
EXECVE(2) Linux Programmer’s Manual EXECVE(2)

NAME
execve - execute program

SYNOPSIS
#include <unistd.h>

int execve(const char *filename, char *const argv[],
char *const envp[]);

DESCRIPTION
execve() executes the program pointed to by filename. filename must be either a binary exe-
cutable, or a script starting with a line of the form:

#! interpreter [optional-arg]

For details of the latter case, see Interpreter scripts below.

argv is an array of argument strings passed to the new program. By convention, the first of these
strings should contain the filename associated with the file being executed. envp is an array of
strings, conventionally of the form key=value, which are passed as environment to the new pro-
gram. Both argv and envp must be terminated by a null pointer. The argument vector and envi-
ronment can be accessed by the called program’s main function, when it is defined as:

int main(int argc, char *argv[], char *envp[])

execve() does not return on success, and the text, data, bss, and stack of the calling process are
overwritten by that of the program loaded.

If the current program is being ptraced, a SIGTRAP is sent to it after a successful execve().

If the set-user-ID bit is set on the program file pointed to by filename, and the underlying filesys-
tem is not mounted nosuid (the MS_NOSUID flag for mount(2)), and the calling process is not
being ptraced, then the effective user ID of the calling process is changed to that of the owner of
the program file. Similarly, when the set-group-ID bit of the program file is set the effective
group ID of the calling process is set to the group of the program file.

The effective user ID of the process is copied to the saved set-user-ID; similarly, the effective
group ID is copied to the saved set-group-ID. This copying takes place after any effective ID
changes that occur because of the set-user-ID and set-group-ID permission bits.

If the executable is an a.out dynamically linked binary executable containing shared-library stubs,
the Linux dynamic linker ld.so(8) is called at the start of execution to bring needed shared
libraries into memory and link the executable with them.

If the executable is a dynamically linked ELF executable, the interpreter named in the
PT_INTERP segment is used to load the needed shared libraries. This interpreter is typically
/lib/ld-linux.so.2 for binaries linked with glibc.

All process attributes are preserved during an execve(), except the following:

* The dispositions of any signals that are being caught are reset to the default (signal(7)).

* Any alternate signal stack is not preserved (sigaltstack(2)).

* Memory mappings are not preserved (mmap(2)).

* Attached System V shared memory segments are detached (shmat(2)).

* POSIX shared memory regions are unmapped (shm_open(3)).

* Open POSIX message queue descriptors are closed (mq_overview(7)).

* Any open POSIX named semaphores are closed (sem_overview(7)).

* POSIX timers are not preserved (timer_create(2)).

Linux 2014-10-02 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mount
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/ld.so
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/signal
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigaltstack
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/shmat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/shm_open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/mq_overview
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/sem_overview
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/timer_create


EXECVE(2) Linux Programmer’s Manual EXECVE(2)

* Any open directory streams are closed (opendir(3)).

* Memory locks are not preserved (mlock(2), mlockall(2)).

* Exit handlers are not preserved (atexit(3), on_exit(3)).

* The floating-point environment is reset to the default (see fenv(3)).

The process attributes in the preceding list are all specified in POSIX.1-2001. The following
Linux-specific process attributes are also not preserved during an execve():

* The prctl(2) PR_SET_DUMPABLE flag is set, unless a set-user-ID or set-group ID pro-
gram is being executed, in which case it is cleared.

* The prctl(2) PR_SET_KEEPCAPS flag is cleared.

* (Since Linux 2.4.36 / 2.6.23) If a set-user-ID or set-group-ID program is being executed, then
the parent death signal set by prctl(2) PR_SET_PDEATHSIG flag is cleared.

* The process name, as set by prctl(2) PR_SET_NAME (and displayed by ps -o comm), is
reset to the name of the new executable file.

* The SECBIT_KEEP_CAPS securebits flag is cleared. See capabilities(7).

* The termination signal is reset to SIGCHLD (see clone(2)).

Note the following further points:

* All threads other than the calling thread are destroyed during an execve(). Mutexes, condi-
tion variables, and other pthreads objects are not preserved.

* The equivalent of setlocale(LC_ALL, C) is executed at program start-up.

* POSIX.1-2001 specifies that the dispositions of any signals that are ignored or set to the
default are left unchanged. POSIX.1-2001 specifies one exception: if SIGCHLD is being
ignored, then an implementation may leave the disposition unchanged or reset it to the
default; Linux does the former.

* Any outstanding asynchronous I/O operations are canceled (aio_read(3), aio_write(3)).

* For the handling of capabilities during execve(), see capabilities(7).

* By default, file descriptors remain open across an execve(). File descriptors that are marked
close-on-exec are closed; see the description of FD_CLOEXEC in fcntl(2). (If a file descrip-
tor is closed, this will cause the release of all record locks obtained on the underlying file by
this process. See fcntl(2) for details.) POSIX.1-2001 says that if file descriptors 0, 1, and 2
would otherwise be closed after a successful execve(), and the process would gain privilege
because the set-user_ID or set-group_ID permission bit was set on the executed file, then the
system may open an unspecified file for each of these file descriptors. As a general principle,
no portable program, whether privileged or not, can assume that these three file descriptors
will remain closed across an execve().

