
STAT(2) Linux Programmer’s Manual STAT(2)

NAME
stat, fstat, lstat, fstatat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *pathname, struct stat *buf);
int fstat(int fd, struct stat *buf);
int lstat(const char *pathname, struct stat *buf);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int fstatat(int dirfd, const char *pathname, struct stat *buf,
int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lstat():
/* glibc 2.19 and earlier */ _BSD_SOURCE ||
/* Since glibc 2.20 */_DEFAULT_SOURCE ||
_XOPEN_SOURCE >= 500 || _XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED
|| /* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200112L

fstatat():
Since glibc 2.10:

_XOPEN_SOURCE >= 700 || _POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
These functions return information about a file, in the buffer pointed to by stat. No permissions
are required on the file itself, but—in the case of stat(), fstatat(), and lstat()—execute (search)
permission is required on all of the directories in pathname that lead to the file.

stat() and fstatat() retrieve information about the file pointed to by pathname; the differences
for fstatat() are described below.

lstat() is identical to stat(), except that if pathname is a symbolic link, then it returns informa-
tion about the link itself, not the file that it refers to.

fstat() is identical to stat(), except that the file about which information is to be retrieved is
specified by the file descriptor fd.

All of these system calls return a stat structure, which contains the following fields:

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* inode number */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of 512B blocks allocated */

/* Since Linux 2.6, the kernel supports nanosecond
precision for the following timestamp fields.

Linux 2014-08-19 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros

STAT(2) Linux Programmer’s Manual STAT(2)

For the details before Linux 2.6, see NOTES. */

struct timespec st_atim; /* time of last access */
struct timespec st_mtim; /* time of last modification */
struct timespec st_ctim; /* time of last status change */

#define st_atime st_atim.tv_sec /* Backward compatibility */
#define st_mtime st_mtim.tv_sec
#define st_ctime st_ctim.tv_sec
};

Note: the order of fields in the stat structure varies somewhat across architectures. In addition,
the definition above does not show the padding bytes that may be present between some fields on
various architectures. Consult the the glibc and kernel source code if you need to know the
details.

The st_dev field describes the device on which this file resides. (The major(3) and minor(3)
macros may be useful to decompose the device ID in this field.)

The st_rdev field describes the device that this file (inode) represents.

The st_size field gives the size of the file (if it is a regular file or a symbolic link) in bytes. The
size of a symbolic link is the length of the pathname it contains, without a terminating null byte.

The st_blocks field indicates the number of blocks allocated to the file, 512-byte units. (This may
be smaller than st_size/512 when the file has holes.)

The st_blksize field gives the preferred blocksize for efficient filesystem I/O. (Writing to a file in
smaller chunks may cause an inefficient read-modify-rewrite.)

Not all of the Linux filesystems implement all of the time fields. Some filesystem types allow
mounting in such a way that file and/or directory accesses do not cause an update of the st_atime
field. (See noatime, nodiratime, and relatime in mount(8), and related information in mount(2).)
In addition, st_atime is not updated if a file is opened with the O_NOATIME; see open(2).

The field st_atime is changed by file accesses, for example, by execve(2), mknod(2), pipe(2),
utime(2), and read(2) (of more than zero bytes). Other routines, like mmap(2), may or may not
update st_atime.

The field st_mtime is changed by file modifications, for example, by mknod(2), truncate(2),
utime(2), and write(2) (of more than zero bytes). Moreover, st_mtime of a directory is changed
by the creation or deletion of files in that directory. The st_mtime field is not changed for
changes in owner, group, hard link count, or mode.

The field st_ctime is changed by writing or by setting inode information (i.e., owner, group, link
count, mode, etc.).

The following mask values are defined for the file type component of the st_mode field:

S_IFMT 0170000 bit mask for the file type bit fields

S_IFSOCK 0140000 socket
S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 FIFO

Thus, to test for a regular file (for example), one could write:

stat(pathname, &sb);
if ((sb.st_mode & S_IFMT) == S_IFREG) {

Linux 2014-08-19 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/major
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/minor
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/mount
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mount
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mknod
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/pipe
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/utime
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mknod
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/truncate
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/utime
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write

STAT(2) Linux Programmer’s Manual STAT(2)

/* Handle regular file */
}

Because tests of the above form are common, additional macros are defined by POSIX to allow
the test of the file type in st_mode to be written more concisely:

S_ISREG(m) is it a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) character device?

S_ISBLK(m) block device?

S_ISFIFO(m) FIFO (named pipe)?

S_ISLNK(m) symbolic link? (Not in POSIX.1-1996.)

