Inotify2(3pm) User Contributed Perl Documentation Inotify2(3pm)

NAME

Linux::Inotify2 - scalable directory /file change notification

SYNOPSIS
Callback Interface
use Linux::Inotify2;

create a new object
my $inotify = new Linux::Inotify2
or die "unable to create new inotify object: $!";

add watchers

$inotify->watch ("/etc/passwd", IN_ACCESS, sub {

my $e = shift;

my $name = $e->fullname;

print "$name was accessed\n" if $e->IN_ACCESS;

print "$name is no longer mounted\n" if $e->IN_UNMOUNT;

print "$name is gone\n" if $e->IN_IGNORED;

print "events for $name have been lost\n" if $e->IN_Q_OVERFLOW;

cancel this watcher: remove no further events
$e->w->cancel;

)

integration into AnyEvent (works with EV, Glib, Tk, POE...)

my $inotify_w = AnyEvent->io (

fh => $inofity->fileno, poll => 'r', cb => sub { $inotify->poll }
)3

manual event loop
1 while $inotify->poll;

Streaming Interface
use Linux::Inotify2 ;

create a new object
my $inotify = new Linux::Inotify2
or die "Unable to create new inotify object: $!"

create watch
$inotify->watch ("/etc/passwd", IN_ACCESS)
or die "watch creation failed" ;

while () {

my Qevents = $inotify->read;
unless (@events > 0) {
print "read error: $!";

last ;
}
printf "mask\t)d\n", $_->mask foreach @events ;
}
DESCRIPTION

This module implements an interface to the Linux 2.6.13 and later Inotify file/directory change
notification system.

It has a number of advantages over the Linux::Inotify module:

perl v5.20.0 2011-06-14 1

Inotify2(3pm) User Contributed Perl Documentation Inotify2(3pm)

- it is portable (Linux::Inotify only works on x86)

- the equivalent of fullname works correctly

- it is better documented

- it has callback-style interface, which is better suited for
integration.

The Linux::Inotify2 Class
Linux::Inotify2 Class

my $inotify = new Linux::Inotify2
Create a new notify object and return it. A notify object is kind of a container that stores
watches on file system names and is responsible for handling event data.

On error, undef is returned and $! will be set accordingly. The following errors are
documented:

ENFILE The system limit on the total number of file descriptors has been reached.
EMFILE The user limit on the total number of inotify instances has been reached.
ENOMEM Insufficient kernel memory is available.

Example

my $inotify = new Linux::Inotify2
or die "Unable to create new inotify object: $!";

$watch = $inotify->watch ($name, $mask|, $cb])
Add a new watcher to the given notifier. The watcher will create events on the pathname

$name as given in $mask, which can be any of the following constants (all exported by
default) ORed together.

“file”” refers to any file system object in the watched object (always a directory), that is files,
directories, symlinks, device nodes etc., while “‘object” refers to the object the watcher has
been set on itself:

IN_ACCESS object was accessed

IN_MODIFY object was modified

IN_ATTRIB object metadata changed

IN_CLOSE_WRITE writable fd to file / to object was closed
IN_CLOSE_NOWRITE readonly fd to file / to object closed
IN_OPEN object was opened

IN_MOVED_FROM file was moved from this object (directory)
IN_MOVED_TO file was moved to this object (directory)
IN_CREATE file was created in this object (directory)
IN_DELETE file was deleted from this object (directory)
IN_DELETE_SELF object itself was deleted

IN_MOVE_SELF object itself was moved

IN_ALL_EVENTS all of the above events

IN_ONESHOT only send event once

IN_ONLYDIR only watch the path if it is a directory
IN_DONT_FOLLOW don't follow a sym link

IN_MASK_ADD not supported with the current version of this module

IN_CLOSE same as IN_CLOSE_WRITE | IN_CLOSE_NOWRITE
IN_MOVE same as IN_MOVED_FROM | IN_MOVED_TO

$cb is a perl code reference that, if given, is called for each event. It receives a
Linux: :Inotify2: :Event object.

The returned $watch object is of class Linux: :Inotify2: :Watch

perl v5.20.0 2011-06-14 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Linux::Inotify2

Inotify2(3pm) User Contributed Perl Documentation Inotify2(3pm)

On error, undef is returned and $! will be set accordingly. The following errors are
documented:

EBADF The given file descriptor is not valid.

EINVAL The given event mask contains no legal events.

ENOMEM Insufficient kernel memory was available.

ENOSPC The user limit on the total number of inotify watches was reached or the kernel f
EACCESS Read access to the given file is not permitted.

