
GETCWD(3) Linux Programmer’s Manual GETCWD(3)

NAME
getcwd, getwd, get_current_dir_name - get current working directory

SYNOPSIS
#include <unistd.h>

char *getcwd(char *buf, size_t size);

char *getwd(char *buf);

char *get_current_dir_name(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

get_current_dir_name():
_GNU_SOURCE

getwd():
Since glibc 2.12:

_BSD_SOURCE ||
(_XOPEN_SOURCE >= 500 ||
_XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED) &&
!(_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700)

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500 ||
_XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED

DESCRIPTION
These functions return a null-terminated string containing an absolute pathname that is the cur-
rent working directory of the calling process. The pathname is returned as the function result
and via the argument buf, if present.

The getcwd() function copies an absolute pathname of the current working directory to the array
pointed to by buf, which is of length size.

If the length of the absolute pathname of the current working directory, including the terminating
null byte, exceeds size bytes, NULL is returned, and errno is set to ERANGE; an application
should check for this error, and allocate a larger buffer if necessary.

As an extension to the POSIX.1-2001 standard, glibc’s getcwd() allocates the buffer dynamically
using malloc(3) if buf is NULL. In this case, the allocated buffer has the length size unless size is
zero, when buf is allocated as big as necessary. The caller should free(3) the returned buffer.

get_current_dir_name() will malloc(3) an array big enough to hold the absolute pathname of
the current working directory. If the environment variable PWD is set, and its value is correct,
then that value will be returned. The caller should free(3) the returned buffer.

getwd() does not malloc(3) any memory. The buf argument should be a pointer to an array at
least PATH_MAX bytes long. If the length of the absolute pathname of the current working
directory, including the terminating null byte, exceeds PATH_MAX bytes, NULL is returned,
and errno is set to ENAMETOOLONG. (Note that on some systems, PATH_MAX may not
be a compile-time constant; furthermore, its value may depend on the filesystem, see
pathconf(3).) For portability and security reasons, use of getwd() is deprecated.

RETURN VALUE
On success, these functions return a pointer to a string containing the pathname of the current
working directory. In the case getcwd() and getwd() this is the same value as buf.

On failure, these functions return NULL, and errno is set to indicate the error. The contents of
the array pointed to by buf are undefined on error.

GNU 2014-08-19 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/free
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/free
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pathconf

GETCWD(3) Linux Programmer’s Manual GETCWD(3)

ERRORS
EACCES

Permission to read or search a component of the filename was denied.

EFAULT
buf points to a bad address.

EINVAL
The size argument is zero and buf is not a null pointer.

EINVAL
getwd(): buf is NULL.

ENAMETOOLONG
getwd(): The size of the null-terminated absolute pathname string exceeds
PATH_MAX bytes.

ENOENT
The current working directory has been unlinked.

ERANGE
The size argument is less than the length of the absolute pathname of the working direc-
tory, including the terminating null byte. You need to allocate a bigger array and try
again.

CONFORMING TO
getcwd() conforms to POSIX.1-2001. Note however that POSIX.1-2001 leaves the behavior of
getcwd() unspecified if buf is NULL.

getwd() is present in POSIX.1-2001, but marked LEGACY. POSIX.1-2008 removes the specifi-
cation of getwd(). Use getcwd() instead. POSIX.1-2001 does not define any errors for
getwd().

get_current_dir_name() is a GNU extension.

NOTES
Under Linux, the function getcwd() is a system call (since 2.1.92). On older systems it would
query /proc/self/cwd. If both system call and proc filesystem are missing, a generic implementa-
tion is called. Only in that case can these calls fail under Linux with EACCES.

These functions are often used to save the location of the current working directory for the pur-
pose of returning to it later. Opening the current directory (.) and calling fchdir(2) to return is
usually a faster and more reliable alternative when sufficiently many file descriptors are available,
especially on platforms other than Linux.

SEE ALSO
chdir(2), fchdir(2), open(2), unlink(2), free(3), malloc(3)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

GNU 2014-08-19 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fchdir
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chdir
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fchdir
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/unlink
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/free
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	Since glibc 2.12:
	Before glibc 2.12:

	DESCRIPTION
	RETURN VALUE
	ERRORS
	EACCES
	EFAULT
	EINVAL
	EINVAL
	ENAMETOOLONG
	ENOENT
	ERANGE

	CONFORMING TO
	NOTES
	SEE ALSO
	COLOPHON

