
Carp(3perl) Perl Programmers Reference Guide Carp(3perl)

NAME
Carp - alternative warn and die for modules

SYNOPSIS
use Carp;

warn user (from perspective of caller)

carp "string trimmed to 80 chars";

die of errors (from perspective of caller)

croak "We're outta here!";

die of errors with stack backtrace

confess "not implemented";

cluck, longmess and shortmess not exported by default

use Carp qw(cluck longmess shortmess);

cluck "This is how we got here!";

$long_message = longmess("message from cluck() or confess()");

$short_message = shortmess("message from carp() or croak()");

DESCRIPTION
The Carp routines are useful in your own modules because they act like die() or warn(), but
with a message which is more likely to be useful to a user of your module. In the case of cluck()
and confess(), that context is a summary of every call in the call-stack; longmess() returns the
contents of the error message.

For a shorter message you can use carp() or croak() which report the error as being from where
your module was called. shortmess() returns the contents of this error message. There is no
guarantee that that is where the error was, but it is a good educated guess.

Carp takes care not to clobber the status variables $! and $E in the course of assembling its error
messages. This means that a $SIG{_ _DIE_ _} or $SIG{_ _WARN_ _} handler can capture the error
information held in those variables, if it is required to augment the error message, and if the code
calling Carp left useful values there. Of course, Carp can’t guarantee the latter.

You can also alter the way the output and logic of Carp works, by changing some global variables
in the Carp namespace. See the section on GLOBAL VARIABLES below.

Here is a more complete description of how carp and croak work. What they do is search the
call-stack for a function call stack where they have not been told that there shouldn’t be an error.
If every call is marked safe, they give up and give a full stack backtrace instead. In other words
they presume that the first likely looking potential suspect is guilty. Their rules for telling
whether a call shouldn’t generate errors work as follows:

1. Any call from a package to itself is safe.

2. Packages claim that there won’t be errors on calls to or from packages explicitly marked as
safe by inclusion in @CARP_NOT, or (if that array is empty) @ISA. The ability to override what
@ISA says is new in 5.8.

3. The trust in item 2 is transitive. If A trusts B, and B trusts C, then A trusts C. So if you do
not override @ISA with @CARP_NOT, then this trust relationship is identical to, ‘‘inherits
from’’.

4. Any call from an internal Perl module is safe. (Nothing keeps user modules from marking
themselves as internal to Perl, but this practice is discouraged.)

5. Any call to Perl’s warning system (eg Carp itself) is safe. (This rule is what keeps it from
reporting the error at the point where you call carp or croak.)

perl v5.20.2 2014-12-27 1

Carp(3perl) Perl Programmers Reference Guide Carp(3perl)

6. $Carp::CarpLevel can be set to skip a fixed number of additional call levels. Using this is
not recommended because it is very difficult to get it to behave correctly.

Forcing a Stack Trace
As a debugging aid, you can force Carp to treat a croak as a confess and a carp as a cluck across
all modules. In other words, force a detailed stack trace to be given. This can be very helpful
when trying to understand why, or from where, a warning or error is being generated.

This feature is enabled by ’importing’ the non-existent symbol ’verbose’. You would typically
enable it by saying

perl -MCarp=verbose script.pl

or by including the string -MCarp=verbose in the PERL5OPT environment variable.

Alternately, you can set the global variable $Carp::Verbose to true. See the GLOBAL VARIABLES

section below.

Stack Trace formatting
At each stack level, the subroutine’s name is displayed along with its parameters. For simple
scalars, this is sufficient. For complex data types, such as objects and other references, this can
simply display 'HASH(0x1ab36d8)'.

Carp gives two ways to control this.

1. For objects, a method, CARP_TRACE, will be called, if it exists. If this method doesn’t exist, or
it recurses into Carp, or it otherwise throws an exception, this is skipped, and Carp moves on
to the next option, otherwise checking stops and the string returned is used. It is
recommended that the object’s type is part of the string to make debugging easier.

2. For any type of reference, $Carp::RefArgFormatter is checked (see below). This variable is
expected to be a code reference, and the current parameter is passed in. If this function
doesn’t exist (the variable is undef), or it recurses into Carp, or it otherwise throws an
exception, this is skipped, and Carp moves on to the next option, otherwise checking stops
and the string returned is used.

3. Otherwise, if neither CARP_TRACE nor $Carp::RefArgFormatter is available, stringify the
value ignoring any overloading.

GLOBAL VARIABLES
$Carp::MaxEvalLen

This variable determines how many characters of a string-eval are to be shown in the output. Use
a value of 0 to show all text.

Defaults to 0.

$Carp::MaxArgLen

This variable determines how many characters of each argument to a function to print. Use a
value of 0 to show the full length of the argument.

Defaults to 64.

