
CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

NAME
CPAN::Meta::Spec - specification for CPAN distribution metadata

VERSION
version 2.140640

SYNOPSIS
my $distmeta = {
name => 'Module-Build',
abstract => 'Build and install Perl modules',
description => "Module::Build is a system for "
. "building, testing, and installing Perl modules. "
. "It is meant to ... blah blah blah ...",
version => '0.36',
release_status => 'stable',
author => [
'Ken Williams <kwilliams@cpan.org>',
'Module-Build List <module-build@perl.org>', # additional contact
],
license => ['perl_5'],
prereqs => {
runtime => {
requires => {
'perl' => '5.006',
'ExtUtils::Install' => '0',
'File::Basename' => '0',
'File::Compare' => '0',
'IO::File' => '0',
},
recommends => {
'Archive::Tar' => '1.00',
'ExtUtils::Install' => '0.3',
'ExtUtils::ParseXS' => '2.02',
},
},
build => {
requires => {
'Test::More' => '0',
},
}
},
resources => {

license => ['http://dev.perl.org/licenses/'],
},
optional_features => {
domination => {
description => 'Take over the world',
prereqs => {
develop => { requires => { 'Genius::Evil' => '1.234' } },
runtime => { requires => { 'Machine::Weather' => '2.0' } },
},
},
},
dynamic_config => 1,
keywords => [qw/ toolchain cpan dual-life /],
'meta-spec' => {

perl v5.20.2 2014-12-27 1

http://dev.perl.org/licenses/

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

version => '2',
url => 'https://metacpan.org/pod/CPAN::Meta::Spec',

},
generated_by => 'Module::Build version 0.36',
};

DESCRIPTION
This document describes version 2 of the CPAN distribution metadata specification, also known as the
‘‘CPAN Meta Spec’’.

Revisions of this specification for typo corrections and prose clarifications may be issued as
CPAN::Meta::Spec 2.x. These revisions will never change semantics or add or remove specified behavior.

Distribution metadata describe important properties of Perl distributions. Distribution building tools like
Module::Build, Module::Install, ExtUtils::MakeMaker or Dist::Zilla should create a metadata file in
accordance with this specification and include it with the distribution for use by automated tools that index,
examine, package or install Perl distributions.

TERMINOLOGY
distribution

This is the primary object described by the metadata. In the context of this document it usually refers
to a collection of modules, scripts, and/or documents that are distributed together for other developers
to use. Examples of distributions are Class-Container, libwww-perl, or DBI.

module
This refers to a reusable library of code contained in a single file. Modules usually contain one or
more packages and are often referred to by the name of a primary package that can be mapped to the
file name. For example, one might refer to File::Spec instead of File/Spec.pm

package
This refers to a namespace declared with the Perl package statement. In Perl, packages often have a
version number property given by the $VERSION variable in the namespace.

consumer
This refers to code that reads a metadata file, deserializes it into a data structure in memory, or
interprets a data structure of metadata elements.

producer
This refers to code that constructs a metadata data structure, serializes into a bytestream and/or writes
it to disk.

must, should, may, etc.
These terms are interpreted as described in IETF RFC 2119.

DATA TYPES
Fields in the ‘‘STRUCTURE’’ section describe data elements, each of which has an associated data type as
described herein. There are four primitive types: Boolean, String, List and Map. Other types are subtypes of
primitives and define compound data structures or define constraints on the values of a data element.

Boolean
A Boolean is used to provide a true or false value. It must be represented as a defined value.

String
A String is data element containing a non-zero length sequence of Unicode characters, such as an ordinary
Perl scalar that is not a reference.

List
A List is an ordered collection of zero or more data elements. Elements of a List may be of mixed types.

Producers must represent List elements using a data structure which unambiguously indicates that multiple
values are possible, such as a reference to a Perl array (an ‘‘arrayref’’).

Consumers expecting a List must consider a String as equivalent to a List of length 1.

perl v5.20.2 2014-12-27 2

https://metacpan.org/pod/CPAN::Meta::Spec
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/CPAN::Meta::Spec
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Module::Build
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/ExtUtils::MakeMaker
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/File::Spec

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

Map
A Map is an unordered collection of zero or more data elements (‘‘values’’), indexed by associated String
elements (‘‘keys’’). The Map’s value elements may be of mixed types.