S_ISSOCK(m) socket? (Not in POSIX.1-1996.)

The preceding code snippet could thus be rewritten as:

stat(pathname, &sb);
if (S_ISREG(sb.st_mode)) {
/* Handle regular file */
}

The definitions of most of the above file type test macros are provided if any of the following fea-
ture test macros is defined: _BSD_SOURCE (in glibc 2.19 and earlier), _SVID_SOURCE (in
glibc 2.19 and earlier), or _DEFAULT_SOURCE (in glibc 2.20 and later). In addition, defini-
tions of all of the above macros except S_IFSOCK and S_ISSOCK() are provided if
_XOPEN_SOURCE is defined. The definition of S_IFSOCK can also be exposed by defining
_XOPEN_SOURCE with a value of 500 or greater.

The definition of S_ISSOCK() is exposed if any of the following feature test macros is defined:
_BSD_SOURCE (in glibc 2.19 and earlier), _DEFAULT_SOURCE (in glibc 2.20 and later),
_XOPEN_SOURCE with a value of 500 or greater, or _POSIX_C_SOURCE with a value of
200112L or greater.

The following mask values are defined for the file permissions component of the st_mode field:

S_ISUID 0004000 set-user-ID bit
S_ISGID 0002000 set-group-ID bit (see below)
S_ISVTX 0001000 sticky bit (see below)

S_IRWXU 00700 mask for file owner permissions
S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission
S_IXUSR 00100 owner has execute permission

S_IRWXG 00070 mask for group permissions
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission

S_IRWXO 00007 mask for permissions for oth-
ers (not in group)

S_IROTH 00004 others have read permission
S_IWOTH 00002 others have write permission
S_IXOTH 00001 others have execute permission

The set-group-ID bit (S_ISGID) has several special uses. For a directory, it indicates that BSD
semantics is to be used for that directory: files created there inherit their group ID from the

Linux 2014-08-19 3

STAT(2) Linux Programmer’s Manual STAT(2)

directory, not from the effective group ID of the creating process, and directories created there
will also get the S_ISGID bit set. For a file that does not have the group execution bit
(S_IXGRP) set, the set-group-ID bit indicates mandatory file/record locking.

The sticky bit (S_ISVTX) on a directory means that a file in that directory can be renamed or
deleted only by the owner of the file, by the owner of the directory, and by a privileged process.

fstatat()
The fstatat() system call operates in exactly the same way as stat(), except for the differences
described here.

If the pathname given in pathname is relative, then it is interpreted relative to the directory
referred to by the file descriptor dirfd (rather than relative to the current working directory of the
calling process, as is done by stat() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted
relative to the current working directory of the calling process (like stat()).

If pathname is absolute, then dirfd is ignored.

flags can either be 0, or include one or more of the following flags ORed:

AT_EMPTY_PATH (since Linux 2.6.39)
If pathname is an empty string, operate on the file referred to by dirfd (which may have
been obtained using the open(2) O_PATH flag). If dirfd is AT_FDCWD, the call
operates on the current working directory. In this case, dirfd can refer to any type of file,
not just a directory. This flag is Linux-specific; define _GNU_SOURCE to obtain its
definition.

AT_NO_AUTOMOUNT (since Linux 2.6.38)
Don’t automount the terminal (basename) component of pathname if it is a directory that
is an automount point. This allows the caller to gather attributes of an automount point
(rather than the location it would mount). This flag can be used in tools that scan direc-
tories to prevent mass-automounting of a directory of automount points. The
AT_NO_AUTOMOUNT flag has no effect if the mount point has already been
mounted over. This flag is Linux-specific; define _GNU_SOURCE to obtain its defini-
tion.

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead return information about the
link itself, like lstat(). (By default, fstatat() dereferences symbolic links, like stat().)

See openat(2) for an explanation of the need for fstatat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of pathname. (See
also path_resolution(7).)

EBADF
fd is bad.

EFAULT
Bad address.

ELOOP
Too many symbolic links encountered while traversing the path.

ENAMETOOLONG
pathname is too long.

Linux 2014-08-19 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/openat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/path_resolution

STAT(2) Linux Programmer’s Manual STAT(2)

ENOENT
A component of pathname does not exist, or pathname is an empty string.

ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path prefix of pathname is not a directory.

EOVERFLOW
pathname or fd refers to a file whose size, inode number, or number of blocks cannot be
represented in, respectively, the types off_t, ino_t, or blkcnt_t. This error can occur when,
for example, an application compiled on a 32-bit platform without -D_FILE_OFF-
SET_BITS=64 calls stat() on a file whose size exceeds (1<<31)-1 bytes.