Interpreter scripts
An interpreter script is a text file that has execute permission enabled and whose first line is of
the form:

#! interpreter [optional-arg]

The interpreter must be a valid pathname for an executable which is not itself a script. If the
filename argument of execve() specifies an interpreter script, then interpreter will be invoked
with the following arguments:

interpreter [optional-arg] filename arg...

where arg... is the series of words pointed to by the argv argument of execve(), starting at
argv[1].

For portable use, optional-arg should either be absent, or be specified as a single word (i.e., it

Linux 2014-10-02 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/opendir
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mlock
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mlockall
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/atexit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/on_exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fenv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/prctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/capabilities
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/aio_read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/aio_write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/capabilities
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl


EXECVE(2) Linux Programmer’s Manual EXECVE(2)

should not contain white space); see NOTES below.

Limits on size of arguments and environment
Most UNIX implementations impose some limit on the total size of the command-line argument
(argv) and environment (envp) strings that may be passed to a new program. POSIX.1 allows an
implementation to advertise this limit using the ARG_MAX constant (either defined in <lim-
its.h> or available at run time using the call sysconf(_SC_ARG_MAX)).

On Linux prior to kernel 2.6.23, the memory used to store the environment and argument strings
was limited to 32 pages (defined by the kernel constant MAX_ARG_PAGES). On architec-
tures with a 4-kB page size, this yields a maximum size of 128 kB.

On kernel 2.6.23 and later, most architectures support a size limit derived from the soft
RLIMIT_STACK resource limit (see getrlimit(2)) that is in force at the time of the execve()
call. (Architectures with no memory management unit are excepted: they maintain the limit that
was in effect before kernel 2.6.23.) This change allows programs to have a much larger argument
and/or environment list. For these architectures, the total size is limited to 1/4 of the allowed
stack size. (Imposing the 1/4-limit ensures that the new program always has some stack space.)
Since Linux 2.6.25, the kernel places a floor of 32 pages on this size limit, so that, even when
RLIMIT_STACK is set very low, applications are guaranteed to have at least as much argu-
ment and environment space as was provided by Linux 2.6.23 and earlier. (This guarantee was
not provided in Linux 2.6.23 and 2.6.24.) Additionally, the limit per string is 32 pages (the kernel
constant MAX_ARG_STRLEN), and the maximum number of strings is 0x7FFFFFFF.

RETURN VALUE
On success, execve() does not return, on error -1 is returned, and errno is set appropriately.

ERRORS
E2BIG

The total number of bytes in the environment (envp) and argument list (argv) is too
large.

EACCES
Search permission is denied on a component of the path prefix of filename or the name of
a script interpreter. (See also path_resolution(7).)

EACCES
The file or a script interpreter is not a regular file.

EACCES
Execute permission is denied for the file or a script or ELF interpreter.

EACCES
The filesystem is mounted noexec.

EAGAIN (since Linux 3.1)
Having changed its real UID using one of the set*uid() calls, the caller was—and is now
still—above its RLIMIT_NPROC resource limit (see setrlimit(2)). For a more detailed
explanation of this error, see NOTES.

EFAULT
filename or one of the pointers in the vectors argv or envp points outside your accessible
address space.

EINVAL
An ELF executable had more than one PT_INTERP segment (i.e., tried to name more
than one interpreter).

EIO An I/O error occurred.

EISDIR
An ELF interpreter was a directory.

Linux 2014-10-02 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getrlimit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/path_resolution
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setrlimit


EXECVE(2) Linux Programmer’s Manual EXECVE(2)

ELIBBAD
An ELF interpreter was not in a recognized format.

ELOOP
Too many symbolic links were encountered in resolving filename or the name of a script
or ELF interpreter.

EMFILE
The process has the maximum number of files open.

ENAMETOOLONG
filename is too long.

ENFILE
The system limit on the total number of open files has been reached.

ENOENT
The file filename or a script or ELF interpreter does not exist, or a shared library needed
for file or interpreter cannot be found.

ENOEXEC
An executable is not in a recognized format, is for the wrong architecture, or has some
other format error that means it cannot be executed.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix of filename or a script or ELF interpreter is not a direc-
tory.

EPERM
The filesystem is mounted nosuid, the user is not the superuser, and the file has the set-
user-ID or set-group-ID bit set.

EPERM
The process is being traced, the user is not the superuser and the file has the set-user-ID
or set-group-ID bit set.

ETXTBSY
Executable was open for writing by one or more processes.

CONFORMING TO 
SVr4, 4.3BSD, POSIX.1-2001. POSIX.1-2001 does not document the #! behavior but is other-
wise compatible.

