des(3SSL)

NAME

OpenSSL des(3SSL)

DES_random_key, DES_set_key, DES key_sched, DES_set_key_checked, DES set_key_unchecked,
DES_set_odd_parity, DES_is_weak_key, DES_ecb_encrypt, DES_ecb2_encrypt,
DES_ecb3_encrypt, DES ncbc_encrypt, DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt,
DES_cfb64_encrypt, DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt
DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt
DES_ede3_cbem_encrypt, DES _ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt, DES_cbc_cksum,
DES_quad_cksum, DES string to_key, DES_string to_2keys, = DES fcrypt, @ DES_crypt,
DES_enc_read, DES_enc_write - DES encryption

SYNOPSIS

1.0.2a

#include <openssl/des.h>
void DES_random_key(DES_cblock *ret);

int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule) ;
int DES_set_key_checked(const_DES_cblock *key,

DES_key_schedule *schedule);

void DES_set_key_unchecked(const_DES_cblock *key,

DES_key_schedule *schedule);

void DES_set_odd_parity(DES_cblock *key);
int DES_is_weak_key(const_DES_cblock *key);

void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks, int enc);

void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ksl, DES_key_schedule *ks2, int enc);

void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ksl, DES_key_schedule *ks2,

DES_key_schedule *ks3, int enc);

void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,

int enc);

void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,

int numbits, long length, DES_key_schedule *schedule,

DES_cblock *ivec, int enc);

void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,

int numbits, long length, DES_key_schedule *schedule,

DES_cblock *ivec);

void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,

int enc);

void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,

long length, DES_key_schedule *schedule, DES_cblock *ivec,

int *num, int enc);

void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,

long length, DES_key_schedule *schedule, DES_cblock *ivec,

int *num) ;

void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,

long length, DES_key_schedule *schedule, DES_cblock *ivec,
const_DES_cblock *inw, const_DES_cblock *outw, int enc);

2015-01-15



des(3SSL) OpenSSL des(3SSL)

void DES_ede2_cbc_encrypt(const unsigned char *input,
unsigned char *output, long length, DES_key_schedule *ksli,
DES_key_schedule *ks2, DES_cblock *ivec, int enc);

void DES_ede2_cfb64_encrypt(const unsigned char *in,
unsigned char *out, long length, DES_key_schedule *ksl,
DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
void DES_ede2_ofb64_encrypt(const unsigned char *in,
unsigned char *out, long length, DES_key_schedule *ksl,
DES_key_schedule *ks2, DES_cblock *ivec, int *num);

void DES_ede3_cbc_encrypt(const unsigned char *input,

unsigned char *output, long length, DES_key_schedule *ksli,
DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,

int enc);

void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ksl, DES_key_schedule *ks2,
DES_key_schedule *ks3, DES_cblock *ivecl, DES_cblock *ivec2,

int enc);

void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ksl, DES_key_schedule *ks2,
DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);

void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ksl,

DES_key_schedule *ks2, DES_key_schedule *ks3,

DES_cblock *ivec, int *num);

DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
long length, DES_key_schedule *schedule,

const_DES_cblock *ivec);

DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
long length, int out_count, DES_cblock *seed);

void DES_string_to_key(const char *str, DES_cblock *key);

void DES_string_to_2keys(const char *str, DES_cblock *keyl,

DES_cblock *key2);

char *DES_fcrypt(const char #buf, const char #*salt, char *ret);
char *DES_crypt(const char *buf, const char *salt);

int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
DES_cblock *iv);

int DES_enc_write(int fd, const void *buf, int len,

DES_key_schedule *sched, DES_cblock *iv);

DESCRIPTION

This library contains a fast implementation of the DES encryption algorithm.

There are two phases to the use of DES encryption. The first is the generation of a
DES _key schedule from a key, the second is the actual encryption. A DES key is of type
DES_cblock. This type is consists of 8 bytes with odd parity. The least significant bit in each byte
is the parity bit. The key schedule is an expanded form of the key; it is used to speed the
encryption process.

DES _random_key() generates a random key. The PRNG must be seeded prior to using this
function (see rand(3)). If the PRNG could not generate a secure key, 0 is returned.

Before a DES key can be used, it must be converted into the architecture dependent

1.0.2a 2015-01-15 2


http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/rand

des(3SSL) OpenSSL des(3SSL)

1.0.2a

DES key_schedule via the DES_set_key_checked() or DES_set_key_unchecked() function.

DES _set_key_checked() will check that the key passed is of odd parity and is not a week or semi-
weak key. If the parity is wrong, then -1 is returned. If the key is a weak key, then -2 is returned.
If an error is returned, the key schedule is not generated.

