
CGI::Cookie(3pm) User Contributed Perl Documentation CGI::Cookie(3pm)

NAME
CGI::Cookie - Interface to HTTP Cookies

SYNOPSIS
use CGI qw/:standard/;

use CGI::Cookie;

Create new cookies and send them

$cookie1 = CGI::Cookie->new(-name=>'ID',-value=>123456);

$cookie2 = CGI::Cookie->new(-name=>'preferences',

-value=>{ font => Helvetica,

size => 12 }

);

print header(-cookie=>[$cookie1,$cookie2]);

fetch existing cookies

%cookies = CGI::Cookie->fetch;

$id = $cookies{'ID'}->value;

create cookies returned from an external source

%cookies = CGI::Cookie->parse($ENV{COOKIE});

DESCRIPTION
CGI::Cookie is an interface to HTTP/1.1 cookies, a mechanism that allows Web servers to store
persistent information on the browser’s side of the connection. Although CGI::Cookie is intended
to be used in conjunction with CGI.pm (and is in fact used by it internally), you can use this
module independently.

For full information on cookies see

https://tools.ietf.org/html/rfc6265

USING CGI::Cookie
CGI::Cookie is object oriented. Each cookie object has a name and a value. The name is any
scalar value. The value is any scalar or array value (associative arrays are also allowed). Cookies
also have several optional attributes, including:

1. expiration date
The expiration date tells the browser how long to hang on to the cookie. If the cookie
specifies an expiration date in the future, the browser will store the cookie information in a
disk file and return it to the server every time the user reconnects (until the expiration date
is reached). If the cookie species an expiration date in the past, the browser will remove the
cookie from the disk file. If the expiration date is not specified, the cookie will persist only
until the user quits the browser.

2. domain
This is a partial or complete domain name for which the cookie is valid. The browser will
return the cookie to any host that matches the partial domain name. For example, if you
specify a domain name of ‘‘.capricorn.com’’, then the browser will return the cookie to Web
servers running on any of the machines ‘‘www.capricorn.com’’, ‘‘ftp.capricorn.com’’,
‘‘feckless.capricorn.com’’, etc. Domain names must contain at least two periods to prevent
attempts to match on top level domains like ‘‘.edu’’. If no domain is specified, then the
browser will only return the cookie to servers on the host the cookie originated from.

3. path
If you provide a cookie path attribute, the browser will check it against your script’s URL

before returning the cookie. For example, if you specify the path ‘‘/cgi-bin’’, then the cookie
will be returned to each of the scripts ‘‘/cgi-bin/tally.pl’’, ‘‘/cgi-bin/order.pl’’, and ‘‘/cgi-
bin/customer_service/complain.pl’’, but not to the script ‘‘/cgi-private/site_admin.pl’’. By

perl v5.20.2 2015-04-20 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/CGI::Cookie
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/CGI::Cookie
https://tools.ietf.org/html/rfc6265
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/CGI::Cookie

CGI::Cookie(3pm) User Contributed Perl Documentation CGI::Cookie(3pm)

default, the path is set to ‘‘/’’, so that all scripts at your site will receive the cookie.

4. secure flag
If the ‘‘secure’’ attribute is set, the cookie will only be sent to your script if the CGI request
is occurring on a secure channel, such as SSL.

5. httponly flag
If the ‘‘httponly’’ attribute is set, the cookie will only be accessible through HTTP Requests.
This cookie will be inaccessible via JavaScript (to prevent XSS attacks).

This feature is supported by nearly all modern browsers.

See these URLs for more information:

http://msdn.microsoft.com/en-us/library/ms533046.aspx

http://www.browserscope.org/?category=security&v=top

Creating New Cookies
my $c = CGI::Cookie->new(-name => 'foo',

-value => 'bar',

-expires => '+3M',

'-max-age' => '+3M',

-domain => '.capricorn.com',

-path => '/cgi-bin/database',

-secure => 1

);

Create cookies from scratch with the new method. The -name and -value parameters are
required. The name must be a scalar value. The value can be a scalar, an array reference, or a
hash reference. (At some point in the future cookies will support one of the Perl object
serialization protocols for full generality).

-expires accepts any of the relative or absolute date formats recognized by CGI.pm, for example
‘‘+3M’’ for three months in the future. See CGI.pm’s documentation for details.

-max-age accepts the same data formats as -expires, but sets a relative value instead of an
absolute like -expires. This is intended to be more secure since a clock could be changed to fake
an absolute time. In practice, as of 2011, -max-age still does not enjoy the widespread support
that -expires has. You can set both, and browsers that support -max-age should ignore the
Expires header. The drawback to this approach is the bit of bandwidth for sending an extra
header on each cookie.

-domain points to a domain name or to a fully qualified host name. If not specified, the cookie
will be returned only to the Web server that created it.

-path points to a partial URL on the current server. The cookie will be returned to all URLs
beginning with the specified path. If not specified, it defaults to ’/’, which returns the cookie to
all pages at your site.

-secure if set to a true value instructs the browser to return the cookie only when a
cryptographic protocol is in use.

-httponly if set to a true value, the cookie will not be accessible via JavaScript.