$Carp::MaxArgNums

This variable determines how many arguments to each function to show. Use a value of 0 to show
all arguments to a function call.

Defaults to 8.

$Carp::Verbose

This variable makes carp() and croak() generate stack backtraces just like cluck() and
confess(). This is how use Carp 'verbose' is implemented internally.

Defaults to 0.

perl v5.20.2 2014-12-27 2

Carp(3perl) Perl Programmers Reference Guide Carp(3perl)

$Carp::RefArgFormatter

This variable sets a general argument formatter to display references. Plain scalars and objects
that implement CARP_TRACE will not go through this formatter. Calling Carp from within this
function is not supported.

local $Carp::RefArgFormatter = sub { require Data::Dumper; Data::Dumper::Dump($_[0]); #
not necessarily safe };

@CARP_NOT

This variable, in your package, says which packages are not to be considered as the location of an
error. The carp() and cluck() functions will skip over callers when reporting where an error
occurred.

NB: This variable must be in the package’s symbol table, thus:

These work

our @CARP_NOT; # file scope

use vars qw(@CARP_NOT); # package scope

@My::Package::CARP_NOT = ... ; # explicit package variable

These don't work

sub xyz { ... @CARP_NOT = ... } # w/o declarations above

my @CARP_NOT; # even at top-level

Example of use:

package My::Carping::Package;

use Carp;

our @CARP_NOT;

sub bar { or _error('Wrong input') }

sub _error {

temporary control of where'ness, _ _PACKAGE_ _ is implicit

local @CARP_NOT = qw(My::Friendly::Caller);

carp(@_)

}

This would make Carp report the error as coming from a caller not in My::Carping::Package nor
from My::Friendly::Caller

Also read the ‘‘DESCRIPTION’’ section above, about how Carp decides where the error is reported
from.

Use @CARP_NOT, instead of $Carp::CarpLevel.

Overrides Carp’s use of @ISA.

%Carp::Internal

This says what packages are internal to Perl. Carp will never report an error as being from a line
in a package that is internal to Perl. For example:

$Carp::Internal{ (_ _PACKAGE_ _) }++;

time passes...

sub foo { ... or confess("whatever") };

would give a full stack backtrace starting from the first caller outside of _ _PACKAGE_ _. (Unless
that package was also internal to Perl.)

%Carp::CarpInternal

This says which packages are internal to Perl’s warning system. For generating a full stack
backtrace this is the same as being internal to Perl, the stack backtrace will not start inside
packages that are listed in %Carp::CarpInternal. But it is slightly different for the summary
message generated by carp or croak. There errors will not be reported on any lines that are
calling packages in %Carp::CarpInternal.

perl v5.20.2 2014-12-27 3

Carp(3perl) Perl Programmers Reference Guide Carp(3perl)

For example Carp itself is listed in %Carp::CarpInternal. Therefore the full stack backtrace
from confess will not start inside of Carp, and the short message from calling croak is not
placed on the line where croak was called.

$Carp::CarpLevel

This variable determines how many additional call frames are to be skipped that would not
otherwise be when reporting where an error occurred on a call to one of Carp’s functions. It is
fairly easy to count these call frames on calls that generate a full stack backtrace. However it is
much harder to do this accounting for calls that generate a short message. Usually people skip too
many call frames. If they are lucky they skip enough that Carp goes all of the way through the
call stack, realizes that something is wrong, and then generates a full stack backtrace. If they are
unlucky then the error is reported from somewhere misleading very high in the call stack.

Therefore it is best to avoid $Carp::CarpLevel. Instead use @CARP_NOT, %Carp::Internal and
%Carp::CarpInternal.

Defaults to 0.

BUGS
The Carp routines don’t handle exception objects currently. If called with a first argument that
is a reference, they simply call die() or warn(), as appropriate.

Some of the Carp code assumes that Perl’s basic character encoding is ASCII, and will go wrong
on an EBCDIC platform.

SEE ALSO
Carp::Always, Carp::Clan

AUTHOR
The Carp module first appeared in Larry Wall’s perl 5.000 distribution. Since then it has been
modified by several of the perl 5 porters. Andrew Main (Zefram) <zefram@fysh.org> divested
Carp into an independent distribution.

COPYRIGHT
Copyright (C) 1994-2013 Larry Wall

Copyright (C) 2011, 2012, 2013 Andrew Main (Zefram) <zefram@fysh.org>

LICENSE
This module is free software; you can redistribute it and/or modify it under the same terms as
Perl itself.

perl v5.20.2 2014-12-27 4

	NAME
	SYNOPSIS
	DESCRIPTION
	Forcing a Stack Trace
	Stack Trace formatting

	GLOBAL VARIABLES
	BUGS
	SEE ALSO
	AUTHOR
	COPYRIGHT
	LICENSE

