
GETADDRINFO(3) Linux Programmer’s Manual GETADDRINFO(3)

NAME
getaddrinfo, freeaddrinfo, gai_strerror - network address and service translation

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

const char *gai_strerror(int errcode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getaddrinfo(), freeaddrinfo(), gai_strerror():
_POSIX_C_SOURCE >= 1 || _XOPEN_SOURCE || _POSIX_SOURCE

DESCRIPTION
Given node and service, which identify an Internet host and a service, getaddrinfo() returns one
or more addrinfo structures, each of which contains an Internet address that can be specified in a
call to bind(2) or connect(2). The getaddrinfo() function combines the functionality provided
by the gethostbyname(3) and getservbyname(3) functions into a single interface, but unlike the
latter functions, getaddrinfo() is reentrant and allows programs to eliminate IPv4-versus-IPv6
dependencies.

The addrinfo structure used by getaddrinfo() contains the following fields:

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;
};

The hints argument points to an addrinfo structure that specifies criteria for selecting the socket
address structures returned in the list pointed to by res. If hints is not NULL it points to an
addrinfo structure whose ai_family, ai_socktype, and ai_protocol specify criteria that limit the set
of socket addresses returned by getaddrinfo(), as follows:

ai_family This field specifies the desired address family for the returned addresses. Valid val-
ues for this field include AF_INET and AF_INET6. The value AF_UNSPEC
indicates that getaddrinfo() should return socket addresses for any address family
(either IPv4 or IPv6, for example) that can be used with node and service.

ai_socktype This field specifies the preferred socket type, for example SOCK_STREAM or
SOCK_DGRAM. Specifying 0 in this field indicates that socket addresses of any
type can be returned by getaddrinfo().

ai_protocol This field specifies the protocol for the returned socket addresses. Specifying 0 in
this field indicates that socket addresses with any protocol can be returned by
getaddrinfo().

ai_flags This field specifies additional options, described below. Multiple flags are specified
by bitwise OR-ing them together.

GNU 2014-04-06 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/bind
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/gethostbyname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getservbyname

GETADDRINFO(3) Linux Programmer’s Manual GETADDRINFO(3)

All the other fields in the structure pointed to by hints must contain either 0 or a null pointer, as
appropriate.

Specifying hints as NULL is equivalent to setting ai_socktype and ai_protocol to 0; ai_family to
AF_UNSPEC; and ai_flags to (AI_V4MAPPED | AI_ADDRCONFIG). (POSIX specifies
different defaults for ai_flags; see NOTES.) node specifies either a numerical network address (for
IPv4, numbers-and-dots notation as supported by inet_aton(3); for IPv6, hexadecimal string for-
mat as supported by inet_pton(3)), or a network hostname, whose network addresses are looked
up and resolved. If hints.ai_flags contains the AI_NUMERICHOST flag, then node must be a
numerical network address. The AI_NUMERICHOST flag suppresses any potentially lengthy
network host address lookups.

If the AI_PASSIVE flag is specified in hints.ai_flags, and node is NULL, then the returned
socket addresses will be suitable for bind(2)ing a socket that will accept(2) connections. The
returned socket address will contain the wildcard address (INADDR_ANY for IPv4 addresses,
IN6ADDR_ANY_INIT for IPv6 address). The wildcard address is used by applications (typi-
cally servers) that intend to accept connections on any of the hosts’s network addresses. If node
is not NULL, then the AI_PASSIVE flag is ignored.

If the AI_PASSIVE flag is not set in hints.ai_flags, then the returned socket addresses will be
suitable for use with connect(2), sendto(2), or sendmsg(2). If node is NULL, then the network
address will be set to the loopback interface address (INADDR_LOOPBACK for IPv4
addresses, IN6ADDR_LOOPBACK_INIT for IPv6 address); this is used by applications that
intend to communicate with peers running on the same host.

service sets the port in each returned address structure. If this argument is a service name (see
services(5)), it is translated to the corresponding port number. This argument can also be speci-
fied as a decimal number, which is simply converted to binary. If service is NULL, then the port
number of the returned socket addresses will be left uninitialized. If AI_NUMERICSERV is
specified in hints.ai_flags and service is not NULL, then service must point to a string containing
a numeric port number. This flag is used to inhibit the invocation of a name resolution service in
cases where it is known not to be required.