License String
A License String is a subtype of String with a restricted set of values. Valid values are described in detail in
the description of the ‘‘license’’ field.

URL
URL is a subtype of String containing a Uniform Resource Locator or Identifier. [This type is called URL
and not URI for historical reasons.]

Version
A Version is a subtype of String containing a value that describes the version number of packages or
distributions. Restrictions on format are described in detail in the ‘‘Version Formats’’ section.

Version Range
The Version Range type is a subtype of String. It describes a range of Versions that may be present or
installed to fulfill prerequisites. It is specified in detail in the ‘‘Version Ranges’’ section.

STRUCTURE
The metadata structure is a data element of type Map. This section describes valid keys within the Map.

Any keys not described in this specification document (whether top-level or within compound data
structures described herein) are considered custom keys and must begin with an ‘‘x’’ or ‘‘X’’ and be
followed by an underscore; i.e. they must match the pattern: qr{\Ax_}i. If a custom key refers to a
compound data structure, subkeys within it do not need an ‘‘x_’’ or ‘‘X_’’ prefix.

Consumers of metadata may ignore any or all custom keys. All other keys not described herein are invalid
and should be ignored by consumers. Producers must not generate or output invalid keys.

For each key, an example is provided followed by a description. The description begins with the version of
spec in which the key was added or in which the definition was modified, whether the key is required or
optional and the data type of the corresponding data element. These items are in parentheses, brackets and
braces, respectively.

If a data type is a Map or Map subtype, valid subkeys will be described as well.

Some fields are marked Deprecated. These are shown for historical context and must not be produced in or
consumed from any metadata structure of version 2 or higher.

REQUIRED FIELDS
abstract

Example:

abstract => 'Build and install Perl modules'

(Spec 1.2) [required] {String}

This is a short description of the purpose of the distribution.

author

Example:

author => ['Ken Williams <kwilliams@cpan.org>']

(Spec 1.2) [required] {List of one or more Strings}

This List indicates the person(s) to contact concerning the distribution. The preferred form of the contact
string is:

contact-name <email-address>

This field provides a general contact list independent of other structured fields provided within the
‘‘resources’’ field, such as bugtracker. The addressee(s) can be contacted for any purpose including but
not limited to (security) problems with the distribution, questions about the distribution or bugs in the

perl v5.20.2 2014-12-27 3

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

distribution.

A distribution’s original author is usually the contact listed within this field. Co-maintainers, successor
maintainers or mailing lists devoted to the distribution may also be listed in addition to or instead of the
original author.

dynamic_config

Example:

dynamic_config => 1

(Spec 2) [required] {Boolean}

A boolean flag indicating whether a Build.PL or Makefile.PL (or similar) must be executed to determine
prerequisites.

This field should be set to a true value if the distribution performs some dynamic configuration (asking
questions, sensing the environment, etc.) as part of its configuration. This field should be set to a false value
to indicate that prerequisites included in metadata may be considered final and valid for static analysis.

This field explicitly does not indicate whether installation may be safely performed without using a
Makefile or Build file, as there may be special files to install or custom installation targets (e.g. for dual-life
modules that exist on CPAN as well as in the Perl core). This field only defines whether prerequisites are
complete as given in the metadata.

generated_by

Example:

generated_by => 'Module::Build version 0.36'

(Spec 1.0) [required] {String}

This field indicates the tool that was used to create this metadata. There are no defined semantics for this
field, but it is traditional to use a string in the form ‘‘Generating::Package version 1.23’’ or the author’s
name, if the file was generated by hand.

license

Example:

license => ['perl_5']

license => ['apache_2_0', 'mozilla_1_0']

(Spec 2) [required] {List of one or more License Strings}

One or more licenses that apply to some or all of the files in the distribution. If multiple licenses are listed,
the distribution documentation should be consulted to clarify the interpretation of multiple licenses.