DES _set_key() works like DES_set_key_checked() if the DES_check_key flag is non-zero, otherwise
like DES_set_key_unchecked(). These functions are available for compatibility; it is recommended
to use a function that does not depend on a global variable.

DES_set_odd_parity() sets the parity of the passed key to odd.
DES is_weak_key() returns 1 if the passed key is a weak key, 0 if it is ok.
The following routines mostly operate on an input and output stream of DES cblocks.

DES_ecb_encrypt() is the basic DES encryption routine that encrypts or decrypts a single 8-byte
DES_cblock in electronic code book (ECB) mode. It always transforms the input data, pointed to
by input, into the output data, pointed to by the output argument. If the encrypt argument is
non-zero (DES_ENCRYPT), the input (cleartext) is encrypted in to the output (ciphertext) using
the key_schedule specified by the schedule argument, previously set via DES set_key. If encrypt is
zero (DES_DECRYPT), the input (now ciphertext) is decrypted into the output (now cleartext).
Input and output may overlap. DES_ecb_encrypt() does not return a value.

DES _ecb3_encrypt() encrypts/decrypts the input block by using three-key Triple-DES encryption
in ECB mode. This involves encrypting the input with ksi, decrypting with the key schedule ks2,
and then encrypting with ks3. This routine greatly reduces the chances of brute force breaking of
DES and has the advantage of if ksI, ks2 and ks3 are the same, it is equivalent to just encryption
using ECB mode and ks! as the key.

The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES encryption by using
ksl for the final encryption.

DES ncbe_encrypt() encrypts/decrypts using the cipher-block-chaining (CBC) mode of DES. If
the encrypt argument is non-zero, the routine cipher-block-chain encrypts the cleartext data
pointed to by the input argument into the ciphertext pointed to by the output argument, using
the key schedule provided by the schedule argument, and initialization vector provided by the iwvec
argument. If the length argument is not an integral multiple of eight bytes, the last block is copied
to a temporary area and zero filled. The output is always an integral multiple of eight bytes.

DES xzcbe_encrypt() is RSA’s DESX mode of DES. It uses inw and outw to ’whiten’ the
encryption. inw and outw are secret (unlike the iv) and are as such, part of the key. So the key is
sort of 24 bytes. This is much better than CBC DES.

DES ede3_cbc_encrypt() implements outer triple CBC DES encryption with three keys. This
means that each DES operation inside the CBC mode is an C=E(ks3,D(ks2,E(ks1,M))). This
mode is used by SSL.

The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by reusing ks! for the final
encryption. C=E(ks1,D(ks2,E(ks1,M))). This form of Triple-DES is used by the RSAREF
library.

DES pcbe_encrypt() encrypt/decrypts using the propagating cipher block chaining mode used by
Kerberos v4. Its parameters are the same as DES_ncbc_encrypt().

DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This method takes an array of
characters as input and outputs and array of characters. It does not require any padding to 8
character groups. Note: the wec variable is changed and the new changed value needs to be
passed to the next call to this function. Since this function runs a complete DES ECB encryption
per numbits, this function is only suggested for use when sending small numbers of characters.

DES _cfb64_encrypt() implements CFB mode of DES with 64bit feedback. Why is this useful you
ask? Because this routine will allow you to encrypt an arbitrary number of bytes, no 8 byte

2015-01-15 3



des(3SSL) OpenSSL des(3SSL)

1.0.2a

padding. Each call to this routine will encrypt the input bytes to output and then update ivec
and num. num contains 'how far’ we are though ivec. If this does not make much sense, read more
about cfb mode of DES :-).

DES ede3_cfb6_encrypt() and DES_ede2 cfb64_encrypt() is the same as DES cfb64_encrypt()
except that Triple-DES is used.

DES ofb_encrypt() encrypts using output feedback mode. This method takes an array of
characters as input and outputs and array of characters. It does not require any padding to 8
character groups. Note: the wvec variable is changed and the new changed value needs to be
passed to the next call to this function. Since this function runs a complete DES ECB encryption
per numbits, this function is only suggested for use when sending small numbers of characters.

DES ofb6/4_encrypt() is the same as DES_c¢fb6/4_encrypt() using Output Feed Back mode.

DES _ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as DES ofb6/_encrypt(),
using Triple-DES.

The following functions are included in the DES library for compatibility with the MIT Kerberos
library.

DES cbe_cksum() produces an 8 byte checksum based on the input stream (via CBC encryption).
The last 4 bytes of the checksum are returned and the complete 8 bytes are placed in output. This
function is used by Kerberos v4. Other applications should use EVP_DigestInit(3) etc. instead.

DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte checksum from the input bytes.
The algorithm can be iterated over the input, depending on out_count, 1, 2, 3 or 4 times. If output
is non-NULL, the 8 bytes generated by each pass are written into output.

The following are DES-based transformations:

DES ferypt() is a fast version of the Unix crypt(3) function. This version takes only a small
amount of space relative to other fast crypt() implementations. This is different to the normal
crypt in that the third parameter is the buffer that the return value is written into. It needs to be
at least 14 bytes long. This function is thread safe, unlike the normal crypt.

DES crypt() is a faster replacement for the normal system crypt(). This function calls
DES ferypt() with a static array passed as the third parameter. This emulates the normal non-
thread safe semantics of crypt(3).

DES_enc_write() writes len bytes to file descriptor fd from buffer buf. The data is encrypted via
pcbe_encrypt (default) using sched for the key and v as a starting vector. The actual data send
down fd consists of 4 bytes (in network byte order) containing the length of the following
encrypted data. The encrypted data then follows, padded with random data out to a multiple of 8
bytes.

DES _enc_read() is used to read len bytes from file descriptor fd into buffer buf. The data being
read from fd is assumed to have come from DES enc_write() and is decrypted using sched for the
key schedule and v for the initial vector.

Warning: The data format used by DES enc_write() and DES_enc_read() has a cryptographic
weakness: When asked to write more than MAXWRITE bytes, DES_enc_write() will split the data
into several chunks that are all encrypted using the same IV. So don’t use these functions unless
you are sure you know what you do (in which case you might not want to use them anyway).
They cannot handle non-blocking sockets. DES_enc_read() uses an internal state and thus cannot
be used on multiple files.

DES rw_mode is used to specify the encryption mode to use with DES enc_read() and
DES_end_write(). If set to DES_PCBC_MODE (the default), DES_pcbc_encrypt is used. If set to
DES _CBC_MODE DES_cbc_encrypt is used.

2015-01-15 4


http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/EVP_DigestInit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/crypt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/crypt

des(3SSL) OpenSSL des(3SSL)

NOTES

BUGS

Single-key DES is insecure due to its short key size. ECB mode is not suitable for most
applications; see des_modes(7).

The evp(8) library provides higher-level encryption functions.

DES 3cbe_encrypt() is flawed and must not be used in applications.
DES cbe_encrypt() does not modify ivec; use DES_ncbe_encrypt() instead.

DES _cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits. What this means is that
if you set numbits to 12, and length to 2, the first 12 bits will come from the 1st input byte and
the low half of the second input byte. The second 12 bits will have the low 8 bits taken from the
3rd input byte and the top 4 bits taken from the 4th input byte. The same holds for output. This
function has been implemented this way because most people will be using a multiple of 8 and
because once you get into pulling bytes input bytes apart things get ugly!

DES string_to_key() is available for backward compatibility with the MIT library. New

applications should use a cryptographic hash function. The same applies for
DES _string_to_2key().

CONFORMING TO

ANSI X3.106

The des library was written to be source code compatible with the MIT Kerberos library.

SEE ALSO

crypt(3), des_modes(7), evp(3), rand(3)

HISTORY

In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid clashes with older versions of
libdes. Compatibility des_ functions are provided for a short while, as well as crypt().
Declarations for these are in <openssl/des_old.h>. There is no DES_ variant for
des_random_seed(). This will happen to other functions as well if they are deemed redundant
(des_random_seed() just calls RAND_seed() and is present for backward compatibility only),
buggy or already scheduled for removal.

des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(), des_is_weak_key(), des_key_sched(),
des_pcbe_encrypt(), des_quad_cksum(), des_random_key() and des_string_to_key() are available in
the MIT Kerberos library; des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key()
are available in newer versions of that library.

des_set_key_checked() and des_set_key_unchecked() were added in OpenSSL 0.9.5.

des_generate_random_block(), des_init_random_number_generator(), des_new_random_key(),
des_set_random_generator_seed() and des_set_sequence_number() and des_rand_data() are used in
newer versions of Kerberos but are not implemented here.

des_random_key() generated cryptographically weak random data in SSLeay and in OpenSSL
prior version 0.9.5, as well as in the original MIT library.

AUTHOR

1.0.2a

Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project (http://www.openssl.org).

2015-01-15 )


http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/des_modes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/evp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/crypt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/des_modes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/evp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/rand
http://www.openssl.org

	NAME
	SYNOPSIS
	DESCRIPTION
	NOTES
	BUGS
	CONFORMING TO
	SEE ALSO
	HISTORY
	AUTHOR