Either node or service, but not both, may be NULL.

The getaddrinfo() function allocates and initializes a linked list of addrinfo structures, one for
each network address that matches node and service, subject to any restrictions imposed by hints,
and returns a pointer to the start of the list in res. The items in the linked list are linked by the
ai_next field.

There are several reasons why the linked list may have more than one addrinfo structure, includ-
ing: the network host is multihomed, accessible over multiple protocols (e.g., both AF_INET and
AF_INET6); or the same service is available from multiple socket types (one
SOCK_STREAM address and another SOCK_DGRAM address, for example). Normally,
the application should try using the addresses in the order in which they are returned. The sort-
ing function used within getaddrinfo() is defined in RFC 3484; the order can be tweaked for a
particular system by editing /etc/gai.conf (available since glibc 2.5).

If hints.ai_flags includes the AI_CANONNAME flag, then the ai_canonname field of the first
of the addrinfo structures in the returned list is set to point to the official name of the host.

The remaining fields of each returned addrinfo structure are initialized as follows:

* The ai_family, ai_socktype, and ai_protocol fields return the socket creation parameters (i.e.,
these fields have the same meaning as the corresponding arguments of socket(2)). For example,
ai_family might return AF_INET or AF_INET6; ai_socktype might return
SOCK_DGRAM or SOCK_STREAM; and ai_protocol returns the protocol for the socket.

* A pointer to the socket address is placed in the ai_addr field, and the length of the socket
address, in bytes, is placed in the ai_addrlen field.

GNU 2014-04-06 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/inet_aton
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/inet_pton
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/bind
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/accept
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendto
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/services
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/socket

GETADDRINFO(3) Linux Programmer’s Manual GETADDRINFO(3)

If hints.ai_flags includes the AI_ADDRCONFIG flag, then IPv4 addresses are returned in the
list pointed to by res only if the local system has at least one IPv4 address configured, and IPv6
addresses are returned only if the local system has at least one IPv6 address configured. The
loopback address is not considered for this case as valid as a configured address. This flag is use-
ful on, for example, IPv4-only systems, to ensure that getaddrinfo() does not return IPv6 socket
addresses that would always fail in connect(2) or bind(2).

If hints.ai_flags specifies the AI_V4MAPPED flag, and hints.ai_family was specified as
AF_INET6, and no matching IPv6 addresses could be found, then return IPv4-mapped IPv6
addresses in the list pointed to by res. If both AI_V4MAPPED and AI_ALL are specified in
hints.ai_flags, then return both IPv6 and IPv4-mapped IPv6 addresses in the list pointed to by
res. AI_ALL is ignored if AI_V4MAPPED is not also specified.

The freeaddrinfo() function frees the memory that was allocated for the dynamically allocated
linked list res.

Extensions to getaddrinfo() for Internationalized Domain Names
Starting with glibc 2.3.4, getaddrinfo() has been extended to selectively allow the incoming and
outgoing hostnames to be transparently converted to and from the Internationalized Domain
Name (IDN) format (see RFC 3490, Internationalizing Domain Names in Applications (IDNA)).
Four new flags are defined:

AI_IDN
If this flag is specified, then the node name given in node is converted to IDN format if
necessary. The source encoding is that of the current locale.

If the input name contains non-ASCII characters, then the IDN encoding is used. Those
parts of the node name (delimited by dots) that contain non-ASCII characters are
encoded using ASCII Compatible Encoding (ACE) before being passed to the name reso-
lution functions.

AI_CANONIDN
After a successful name lookup, and if the AI_CANONNAME flag was specified,
getaddrinfo() will return the canonical name of the node corresponding to the addrinfo
structure value passed back. The return value is an exact copy of the value returned by
the name resolution function.

If the name is encoded using ACE, then it will contain the xn-- prefix for one or more
components of the name. To convert these components into a readable form the
AI_CANONIDN flag can be passed in addition to AI_CANONNAME. The result-
ing string is encoded using the current locale’s encoding.

AI_IDN_ALLOW_UNASSIGNED, AI_IDN_USE_STD3_ASCII_RULES
Setting these flags will enable the IDNA_ALLOW_UNASSIGNED (allow unassigned Uni-
code code points) and IDNA_USE_STD3_ASCII_RULES (check output to make sure it is
a STD3 conforming hostname) flags respectively to be used in the IDNA handling.

