field to still be uniquely identified.
Specifying —uO indicates that only dotted decimal addresses should be put into the utmp file. —u0
may also be used to prevent sshd from making DNS requests unless the authentication mechanism
or configuration requires it. Authentication mechanisms that may require DNS include

July 3, 2014 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/sshd_config

SSHD (8) BSD System Manager’s Manual SSHD (8)

RhostsRSAAuthentication, HostbasedAuthentication, and using a
from="pattern-list" option in a key file. Configuration options that require DNS include
using a USER@HOST pattern in Al lowUsers or DenyUsers.

AUTHENTICATION
The OpenSSH SSH daemon supports SSH protocols 1 and 2. The default is to use protocol 2 only, though
this can be changed via the Protocol option in sshd_config(5). Protocol 2 supports DSA, ECDSA,
ED25519 and RSA keys; protocol 1 only supports RSA keys. For both protocols, each host has a host-spe-
cific key, normally 2048 bits, used to identify the host.

Forward security for protocol 1 is provided through an additional server key, normally 768 bits, generated
when the server starts. This key is normally regenerated every hour if it has been used, and is never stored on
disk. Whenever a client connects, the daemon responds with its public host and server keys. The client com-
pares the RSA host key against its own database to verify that it has not changed. The client then generates a
256-bit random number. It encrypts this random number using both the host key and the server key, and
sends the encrypted number to the server. Both sides then use this random number as a session key which is
used to encrypt all further communications in the session. The rest of the session is encrypted using a con-
ventional cipher, currently Blowfish or 3DES, with 3DES being used by default. The client selects the
encryption algorithm to use from those offered by the server.

For protocol 2, forward security is provided through a Diffie-Hellman key agreement. This key agreement
results in a shared session key. The rest of the session is encrypted using a symmetric cipher, currently
128-bit AES, Blowfish, 3DES, CAST128, Arcfour, 192-bit AES, or 256-bit AES. The client selects the
encryption algorithm to use from those offered by the server. Additionally, session integrity is provided
through a cryptographic message authentication code (hmac-md5, hmac-shal, umac-64, umac-128, hmac-
ripemd160, hmac-sha2-256 or hmac-sha2-512).

Finally, the server and the client enter an authentication dialog. The client tries to authenticate itself using
host-based authentication, public key authentication, challenge-response authentication, or password authen-
tication.

Regardless of the authentication type, the account is checked to ensure that it is accessible. An account is not
accessible if it is locked, listed in DenyUsers or its group is listed in DenyGroups . The definition of a
locked account is system dependant. Some platforms have their own account database (eg AlX) and some
modify the passwd field (CLKOon Solaris and UnixWare, ‘00 on HP-UX, containing Nologin on Trué4, a
leading [LOCKEDO on FreeBSD and a leading ‘1’ on most Linuxes). If there is a requirement to disable
password authentication for the account while allowing still public-key, then the passwd field should be set to
something other than these values (eg ‘NP’ or CNP[).

If the client successfully authenticates itself, a dialog for preparing the session is entered. At this time the
client may request things like allocating a pseudo-tty, forwarding X11 connections, forwarding TCP connec-
tions, or forwarding the authentication agent connection over the secure channel.

After this, the client either requests a shell or execution of a command. The sides then enter session mode.
In this mode, either side may send data at any time, and such data is forwarded to/from the shell or command
on the server side, and the user terminal in the client side.

When the user program terminates and all forwarded X11 and other connections have been closed, the server
sends command exit status to the client, and both sides exit.
LOGIN PROCESS

When a user successfully logs in, sshd does the following:

1. If the login is on a tty, and no command has been specified, prints last login time and
/etc/motd (unless prevented in the configuration file or by =/ .hushlogin; see the FILES
section).

BSD July 3, 2014 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/sshd_config

SSHD (8) BSD System Manager’s Manual SSHD (8)

If the login is on a tty, records login time.
Checks Zetc/nologin; if it exists, prints contents and quits (unless root).
Changes to run with normal user privileges.

Sets up basic environment.

o o M~ w b

Reads the file 7/ .ssh/environment, if it exists, and users are allowed to change their envi-
ronment. See the PermitUserEnvironment option in sshd_config(5).

