
IO::Compress::FAQ(3perl) Perl Programmers Reference Guide IO::Compress::FAQ(3perl)

NAME
IO::Compress::FAQ -- Frequently Asked Questions about IO::Compress

DESCRIPTION
Common questions answered.

GENERAL
Compatibility with Unix compress/uncompress.

Although Compress::Zlib has a pair of functions called compress and uncompress, they are not
related to the Unix programs of the same name. The Compress::Zlib module is not compatible
with Unix compress.

If you have the uncompress program available, you can use this to read compressed files

open F, "uncompress -c $filename |";

while (<F>)

{

...

Alternatively, if you have the gunzip program available, you can use this to read compressed files

open F, "gunzip -c $filename |";

while (<F>)

{

...

and this to write compress files, if you have the compress program available

open F, "| compress -c $filename ";

print F "data";

...

close F ;

Accessing .tar.Z files
The Archive::Tar module can optionally use Compress::Zlib (via the IO::Zlib module) to
access tar files that have been compressed with gzip. Unfortunately tar files compressed with the
Unix compress utility cannot be read by Compress::Zlib and so cannot be directly accessed by
Archive::Tar

If the uncompress or gunzip programs are available, you can use one of these workarounds to
read .tar.Z files from Archive::Tar

Firstly with uncompress

use strict;

use warnings;

use Archive::Tar;

open F, "uncompress -c $filename |";

my $tar = Archive::Tar->new(*F);

...

and this with gunzip

use strict;

use warnings;

use Archive::Tar;

open F, "gunzip -c $filename |";

my $tar = Archive::Tar->new(*F);

...

Similarly, if the compress program is available, you can use this to write a .tar.Z file

perl v5.20.2 2014-12-27 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Archive::Tar
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Compress::Zlib
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Zlib
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Compress::Zlib
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Archive::Tar
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Archive::Tar

IO::Compress::FAQ(3perl) Perl Programmers Reference Guide IO::Compress::FAQ(3perl)

use strict;

use warnings;

use Archive::Tar;

use IO::File;

my $fh = new IO::File "| compress -c >$filename";

my $tar = Archive::Tar->new();

...

$tar->write($fh);

$fh->close ;

How do I recompress using a different compression?
This is easier that you might expect if you realise that all the IO::Compress::* objects are
derived from IO::File and that all the IO::Uncompress::* modules can read from an IO::File

filehandle.

So, for example, say you have a file compressed with gzip that you want to recompress with bzip2.
Here is all that is needed to carry out the recompression.

use IO::Uncompress::Gunzip ':all';

use IO::Compress::Bzip2 ':all';

my $gzipFile = "somefile.gz";

my $bzipFile = "somefile.bz2";

my $gunzip = new IO::Uncompress::Gunzip $gzipFile

or die "Cannot gunzip $gzipFile: $GunzipError\n" ;

bzip2 $gunzip => $bzipFile

or die "Cannot bzip2 to $bzipFile: $Bzip2Error\n" ;

Note, there is a limitation of this technique. Some compression file formats store extra information
along with the compressed data payload. For example, gzip can optionally store the original
filename and Zip stores a lot of information about the original file. If the original compressed file
contains any of this extra information, it will not be transferred to the new compressed file using
the technique above.

ZIP
What Compression Types do IO::Compress::Zip & IO::Uncompress::Unzip support?

IO::Compress::Zip & IO::Uncompress::Unzip support? The following compression formats are
supported by IO::Compress::Zip and IO::Uncompress::Unzip

• Store (method 0)

No compression at all.

• Deflate (method 8)

This is the default compression used when creating a zip file with IO::Compress::Zip

• Bzip2 (method 12)

Only supported if the IO-Compress-Bzip2 module is installed.

• Lzma (method 14)

Only supported if the IO-Compress-Lzma module is installed.

Can I Read/Write Zip files larger the 4 Gig?
Yes, both the IO-Compress-Zip and IO-Uncompress-Unzip modules support the zip feature
called Zip64. That allows them to read/write files/buffers larger than 4Gig.

