
MLOCK(2) Linux Programmer’s Manual MLOCK(2)

NAME
mlock, munlock, mlockall, munlockall - lock and unlock memory

SYNOPSIS
#include <sys/mman.h>

int mlock(const void *addr, size_t len);
int munlock(const void *addr, size_t len);

int mlockall(int flags);
int munlockall(void);

DESCRIPTION
mlock() and mlockall() respectively lock part or all of the calling process’s virtual address space
into RAM, preventing that memory from being paged to the swap area. munlock() and
munlockall() perform the converse operation, respectively unlocking part or all of the calling
process’s virtual address space, so that pages in the specified virtual address range may once more
to be swapped out if required by the kernel memory manager. Memory locking and unlocking are
performed in units of whole pages.

mlock() and munlock()
mlock() locks pages in the address range starting at addr and continuing for len bytes. All pages
that contain a part of the specified address range are guaranteed to be resident in RAM when the
call returns successfully; the pages are guaranteed to stay in RAM until later unlocked.

munlock() unlocks pages in the address range starting at addr and continuing for len bytes.
After this call, all pages that contain a part of the specified memory range can be moved to exter-
nal swap space again by the kernel.

mlockall() and munlockall()
mlockall() locks all pages mapped into the address space of the calling process. This includes
the pages of the code, data and stack segment, as well as shared libraries, user space kernel data,
shared memory, and memory-mapped files. All mapped pages are guaranteed to be resident in
RAM when the call returns successfully; the pages are guaranteed to stay in RAM until later
unlocked.

The flags argument is constructed as the bitwise OR of one or more of the following constants:

MCL_CURRENT
Lock all pages which are currently mapped into the address space of the
process.

MCL_FUTURE Lock all pages which will become mapped into the address space of the
process in the future. These could be for instance new pages required by a
growing heap and stack as well as new memory-mapped files or shared mem-
ory regions.

If MCL_FUTURE has been specified, then a later system call (e.g., mmap(2), sbrk(2), mal-
loc(3)), may fail if it would cause the number of locked bytes to exceed the permitted maximum
(see below). In the same circumstances, stack growth may likewise fail: the kernel will deny stack
expansion and deliver a SIGSEGV signal to the process.

munlockall() unlocks all pages mapped into the address space of the calling process.

RETURN VALUE
On success these system calls return 0. On error, -1 is returned, errno is set appropriately, and
no changes are made to any locks in the address space of the process.

ERRORS
ENOMEM

(Linux 2.6.9 and later) the caller had a nonzero RLIMIT_MEMLOCK soft resource
limit, but tried to lock more memory than the limit permitted. This limit is not enforced

Linux 2014-04-14 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sbrk
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc

MLOCK(2) Linux Programmer’s Manual MLOCK(2)

if the process is privileged (CAP_IPC_LOCK).

ENOMEM
(Linux 2.4 and earlier) the calling process tried to lock more than half of RAM.

EPERM
The caller is not privileged, but needs privilege (CAP_IPC_LOCK) to perform the
requested operation.

For mlock() and munlock():

EAGAIN
Some or all of the specified address range could not be locked.

EINVAL
The result of the addition start+len was less than start (e.g., the addition may have
resulted in an overflow).

EINVAL
(Not on Linux) addr was not a multiple of the page size.

ENOMEM
Some of the specified address range does not correspond to mapped pages in the address
space of the process.

For mlockall():

EINVAL
Unknown flags were specified.

For munlockall():

EPERM
(Linux 2.6.8 and earlier) The caller was not privileged (CAP_IPC_LOCK).

CONFORMING TO
POSIX.1-2001, SVr4.

AVAILABILITY
On POSIX systems on which mlock() and munlock() are available, _POSIX_MEM-
LOCK_RANGE is defined in <unistd.h> and the number of bytes in a page can be determined
from the constant PAGESIZE (if defined) in <limits.h> or by calling sysconf(_SC_PAGESIZE).

On POSIX systems on which mlockall() and munlockall() are available, _POSIX_MEM-
LOCK is defined in <unistd.h> to a value greater than 0. (See also sysconf(3).)

