
CMSG(3) Linux Programmer’s Manual CMSG(3)

NAME
CMSG_ALIGN, CMSG_SPACE, CMSG_NXTHDR, CMSG_FIRSTHDR - access ancillary data

SYNOPSIS
#include <sys/socket.h>

struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *msgh);
struct cmsghdr *CMSG_NXTHDR(struct msghdr *msgh, struct cmsghdr *cmsg);
size_t CMSG_ALIGN(size_t length);
size_t CMSG_SPACE(size_t length);
size_t CMSG_LEN(size_t length);
unsigned char *CMSG_DATA(struct cmsghdr *cmsg);

struct cmsghdr {
socklen_t cmsg_len; /* data byte count, including header */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
/* followed by unsigned char cmsg_data[]; */
};

DESCRIPTION
These macros are used to create and access control messages (also called ancillary data) that are not a part
of the socket payload. This control information may include the interface the packet was received on, vari-
ous rarely used header fields, an extended error description, a set of file descriptors or UNIX credentials.
For instance, control messages can be used to send additional header fields such as IP options. Ancillary
data is sent by calling sendmsg(2) and received by calling recvmsg(2). See their manual pages for more
information.

Ancillary data is a sequence of struct cmsghdr structures with appended data. This sequence should be
accessed using only the macros described in this manual page and never directly. See the specific protocol
man pages for the available control message types. The maximum ancillary buffer size allowed per socket
can be set using /proc/sys/net/core/optmem_max; see socket(7).

CMSG_FIRSTHDR() returns a pointer to the first cmsghdr in the ancillary data buffer associated with the
passed msghdr.

CMSG_NXTHDR() returns the next valid cmsghdr after the passed cmsghdr. It returns NULL when there
isn’t enough space left in the buffer.

CMSG_ALIGN(), given a length, returns it including the required alignment. This is a constant expres-
sion.

CMSG_SPACE() returns the number of bytes an ancillary element with payload of the passed data length
occupies. This is a constant expression.

CMSG_DATA() returns a pointer to the data portion of a cmsghdr.

CMSG_LEN() returns the value to store in the cmsg_len member of the cmsghdr structure, taking into
account any necessary alignment. It takes the data length as an argument. This is a constant expression.

To create ancillary data, first initialize the msg_controllen member of the msghdr with the length of the
control message buffer. Use CMSG_FIRSTHDR() on the msghdr to get the first control message and
CMSG_NXTHDR() to get all subsequent ones. In each control message, initialize cmsg_len (with
CMSG_LEN()), the other cmsghdr header fields, and the data portion using CMSG_DATA(). Finally, the
msg_controllen field of the msghdr should be set to the sum of the CMSG_SPACE() of the length of all
control messages in the buffer. For more information on the msghdr, see recvmsg(2).

When the control message buffer is too short to store all messages, the MSG_CTRUNC flag is set in the
msg_flags member of the msghdr.

CONFORMING TO
This ancillary data model conforms to the POSIX.1g draft, 4.4BSD-Lite, the IPv6 advanced API described
in RFC 2292 and SUSv2. CMSG_ALIGN() is a Linux extension.

Linux 2008-11-20 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/socket
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvmsg

CMSG(3) Linux Programmer’s Manual CMSG(3)

NOTES
For portability, ancillary data should be accessed using only the macros described here. CMSG_ALIGN()
is a Linux extension and should not be used in portable programs.

In Linux, CMSG_LEN(), CMSG_DATA(), and CMSG_ALIGN() are constant expressions (assuming
their argument is constant); this could be used to declare the size of global variables. This may not be por-
table, however.

EXAMPLE
This code looks for the IP_TTL option in a received ancillary buffer:

struct msghdr msgh;
struct cmsghdr *cmsg;
int *ttlptr;
int received_ttl;

/* Receive auxiliary data in msgh */
for (cmsg = CMSG_FIRSTHDR(&msgh); cmsg != NULL;
cmsg = CMSG_NXTHDR(&msgh,cmsg)) {
if (cmsg->cmsg_level == IPPROTO_IP
&& cmsg->cmsg_type == IP_TTL) {
ttlptr = (int *) CMSG_DATA(cmsg);
received_ttl = *ttlptr;
break;
}
}
if (cmsg == NULL) {
/*
* Error: IP_TTL not enabled or small buffer
* or I/O error.
*/
}

The code below passes an array of file descriptors over a UNIX domain socket using SCM_RIGHTS:

struct msghdr msg = {0};
struct cmsghdr *cmsg;
int myfds[NUM_FD]; /* Contains the file descriptors to pass. */
char buf[CMSG_SPACE(sizeof myfds)]; /* ancillary data buffer */
int *fdptr;

msg.msg_control = buf;
msg.msg_controllen = sizeof buf;
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(int) * NUM_FD);
/* Initialize the payload: */
fdptr = (int *) CMSG_DATA(cmsg);
memcpy(fdptr, myfds, NUM_FD * sizeof(int));
/* Sum of the length of all control messages in the buffer: */
msg.msg_controllen = cmsg->cmsg_len;

SEE ALSO
recvmsg(2), sendmsg(2)

RFC 2292

Linux 2008-11-20 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg

CMSG(3) Linux Programmer’s Manual CMSG(3)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at http://www.kernel.org/doc/man-
pages/.

Linux 2008-11-20 3

http://www.kernel.org/doc/man-pages/.
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	DESCRIPTION
	CONFORMING TO
	NOTES
	EXAMPLE
	SEE ALSO
	COLOPHON