If you are creating a Zip file using the one-shot interface, and any of the input files is greater than

perl v5.20.2 2014-12-27 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::File
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::File
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Compress::Zip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::Unzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Compress::Zip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::Unzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Compress::Zip

IO::Compress::FAQ(3perl) Perl Programmers Reference Guide IO::Compress::FAQ(3perl)

4Gig, a zip64 complaint zip file will be created.

zip "really-large-file" => "my.zip";

Similarly with the one-shot interface, if the input is a buffer larger than 4 Gig, a zip64 complaint
zip file will be created.

zip \$really_large_buffer => "my.zip";

The one-shot interface allows you to force the creation of a zip64 zip file by including the Zip64
option.

zip $filehandle => "my.zip", Zip64 => 1;

If you want to create a zip64 zip file with the OO interface you must specify the Zip64 option.

my $zip = new IO::Compress::Zip "whatever", Zip64 => 1;

When uncompressing with IO-Uncompress-Unzip, it will automatically detect if the zip file is
zip64.

If you intend to manipulate the Zip64 zip files created with IO-Compress-Zip using an external
zip/unzip, make sure that it supports Zip64.

In particular, if you are using Info-Zip you need to have zip version 3.x or better to update a
Zip64 archive and unzip version 6.x to read a zip64 archive.

Can I write more that 64K entries is a Zip files?
Yes. Zip64 allows this. See previous question.

Zip Resources
The primary reference for zip files is the ‘‘appnote’’ document available at
<http://www.pkware.com/documents/casestudies/APPNOTE.TXT>

An alternatively is the Info-Zip appnote. This is available from <ftp://ftp.info-
zip.org/pub/infozip/doc/>

GZIP
Gzip Resources

The primary reference for gzip files is RFC 1952 <http://www.faqs.org/rfcs/rfc1952.html>

The primary site for gzip is http://www.gzip.org.

Dealing with Concatenated gzip files
If the gunzip program encounters a file containing multiple gzip files concatenated together it will
automatically uncompress them all. The example below illustrates this behaviour

$ echo abc | gzip -c >x.gz

$ echo def | gzip -c >>x.gz

$ gunzip -c x.gz

abc

def

By default IO::Uncompress::Gunzip will not behave like the gunzip program. It will only
uncompress the first gzip data stream in the file, as shown below

$ perl -MIO::Uncompress::Gunzip=:all -e 'gunzip "x.gz" => *STDOUT'

abc

To force IO::Uncompress::Gunzip to uncompress all the gzip data streams, include the
MultiStream option, as shown below

$ perl -MIO::Uncompress::Gunzip=:all -e 'gunzip "x.gz" => *STDOUT, MultiStream => 1'

abc

def

perl v5.20.2 2014-12-27 3

http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.faqs.org/rfcs/rfc1952.html
http://www.gzip.org
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::Gunzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::Gunzip

IO::Compress::FAQ(3perl) Perl Programmers Reference Guide IO::Compress::FAQ(3perl)

ZLIB
Zlib Resources

The primary site for the zlib compression library is http://www.zlib.org.

Bzip2
Bzip2 Resources

The primary site for bzip2 is http://www.bzip.org.

Dealing with Concatenated bzip2 files
If the bunzip2 program encounters a file containing multiple bzip2 files concatenated together it
will automatically uncompress them all. The example below illustrates this behaviour

$ echo abc | bzip2 -c >x.bz2

$ echo def | bzip2 -c >>x.bz2

$ bunzip2 -c x.bz2

abc

def

By default IO::Uncompress::Bunzip2 will not behave like the bunzip2 program. It will only
uncompress the first bunzip2 data stream in the file, as shown below

$ perl -MIO::Uncompress::Bunzip2=:all -e 'bunzip2 "x.bz2" => *STDOUT'

abc

To force IO::Uncompress::Bunzip2 to uncompress all the bzip2 data streams, include the
MultiStream option, as shown below

$ perl -MIO::Uncompress::Bunzip2=:all -e 'bunzip2 "x.bz2" => *STDOUT, MultiStream => 1'

abc

def

Interoperating with Pbzip2
Pbzip2 (<http://compression.ca/pbzip2/>) is a parallel implementation of bzip2. The output from
pbzip2 consists of a series of concatenated bzip2 data streams.

