
MPOOL(3) Linux Programmer’s Manual MPOOL(3)

NAME
mpool - shared memory buffer pool

SYNOPSIS
#include <db.h>
#include <mpool.h>

MPOOL *mpool_open(DBT *key, int fd, pgno_t pagesize, pgno_t maxcache);

void mpool_filter(MPOOL *mp, void (*pgin)(void *, pgno_t, void *),
void (*pgout)(void *, pgno_t, void *),
void *pgcookie);

void *mpool_new(MPOOL *mp, pgno_t *pgnoaddr);

void *mpool_get(MPOOL *mp, pgno_t pgno, unsigned int flags);

int mpool_put(MPOOL *mp, void *pgaddr, unsigned int flags);

int mpool_sync(MPOOL *mp);

int mpool_close(MPOOL *mp);

DESCRIPTION
Note well: This page documents interfaces provided in glibc up until version 2.1. Since version
2.2, glibc no longer provides these interfaces. Probably, you are looking for the APIs provided by
the libdb library instead.

Mpool is the library interface intended to provide page oriented buffer management of files. The
buffers may be shared between processes.

The function mpool_open() initializes a memory pool. The key argument is the byte string used
to negotiate between multiple processes wishing to share buffers. If the file buffers are mapped in
shared memory, all processes using the same key will share the buffers. If key is NULL, the buf-
fers are mapped into private memory. The fd argument is a file descriptor for the underlying file,
which must be seekable. If key is non-NULL and matches a file already being mapped, the fd
argument is ignored.

The pagesize argument is the size, in bytes, of the pages into which the file is broken up. The
maxcache argument is the maximum number of pages from the underlying file to cache at any one
time. This value is not relative to the number of processes which share a file’s buffers, but will be
the largest value specified by any of the processes sharing the file.

The mpool_filter() function is intended to make transparent input and output processing of the
pages possible. If the pgin function is specified, it is called each time a buffer is read into the
memory pool from the backing file. If the pgout function is specified, it is called each time a buf-
fer is written into the backing file. Both functions are called with the pgcookie pointer, the page
number and a pointer to the page to being read or written.

The function mpool_new() takes an MPOOL pointer and an address as arguments. If a new
page can be allocated, a pointer to the page is returned and the page number is stored into the
pgnoaddr address. Otherwise, NULL is returned and errno is set.

The function mpool_get() takes an MPOOL pointer and a page number as arguments. If the
page exists, a pointer to the page is returned. Otherwise, NULL is returned and errno is set.
The flags argument is not currently used.

The function mpool_put() unpins the page referenced by pgaddr. pgaddr must be an address
previously returned by mpool_get() or mpool_new(). The flag value is specified by ORing any
of the following values:

MPOOL_DIRTY
The page has been modified and needs to be written to the backing file.

2012-04-26 1

MPOOL(3) Linux Programmer’s Manual MPOOL(3)

mpool_put() returns 0 on success and -1 if an error occurs.

The function mpool_sync() writes all modified pages associated with the MPOOL pointer to the
backing file. mpool_sync() returns 0 on success and -1 if an error occurs.

The mpool_close() function free’s up any allocated memory associated with the memory pool
cookie. Modified pages are not written to the backing file. mpool_close() returns 0 on success
and -1 if an error occurs.

ERRORS
The mpool_open() function may fail and set errno for any of the errors specified for the library
routine malloc(3).

The mpool_get() function may fail and set errno for the following:

EINVAL The requested record doesn’t exist.

The mpool_new() and mpool_get() functions may fail and set errno for any of the errors speci-
fied for the library routines read(2), write(2), and malloc(3).

The mpool_sync() function may fail and set errno for any of the errors specified for the library
routine write(2).

The mpool_close() function may fail and set errno for any of the errors specified for the library
routine free(3).

CONFORMING TO
Not in POSIX.1-2001. Present on the BSDs.

SEE ALSO
btree(3), dbopen(3), hash(3), recno(3)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

2012-04-26 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/free
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/btree
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/dbopen
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/hash
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/recno
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	DESCRIPTION
	MPOOL_DIRTY

	ERRORS
	EINVAL

	CONFORMING TO
	SEE ALSO
	COLOPHON

