
Error(3pm) User Contributed Perl Documentation Error(3pm)

NAME
Error - Error/exception handling in an OO-ish way

SYNOPSIS
use Error qw(:try);

throw Error::Simple("A simple error");

sub xyz {

...

record Error::Simple("A simple error")

and return;

}

unlink($file) or throw Error::Simple("$file: $!",$!);

try {

do_some_stuff();

die "error!" if $condition;

throw Error::Simple "Oops!" if $other_condition;

}

catch Error::IO with {

my $E = shift;

print STDERR "File ", $E->{'\-file'}, " had a problem\n";

}

except {

my $E = shift;

my $general_handler=sub {send_message $E->{\-description}};

return {

UserException1 => $general_handler,

UserException2 => $general_handler

};

}

otherwise {

print STDERR "Well I don't know what to say\n";

}

finally {

close_the_garage_door_already(); # Should be reliable

}; # Don't forget the trailing ; or you might be surprised

DESCRIPTION
The Error package provides two interfaces. Firstly Error provides a procedural interface to
exception handling. Secondly Error is a base class for errors/exceptions that can either be
thrown, for subsequent catch, or can simply be recorded.

Errors in the class Error should not be thrown directly, but the user should throw errors from a
sub-class of Error.

PROCEDURAL INTERFACE
Error exports subroutines to perform exception handling. These will be exported if the :try tag
is used in the use line.

try BLOCK CLAUSES

try is the main subroutine called by the user. All other subroutines exported are clauses to
the try subroutine.

The BLOCK will be evaluated and, if no error is throw, try will return the result of the block.

perl v5.18.1 2013-09-07 1

Error(3pm) User Contributed Perl Documentation Error(3pm)

CLAUSES are the subroutines below, which describe what to do in the event of an error being
thrown within BLOCK.

catch CLASS with BLOCK

This clauses will cause all errors that satisfy $err->isa(CLASS) to be caught and handled by
evaluating BLOCK.

BLOCK will be passed two arguments. The first will be the error being thrown. The second is a
reference to a scalar variable. If this variable is set by the catch block then, on return from
the catch block, try will continue processing as if the catch block was never found. The error
will also be available in $@.

To propagate the error the catch block may call $err->throw

If the scalar reference by the second argument is not set, and the error is not thrown. Then
the current try block will return with the result from the catch block.

except BLOCK

When try is looking for a handler, if an except clause is found BLOCK is evaluated. The
return value from this block should be a HASHREF or a list of key-value pairs, where the keys
are class names and the values are CODE references for the handler of errors of that type.

otherwise BLOCK

Catch any error by executing the code in BLOCK

When evaluated BLOCK will be passed one argument, which will be the error being processed.
The error will also be available in $@.

Only one otherwise block may be specified per try block

finally BLOCK

Execute the code in BLOCK either after the code in the try block has successfully completed,
or if the try block throws an error then BLOCK will be executed after the handler has
completed.

If the handler throws an error then the error will be caught, the finally block will be executed
and the error will be re-thrown.

Only one finally block may be specified per try block

CLASS INTERFACE
CONSTRUCTORS

The Error object is implemented as a HASH. This HASH is initialized with the arguments that
are passed to it’s constructor. The elements that are used by, or are retrievable by the Error class
are listed below, other classes may add to these.

\-file

\-line

\-text

\-value

\-object

If -file or -line are not specified in the constructor arguments then these will be initialized
with the file name and line number where the constructor was called from.

If the error is associated with an object then the object should be passed as the -object
argument. This will allow the Error package to associate the error with the object.

The Error package remembers the last error created, and also the last error associated with a
package. This could either be the last error created by a sub in that package, or the last error
which passed an object blessed into that package as the -object argument.

perl v5.18.1 2013-09-07 2

Error(3pm) User Contributed Perl Documentation Error(3pm)

Error->new()
See the Error::Simple documentation.

throw ([ARGS])
Create a new Error object and throw an error, which will be caught by a surrounding try
block, if there is one. Otherwise it will cause the program to exit.

throw may also be called on an existing error to re-throw it.

with ([ARGS])
Create a new Error object and returns it. This is defined for syntactic sugar, eg

die with Some::Error (...);

record ([ARGS])
Create a new Error object and returns it. This is defined for syntactic sugar, eg

record Some::Error (...)

and return;

STATIC METHODS

prior ([PACKAGE])
Return the last error created, or the last error associated with PACKAGE

flush ([PACKAGE])
Flush the last error created, or the last error associated with PACKAGE.It is necessary to clear
the error stack before exiting the package or uncaught errors generated using record will be
reported.

$Error->flush;

OBJECT METHODS

stacktrace
If the variable $Error::Debug was non-zero when the error was created, then stacktrace
returns a string created by calling Carp::longmess If the variable was zero the stacktrace
returns the text of the error appended with the filename and line number of where the error
was created, providing the text does not end with a newline.

object
The object this error was associated with

file The file where the constructor of this error was called from

line
The line where the constructor of this error was called from

text
The text of the error

$err->associate($obj)
Associates an error with an object to allow error propagation. I.e:

$ber->encode(...) or

return Error->prior($ber)->associate($ldap);

OVERLOAD METHODS

stringify
A method that converts the object into a string. This method may simply return the same as
the text method, or it may append more information. For example the file name and line
number.