By default IO::Uncompress::Bzip2 will only uncompress the first bzip2 data stream in a pbzip2
file. To uncompress the complete pbzip2 file you must include the MultiStream option, like this.

bunzip2 $input => \$output, MultiStream => 1

or die "bunzip2 failed: $Bunzip2Error\n";

HTTP & NETWORK
Apache::GZip Revisited

Below is a mod_perl Apache compression module, called Apache::GZip taken from
http://perl.apache.org/docs/tutorials/tips/mod_perl_tricks/mod_perl_tricks.html#On_the_Fly_Compression

package Apache::GZip;

#File: Apache::GZip.pm

use strict vars;

use Apache::Constants ':common';

use Compress::Zlib;

use IO::File;

use constant GZIP_MAGIC => 0x1f8b;

use constant OS_MAGIC => 0x03;

sub handler {

my $r = shift;

my ($fh,$gz);

my $file = $r->filename;

return DECLINED unless $fh=IO::File->new($file);

$r->header_out('Content-Encoding'=>'gzip');

perl v5.20.2 2014-12-27 4

http://www.zlib.org
http://www.bzip.org
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::Bunzip2
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::Bunzip2
http://compression.ca/pbzip2/
http://perl.apache.org/docs/tutorials/tips/mod_perl_tricks/mod_perl_tricks.html#On_the_Fly_Compression

IO::Compress::FAQ(3perl) Perl Programmers Reference Guide IO::Compress::FAQ(3perl)

$r->send_http_header;

return OK if $r->header_only;

tie *STDOUT,'Apache::GZip',$r;

print($_) while <$fh>;

untie *STDOUT;

return OK;

}

sub TIEHANDLE {

my($class,$r) = @_;

initialize a deflation stream

my $d = deflateInit(-WindowBits=>-MAX_WBITS()) || return undef;

gzip header -- don't ask how I found out

$r->print(pack("nccVcc",GZIP_MAGIC,Z_DEFLATED,0,time(),0,OS_MAGIC));

return bless { r => $r,

crc => crc32(undef),

d => $d,

l => 0

},$class;

}

sub PRINT {

my $self = shift;

foreach (@_) {

deflate the data

my $data = $self->{d}->deflate($_);

$self->{r}->print($data);

keep track of its length and crc

$self->{l} += length($_);

$self->{crc} = crc32($_,$self->{crc});

}

}

sub DESTROY {

my $self = shift;

flush the output buffers

my $data = $self->{d}->flush;

$self->{r}->print($data);

print the CRC and the total length (uncompressed)

$self->{r}->print(pack("LL",@{$self}{qw/crc l/}));

}

1;

Here’s the Apache configuration entry you’ll need to make use of it. Once set it will result in
everything in the /compressed directory will be compressed automagically.

perl v5.20.2 2014-12-27 5

IO::Compress::FAQ(3perl) Perl Programmers Reference Guide IO::Compress::FAQ(3perl)

<Location /compressed>

SetHandler perl-script

PerlHandler Apache::GZip

</Location>

Although at first sight there seems to be quite a lot going on in Apache::GZip you could sum up
what the code was doing as follows — read the contents of the file in $r->filename, compress it
and write the compressed data to standard output. That’s all.

This code has to jump through a few hoops to achieve this because

1. The gzip support in Compress::Zlib version 1.x can only work with a real filesystem
filehandle. The filehandles used by Apache modules are not associated with the filesystem.

2. That means all the gzip support has to be done by hand - in this case by creating a tied
filehandle to deal with creating the gzip header and trailer.

IO::Compress::Gzip doesn’t have that filehandle limitation (this was one of the reasons for
writing it in the first place). So if IO::Compress::Gzip is used instead of Compress::Zlib the
whole tied filehandle code can be removed. Here is the rewritten code.

package Apache::GZip;

use strict vars;

use Apache::Constants ':common';

use IO::Compress::Gzip;

use IO::File;

sub handler {

my $r = shift;

my ($fh,$gz);

my $file = $r->filename;

return DECLINED unless $fh=IO::File->new($file);

$r->header_out('Content-Encoding'=>'gzip');

$r->send_http_header;

return OK if $r->header_only;

my $gz = new IO::Compress::Gzip '-', Minimal => 1

or return DECLINED ;

print $gz $_ while <$fh>;

return OK;

}

or even more succinctly, like this, using a one-shot gzip

package Apache::GZip;

use strict vars;

use Apache::Constants ':common';

use IO::Compress::Gzip qw(gzip);

sub handler {

my $r = shift;

$r->header_out('Content-Encoding'=>'gzip');

$r->send_http_header;

return OK if $r->header_only;

perl v5.20.2 2014-12-27 6

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Compress::Zlib
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Compress::Gzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Compress::Gzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Compress::Zlib

IO::Compress::FAQ(3perl) Perl Programmers Reference Guide IO::Compress::FAQ(3perl)

gzip $r->filename => '-', Minimal => 1

or return DECLINED ;

return OK;

}

1;

The use of one-shot gzip above just reads from $r->filename and writes the compressed data to
standard output.