The following additional errors can occur for fstatat():

EBADF
dirfd is not a valid file descriptor.

EINVAL
Invalid flag specified in flags.

ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than a directory.

VERSIONS
fstatat() was added to Linux in kernel 2.6.16; library support was added to glibc in version 2.4.

CONFORMING TO
stat(), fstat(), lstat(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1.2008.

fstatat(): POSIX.1-2008.

According to POSIX.1-2001, lstat() on a symbolic link need return valid information only in the
st_size field and the file-type component of the st_mode field of the stat structure. POSIX.1-2008
tightens the specification, requiring lstat() to return valid information in all fields except the per-
mission bits in st_mode.

Use of the st_blocks and st_blksize fields may be less portable. (They were introduced in BSD.
The interpretation differs between systems, and possibly on a single system when NFS mounts are
involved.) If you need to obtain the definition of the blkcnt_t or blksize_t types from <sys/stat.h>,
then define _XOPEN_SOURCE with the value 500 or greater (before including any header
files).

POSIX.1-1990 did not describe the S_IFMT, S_IFSOCK, S_IFLNK, S_IFREG, S_IFBLK,
S_IFDIR, S_IFCHR, S_IFIFO, S_ISVTX constants, but instead demanded the use of the
macros S_ISDIR(), and so on. The S_IF* constants are present in POSIX.1-2001 and later.

The S_ISLNK() and S_ISSOCK() macros are not in POSIX.1-1996, but both are present in
POSIX.1-2001; the former is from SVID 4, the latter from SUSv2.

UNIX V7 (and later systems) had S_IREAD, S_IWRITE, S_IEXEC, where POSIX prescribes
the synonyms S_IRUSR, S_IWUSR, S_IXUSR.

Other systems
Values that have been (or are) in use on various systems:

hex name ls octal description
f000 S_IFMT 170000 mask for file type

Linux 2014-08-19 5

STAT(2) Linux Programmer’s Manual STAT(2)

0000 000000 SCO out-of-service inode; BSD
unknown type; SVID-v2 and XPG2
have both 0 and 0100000 for ordinary
file

1000 S_IFIFO p| 010000 FIFO (named pipe)
2000 S_IFCHR c 020000 character special (V7)
3000 S_IFMPC 030000 multiplexed character special (V7)
4000 S_IFDIR d/ 040000 directory (V7)
5000 S_IFNAM 050000 XENIX named special file with two

subtypes, distinguished by st_rdev val-
ues 1, 2

0001 S_INSEM s 000001 XENIX semaphore subtype of IFNAM
0002 S_INSHD m 000002 XENIX shared data subtype of IFNAM
6000 S_IFBLK b 060000 block special (V7)
7000 S_IFMPB 070000 multiplexed block special (V7)
8000 S_IFREG - 100000 regular (V7)
9000 S_IFCMP 110000 VxFS compressed
9000 S_IFNWK n 110000 network special (HP-UX)
a000 S_IFLNK l@ 120000 symbolic link (BSD)
b000 S_IFSHAD 130000 Solaris shadow inode for ACL (not seen

by user space)
c000 S_IFSOCK s= 140000 socket (BSD; also S_IFSOC on VxFS)
d000 S_IFDOOR D> 150000 Solaris door
e000 S_IFWHT w% 160000 BSD whiteout (not used for inode)
0200 S_ISVTX 001000 sticky bit: save swapped text even after

use (V7)
reserved (SVID-v2)
On nondirectories: don’t cache this file
(SunOS)
On directories: restricted deletion flag
(SVID-v4.2)

0400 S_ISGID 002000 set-group-ID on execution (V7)
for directories: use BSD semantics for
propagation of GID

0400 S_ENFMT 002000 System V file locking enforcement
(shared with S_ISGID)

0800 S_ISUID 004000 set-user-ID on execution (V7)
0800 S_CDF 004000 directory is a context dependent file

(HP-UX)

A sticky command appeared in Version 32V AT&T UNIX.

NOTES
On Linux, lstat() will generally not trigger automounter action, whereas stat() will (but see
fstatat(2)).

For most files under the /proc directory, stat() does not return the file size in the st_size field;
instead the field is returned with the value 0.

Timestamp fields
Older kernels and older standards did not support nanosecond timestamp fields. Instead, there
were three timestamp fields—st_atime, st_mtime, and st_ctime—typed as time_t that recorded
timestamps with one-second precision.

