
HTTP::Headers::Util(3pm) User Contributed Perl Documentation HTTP::Headers::Util(3pm)

NAME
HTTP::Headers::Util - Header value parsing utility functions

SYNOPSIS
use HTTP::Headers::Util qw(split_header_words);

@values = split_header_words($h->header("Content-Type"));

DESCRIPTION
This module provides a few functions that helps parsing and construction of valid HTTP header
values. None of the functions are exported by default.

The following functions are available:

split_header_words(@header_values)
This function will parse the header values given as argument into a list of anonymous arrays
containing key/value pairs. The function knows how to deal with ‘‘,’’, ‘‘;’’ and ‘‘=’’ as well as
quoted values after ‘‘=’’. A list of space separated tokens are parsed as if they were separated
by ‘‘;’’.

If the @header_values passed as argument contains multiple values, then they are treated as
if they were a single value separated by comma ‘‘,’’.

This means that this function is useful for parsing header fields that follow this syntax (BNF

as from the HTTP/1.1 specification, but we relax the requirement for tokens).

headers = #header

header = (token | parameter) *([";"] (token | parameter))

token = 1*<any CHAR except CTLs or separators>

separators = "(" | ")" | "<" | ">" | "@"

| "," | ";" | ":" | "\" | <">

| "/" | "[" | "]" | "?" | "="

| "{" | "}" | SP | HT

quoted-string = (<"> *(qdtext | quoted-pair) <">)

qdtext = <any TEXT except <">>

quoted-pair = "\" CHAR

parameter = attribute "=" value

attribute = token

value = token | quoted-string

Each header is represented by an anonymous array of key/value pairs. The keys will be all be
forced to lower case. The value for a simple token (not part of a parameter) is undef.
Syntactically incorrect headers will not necessarily be parsed as you would want.

This is easier to describe with some examples:

split_header_words('foo="bar"; port="80,81"; DISCARD, BAR=baz');

split_header_words('text/html; charset="iso-8859-1"');

split_header_words('Basic realm="\\"foo\\\\bar\\""');

will return

[foo=>'bar', port=>'80,81', discard=> undef], [bar=>'baz']

['text/html' => undef, charset => 'iso-8859-1']

[basic => undef, realm => "\"foo\\bar\""]

If you don’t want the function to convert tokens and attribute keys to lower case you can call
it as _split_header_words instead (with a leading underscore).

perl v5.14.2 2012-02-16 1

HTTP::Headers::Util(3pm) User Contributed Perl Documentation HTTP::Headers::Util(3pm)

join_header_words(@arrays)
This will do the opposite of the conversion done by split_header_words(). It takes a list of
anonymous arrays as arguments (or a list of key/value pairs) and produces a single header
value. Attribute values are quoted if needed.

Example:

join_header_words(["text/plain" => undef, charset => "iso-8859/1"]);

join_header_words("text/plain" => undef, charset => "iso-8859/1");

will both return the string:

text/plain; charset="iso-8859/1"

COPYRIGHT
Copyright 1997-1998, Gisle Aas

This library is free software; you can redistribute it and/or modify it under the same terms as
Perl itself.

perl v5.14.2 2012-02-16 2

	NAME
	SYNOPSIS
	DESCRIPTION
	split_header_words(@header_values)
	join_header_words(@arrays)

	COPYRIGHT