Note the use of the Minimal option in the code above. When using gzip for Content-Encoding you
should always use this option. In the example above it will prevent the filename being included in
the gzip header and make the size of the gzip data stream a slight bit smaller.

Compressed files and Net::FTP
The Net::FTP module provides two low-level methods called stor and retr that both return
filehandles. These filehandles can used with the IO::Compress/Uncompress modules to compress
or uncompress files read from or written to an FTP Server on the fly, without having to create a
temporary file.

Firstly, here is code that uses retr to uncompressed a file as it is read from the FTP Server.

use Net::FTP;

use IO::Uncompress::Gunzip qw(:all);

my $ftp = new Net::FTP ...

my $retr_fh = $ftp->retr($compressed_filename);

gunzip $retr_fh => $outFilename, AutoClose => 1

or die "Cannot uncompress '$compressed_file': $GunzipError\n";

and this to compress a file as it is written to the FTP Server

use Net::FTP;

use IO::Compress::Gzip qw(:all);

my $stor_fh = $ftp->stor($filename);

gzip "filename" => $stor_fh, AutoClose => 1

or die "Cannot compress '$filename': $GzipError\n";

MISC
Using InputLength to uncompress data embedded in a larger file/buffer.

A fairly common use-case is where compressed data is embedded in a larger file/buffer and you
want to read both.

As an example consider the structure of a zip file. This is a well-defined file format that mixes
both compressed and uncompressed sections of data in a single file.

For the purposes of this discussion you can think of a zip file as sequence of compressed data
streams, each of which is prefixed by an uncompressed local header. The local header contains
information about the compressed data stream, including the name of the compressed file and, in
particular, the length of the compressed data stream.

To illustrate how to use InputLength here is a script that walks a zip file and prints out how
many lines are in each compressed file (if you intend write code to walking through a zip file for
real see ‘‘Walking through a zip file’’ in IO::Uncompress::Unzip). Also, although this example
uses the zlib-based compression, the technique can be used by the other IO::Uncompress::*
modules.

perl v5.20.2 2014-12-27 7

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Net::FTP
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::Unzip

IO::Compress::FAQ(3perl) Perl Programmers Reference Guide IO::Compress::FAQ(3perl)

use strict;

use warnings;

use IO::File;

use IO::Uncompress::RawInflate qw(:all);

use constant ZIP_LOCAL_HDR_SIG => 0x04034b50;

use constant ZIP_LOCAL_HDR_LENGTH => 30;

my $file = $ARGV[0] ;

my $fh = new IO::File "<$file"

or die "Cannot open '$file': $!\n";

while (1)

{

my $sig;

my $buffer;

my $x ;

($x = $fh->read($buffer, ZIP_LOCAL_HDR_LENGTH)) == ZIP_LOCAL_HDR_LENGTH

or die "Truncated file: $!\n";

my $signature = unpack ("V", substr($buffer, 0, 4));

last unless $signature == ZIP_LOCAL_HDR_SIG;

Read Local Header

my $gpFlag = unpack ("v", substr($buffer, 6, 2));

my $compressedMethod = unpack ("v", substr($buffer, 8, 2));

my $compressedLength = unpack ("V", substr($buffer, 18, 4));

my $uncompressedLength = unpack ("V", substr($buffer, 22, 4));

my $filename_length = unpack ("v", substr($buffer, 26, 2));

my $extra_length = unpack ("v", substr($buffer, 28, 2));

my $filename ;

$fh->read($filename, $filename_length) == $filename_length

or die "Truncated file\n";

$fh->read($buffer, $extra_length) == $extra_length

or die "Truncated file\n";

if ($compressedMethod != 8 && $compressedMethod != 0)

{

warn "Skipping file '$filename' - not deflated $compressedMethod\n";

$fh->read($buffer, $compressedLength) == $compressedLength

or die "Truncated file\n";

next;

}

if ($compressedMethod == 0 && $gpFlag & 8 == 8)

{

die "Streamed Stored not supported for '$filename'\n";

}

perl v5.20.2 2014-12-27 8

IO::Compress::FAQ(3perl) Perl Programmers Reference Guide IO::Compress::FAQ(3perl)

next if $compressedLength == 0;

Done reading the Local Header

my $inf = new IO::Uncompress::RawInflate $fh,

Transparent => 1,

InputLength => $compressedLength

or die "Cannot uncompress $file [$filename]: $RawInflateError\n" ;

my $line_count = 0;

while (<$inf>)

{

++ $line_count;

}

print "$filename: $line_count\n";