NOTES
Memory locking has two main applications: real-time algorithms and high-security data process-
ing. Real-time applications require deterministic timing, and, like scheduling, paging is one major
cause of unexpected program execution delays. Real-time applications will usually also switch to
a real-time scheduler with sched_setscheduler(2). Cryptographic security software often handles
critical bytes like passwords or secret keys as data structures. As a result of paging, these secrets
could be transferred onto a persistent swap store medium, where they might be accessible to the
enemy long after the security software has erased the secrets in RAM and terminated. (But be
aware that the suspend mode on laptops and some desktop computers will save a copy of the sys-
tem’s RAM to disk, regardless of memory locks.)

Real-time processes that are using mlockall() to prevent delays on page faults should reserve
enough locked stack pages before entering the time-critical section, so that no page fault can be
caused by function calls. This can be achieved by calling a function that allocates a sufficiently
large automatic variable (an array) and writes to the memory occupied by this array in order to
touch these stack pages. This way, enough pages will be mapped for the stack and can be locked
into RAM. The dummy writes ensure that not even copy-on-write page faults can occur in the
critical section.

Linux 2014-04-14 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sysconf
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sched_setscheduler

MLOCK(2) Linux Programmer’s Manual MLOCK(2)

Memory locks are not inherited by a child created via fork(2) and are automatically removed
(unlocked) during an execve(2) or when the process terminates. The mlockall()
MCL_FUTURE setting is not inherited by a child created via fork(2) and is cleared during an
execve(2).

The memory lock on an address range is automatically removed if the address range is unmapped
via munmap(2).

Memory locks do not stack, that is, pages which have been locked several times by calls to
mlock() or mlockall() will be unlocked by a single call to munlock() for the corresponding
range or by munlockall(). Pages which are mapped to several locations or by several processes
stay locked into RAM as long as they are locked at least at one location or by at least one
process.

Linux notes
Under Linux, mlock() and munlock() automatically round addr down to the nearest page
boundary. However, POSIX.1-2001 allows an implementation to require that addr is page aligned,
so portable applications should ensure this.

The VmLck field of the Linux-specific /proc/PID/status file shows how many kilobytes of memory
the process with ID PID has locked using mlock(), mlockall(), and mmap(2) MAP_LOCKED.

Limits and permissions
In Linux 2.6.8 and earlier, a process must be privileged (CAP_IPC_LOCK) in order to lock
memory and the RLIMIT_MEMLOCK soft resource limit defines a limit on how much mem-
ory the process may lock.

Since Linux 2.6.9, no limits are placed on the amount of memory that a privileged process can
lock and the RLIMIT_MEMLOCK soft resource limit instead defines a limit on how much
memory an unprivileged process may lock.

BUGS
In the 2.4 series Linux kernels up to and including 2.4.17, a bug caused the mlockall()
MCL_FUTURE flag to be inherited across a fork(2). This was rectified in kernel 2.4.18.

Since kernel 2.6.9, if a privileged process calls mlockall(MCL_FUTURE) and later drops privileges
(loses the CAP_IPC_LOCK capability by, for example, setting its effective UID to a nonzero
value), then subsequent memory allocations (e.g., mmap(2), brk(2)) will fail if the
RLIMIT_MEMLOCK resource limit is encountered.

SEE ALSO
mmap(2), setrlimit(2), shmctl(2), sysconf(3), proc(5), capabilities(7)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

Linux 2014-04-14 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/munmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/brk
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setrlimit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/shmctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sysconf
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/proc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/capabilities
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	DESCRIPTION
	mlock() and munlock()
	mlockall() and munlockall()
	MCL_CURRENT
	MCL_FUTURE

	RETURN VALUE
	ERRORS
	ENOMEM
	ENOMEM
	EPERM
	EAGAIN
	EINVAL
	EINVAL
	ENOMEM
	EINVAL
	EPERM

	CONFORMING TO
	AVAILABILITY
	NOTES
	Linux notes
	Limits and permissions

	BUGS
	SEE ALSO
	COLOPHON

