
QUEUE(3) Linux Programmer’s Manual QUEUE(3)

NAME
LIST_ENTRY, LIST_HEAD, LIST_INIT, LIST_INSERT_AFTER, LIST_INSERT_HEAD,
LIST_REMOVE, TAILQ_ENTRY, TAILQ_HEAD, TAILQ_INIT, TAILQ_INSERT_AFTER,
TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL, TAILQ_REMOVE, CIRCLEQ_ENTRY, CIR-
CLEQ_HEAD, CIRCLEQ_INIT, CIRCLEQ_INSERT_AFTER, CIRCLEQ_INSERT_BEFORE, CIR-
CLEQ_INSERT_HEAD, CIRCLEQ_INSERT_TAIL, CIRCLEQ_REMOVE - implementations of lists, tail
queues, and circular queues

SYNOPSIS
#include <sys/queue.h>

LIST_ENTRY(TYPE);
LIST_HEAD(HEADNAME, TYPE);
LIST_INIT(LIST_HEAD *head);
LIST_INSERT_AFTER(LIST_ENTRY *listelm,
TYPE *elm, LIST_ENTRY NAME);
LIST_INSERT_HEAD(LIST_HEAD *head ,
TYPE *elm, LIST_ENTRY NAME);
LIST_REMOVE(TYPE *elm, LIST_ENTRY NAME);

TAILQ_ENTRY(TYPE);
TAILQ_HEAD(HEADNAME, TYPE);
TAILQ_INIT(TAILQ_HEAD *head);
TAILQ_INSERT_AFTER(TAILQ_HEAD *head , TYPE *listelm,
TYPE *elm, TAILQ_ENTRY NAME);
TAILQ_INSERT_HEAD(TAILQ_HEAD *head ,
TYPE *elm, TAILQ_ENTRY NAME);
TAILQ_INSERT_TAIL(TAILQ_HEAD *head ,
TYPE *elm, TAILQ_ENTRY NAME);
TAILQ_REMOVE(TAILQ_HEAD *head , TYPE *elm, TAILQ_ENTRY NAME);

CIRCLEQ_ENTRY(TYPE);
CIRCLEQ_HEAD(HEADNAME, TYPE);
CIRCLEQ_INIT(CIRCLEQ_HEAD *head);
CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD *head , TYPE *listelm,
TYPE *elm, CIRCLEQ_ENTRY NAME);
CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD *head , TYPE *listelm,
TYPE *elm, CIRCLEQ_ENTRY NAME);
CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD *head ,
TYPE *elm, CIRCLEQ_ENTRY NAME);
CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD *head ,
TYPE *elm, CIRCLEQ_ENTRY NAME);
CIRCLEQ_REMOVE(CIRCLEQ_HEAD *head ,
TYPE *elm, CIRCLEQ_ENTRY NAME);

DESCRIPTION
These macros define and operate on three types of data structures: lists, tail queues, and circular queues.
All three structures support the following functionality:

* Insertion of a new entry at the head of the list.
* Insertion of a new entry after any element in the list.
* Removal of any entry in the list.
* Forward traversal through the list.

Lists are the simplest of the three data structures and support only the above functionality.

Tail queues add the following functionality:

Linux 2007-12-28 1

QUEUE(3) Linux Programmer’s Manual QUEUE(3)

* Entries can be added at the end of a list.

However:

1. All list insertions and removals must specify the head of the list.
2. Each head entry requires two pointers rather than one.
3. Code size is about 15% greater and operations run about 20% slower than lists.

Circular queues add the following functionality:

* Entries can be added at the end of a list.
* Entries can be added before another entry.
* They may be traversed backward, from tail to head.

However:

1. All list insertions and removals must specify the head of the list.
2. Each head entry requires two pointers rather than one.
3. The termination condition for traversal is more complex.
4. Code size is about 40% greater and operations run about 45% slower than lists.

In the macro definitions, TYPE is the name of a user-defined structure, that must contain a field of type
LIST_ENTRY, TAILQ_ENTRY, or CIRCLEQ_ENTRY, named NAME. The argument HEADNAME
is the name of a user-defined structure that must be declared using the macros LIST_HEAD,
TAILQ_HEAD, or CIRCLEQ_HEAD. See the examples below for further explanation of how these
macros are used.

Lists
A list is headed by a structure defined by the LIST_HEAD macro. This structure contains a single pointer
to the first element on the list. The elements are doubly linked so that an arbitrary element can be removed
without traversing the list. New elements can be added to the list after an existing element or at the head of
the list. A LIST_HEAD structure is declared as follows:

LIST_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to be
linked into the list. A pointer to the head of the list can later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

The macro LIST_ENTRY declares a structure that connects the elements in the list.

The macro LIST_INIT initializes the list referenced by head .

The macro LIST_INSERT_HEAD inserts the new element elm at the head of the list.

The macro LIST_INSERT_AFTER inserts the new element elm after the element listelm.