~

Changes to user’s home directory.

8. If7/_.ssh/rc exists and the sshd_config(5) PermitUserRC option is set, runs it; else if
/etc/ssh/sshrc exists, runs it; otherwise runs xauth. The “rc” files are given the X11
authentication protocol and cookie in standard input. See SSHRC, below.

9. Runs user’s shell or command.

SSHRC

If the file =/ .ssh/rc exists, sh(1) runs it after reading the environment files but before starting the user’s
shell or command. It must not produce any output on stdout; stderr must be used instead. If X11 forwarding
is in use, it will receive the "proto cookie" pair in its standard input (and D1SPLAY in its environment). The
script must call xauth(1) because sshd will not run xauth automatically to add X11 cookies.

The primary purpose of this file is to run any initialization routines which may be needed before the user’s
home directory becomes accessible; AFS is a particular example of such an environment.

This file will probably contain some initialization code followed by something similar to:

if read proto cookie && [-n "$DISPLAY"]; then

if [“echo $DISPLAY | cut -c1-10° = ’localhost:”]; then
X11UselLocalhost=yes

echo add unix:“echo $DISPLAY |

cut -cl1-° $proto $cookie

else

X1lUselLocalhost=no

echo add $DISPLAY $proto $cookie

fi | xauth -q -

fi

If this file does not exist, Zetc/ssh/sshrc is run, and if that does not exist either, xauth is used to add the
cookie.

AUTHORIZED_KEYS FILE FORMAT

BSD

AuthorizedKeysFi le specifies the files containing public keys for public key authentication; if none is
specified, the default is ~/ .ssh/authorized_keys and 7/ .ssh/authorized_keys2. Each line
of the file contains one key (empty lines and lines starting with a ‘#’ are ignored as comments). Protocol 1
public keys consist of the following space-separated fields: options, bits, exponent, modulus, comment. Pro-
tocol 2 public key consist of: options, keytype, base64-encoded key, comment. The options field is optional;
its presence is determined by whether the line starts with a number or not (the options field never starts with
a number). The bits, exponent, modulus, and comment fields give the RSA key for protocol version 1; the
comment field is not used for anything (but may be convenient for the user to identify the key). For protocol
version 2 the keytype is “ecdsa-sha2-nistp256”, “ecdsa-sha2-nistp384”, “ecdsa-sha2-nistp521”,
**ssh-ed25519”, “*ssh-dss” or “ssh-rsa”.

July 3, 2014 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/sshd_config

SSHD (8) BSD System Manager’s Manual SSHD (8)

BSD

Note that lines in this file are usually several hundred bytes long (because of the size of the public key encod-
ing) up to a limit of 8 kilobytes, which permits DSA keys up to 8 kilobits and RSA keys up to 16 kilobits.
You don’t want to type them in; instead, copy the identity.pub, id_dsa.pub, id_ecdsa.pub,
id_ed25519.pub, or the id_rsa. pub file and edit it.

sshd enforces a minimum RSA key modulus size for protocol 1 and protocol 2 keys of 768 bits.

The options (if present) consist of comma-separated option specifications. No spaces are permitted, except
within double quotes. The following option specifications are supported (note that option keywords are case-
insensitive):

cert-authority
Specifies that the listed key is a certification authority (CA) that is trusted to validate signed certifi-
cates for user authentication.

Certificates may encode access restrictions similar to these key options. If both certificate restric-
tions and key options are present, the most restrictive union of the two is applied.

command=""command"*

Specifies that the command is executed whenever this key is used for authentication. The command
supplied by the user (if any) is ignored. The command is run on a pty if the client requests a pty;
otherwise it is run without a tty. If an 8-bit clean channel is required, one must not request a pty or
should specify no-pty. A quote may be included in the command by quoting it with a backslash.
This option might be useful to restrict certain public keys to perform just a specific operation. An
example might be a key that permits remote backups but nothing else. Note that the client may
specify TCP and/or X11 forwarding unless they are explicitly prohibited. The command originally
supplied by the client is available in the SSH_ORIGINAL_COMMAND environment variable. Note
that this option applies to shell, command or subsystem execution. Also note that this command
may be superseded by either a sshd_config(5) ForceCommand directive or a command
embedded in a certificate.

environment="NAME=value"
Specifies that the string is to be added to the environment when logging in using this key. Environ-
ment variables set this way override other default environment values. Multiple options of this type
are permitted. Environment processing is disabled by default and is controlled via the
PermitUserEnvironment option. This option is automatically disabled if UselLogin is
enabled.

from="pattern-list"
Specifies that in addition to public key authentication, either the canonical name of the remote host
or its IP address must be present in the comma-separated list of patterns. See PATTERNS in
ssh_config(5) for more information on patterns.