}

The majority of the code above is concerned with reading the zip local header data. The code
that I want to focus on is at the bottom.

while (1) {

read local zip header data

get $filename

get $compressedLength

my $inf = new IO::Uncompress::RawInflate $fh,

Transparent => 1,

InputLength => $compressedLength

or die "Cannot uncompress $file [$filename]: $RawInflateError\n" ;

my $line_count = 0;

while (<$inf>)

{

++ $line_count;

}

print "$filename: $line_count\n";

}

The call to IO::Uncompress::RawInflate creates a new filehandle $inf that can be used to read
from the parent filehandle $fh, uncompressing it as it goes. The use of the InputLength option
will guarantee that at most $compressedLength bytes of compressed data will be read from the
$fh filehandle (The only exception is for an error case like a truncated file or a corrupt data
stream).

This means that once RawInflate is finished $fh will be left at the byte directly after the
compressed data stream.

Now consider what the code looks like without InputLength

while (1) {

read local zip header data

perl v5.20.2 2014-12-27 9

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::RawInflate

IO::Compress::FAQ(3perl) Perl Programmers Reference Guide IO::Compress::FAQ(3perl)

get $filename

get $compressedLength

read all the compressed data into $data

read($fh, $data, $compressedLength);

my $inf = new IO::Uncompress::RawInflate \$data,

Transparent => 1,

or die "Cannot uncompress $file [$filename]: $RawInflateError\n" ;

my $line_count = 0;

while (<$inf>)

{

++ $line_count;

}

print "$filename: $line_count\n";

}

The difference here is the addition of the temporary variable $data. This is used to store a copy
of the compressed data while it is being uncompressed.

If you know that $compressedLength isn’t that big then using temporary storage won’t be a
problem. But if $compressedLength is very large or you are writing an application that other
people will use, and so have no idea how big $compressedLength will be, it could be an issue.

Using InputLength avoids the use of temporary storage and means the application can cope with
large compressed data streams.

One final point — obviously InputLength can only be used whenever you know the length of the
compressed data beforehand, like here with a zip file.

SEE ALSO
Compress::Zlib, IO::Compress::Gzip, IO::Uncompress::Gunzip, IO::Compress::Deflate,
IO::Uncompress::Inflate, IO::Compress::RawDeflate, IO::Uncompress::RawInflate,
IO::Compress::Bzip2, IO::Uncompress::Bunzip2, IO::Compress::Lzma, IO::Uncompress::UnLzma,
IO::Compress::Xz, IO::Uncompress::UnXz, IO::Compress::Lzop, IO::Uncompress::UnLzop,
IO::Compress::Lzf, IO::Uncompress::UnLzf, IO::Uncompress::AnyInflate,
IO::Uncompress::AnyUncompress

IO::Compress::FAQ

File::GlobMapper, Archive::Zip, Archive::Tar, IO::Zlib

AUTHOR
This module was written by Paul Marquess, pmqs@cpan.org.

MODIFICATION HISTORY
See the Changes file.

COPYRIGHT AND LICENSE
Copyright (c) 2005-2014 Paul Marquess. All rights reserved.

This program is free software; you can redistribute it and/or modify it under the same terms as
Perl itself.

perl v5.20.2 2014-12-27 10

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Compress::Zlib
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Compress::Gzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::Gunzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Compress::Deflate
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::Inflate
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Compress::RawDeflate
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::RawInflate
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Compress::Bzip2
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::Bunzip2
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::AnyInflate
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Uncompress::AnyUncompress
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Compress::FAQ
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/File::GlobMapper
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Archive::Tar
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/IO::Zlib

	NAME
	DESCRIPTION
	GENERAL
	Compatibility with Unix compress/uncompress.
	Accessing .tar.Z files
	How do I recompress using a different compression?

	ZIP
	What Compression Types do IO::Compress::Zip & IO::Uncompress::Unzip support?
	Can I Read/Write Zip files larger the 4 Gig?
	Can I write more that 64K entries is a Zip files?
	Zip Resources

	GZIP
	Gzip Resources
	Dealing with Concatenated gzip files

	ZLIB
	Zlib Resources

	Bzip2
	Bzip2 Resources
	Dealing with Concatenated bzip2 files
	Interoperating with Pbzip2

	HTTP & NETWORK
	Apache::GZip Revisited
	Compressed files and Net::FTP

	MISC
	SEE ALSO
	AUTHOR
	MODIFICATION HISTORY
	COPYRIGHT AND LICENSE