For compatibility with Apache::Cookie, you may optionally pass in a mod_perl request object as
the first argument to new(). It will simply be ignored:

my $c = CGI::Cookie->new($r,

-name => 'foo',

-value => ['bar','baz']);

Sending the Cookie to the Browser
The simplest way to send a cookie to the browser is by calling the bake() method:

perl v5.20.2 2015-04-20 2

http://msdn.microsoft.com/en-us/library/ms533046.aspx
http://www.browserscope.org/?category=security

CGI::Cookie(3pm) User Contributed Perl Documentation CGI::Cookie(3pm)

$c->bake;

This will print the Set-Cookie HTTP header to STDOUT using CGI.pm. CGI.pm will be loaded for
this purpose if it is not already. Otherwise CGI.pm is not required or used by this module.

Under mod_perl, pass in an Apache request object:

$c->bake($r);

If you want to set the cookie yourself, Within a CGI script you can send a cookie to the browser
by creating one or more Set-Cookie: fields in the HTTP header. Here is a typical sequence:

my $c = CGI::Cookie->new(-name => 'foo',

-value => ['bar','baz'],

-expires => '+3M');

print "Set-Cookie: $c\n";

print "Content-Type: text/html\n\n";

To send more than one cookie, create several Set-Cookie: fields.

If you are using CGI.pm, you send cookies by providing a -cookie argument to the header()
method:

print header(-cookie=>$c);

Mod_perl users can set cookies using the request object’s header_out() method:

$r->headers_out->set('Set-Cookie' => $c);

Internally, Cookie overloads the operator to call its as_string() method when incorporated into
the HTTP header. as_string() turns the Cookie’s internal representation into an RFC-compliant
text representation. You may call as_string() yourself if you prefer:

print "Set-Cookie: ",$c->as_string,"\n";

Recovering Previous Cookies
%cookies = CGI::Cookie->fetch;

fetch returns an associative array consisting of all cookies returned by the browser. The keys of
the array are the cookie names. You can iterate through the cookies this way:

%cookies = CGI::Cookie->fetch;

for (keys %cookies) {

do_something($cookies{$_});

}

In a scalar context, fetch() returns a hash reference, which may be more efficient if you are
manipulating multiple cookies.

CGI.pm uses the URL escaping methods to save and restore reserved characters in its cookies. If
you are trying to retrieve a cookie set by a foreign server, this escaping method may trip you up.
Use raw_fetch() instead, which has the same semantics as fetch(), but performs no unescaping.

You may also retrieve cookies that were stored in some external form using the parse() class
method:

$COOKIES = `cat /usr/tmp/Cookie_stash`;

%cookies = CGI::Cookie->parse($COOKIES);

If you are in a mod_perl environment, you can save some overhead by passing the request object
to fetch() like this:

CGI::Cookie->fetch($r);

If the value passed to parse() is undefined, an empty array will returned in list context, and an
empty hashref will be returned in scalar context.

perl v5.20.2 2015-04-20 3

CGI::Cookie(3pm) User Contributed Perl Documentation CGI::Cookie(3pm)

Manipulating Cookies
Cookie objects have a series of accessor methods to get and set cookie attributes. Each accessor
has a similar syntax. Called without arguments, the accessor returns the current value of the
attribute. Called with an argument, the accessor changes the attribute and returns its new value.

name()
Get or set the cookie’s name. Example:

$name = $c->name;

$new_name = $c->name('fred');

value()
Get or set the cookie’s value. Example:

$value = $c->value;

@new_value = $c->value(['a','b','c','d']);

value() is context sensitive. In a list context it will return the current value of the cookie as
an array. In a scalar context it will return the first value of a multivalued cookie.

domain()
Get or set the cookie’s domain.

path()
Get or set the cookie’s path.

expires()
Get or set the cookie’s expiration time.

max_age()
Get or set the cookie’s max_age value.

AUTHOR INFORMATION
The CGI.pm distribution is copyright 1995-2007, Lincoln D. Stein. It is distributed under GPL and
the Artistic License 2.0. It is currently maintained by Lee Johnson with help from many
contributors.

Address bug reports and comments to: https://github.com/leejo/CGI.pm/issues

The original bug tracker can be found at:
https://rt.cpan.org/Public/Dist/Display.html?Queue=CGI.pm

When sending bug reports, please provide the version of CGI.pm, the version of Perl, the name
and version of your Web server, and the name and version of the operating system you are using.
If the problem is even remotely browser dependent, please provide information about the affected
browsers as well.

BUGS
This section intentionally left blank.

SEE ALSO
CGI::Carp, CGI

RFC 2109 <http://www.ietf.org/rfc/rfc2109.txt>, RFC 2695 <http://www.ietf.org/rfc/rfc2965.txt>

perl v5.20.2 2015-04-20 4

https://github.com/leejo/CGI.pm/issues
https://rt.cpan.org/Public/Dist/Display.html?Queue=CGI.pm
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/CGI::Carp
http://www.ietf.org/rfc/rfc2109.txt
http://www.ietf.org/rfc/rfc2965.txt

	NAME
	SYNOPSIS
	DESCRIPTION
	USING CGI::Cookie
	1. expiration date
	2. domain
	3. path
	4. secure flag
	5. httponly flag

	Creating New Cookies
	Sending the Cookie to the Browser
	Recovering Previous Cookies
	Manipulating Cookies
	name()
	value()
	domain()
	path()
	expires()
	max_age()

	AUTHOR INFORMATION
	BUGS
	SEE ALSO