In addition to the wildcard matching that may be applied to hostnames or addresses, a from stanza
may match IP addresses using CIDR address/masklen notation.

The purpose of this option is to optionally increase security: public key authentication by itself does
not trust the network or name servers or anything (but the key); however, if somebody somehow
steals the key, the key permits an intruder to log in from anywhere in the world. This additional
option makes using a stolen key more difficult (name servers and/or routers would have to be com-
promised in addition to just the key).

no-agent-forwarding
Forbids authentication agent forwarding when this key is used for authentication.

July 3, 2014 5

SSHD (8) BSD System Manager’s Manual SSHD (8)

no-port-forwarding
Forbids TCP forwarding when this key is used for authentication. Any port forward requests by the
client will return an error. This might be used, e.g. in connection with the command option.

no-pty
Prevents tty allocation (a request to allocate a pty will fail).

no-user-rc
Disables execution of =/ .ssh/rc.

no-X11-forwarding
Forbids X11 forwarding when this key is used for authentication. Any X11 forward requests by the
client will return an error.

permitopen="host:port"
Limit local ““ssh -L~~ port forwarding such that it may only connect to the specified host and
port. IPv6 addresses can be specified by enclosing the address in square brackets. Multiple
permitopen options may be applied separated by commas. No pattern matching is performed on
the specified hostnames, they must be literal domains or addresses. A port specification of [
matches any port.

principals="principals”
On a cert-authority line, specifies allowed principals for certificate authentication as a
comma-separated list. At least one name from the list must appear in the certificate’s list of princi-
pals for the certificate to be accepted. This option is ignored for keys that are not marked as trusted
certificate signers using the cert-authority option.

tunnel="n"
Force a tun(4) device on the server. Without this option, the next available device will be used if
the client requests a tunnel.

An example authorized_keys file:

Comments allowed at start of line

ssh-rsa AAAAB3Nza...LiPk== user@example._net
from=""[.sales.example.net, !pc.sales_example._net” ssh-rsa
AAAAB2 .. .19Q== john@example.net

command=""dump /home' ,no-pty,no-port-forwarding ssh-dss
AAAAC3. . _.51R== example.net
permitopen="192.0.2.1:80",permitopen="192.0.2.2:25" ssh-dss
AAAABS. . .21S==

tunnel="0",command=""sh /etc/netstart tun0" ssh-rsa AAAA...==
jJane@example.net

SSH_KNOWN_HOSTS FILE FORMAT

BSD

The /etc/ssh/ssh_known_hosts and 7/ . ssh/known_hosts files contain host public keys for all
known hosts. The global file should be prepared by the administrator (optional), and the per-user file is
maintained automatically: whenever the user connects from an unknown host, its key is added to the per-user
file.

Each line in these files contains the following fields: markers (optional), hostnames, bits, exponent, modulus,
comment. The fields are separated by spaces.

The marker is optional, but if it is present then it must be one of “@cert-authority”, to indicate that the line
contains a certification authority (CA) key, or “@revoked”, to indicate that the key contained on the line is
revoked and must not ever be accepted. Only one marker should be used on a key line.

July 3, 2014 6

SSHD (8) BSD System Manager’s Manual SSHD (8)

FILES

BSD

Hostnames is a comma-separated list of patterns (‘7 and *?” act as wildcards); each pattern in turn is
matched against the canonical host name (when authenticating a client) or against the user-supplied name
(when authenticating a server). A pattern may also be preceded by ‘!’ to indicate negation: if the host name
matches a negated pattern, it is not accepted (by that line) even if it matched another pattern on the line. A
hostname or address may optionally be enclosed within ‘[* and ‘]’ brackets then followed by ‘-’ and a non-
standard port number.