Example, show when /etc/passwd gets accessed and/or modified once:

$inotify->watch ("/etc/passwd", IN_ACCESS | IN_MODIFY, sub {

my $e = shift;

print "$e->{w}{name} was accessed\n" if $e->IN_ACCESS;

print "$e->{w}{name} was modified\n" if $e->IN_MODIFY;

print "$e->{w}{name} is no longer mounted\n" if $e->IN_UNMOUNT;

print "events for $e->{w}{name} have been lost\n" if $e->IN_Q_OVERFLOW;

$e->w->cancel;

B

$inotify->fileno
Returns the file descriptor for this notify object. When in non-blocking mode, you are
responsible for calling the poll method when this file descriptor becomes ready for reading.

$inotify->blocking ($blocking)
Clears ($blocking true) or sets ($blocking false) the 0_NONBLOCK flag on the file descriptor.

$count = $inotify->poll
Reads events from the kernel and handles them. If the notify file descriptor is blocking (the
default), then this method waits for at least one event (and thus returns true unless an error
occurs). Otherwise it returns immediately when no pending events could be read.

Returns the count of events that have been handled.

Qevents = $inotify->read
Reads events from the kernel. Blocks when the file descriptor is in blocking mode (default)
until any event arrives. Returns list of Linux::Inotify2::Event objects or empty list if
none (non-blocking mode) or error occurred ($! should be checked).

Normally you shouldn’t use this function, but instead use watcher callbacks and call ->poll.

The Linux::Inotify2::Event Class

Objects of this class are handed as first argument to the watcher callback. It has the following
members and methods:

$event->w
$event->{w}

The watcher object for this event.
$event->name

$event->{name}
The path of the file system object, relative to the watched name.

$event->fullname
Returns the “full” name of the relevant object, i.e. including the name member of the watcher
(if the watch object is on a directory and a directory entry is affected), or simply the name
member itself when the object is the watch object itself.

$event->mask

perl v5.20.0 2011-06-14 3

Inotify2(3pm) User Contributed Perl Documentation Inotify2(3pm)

$event->{mask}
The received event mask. In addition to the events described for $inotify->watch, the
following flags (exported by default) can be set:

IN_ISDIR event object is a directory
IN_Q_OVERFLOW event queue overflowed

when any of the following flags are set,

then watchers for this event are automatically canceled
IN_UNMOUNT filesystem for watched object was unmounted

IN_IGNORED file was ignored/is gone (no more events are delivered)
IN_ONESHOT only one event was generated

$event->IN_ xxx
Returns a boolean that returns true if the event mask contains any events specified by the
mask. All of the IN_xxx constants can be used as methods.

$event->cookie

$event->{cookie}
The event cookie to ‘‘synchronize two events”. Normally zero, this value is set when two
events relating to the same file are generated. As far as I know, this only happens for
IN_MOVED_FROM and IN_MOVED_TO events, to identify the old and new name of a file.

The Linux::Inotify2::Watch Class
Watcher objects are created by calling the watch method of a notifier.

It has the following members and methods:
$watch->name
$watch->{name}
The name as specified in the watch call. For the object itself, this is the empty string. For
directory watches, this is the name of the entry without leading path elements.
$watch->mask
$watch->{mask}
The mask as specified in the watch call.
$watch->cb ([new callback])
$watch->{cb}
The callback as specified in the watch call. Can optionally be changed.
$watch->cancel
Cancels/removes this watcher. Future events, even if already queued queued, will not be
handled and resources will be freed.
SEE ALSO
AnyEvent, Linux::Inotify.
AUTHOR

Marc Lehmann <schmorp@schmorp.de>
http://home.schmorp.de/

perl v5.20.0 2011-06-14 4

http://home.schmorp.de/

	NAME
	SYNOPSIS
	Callback Interface
	Streaming Interface

	DESCRIPTION
	The Linux::Inotify2 Class
	my $inotify = new Linux::Inotify2
	$watch = $inotify->watch ($name, $mask [, $cb])
	$inotify->fileno
	$inotify->blocking ($blocking)
	$count = $inotify->poll
	@events = $inotify->read

	The Linux::Inotify2::Event Class
	$event->w
	$event->{w}
	$event->name
	$event->{name}
	$event->fullname
	$event->mask
	$event->{mask}
	$event->IN_xxx
	$event->cookie
	$event->{cookie}

	The Linux::Inotify2::Watch Class
	$watch->name
	$watch->{name}
	$watch->mask
	$watch->{mask}
	$watch->cb ([new callback])
	$watch->{cb}
	$watch->cancel

	SEE ALSO
	AUTHOR