The following list of license strings are valid:

string description
------------- ---
agpl_3 GNU Affero General Public License, Version 3
apache_1_1 Apache Software License, Version 1.1
apache_2_0 Apache License, Version 2.0
artistic_1 Artistic License, (Version 1)
artistic_2 Artistic License, Version 2.0
bsd BSD License (three-clause)
freebsd FreeBSD License (two-clause)
gfdl_1_2 GNU Free Documentation License, Version 1.2
gfdl_1_3 GNU Free Documentation License, Version 1.3
gpl_1 GNU General Public License, Version 1
gpl_2 GNU General Public License, Version 2

perl v5.20.2 2014-12-27 4

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

gpl_3 GNU General Public License, Version 3
lgpl_2_1 GNU Lesser General Public License, Version 2.1
lgpl_3_0 GNU Lesser General Public License, Version 3.0
mit MIT (aka X11) License
mozilla_1_0 Mozilla Public License, Version 1.0
mozilla_1_1 Mozilla Public License, Version 1.1
openssl OpenSSL License
perl_5 The Perl 5 License (Artistic 1 & GPL 1 or later)
qpl_1_0 Q Public License, Version 1.0
ssleay Original SSLeay License
sun Sun Internet Standards Source License (SISSL)
zlib zlib License

The following license strings are also valid and indicate other licensing not described above:

string description
------------- ---
open_source Other Open Source Initiative (OSI) approved license
restricted Requires special permission from copyright holder
unrestricted Not an OSI approved license, but not restricted
unknown License not provided in metadata

All other strings are invalid in the license field.

meta-spec

Example:

'meta-spec' => {
version => '2',

url => 'http://search.cpan.org/perldoc?CPAN::Meta::Spec',
}

(Spec 1.2) [required] {Map}

This field indicates the version of the CPAN Meta Spec that should be used to interpret the metadata.
Consumers must check this key as soon as possible and abort further metadata processing if the meta-spec
version is not supported by the consumer.

The following keys are valid, but only version is required.

version
This subkey gives the integer Version of the CPAN Meta Spec against which the document was
generated.

url This is a URL of the metadata specification document corresponding to the given version. This is
strictly for human-consumption and should not impact the interpretation of the document.

For the version 2 spec, either of these are recommended:

• https://metacpan.org/pod/CPAN::Meta::Spec

• http://search.cpan.org/perldoc?CPAN::Meta::Spec

name

Example:

name => 'Module-Build'

(Spec 1.0) [required] {String}

This field is the name of the distribution. This is often created by taking the ‘‘main package’’ in the
distribution and changing :: to -, but the name may be completely unrelated to the packages within the
distribution. For example, LWP::UserAgent is distributed as part of the distribution name ‘‘libwww-perl’’.

perl v5.20.2 2014-12-27 5

http://search.cpan.org/perldoc?CPAN::Meta::Spec
https://metacpan.org/pod/CPAN::Meta::Spec
http://search.cpan.org/perldoc?CPAN::Meta::Spec
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/LWP::UserAgent

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

release_status

Example:

release_status => 'stable'

(Spec 2) [required] {String}

This field provides the release status of this distribution. If the version field contains an underscore
character, then release_status must not be ‘‘stable.’’

The release_status field must have one of the following values:

stable
This indicates an ordinary, ‘‘final’’ release that should be indexed by PAUSE or other indexers.

testing
This indicates a ‘‘beta’’ release that is substantially complete, but has an elevated risk of bugs and
requires additional testing. The distribution should not be installed over a stable release without an
explicit request or other confirmation from a user. This release status may also be used for ‘‘release
candidate’’ versions of a distribution.

unstable
This indicates an ‘‘alpha’’ release that is under active development, but has been released for early
feedback or testing and may be missing features or may have serious bugs. The distribution should not
be installed over a stable release without an explicit request or other confirmation from a user.

Consumers may use this field to determine how to index the distribution for CPAN or other repositories in
addition to or in replacement of heuristics based on version number or file name.

version

Example:

version => '0.36'

(Spec 1.0) [required] {Version}

This field gives the version of the distribution to which the metadata structure refers.

OPTIONAL FIELDS
description

Example:

description => "Module::Build is a system for "
. "building, testing, and installing Perl modules. "
. "It is meant to ... blah blah blah ...",

(Spec 2) [optional] {String}

A longer, more complete description of the purpose or intended use of the distribution than the one
provided by the abstract key.

keywords

Example:

keywords => [qw/ toolchain cpan dual-life /]

(Spec 1.1) [optional] {List of zero or more Strings}

A List of keywords that describe this distribution. Keywords must not include whitespace.

no_index

Example:

perl v5.20.2 2014-12-27 6

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

no_index => {
file => ['My/Module.pm'],
directory => ['My/Private'],
package => ['My::Module::Secret'],
namespace => ['My::Module::Sample'],
}

(Spec 1.2) [optional] {Map}

This Map describes any files, directories, packages, and namespaces that are private to the packaging or
implementation of the distribution and should be ignored by indexing or search tools.