Alternately, hostnames may be stored in a hashed form which hides host names and addresses should the
file’s contents be disclosed. Hashed hostnames start with a ‘|” character. Only one hashed hostname may
appear on a single line and none of the above negation or wildcard operators may be applied.

Bits, exponent, and modulus are taken directly from the RSA host key; they can be obtained, for example,
from /etc/ssh/ssh_host_key.pub. The optional comment field continues to the end of the line, and
is not used.

Lines starting with ‘#’ and empty lines are ignored as comments.

When performing host authentication, authentication is accepted if any matching line has the proper key;
either one that matches exactly or, if the server has presented a certificate for authentication, the key of the
certification authority that signed the certificate. For a key to be trusted as a certification authority, it must
use the “@cert-authority” marker described above.

The known hosts file also provides a facility to mark keys as revoked, for example when it is known that the
associated private key has been stolen. Revoked keys are specified by including the “@revoked” marker at
the beginning of the key line, and are never accepted for authentication or as certification authorities, but
instead will produce a warning from ssh(1) when they are encountered.

It is permissible (but not recommended) to have several lines or different host keys for the same names. This
will inevitably happen when short forms of host names from different domains are put in the file. It is possi-
ble that the files contain conflicting information; authentication is accepted if valid information can be found
from either file.

Note that the lines in these files are typically hundreds of characters long, and you definitely don’t want to
type in the host keys by hand. Rather, generate them by a script, ssh-keyscan(1l) or by taking
/etc/ssh/ssh_host_key.pub and adding the host names at the front. ssh-keygen(1) also offers
some basic automated editing for ~/ . ssh/known_hosts including removing hosts matching a host name
and converting all host names to their hashed representations.

An example ssh_known_hosts file:

Comments allowed at start of line

closenet,...,192.0.2.53 1024 37 159...93 closenet.example.net
cvs.example.net,192.0.2.10 ssh-rsa AAAA1234..... =

A hashed hostname

| 1] ITKTdBh7rNbXkVAQCRp40QoPTmI=]USECr3SWF1JUPsms5AqTfD5QFfxkM= ssh-rsa
AAAAL234. =

A revoked key

@revoked 0O ssh-rsa AAAABSW. ..

A CA key, accepted for any host in [O.mydomain.com or [I.mydomain.org
@cert-authority [O.mydomain.org,[l.mydomain.com ssh-rsa AAAABSW. ..

~/ -hushlogin
This file is used to suppress printing the last login time and /etc/motd, if PrintLastLog and
PrintMotd, respectively, are enabled. It does not suppress printing of the banner specified by
Banner.

July 3, 2014 7

SSHD (8) BSD System Manager’s Manual SSHD (8)

BSD

~/.rhosts
This file is used for host-based authentication (see ssh(l) for more information). On some
machines this file may need to be world-readable if the user’s home directory is on an NFS partition,
because sshd reads it as root. Additionally, this file must be owned by the user, and must not have
write permissions for anyone else. The recommended permission for most machines is read/write
for the user, and not accessible by others.

~/ .shosts
This file is used in exactly the same way as - rhosts, but allows host-based authentication without
permitting login with rlogin/rsh.

~/.ssh/
This directory is the default location for all user-specific configuration and authentication informa-
tion. There is no general requirement to keep the entire contents of this directory secret, but the rec-
ommended permissions are read/write/execute for the user, and not accessible by others.

~/ .ssh/authorized_keys
Lists the public keys (DSA, ECDSA, ED25519, RSA) that can be used for logging in as this user.
The format of this file is described above. The content of the file is not highly sensitive, but the rec-
ommended permissions are read/write for the user, and not accessible by others.

If this file, the ~/ . ssh directory, or the user’s home directory are writable by other users, then the
file could be modified or replaced by unauthorized users. In this case, sshd will not allow it to be
used unless the StrictModes option has been set to “no”.

~/ .ssh/environment
This file is read into the environment at login (if it exists). It can only contain empty lines, comment
lines (that start with ‘#’), and assignment lines of the form name=value. The file should be writable
only by the user; it need not be readable by anyone else. Environment processing is disabled by
default and is controlled via the PermitUserEnvironment option.