The macro LIST_REMOVE removes the element elm from the list.

List example
LIST_HEAD(listhead, entry) head;
struct listhead *headp; /* List head. */
struct entry {
LIST_ENTRY(entry) entries; /* List. */
} *n1, *n2, *np;

LIST_INIT(&head); /* Initialize the list. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
LIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */
LIST_INSERT_AFTER(n1, n2, entries);

Linux 2007-12-28 2

QUEUE(3) Linux Programmer’s Manual QUEUE(3)

/* Forward traversal. */
for (np = head.lh_first; np != NULL; np = np->entries.le_next)
np-> ...

while (head.lh_first != NULL) /* Delete. */
LIST_REMOVE(head.lh_first, entries);

Tail queues
A tail queue is headed by a structure defined by the TAILQ_HEAD macro. This structure contains a pair
of pointers, one to the first element in the tail queue and the other to the last element in the tail queue. The
elements are doubly linked so that an arbitrary element can be removed without traversing the tail queue.
New elements can be added to the tail queue after an existing element, at the head of the tail queue, or at
the end of the tail queue. A TAILQ_HEAD structure is declared as follows:

TAILQ_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to be
linked into the tail queue. A pointer to the head of the tail queue can later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

The macro TAILQ_ENTRY declares a structure that connects the elements in the tail queue.

The macro TAILQ_INIT initializes the tail queue referenced by head .

The macro TAILQ_INSERT_HEAD inserts the new element elm at the head of the tail queue.

The macro TAILQ_INSERT_TAIL inserts the new element elm at the end of the tail queue.

The macro TAILQ_INSERT_AFTER inserts the new element elm after the element listelm.

The macro TAILQ_REMOVE removes the element elm from the tail queue.

Tail queue example
TAILQ_HEAD(tailhead, entry) head;
struct tailhead *headp; /* Tail queue head. */
struct entry {
TAILQ_ENTRY(entry) entries; /* Tail queue. */
} *n1, *n2, *np;

TAILQ_INIT(&head); /* Initialize the queue. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
TAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
TAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */
TAILQ_INSERT_AFTER(&head, n1, n2, entries);
/* Forward traversal. */
for (np = head.tqh_first; np != NULL; np = np->entries.tqe_next)
np-> ...
/* Delete. */
while (head.tqh_first != NULL)
TAILQ_REMOVE(&head, head.tqh_first, entries);

Circular queues
A circular queue is headed by a structure defined by the CIRCLEQ_HEAD macro. This structure contains
a pair of pointers, one to the first element in the circular queue and the other to the last element in the circu-
lar queue. The elements are doubly linked so that an arbitrary element can be removed without traversing
the queue. New elements can be added to the queue after an existing element, before an existing element,
at the head of the queue, or at the end of the queue. A CIRCLEQ_HEAD structure is declared as follows:

Linux 2007-12-28 3

QUEUE(3) Linux Programmer’s Manual QUEUE(3)

CIRCLEQ_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to be
linked into the circular queue. A pointer to the head of the circular queue can later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

The macro CIRCLEQ_ENTRY declares a structure that connects the elements in the circular queue.

The macro CIRCLEQ_INIT initializes the circular queue referenced by head .

The macro CIRCLEQ_INSERT_HEAD inserts the new element elm at the head of the circular queue.

The macro CIRCLEQ_INSERT_TAIL inserts the new element elm at the end of the circular queue.

The macro CIRCLEQ_INSERT_AFTER inserts the new element elm after the element listelm.

The macro CIRCLEQ_INSERT_BEFORE inserts the new element elm before the element listelm.

The macro CIRCLEQ_REMOVE removes the element elm from the circular queue.

Circular queue example
CIRCLEQ_HEAD(circleq, entry) head;
struct circleq *headp; /* Circular queue head. */
struct entry {
CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */
} *n1, *n2, *np;

CIRCLEQ_INIT(&head); /* Initialize the circular queue. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
CIRCLEQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
CIRCLEQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */
CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);

n2 = malloc(sizeof(struct entry)); /* Insert before. */
CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries);
/* Forward traversal. */
for (np = head.cqh_first; np != (void *)&head;
np = np->entries.cqe_next)
np-> ...
/* Reverse traversal. */
for (np = head.cqh_last; np != (void *)&head; np = np->entries.cqe_prev)
np-> ...
/* Delete. */
while (head.cqh_first != (void *)&head)
CIRCLEQ_REMOVE(&head, head.cqh_first, entries);

CONFORMING TO
Not in POSIX.1-2001. Present on the BSDs. The queue functions first appeared in 4.4BSD.

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at http://www.kernel.org/doc/man-
pages/.

Linux 2007-12-28 4

http://www.kernel.org/doc/man-pages/.
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	DESCRIPTION
	Lists
	List example
	Tail queues
	Tail queue example
	Circular queues
	Circular queue example

	CONFORMING TO
	COLOPHON