By default this method returns the -text argument that was passed to the constructor, or
the string "Died" if none was given.

perl v5.18.1 2013-09-07 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Error::Simple

Error(3pm) User Contributed Perl Documentation Error(3pm)

value
A method that will return a value that can be associated with the error. For example if an
error was created due to the failure of a system call, then this may return the numeric value
of $! at the time.

By default this method returns the -value argument that was passed to the constructor.

PRE-DEFINED ERROR CLASSES
Error::Simple

This class can be used to hold simple error strings and values. It’s constructor takes two
arguments. The first is a text value, the second is a numeric value. These values are what will be
returned by the overload methods.

If the text value ends with at file line 1 as $@ strings do, then this infomation will be used to
set the -file and -line arguments of the error object.

This class is used internally if an eval’d block die’s with an error that is a plain string. (Unless
$Error::ObjectifyCallback is modified)

$Error::ObjectifyCallback
This variable holds a reference to a subroutine that converts errors that are plain strings to
objects. It is used by Error.pm to convert textual errors to objects, and can be overrided by the
user.

It accepts a single argument which is a hash reference to named parameters. Currently the only
named parameter passed is 'text' which is the text of the error, but others may be available in
the future.

For example the following code will cause Error.pm to throw objects of the class MyError::Bar by
default:

sub throw_MyError_Bar

{

my $args = shift;

my $err = MyError::Bar->new();

$err->{'MyBarText'} = $args->{'text'};

return $err;

}

{

local $Error::ObjectifyCallback = \&throw_MyError_Bar;

Error handling here.

}

MESSAGE HANDLERS
Error also provides handlers to extend the output of the warn() perl function, and to handle the
printing of a thrown Error that is not caught or otherwise handled. These are not installed by
default, but are requested using the :warndie tag in the use line.

use Error qw(:warndie);

These new error handlers are installed in $SIG{_ _WARN_ _} and $SIG{_ _DIE_ _}. If these handlers
are already defined when the tag is imported, the old values are stored, and used during the new
code. Thus, to arrange for custom handling of warnings and errors, you will need to perform
something like the following:

perl v5.18.1 2013-09-07 4

Error(3pm) User Contributed Perl Documentation Error(3pm)

BEGIN {

$SIG{_ _WARN_ _} = sub {

print STDERR "My special warning handler: $_[0]"

};

}

use Error qw(:warndie);

Note that setting $SIG{_ _WARN_ _} after the :warndie tag has been imported will overwrite the
handler that Error provides. If this cannot be avoided, then the tag can be explicitly imported
later

use Error;

$SIG{_ _WARN_ _} = ...;

import Error qw(:warndie);

EXAMPLE

The _ _DIE_ _ handler turns messages such as

Can't call method "foo" on an undefined value at examples/warndie.pl line 16.

into

Unhandled perl error caught at toplevel:

Can't call method "foo" on an undefined value

Thrown from: examples/warndie.pl:16

Full stack trace:

main::inner('undef') called at examples/warndie.pl line 20

main::outer('undef') called at examples/warndie.pl line 23

KNOWN BUGS
None, but that does not mean there are not any.

AUTHORS
Graham Barr <gbarr@pobox.com>

The code that inspired me to write this was originally written by Peter Seibel
<peter@weblogic.com> and adapted by Jesse Glick <jglick@sig.bsh.com>.

:warndie handlers added by Paul Evans <leonerd@leonerd.org.uk>

MAINTAINER
Shlomi Fish <shlomif@iglu.org.il>

PAST MAINTAINERS
Arun Kumar U <u_arunkumar@yahoo.com>

COPYRIGHT
Copyright (c) 1997-8 Graham Barr. All rights reserved. This program is free software; you can
redistribute it and/or modify it under the same terms as Perl itself.

perl v5.18.1 2013-09-07 5

	NAME
	SYNOPSIS
	DESCRIPTION
	PROCEDURAL INTERFACE
	try BLOCK CLAUSES
	catch CLASS with BLOCK
	except BLOCK
	otherwise BLOCK
	finally BLOCK

	CLASS INTERFACE
	CONSTRUCTORS
	Error->new()
	throw ([ARGS])
	with ([ARGS])
	record ([ARGS])

	STATIC METHODS
	prior ([PACKAGE])
	flush ([PACKAGE])

	OBJECT METHODS
	stacktrace
	object
	file
	line
	text
	$err->associate($obj)

	OVERLOAD METHODS
	stringify
	value

	PRE-DEFINED ERROR CLASSES
	Error::Simple

	MESSAGE HANDLERS
	EXAMPLE

	KNOWN BUGS
	AUTHORS
	MAINTAINER
	PAST MAINTAINERS
	COPYRIGHT