~/ .ssh/known_hosts
Contains a list of host keys for all hosts the user has logged into that are not already in the sys-
temwide list of known host keys. The format of this file is described above. This file should be
writable only by root/the owner and can, but need not be, world-readable.

~/.ssh/rc
Contains initialization routines to be run before the user’s home directory becomes accessible. This
file should be writable only by the user, and need not be readable by anyone else.

/etc/hosts._allow

/etc/hosts.deny
Access controls that should be enforced by tcp-wrappers are defined here. Further details are
described in hosts_access(5).

/etc/hosts._equiv
This file is for host-based authentication (see . -- ssh(1)) It should only be writable by root.

/etc/ssh/modul i
Contains Diffie-Hellman groups used for the "Diffie-Hellman Group Exchange”. The file format is
described in moduli(5).

/etc/motd
See motd(5).

July 3, 2014 8

http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/hosts_access
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/ssh
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/moduli
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/motd

SSHD (8) BSD System Manager’s Manual SSHD (8)

/etc/nologin
If this file exists, sshd refuses to let anyone except root log in. The contents of the file are dis-
played to anyone trying to log in, and non-root connections are refused. The file should be world-
readable.

/etc/ssh/shosts.equiv
This file is used in exactly the same way as hosts.equiv, but allows host-based authentication
without permitting login with rlogin/rsh.

/etc/ssh/ssh_host_key

/etc/ssh/ssh_host_dsa_key

/etc/ssh/ssh_host_ecdsa_key

/etc/ssh/ssh_host_ed25519 key

/etc/ssh/ssh_host_rsa_key
These files contain the private parts of the host keys. These files should only be owned by root,
readable only by root, and not accessible to others. Note that sshd does not start if these files are
group/world-accessible.

/etc/ssh/ssh_host_key.pub

/etc/ssh/ssh_host _dsa_key.pub

/etc/ssh/ssh_host_ecdsa_key.pub

/etc/ssh/ssh_host_ed25519 key.pub

/etc/ssh/ssh_host_rsa_key.pub
These files contain the public parts of the host keys. These files should be world-readable but
writable only by root. Their contents should match the respective private parts. These files are not
really used for anything; they are provided for the convenience of the user so their contents can be
copied to known hosts files. These files are created using ssh-keygen(1).

/etc/ssh/ssh_known_hosts
Systemwide list of known host keys. This file should be prepared by the system administrator to
contain the public host keys of all machines in the organization. The format of this file is described
above. This file should be writable only by root/the owner and should be world-readable.

/etc/ssh/sshd_config
Contains configuration data for sshd. The file format and configuration options are described in
sshd_config(5).

/etc/ssh/sshrc
Similar to 7/ .ssh/rc, it can be used to specify machine-specific login-time initializations glob-
ally. This file should be writable only by root, and should be world-readable.

/var/run/sshd
chroot(2) directory used by sshd during privilege separation in the pre-authentication phase.
The directory should not contain any files and must be owned by root and not group or world-
writable.

/var/run/sshd.pid
Contains the process ID of the sshd listening for connections (if there are several daemons running
concurrently for different ports, this contains the process ID of the one started last). The content of
this file is not sensitive; it can be world-readable.

SEE ALSO

BSD

scp(l), sftp(1), ssh(1), ssh-add(1), ssh-agent(l), ssh-keygen(l), ssh-keyscan(1), chroot(2),
hosts_access(5), moduli(5), sshd_config(5), inetd(8), sFtp-server(8)

July 3, 2014 9

http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/sshd_config
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/scp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/sftp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/ssh
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chroot
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/hosts_access
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/moduli
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/sshd_config

SSHD (8) BSD System Manager’s Manual SSHD (8)

AUTHORS

BSD

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob
Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added newer fea-
tures and created OpenSSH. Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0.
Niels Provos and Markus Friedl contributed support for privilege separation.

July 3, 2014 10

	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHENTICATION
	LOGIN PROCESS
	SSHRC
	AUTHORIZED_KEYS FILE FORMAT
	SSH_KNOWN_HOSTS FILE FORMAT
	FILES
	SEE ALSO
	AUTHORS