Valid subkeys are as follows:

file A List of relative paths to files. Paths must be specified with unix conventions.

directory
A List of relative paths to directories. Paths must be specified with unix conventions.

[Note: previous editions of the spec had dir instead of directory]

package
A List of package names.

namespace
A List of package namespaces, where anything below the namespace must be ignored, but not the
namespace itself.

In the example above for no_index, My::Module::Sample::Foo would be ignored, but
My::Module::Sample would not.

optional_features

Example:

optional_features => {
sqlite => {
description => 'Provides SQLite support',
prereqs => {
runtime => {
requires => {
'DBD::SQLite' => '1.25'
}
}
}
}
}

(Spec 2) [optional] {Map}

This Map describes optional features with incremental prerequisites. Each key of the
optional_features Map is a String used to identify the feature and each value is a Map with
additional information about the feature. Valid subkeys include:

description
This is a String describing the feature. Every optional feature should provide a description

prereqs
This entry is required and has the same structure as that of the "prereqs" key. It provides a list of
package requirements that must be satisfied for the feature to be supported or enabled.

There is one crucial restriction: the prereqs of an optional feature must not include configure
phase prereqs.

Consumers must not include optional features as prerequisites without explicit instruction from users

perl v5.20.2 2014-12-27 7

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

(whether via interactive prompting, a function parameter or a configuration value, etc.).

If an optional feature is used by a consumer to add additional prerequisites, the consumer should merge the
optional feature prerequisites into those given by the prereqs key using the same semantics. See
‘‘Merging and Resolving Prerequisites’’ for details on merging prerequisites.

Suggestion for disuse: Because there is currently no way for a distribution to specify a dependency on an
optional feature of another dependency, the use of optional_feature is discouraged. Instead, create a
separate, installable distribution that ensures the desired feature is available. For example, if Foo::Bar
has a Baz feature, release a separate Foo-Bar-Baz distribution that satisfies requirements for the feature.

prereqs

Example:

prereqs => {
runtime => {
requires => {
'perl' => '5.006',
'File::Spec' => '0.86',
'JSON' => '2.16',
},
recommends => {
'JSON::XS' => '2.26',
},
suggests => {
'Archive::Tar' => '0',
},
},
build => {
requires => {
'Alien::SDL' => '1.00',
},
},
test => {
recommends => {
'Test::Deep' => '0.10',
},
}
}

(Spec 2) [optional] {Map}

This is a Map that describes all the prerequisites of the distribution. The keys are phases of activity, such as
configure, build, test or runtime. Values are Maps in which the keys name the type of
prerequisite relationship such as requires, recommends, or suggests and the value provides a set of
prerequisite relations. The set of relations must be specified as a Map of package names to version ranges.

The full definition for this field is given in the ‘‘Prereq Spec’’ section.

provides

Example:

perl v5.20.2 2014-12-27 8

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

provides => {
'Foo::Bar' => {
file => 'lib/Foo/Bar.pm',
version => '0.27_02',
},
'Foo::Bar::Blah' => {
file => 'lib/Foo/Bar/Blah.pm',
},
'Foo::Bar::Baz' => {
file => 'lib/Foo/Bar/Baz.pm',
version => '0.3',
},
}

(Spec 1.2) [optional] {Map}

This describes all packages provided by this distribution. This information is used by distribution and
automation mechanisms like PAUSE, CPAN, metacpan.org and search.cpan.org to build indexes saying in
which distribution various packages can be found.

The keys of provides are package names that can be found within the distribution. If a package name
key is provided, it must have a Map with the following valid subkeys:

file This field is required. It must contain a Unix-style relative file path from the root of the distribution
directory to a file that contains or generates the package.

version
If it exists, this field must contains a Version String for the package. If the package does not have a
$VERSION, this field must be omitted.

resources

Example:

resources => {
license => ['http://dev.perl.org/licenses/'

],
homepage => 'http://sourceforge.net/projects/module-build',

bugtracker => {
web => 'http://rt.cpan.org/Public/Dist/Display.html?Name=CPAN-Meta',

mailto => 'meta-bugs@example.com',
},
repository => {
url => 'git://github.com/dagolden/cpan-meta.git',

web => 'http://github.com/dagolden/cpan-meta',
type => 'git',
},

x_twitter => 'http://twitter.com/cpan_linked/',
}

(Spec 2) [optional] {Map}

This field describes resources related to this distribution.