Since kernel 2.5.48, the stat structure supports nanosecond resolution for the three file timestamp
fields. The nanosecond components of each timestamp are available via names of the form
st_atim.tv_nsec if the _BSD_SOURCE or _SVID_SOURCE feature test macro is defined.

Linux 2014-08-19 6

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fstatat

STAT(2) Linux Programmer’s Manual STAT(2)

Nanosecond timestamps are nowadays standardized, starting with POSIX.1-2008, and, starting
with version 2.12, glibc also exposes the nanosecond component names if _POSIX_C_SOURCE
is defined with the value 200809L or greater, or _XOPEN_SOURCE is defined with the value
700 or greater. If none of the aforementioned macros are defined, then the nanosecond values are
exposed with names of the form st_atimensec.

Nanosecond timestamps are supported on XFS, JFS, Btrfs, and ext4 (since Linux 2.6.23).
Nanosecond timestamps are not supported in ext2, ext3, and Reiserfs. On filesystems that do not
support subsecond timestamps, the nanosecond fields are returned with the value 0.

Underlying kernel interface
Over time, increases in the size of the stat structure have led to three successive versions of
stat(): sys_stat() (slot __NR_oldstat), sys_newstat() (slot __NR_stat), and sys_stat64() (new in
kernel 2.4; slot __NR_stat64). The glibc stat() wrapper function hides these details from applica-
tions, invoking the most recent version of the system call provided by the kernel, and repacking
the returned information if required for old binaries. Similar remarks apply for fstat() and
lstat().

The underlying system call employed by the glibc fstatat() wrapper function is actually called
fstatat64().

EXAMPLE
The following program calls stat() and displays selected fields in the returned stat structure.

#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{
struct stat sb;

if (argc != 2) {
fprintf(stderr, Usage: %s <pathname>n, argv[0]);
exit(EXIT_FAILURE);
}

if (stat(argv[1], &sb) == -1) {
perror(stat);
exit(EXIT_FAILURE);
}

printf(File type:);

switch (sb.st_mode & S_IFMT) {
case S_IFBLK: printf(block devicen); break;
case S_IFCHR: printf(character devicen); break;
case S_IFDIR: printf(directoryn); break;
case S_IFIFO: printf(FIFO/pipen); break;
case S_IFLNK: printf(symlinkn); break;
case S_IFREG: printf(regular filen); break;
case S_IFSOCK: printf(socketn); break;
default: printf(unknown?n); break;
}

printf(I-node number: %ldn, (long) sb.st_ino);

printf(Mode: %lo (octal)n,

Linux 2014-08-19 7

STAT(2) Linux Programmer’s Manual STAT(2)

(unsigned long) sb.st_mode);

printf(Link count: %ldn, (long) sb.st_nlink);
printf(Ownership: UID=%ld GID=%ldn,
(long) sb.st_uid, (long) sb.st_gid);

printf(Preferred I/O block size: %ld bytesn,
(long) sb.st_blksize);
printf(File size: %lld bytesn,
(long long) sb.st_size);
printf(Blocks allocated: %lldn,
(long long) sb.st_blocks);

printf(Last status change: %s, ctime(&sb.st_ctime));
printf(Last file access: %s, ctime(&sb.st_atime));
printf(Last file modification: %s, ctime(&sb.st_mtime));

exit(EXIT_SUCCESS);
}

SEE ALSO
ls(1), stat(1), access(2), chmod(2), chown(2), readlink(2), utime(2), capabilities(7), symlink(7)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

Linux 2014-08-19 8

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/ls
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/stat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/access
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chmod
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chown
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/readlink
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/utime
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/capabilities
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/symlink
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	Since glibc 2.10:
	Before glibc 2.10:

	DESCRIPTION
	S_ISREG (m)
	S_ISDIR (m)
	S_ISCHR (m)
	S_ISBLK (m)
	S_ISFIFO (m)
	S_ISLNK (m)
	S_ISSOCK (m)

	fstatat()
	AT_EMPTY_PATH (since Linux 2.6.39)
	AT_NO_AUTOMOUNT (since Linux 2.6.38)
	AT_SYMLINK_NOFOLLOW

	RETURN VALUE
	ERRORS
	EACCES
	EBADF
	EFAULT
	ELOOP
	ENAMETOOLONG
	ENOENT
	ENOMEM
	ENOTDIR
	EOVERFLOW
	EBADF
	EINVAL
	ENOTDIR

	VERSIONS
	CONFORMING TO
	Other systems

	NOTES
	Timestamp fields
	Underlying kernel interface

	EXAMPLE
	SEE ALSO
	COLOPHON

