
INET_NET_PTON(3) Linux Programmer’s Manual INET_NET_PTON(3)

NAME
inet_net_pton, inet_net_ntop - Internet network number conversion

SYNOPSIS
#include <arpa/inet.h>

int inet_net_pton(int af, const char *pres,
void *netp, size_t nsize);

char *inet_net_ntop(int af, const void *netp, int bits,
char *pres, size_t psize);

Link with -lresolv.

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

inet_net_pton(), inet_net_ntop():
Since glibc 2.20:

_DEFAULT_SOURCE
Before glibc 2.20:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions convert network numbers between presentation (i.e., printable) format and net-
work (i.e., binary) format.

For both functions, af specifies the address family for the conversion; the only supported value is
AF_INET.

inet_net_pton()
The inet_net_pton() function converts pres, a null-terminated string containing an Internet net-
work number in presentation format to network format. The result of the conversion, which is in
network byte order, is placed in the buffer pointed to by net. (The netp argument typically points
to an in_addr structure.) The nsize argument specifies the number of bytes available in netp.

On success, inet_net_pton() returns the number of bits in the network number field of the result
placed in netp. For a discussion of the input presentation format and the return value, see
NOTES.

Note: the buffer pointed to by netp should be zeroed out before calling inet_net_pton(), since
the call writes only as many bytes as are required for the network number (or as are explicitly
specified by pres), which may be less than the number of bytes in a complete network address.

inet_net_ntop()
The inet_net_ntop() function converts the network number in the buffer pointed to by netp to
presentation format; *netp is interpreted as a value in network byte order. The bits argument
specifies the number of bits in the network number in *netp.

The null-terminated presentation-format string is placed in the buffer pointed to by pres. The
psize argument specifies the number of bytes available in pres. The presentation string is in
CIDR format: a dotted-decimal number representing the network address, followed by a slash, and
the size of the network number in bits.

RETURN VALUE
On success, inet_net_pton() returns the number of bits in the network number. On error, it
returns -1, and errno is set to indicate the cause of the error.

On success, inet_net_ntop() returns pres. On error, it returns NULL, and errno is set to indi-
cate the cause of the error.

ERRORS

Linux 2014-05-28 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros

INET_NET_PTON(3) Linux Programmer’s Manual INET_NET_PTON(3)

EAFNOSUPPORT
af specified a value other than AF_INET.

EMSGSIZE
The size of the output buffer was insufficient.

ENOENT
(inet_net_pton()) pres was not in correct presentation format.

CONFORMING TO
The inet_net_pton() and inet_net_ntop() functions are nonstandard, but widely available.

NOTES
Input presentation format for inet_net_pton()

The network number may be specified either as a hexadecimal value or in dotted-decimal nota-
tion.

Hexadecimal values are indicated by an initial 0x or 0X. The hexadecimal digits populate the
nibbles (half octets) of the network number from left to right in network byte order.

In dotted-decimal notation, up to four octets are specified, as decimal numbers separated by dots.
Thus, any of the following forms are accepted:

a.b.c.d a.b.c a.b a

Each part is a number in the range 0 to 255 that populates one byte of the resulting network
number, going from left to right, in network-byte (big endian) order. Where a part is omitted,
the resulting byte in the network number is zero.

For either hexadecimal or dotted-decimal format, the network number can optionally be followed
by a slash and a number in the range 0 to 32, which specifies the size of the network number in
bits.

Return value of inet_net_pton()
The return value of inet_net_pton() is the number of bits in the network number field. If the
input presentation string terminates with a slash and an explicit size value, then that size
becomes the return value of inet_net_pton(). Otherwise, the return value, bits, is inferred as fol-
lows:

* If the most significant byte of the network number is greater than or equal to 240, then bits is
32.

* Otherwise, if the most significant byte of the network number is greater than or equal to 224,
then bits is 4.

* Otherwise, if the most significant byte of the network number is greater than or equal to 192,
then bits is 24.

* Otherwise, if the most significant byte of the network number is greater than or equal to 128,
then bits is 16.

* Otherwise, bits is 8.

If the resulting bits value from the above steps is greater than or equal to 8, but the number of
octets specified in the network number exceed bits/8, then bits is set to 8 times the number of
octets actually specified.