Valid subkeys include:

homepage
The official home of this project on the web.

license
A List of URL’s that relate to this distribution’s license. As with the top-level license field,
distribution documentation should be consulted to clarify the interpretation of multiple licenses

perl v5.20.2 2014-12-27 9

http://dev.perl.org/licenses/
http://sourceforge.net/projects/module-build
http://rt.cpan.org/Public/Dist/Display.html?Name=CPAN-Meta
http://github.com/dagolden/cpan-meta
http://twitter.com/cpan_linked/

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

provided here.

bugtracker
This entry describes the bug tracking system for this distribution. It is a Map with the following valid
keys:

web - a URL pointing to a web front-end for the bug tracker
mailto - an email address to which bugs can be sent

repository
This entry describes the source control repository for this distribution. It is a Map with the following
valid keys:

url - a URL pointing to the repository itself
web - a URL pointing to a web front-end for the repository
type - a lowercase string indicating the VCS used

Because a url like http://myrepo.example.com/ is ambiguous as to type, producers should
provide a type whenever a url key is given. The type field should be the name of the most
common program used to work with the repository, e.g. git, svn, cvs, darcs, bzr or hg.

DEPRECATED FIELDS
build_requires

(Deprecated in Spec 2) [optional] {String}

Replaced by prereqs

configure_requires

(Deprecated in Spec 2) [optional] {String}

Replaced by prereqs

conflicts

(Deprecated in Spec 2) [optional] {String}

Replaced by prereqs

distribution_type

(Deprecated in Spec 2) [optional] {String}

This field indicated ’module’ or ’script’ but was considered meaningless, since many distributions are
hybrids of several kinds of things.

license_uri

(Deprecated in Spec 1.2) [optional] {URL}

Replaced by license in resources

private

(Deprecated in Spec 1.2) [optional] {Map}

This field has been renamed to ‘‘no_index’’.

recommends

(Deprecated in Spec 2) [optional] {String}

Replaced by prereqs

requires

(Deprecated in Spec 2) [optional] {String}

Replaced by prereqs

perl v5.20.2 2014-12-27 10

http://myrepo.example.com/

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

VERSION NUMBERS
Version Formats

This section defines the Version type, used by several fields in the CPAN Meta Spec.

Version numbers must be treated as strings, not numbers. For example, 1.200 must not be serialized as
1.2. Version comparison should be delegated to the Perl version module, version 0.80 or newer.

Unless otherwise specified, version numbers must appear in one of two formats:

Decimal versions
Decimal versions are regular ‘‘decimal numbers’’, with some limitations. They must be non-negative
and must begin and end with a digit. A single underscore may be included, but must be between two
digits. They must not use exponential notation (‘‘1.23e-2’’).

version => '1.234' # OK
version => '1.23_04' # OK

version => '1.23_04_05' # Illegal
version => '1.' # Illegal
version => '.1' # Illegal

Dotted-integer versions
Dotted-integer (also known as dotted-decimal) versions consist of positive integers separated by full
stop characters (i.e. ‘‘dots’’, ‘‘periods’’ or ‘‘decimal points’’). This are equivalent in format to Perl ‘‘v-
strings’’, with some additional restrictions on form. They must be given in ‘‘normal’’ form, which has
a leading ‘‘v’’ character and at least three integer components. To retain a one-to-one mapping with
decimal versions, all components after the first should be restricted to the range 0 to 999. The final
component may be separated by an underscore character instead of a period.

version => 'v1.2.3' # OK
version => 'v1.2_3' # OK
version => 'v1.2.3.4' # OK
version => 'v1.2.3_4' # OK
version => 'v2009.10.31' # OK

version => 'v1.2' # Illegal
version => '1.2.3' # Illegal
version => 'v1.2_3_4' # Illegal
version => 'v1.2009.10.31' # Not recommended

Version Ranges
Some fields (prereq, optional_features) indicate the particular version(s) of some other module that may be
required as a prerequisite. This section details the Version Range type used to provide this information.

The simplest format for a Version Range is just the version number itself, e.g. 2.4. This means that at least
version 2.4 must be present. To indicate that any version of a prerequisite is okay, even if the prerequisite
doesn’t define a version at all, use the version 0.