RETURN VALUE
getaddrinfo() returns 0 if it succeeds, or one of the following nonzero error codes:

EAI_ADDRFAMILY
The specified network host does not have any network addresses in the requested address
family.

EAI_AGAIN
The name server returned a temporary failure indication. Try again later.

EAI_BADFLAGS
hints.ai_flags contains invalid flags; or, hints.ai_flags included AI_CANONNAME and
name was NULL.

GNU 2014-04-06 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/bind

GETADDRINFO(3) Linux Programmer’s Manual GETADDRINFO(3)

EAI_FAIL
The name server returned a permanent failure indication.

EAI_FAMILY
The requested address family is not supported.

EAI_MEMORY
Out of memory.

EAI_NODATA
The specified network host exists, but does not have any network addresses defined.

EAI_NONAME
The node or service is not known; or both node and service are NULL; or AI_NUMER-
ICSERV was specified in hints.ai_flags and service was not a numeric port-number
string.

EAI_SERVICE
The requested service is not available for the requested socket type. It may be available
through another socket type. For example, this error could occur if service was shell (a
service available only on stream sockets), and either hints.ai_protocol was
IPPROTO_UDP, or hints.ai_socktype was SOCK_DGRAM; or the error could occur
if service was not NULL, and hints.ai_socktype was SOCK_RAW (a socket type that
does not support the concept of services).

EAI_SOCKTYPE
The requested socket type is not supported. This could occur, for example, if
hints.ai_socktype and hints.ai_protocol are inconsistent (e.g., SOCK_DGRAM and
IPPROTO_TCP, respectively).

EAI_SYSTEM
Other system error, check errno for details.

The gai_strerror() function translates these error codes to a human readable string, suitable for
error reporting.

FILES
/etc/gai.conf

CONFORMING TO
POSIX.1-2001. The getaddrinfo() function is documented in RFC 2553.

NOTES
getaddrinfo() supports the address%scope-id notation for specifying the IPv6 scope-ID.

AI_ADDRCONFIG, AI_ALL, and AI_V4MAPPED are available since glibc 2.3.3.
AI_NUMERICSERV is available since glibc 2.3.4.

According to POSIX.1-2001, specifying hints as NULL should cause ai_flags to be assumed as 0.
The GNU C library instead assumes a value of (AI_V4MAPPED | AI_ADDRCONFIG) for
this case, since this value is considered an improvement on the specification.

EXAMPLE
The following programs demonstrate the use of getaddrinfo(), gai_strerror(), freeaddrinfo(),
and getnameinfo(3). The programs are an echo server and client for UDP datagrams.

Server program

#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

GNU 2014-04-06 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getnameinfo

GETADDRINFO(3) Linux Programmer’s Manual GETADDRINFO(3)

#include <sys/socket.h>
#include <netdb.h>

#define BUF_SIZE 500

int
main(int argc, char *argv[])
{
struct addrinfo hints;
struct addrinfo *result, *rp;
int sfd, s;
struct sockaddr_storage peer_addr;
socklen_t peer_addr_len;
ssize_t nread;
char buf[BUF_SIZE];

if (argc != 2) {
fprintf(stderr, Usage: %s portn, argv[0]);
exit(EXIT_FAILURE);
}

memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */
hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */
hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */
hints.ai_protocol = 0; /* Any protocol */
hints.ai_canonname = NULL;
hints.ai_addr = NULL;
hints.ai_next = NULL;

s = getaddrinfo(NULL, argv[1], &hints, &result);
if (s != 0) {
fprintf(stderr, getaddrinfo: %sn, gai_strerror(s));
exit(EXIT_FAILURE);
}

/* getaddrinfo() returns a list of address structures.
Try each address until we successfully bind(2)
If socket(2)
(or bind(2)
fails, we (close the socket
and) try the next address. */

for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype,
rp->ai_protocol);
if (sfd == -1)
continue;

if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)
break; /* Success */

close(sfd);
}

if (rp == NULL) { /* No address succeeded */
fprintf(stderr, Could not bindn);
exit(EXIT_FAILURE);
}

GNU 2014-04-06 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/bind
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/socket
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/bind