EXAMPLE
The program below demonstrates the use of inet_net_pton() and inet_net_ntop(). It uses
inet_net_pton() to convert the presentation format network address provided in its first com-
mand-line argument to binary form, displays the return value from inet_net_pton(). It then
uses inet_net_ntop() to convert the binary form back to presentation format, and displays the
resulting string.

In order to demonstrate that inet_net_pton() may not write to all bytes of its netp argument,

Linux 2014-05-28 2

INET_NET_PTON(3) Linux Programmer’s Manual INET_NET_PTON(3)

the program allows an optional second command-line argument, a number used to initialize the
buffer before inet_net_pton() is called. As its final line of output, the program displays all of
the bytes of the buffer returned by inet_net_pton() allowing the user to see which bytes have
not been touched by inet_net_pton().

An example run, showing that inet_net_pton() infers the number of bits in the network number:

$./a.out 193.168
inet_net_pton() returned: 24
inet_net_ntop() yielded: 193.168.0/24
Raw address: c1a80000

Demonstrate that inet_net_pton() does not zero out unused bytes in its result buffer:

$./a.out 193.168 0xffffffff
inet_net_pton() returned: 24
inet_net_ntop() yielded: 193.168.0/24
Raw address: c1a800ff

Demonstrate that inet_net_pton() will widen the inferred size of the network number, if the sup-
plied number of bytes in the presentation string exceeds the inferred value:

$./a.out 193.168.1.128
inet_net_pton() returned: 32
inet_net_ntop() yielded: 193.168.1.128/32
Raw address: c1a80180

Explicitly specifying the size of the network number overrides any inference about its size (but
any extra bytes that are explicitly specified will still be used by inet_net_pton(): to populate the
result buffer):

$./a.out 193.168.1.128/24
inet_net_pton() returned: 24
inet_net_ntop() yielded: 193.168.1/24
Raw address: c1a80180

Program source
/* Link with -lresolv */

#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE);
} while (0)

int
main(int argc, char *argv[])
{
char buf[100];
struct in_addr addr;
int bits;

if (argc < 2) {
fprintf(stderr,
Usage: %s presentation-form [addr-init-value]n,
argv[0]);
exit(EXIT_FAILURE);
}

/* If argv[2] is supplied (a numeric value), use it to initialize
the output buffer given to inet_net_pton(), so that we can see

Linux 2014-05-28 3

INET_NET_PTON(3) Linux Programmer’s Manual INET_NET_PTON(3)

that inet_net_pton() initializes only those bytes needed for
the network number. If argv[2] is not supplied, then initialize
the buffer to zero (as is recommended practice). */

addr.s_addr = (argc > 2) ? strtod(argv[2], NULL) : 0;

/* Convert presentation network number in argv[1] to binary */

bits = inet_net_pton(AF_INET, argv[1], &addr, sizeof(addr));
if (bits == -1)
errExit(inet_net_ntop);

printf(inet_net_pton() returned: %dn, bits);

/* Convert binary format back to presentation, using bits
returned by inet_net_pton() */

if (inet_net_ntop(AF_INET, &addr, bits, buf, sizeof(buf)) == NULL)
errExit(inet_net_ntop);

printf(inet_net_ntop() yielded: %sn, buf);

/* Display addr in raw form (in network byte order), so we can
see bytes not displayed by inet_net_ntop(); some of those bytes
may not have been touched by inet_net_ntop(), and so will still
have any initial value that was specified in argv[2]. */

printf(Raw address: %xn, htonl(addr.s_addr));

exit(EXIT_SUCCESS);
}

SEE ALSO
inet(3), networks(5)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

Linux 2014-05-28 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/inet
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/networks
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	Since glibc 2.20:
	Before glibc 2.20:

	DESCRIPTION
	inet_net_pton()
	inet_net_ntop()

	RETURN VALUE
	ERRORS
	EAFNOSUPPORT
	EMSGSIZE
	ENOENT

	CONFORMING TO
	NOTES
	Input presentation format for inet_net_pton()
	Return value of inet_net_pton()

	EXAMPLE
	Program source

	SEE ALSO
	COLOPHON