Alternatively, a version range may use the operators < (less than), <= (less than or equal), > (greater than),
>= (greater than or equal), == (equal), and != (not equal). For example, the specification < 2.0 means that
any version of the prerequisite less than 2.0 is suitable.

For more complicated situations, version specifications may be AND-ed together using commas. The
specification >= 1.2, != 1.5, < 2.0 indicates a version that must be at least 1.2, less than 2.0, and
not equal to 1.5.

PREREQUISITES
Prereq Spec

The prereqs key in the top-level metadata and within optional_features define the relationship
between a distribution and other packages. The prereq spec structure is a hierarchical data structure which
divides prerequisites into Phases of activity in the installation process and Relationships that indicate how

perl v5.20.2 2014-12-27 11

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

prerequisites should be resolved.

For example, to specify that Data::Dumper is required during the test phase, this entry would
appear in the distribution metadata:

prereqs => {
test => {
requires => {
'Data::Dumper' => '2.00'
}
}
}

Phases

Requirements for regular use must be listed in the runtime phase. Other requirements should be listed in
the earliest stage in which they are required and consumers must accumulate and satisfy requirements
across phases before executing the activity. For example, build requirements must also be available
during the test phase.

before action requirements that must be met
---------------- --------------------------------
perl Build.PL configure
perl Makefile.PL

make configure, runtime, build
Build

make test configure, runtime, build, test
Build test

Consumers that install the distribution must ensure that runtime requirements are also installed and may
install dependencies from other phases.

after action requirements that must be met
---------------- --------------------------------
make install runtime
Build install

configure
The configure phase occurs before any dynamic configuration has been attempted. Libraries required
by the configure phase must be available for use before the distribution building tool has been
executed.

build
The build phase is when the distribution’s source code is compiled (if necessary) and otherwise made
ready for installation.

test The test phase is when the distribution’s automated test suite is run. Any library that is needed only
for testing and not for subsequent use should be listed here.

runtime
The runtime phase refers not only to when the distribution’s contents are installed, but also to its
continued use. Any library that is a prerequisite for regular use of this distribution should be indicated
here.

develop
The develop phase’s prereqs are libraries needed to work on the distribution’s source code as its author
does. These tools might be needed to build a release tarball, to run author-only tests, or to perform
other tasks related to developing new versions of the distribution.

Relationships

perl v5.20.2 2014-12-27 12

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Data::Dumper

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

requires
These dependencies must be installed for proper completion of the phase.

recommends
Recommended dependencies are strongly encouraged and should be satisfied except in resource
constrained environments.

suggests
These dependencies are optional, but are suggested for enhanced operation of the described
distribution.

conflicts
These libraries cannot be installed when the phase is in operation. This is a very rare situation, and the
conflicts relationship should be used with great caution, or not at all.

Merging and Resolving Prerequisites
Whenever metadata consumers merge prerequisites, either from different phases or from
optional_features, they should merged in a way which preserves the intended semantics of the
prerequisite structure. Generally, this means concatenating the version specifications using commas, as
described in the ‘‘Version Ranges’’ section.

Another subtle error that can occur in resolving prerequisites comes from the way that modules in
prerequisites are indexed to distribution files on CPAN. When a module is deleted from a distribution,
prerequisites calling for that module could indicate an older distribution should be installed, potentially
overwriting files from a newer distribution.

For example, as of Oct 31, 2009, the CPAN index file contained these module-distribution mappings:

Class::MOP 0.94 D/DR/DROLSKY/Class-MOP-0.94.tar.gz
Class::MOP::Class 0.94 D/DR/DROLSKY/Class-MOP-0.94.tar.gz
Class::MOP::Class::Immutable 0.04 S/ST/STEVAN/Class-MOP-0.36.tar.gz

Consider the case where ‘‘Class::MOP’’ 0.94 is installed. If a distribution specified
‘‘Class::MOP::Class::Immutable’’ as a prerequisite, it could result in Class-MOP-0.36.tar.gz being
installed, overwriting any files from Class-MOP-0.94.tar.gz.

Consumers of metadata should test whether prerequisites would result in installed module files being
‘‘downgraded’’ to an older version and may warn users or ignore the prerequisite that would cause such a
result.

SERIALIZATION
Distribution metadata should be serialized (as a hashref) as JSON-encoded data and packaged with
distributions as the file META.json.