GETADDRINFO(3) Linux Programmer’s Manual GETADDRINFO(3)

freeaddrinfo(result); /* No longer needed */

/* Read datagrams and echo them back to sender */

for (;;) {
peer_addr_len = sizeof(struct sockaddr_storage);
nread = recvfrom(sfd, buf, BUF_SIZE, 0,
(struct sockaddr *) &peer_addr, &peer_addr_len);
if (nread == -1)
continue; /* Ignore failed request */

char host[NI_MAXHOST], service[NI_MAXSERV];

s = getnameinfo((struct sockaddr *) &peer_addr,
peer_addr_len, host, NI_MAXHOST,
service, NI_MAXSERV, NI_NUMERICSERV);
if (s == 0)
printf(Received %zd bytes from %s:%sn,
nread, host, service);
else
fprintf(stderr, getnameinfo: %sn, gai_strerror(s));

if (sendto(sfd, buf, nread, 0,
(struct sockaddr *) &peer_addr,
peer_addr_len) != nread)
fprintf(stderr, Error sending responsen);
}
}

Client program

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define BUF_SIZE 500

int
main(int argc, char *argv[])
{
struct addrinfo hints;
struct addrinfo *result, *rp;
int sfd, s, j;
size_t len;
ssize_t nread;
char buf[BUF_SIZE];

if (argc < 3) {
fprintf(stderr, Usage: %s host port msg...n, argv[0]);
exit(EXIT_FAILURE);
}

/* Obtain address(es) matching host/port */

memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */

GNU 2014-04-06 6

GETADDRINFO(3) Linux Programmer’s Manual GETADDRINFO(3)

hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */
hints.ai_flags = 0;
hints.ai_protocol = 0; /* Any protocol */

s = getaddrinfo(argv[1], argv[2], &hints, &result);
if (s != 0) {
fprintf(stderr, getaddrinfo: %sn, gai_strerror(s));
exit(EXIT_FAILURE);
}

/* getaddrinfo() returns a list of address structures.
Try each address until we successfully connect(2)
If socket(2)
(or connect(2)
fails, we (close the socket
and) try the next address. */

for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype,
rp->ai_protocol);
if (sfd == -1)
continue;

if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1)
break; /* Success */

close(sfd);
}

if (rp == NULL) { /* No address succeeded */
fprintf(stderr, Could not connectn);
exit(EXIT_FAILURE);
}

freeaddrinfo(result); /* No longer needed */

/* Send remaining command-line arguments as separate
datagrams, and read responses from server */

for (j = 3; j < argc; j++) {
len = strlen(argv[j]) + 1;
/* +1 for terminating null byte */

if (len + 1 > BUF_SIZE) {
fprintf(stderr,
Ignoring long message in argument %dn, j);
continue;
}

if (write(sfd, argv[j], len) != len) {
fprintf(stderr, partial/failed writen);
exit(EXIT_FAILURE);
}

nread = read(sfd, buf, BUF_SIZE);
if (nread == -1) {
perror(read);
exit(EXIT_FAILURE);
}

printf(Received %zd bytes: %sn, nread, buf);

GNU 2014-04-06 7

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/socket
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect

GETADDRINFO(3) Linux Programmer’s Manual GETADDRINFO(3)

}

exit(EXIT_SUCCESS);
}

SEE ALSO
getaddrinfo_a(3), gethostbyname(3), getnameinfo(3), inet(3), gai.conf(5), hostname(7), ip(7)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

GNU 2014-04-06 8

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getaddrinfo_a
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/gethostbyname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getnameinfo
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/inet
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/gai.conf
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/hostname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/ip
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	DESCRIPTION
	ai_family
	ai_socktype
	ai_protocol
	ai_flags
	Extensions to getaddrinfo() for Internationalized Domain Names
	AI_IDN
	AI_CANONIDN
	AI_IDN_ALLOW_UNASSIGNED , AI_IDN_USE_STD3_ASCII_RULES

	RETURN VALUE
	EAI_ADDRFAMILY
	EAI_AGAIN
	EAI_BADFLAGS
	EAI_FAIL
	EAI_FAMILY
	EAI_MEMORY
	EAI_NODATA
	EAI_NONAME
	EAI_SERVICE
	EAI_SOCKTYPE
	EAI_SYSTEM

	FILES
	CONFORMING TO
	NOTES
	EXAMPLE
	Server program
	Client program

	SEE ALSO
	COLOPHON

