
CRYPT(3)                                                     Linux Programmer’s Manual                                                     CRYPT(3)

NAME
crypt, crypt_r - password and data encryption

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7)
*/"
#include <unistd.h>

char *crypt(const char *key, const char *salt);

#define _GNU_SOURCE /* See feature_test_macros(7)
*/"
#include <crypt.h>

char *crypt_r(const char *key, const char *salt,
struct crypt_data *data);

Link with -lcrypt.

DESCRIPTION
crypt() is the password encryption function. It is based on the Data Encryption Standard algorithm with
variations intended (among other things) to discourage use of hardware implementations of a key search.

key is a user’s typed password.

salt is a two-character string chosen from the set [a-zA-Z0-9./]. This string is used to perturb the algorithm
in one of 4096 different ways.

By taking the lowest 7 bits of each of the first eight characters of the key, a 56-bit key is obtained. This
56-bit key is used to encrypt repeatedly a constant string (usually a string consisting of all zeros). The
returned value points to the encrypted password, a series of 13 printable ASCII characters (the first two
characters represent the salt itself). The return value points to static data whose content is overwritten by
each call.

Warning: The key space consists of 256 equal 7.2e16 possible values. Exhaustive searches of this key space
are possible using massively parallel computers. Software, such as crack(1), is available which will search
the portion of this key space that is generally used by humans for passwords. Hence, password selection
should, at minimum, avoid common words and names. The use of a passwd(1) program that checks for
crackable passwords during the selection process is recommended.

The DES algorithm itself has a few quirks which make the use of the crypt() interface a very poor choice
for anything other than password authentication. If you are planning on using the crypt() interface for a
cryptography project, don’t do it: get a good book on encryption and one of the widely available DES
libraries.

crypt_r() is a reentrant version of crypt(). The structure pointed to by data is used to store result data and
bookkeeping information. Other than allocating it, the only thing that the caller should do with this struc-
ture is to set data->initialized to zero before the first call to crypt_r().

RETURN VALUE
On success, a pointer to the encrypted password is returned.  On error, NULL is returned.

ERRORS
EINVAL

salt has the wrong format.

ENOSYS
The crypt() function was not implemented, probably because of U.S.A. export restrictions.

EPERM
/proc/sys/crypto/fips_enabled has a nonzero value, and an attempt was made to use a weak
encryption type, such as DES.

2014-02-26 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/passwd


CRYPT(3)                                                     Linux Programmer’s Manual                                                     CRYPT(3)

ATTRIBUTES
Multithreading (see pthreads(7))

The crypt() function is not thread-safe.

The crypt_r() function is thread-safe.

CONFORMING TO
crypt(): SVr4, 4.3BSD, POSIX.1-2001.  crypt_r() is a GNU extension.

NOTES
Glibc notes

The glibc2 version of this function supports additional encryption algorithms.

If salt is a character string starting with the characters "$id$" followed by a string terminated by "$":

$id$salt$encrypted

then instead of using the DES machine, id identifies the encryption method used and this then determines
how the rest of the password string is interpreted.  The following values of id are supported:

ID | Method

1 | MD5
2a | Blowfish (not in mainline glibc; added in some
| Linux distributions)
5 | SHA-256 (since glibc 2.7)
6 | SHA-512 (since glibc 2.7)

So $5$salt$encrypted is an SHA-256 encoded password and $6$salt$encrypted is an SHA-512 encoded
one.

"salt" stands for the up to 16 characters following "$id$" in the salt. The encrypted part of the password
string is the actual computed password. The size of this string is fixed:

MD5 | 22 characters
SHA-256 | 43 characters
SHA-512 | 86 characters

The characters in "salt" and "encrypted" are drawn from the set [a-zA-Z0-9./]. In the MD5 and SHA
implementations the entire key is significant (instead of only the first 8 bytes in DES).

SEE ALSO 
login(1), passwd(1), encrypt(3), getpass(3), passwd(5)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at http://www.kernel.org/doc/man-
pages/.

2014-02-26 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/login
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/passwd
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/encrypt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getpass
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/passwd
http://www.kernel.org/doc/man-pages/.
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	EINVAL
	ENOSYS
	ENOSYS
	EPERM

	ATTRIBUTES
	Multithreading (see pthreads(7))

	CONFORMING TO
	NOTES
	Glibc notes

	SEE ALSO
	COLOPHON