In the past, the distribution metadata structure had been packed with distributions as META.yml, a file in the
YAML Tiny format (for which, see YAML::Tiny). Tools that consume distribution metadata from disk
should be capable of loading META.yml, but should prefer META.json if both are found.

NOTES FOR IMPLEMENTORS
Extracting Version Numbers from Perl Modules

To get the version number from a Perl module, consumers should use the
MM->parse_version($file) method provided by ExtUtils::MakeMaker or Module::Metadata. For
example, for the module given by $mod, the version may be retrieved in one of the following ways:

via ExtUtils::MakeMaker
my $file = MM->_installed_file_for_module($mod);
my $version = MM->parse_version($file)

The private _installed_file_for_module method may be replaced with other methods for
locating a module in @INC.

perl v5.20.2 2014-12-27 13

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/ExtUtils::MakeMaker

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

via Module::Metadata
my $info = Module::Metadata->new_from_module($mod);
my $version = $info->version;

If only a filename is available, the following approach may be used:

via Module::Build
my $info = Module::Metadata->new_from_file($file);
my $version = $info->version;

Comparing Version Numbers
The version module provides the most reliable way to compare version numbers in all the various ways
they might be provided or might exist within modules. Given two strings containing version numbers, $v1
and $v2, they should be converted to version objects before using ordinary comparison operators. For
example:

use version;
if (version->new($v1) <=> version->new($v2)) {
print "Versions are not equal\n";
}

If the only comparison needed is whether an installed module is of a sufficiently high version, a direct test
may be done using the string form of eval and the use function. For example, for module $mod and
version prerequisite $prereq:

if (eval "use $mod $prereq (); 1") {
print "Module $mod version is OK.\n";
}

If the values of $mod and $prereq have not been scrubbed, however, this presents security implications.

SEE ALSO
• CPAN, <http://www.cpan.org/>

• JSON, <http://json.org/>

• YAML, <http://www.yaml.org/>

• CPAN

• CPANPLUS

• ExtUtils::MakeMaker

• Module::Build

• Module::Install

HISTORY
Ken Williams wrote the original CPAN Meta Spec (also known as the ‘‘META.yml spec’’) in 2003 and
maintained it through several revisions with input from various members of the community. In 2005, Randy
Sims redrafted it from HTML to POD for the version 1.2 release. Ken continued to maintain the spec
through version 1.4.

In late 2009, David Golden organized the version 2 proposal review process. David and Ricardo Signes
drafted the final version 2 spec in April 2010 based on the version 1.4 spec and patches contributed during
the proposal process.

AUTHORS
• David Golden <dagolden@cpan.org>

• Ricardo Signes <rjbs@cpan.org>

COPYRIGHT AND LICENSE
This software is copyright (c) 2010 by David Golden and Ricardo Signes.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5

perl v5.20.2 2014-12-27 14

http://www.cpan.org/
http://json.org/
http://www.yaml.org/
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/ExtUtils::MakeMaker
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Module::Build

CPAN::Meta::Spec(3perl) Perl Programmers Reference Guide CPAN::Meta::Spec(3perl)

programming language system itself.

perl v5.20.2 2014-12-27 15

	NAME
	VERSION
	SYNOPSIS
	DESCRIPTION
	TERMINOLOGY
	distribution
	module
	package
	consumer
	producer
	must, should, may, etc.

	DATA TYPES
	Boolean
	String
	List
	Map
	License String
	URL
	Version
	Version Range

	STRUCTURE
	REQUIRED FIELDS
	version
	url
	stable
	testing
	unstable

	OPTIONAL FIELDS
	file
	directory
	package
	namespace
	description
	prereqs
	file
	version
	homepage
	license
	bugtracker
	repository

	DEPRECATED FIELDS

	VERSION NUMBERS
	Version Formats
	Decimal versions
	Dotted-integer versions

	Version Ranges

	PREREQUISITES
	Prereq Spec
	configure
	build
	test
	runtime
	develop
	requires
	recommends
	suggests
	conflicts

	Merging and Resolving Prerequisites

	SERIALIZATION
	NOTES FOR IMPLEMENTORS
	Extracting Version Numbers from Perl Modules
	Comparing Version Numbers

	SEE ALSO
	HISTORY
	AUTHORS
	COPYRIGHT AND LICENSE