NOTES
Set-user-ID and set-group-ID processes can not be ptrace(2)d.

The result of mounting a filesystem nosuid varies across Linux kernel versions: some will refuse
execution of set-user-ID and set-group-ID executables when this would give the user powers she
did not have already (and return EPERM), some will just ignore the set-user-ID and set-group-
ID bits and exec() successfully. On Linux, argv and envp can be specified as NULL. In both
cases, this has the same effect as specifying the argument as a pointer to a list containing a single
null pointer. Do not take advantage of this misfeature! It is nonstandard and nonportable:
on most other UNIX systems doing this will result in an error (EFAULT).

POSIX.1-2001 says that values returned by sysconf(3) should be invariant over the lifetime of a
process. However, since Linux 2.6.23, if the RLIMIT_STACK resource limit changes, then the
value reported by _SC_ARG_MAX will also change, to reflect the fact that the limit on space
for holding command-line arguments and environment variables has changed.

In most cases where execve() fails, control returns to the original executable image, and the call-
er of execve() can then handle the error. However, in (rare) cases (typically caused by resource

Linux 2014-10-02 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ptrace
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sysconf


EXECVE(2) Linux Programmer’s Manual EXECVE(2)

exhaustion), failure may occur past the point of no return: the original executable image has been
torn down, but the new image could not be completely built. In such cases, the kernel kills the
process with a SIGKILL signal.

Interpreter scripts
A maximum line length of 127 characters is allowed for the first line in an interpreter scripts.

The semantics of the optional-arg argument of an interpreter script vary across implementations.
On Linux, the entire string following the interpreter name is passed as a single argument to the
interpreter, and this string can include white space. However, behavior differs on some other sys-
tems. Some systems use the first white space to terminate optional-arg. On some systems, an
interpreter script can have multiple arguments, and white spaces in optional-arg are used to
delimit the arguments.

Linux ignores the set-user-ID and set-group-ID bits on scripts.

execve() and EAGAIN
A more detailed explanation of the EAGAIN error that can occur (since Linux 3.1) when calling
execve() is as follows.

The EAGAIN error can occur when a preceding call to setuid(2), setreuid(2), or setresuid(2)
caused the real user ID of the process to change, and that change caused the process to exceed its
RLIMIT_NPROC resource limit (i.e., the number of processes belonging to the new real UID
exceeds the resource limit). From Linux 2.6.0 to 3.0, this caused the set*uid() call to fail. (Prior
to 2.6, the resource limit was not imposed on processes that changed their user IDs.)

Since Linux 3.1, the scenario just described no longer causes the set*uid() call to fail, because it
too often led to security holes where buggy applications didn’t check the return status and
assumed that—if the caller had root privileges—the call would always succeed. Instead, the
set*uid() calls now successfully change the real UID, but the kernel sets an internal flag, named
PF_NPROC_EXCEEDED, to note that the RLIMIT_NPROC resource limit has been
exceeded. If the PF_NPROC_EXCEEDED flag is set and the resource limit is still exceeded
at the time of a subsequent execve() call, that call fails with the error EAGAIN. This kernel
logic ensures that the RLIMIT_NPROC resource limit is still enforced for the common privi-
leged daemon workflow—namely, fork(2) + set*uid() + execve().

If the resource limit was not still exceeded at the time of the execve() call (because other pro-
cesses belonging to this real UID terminated between the set*uid() call and the execve() call),
then the execve() call succeeds and the kernel clears the PF_NPROC_EXCEEDED process
flag. The flag is also cleared if a subsequent call to fork(2) by this process succeeds.

Historical
With UNIX V6, the argument list of an exec() call was ended by 0, while the argument list of
main was ended by -1. Thus, this argument list was not directly usable in a further exec() call.
Since UNIX V7, both are NULL.

EXAMPLE
The following program is designed to be execed by the second program below. It just echoes its
command-line arguments, one per line.

/* myecho.c */

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{
int j;

for (j = 0; j < argc; j++)

Linux 2014-10-02 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setreuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setresuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork


EXECVE(2) Linux Programmer’s Manual EXECVE(2)

printf(argv[%d]: %sn, j, argv[j]);

exit(EXIT_SUCCESS);
}

This program can be used to exec the program named in its command-line argument:

/* execve.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{
char *newargv[] = { NULL, hello, world, NULL };
char *newenviron[] = { NULL };

if (argc != 2) {
fprintf(stderr, Usage: %s <file-to-exec>n, argv[0]);
exit(EXIT_FAILURE);
}

newargv[0] = argv[1];

execve(argv[1], newargv, newenviron);
perror(execve); /* execve() only returns on error */
exit(EXIT_FAILURE);
}

We can use the second program to exec the first as follows:

$ cc myecho.c -o myecho
$ cc execve.c -o execve
$ ./execve ./myecho
argv[0]: ./myecho
argv[1]: hello
argv[2]: world

We can also use these programs to demonstrate the use of a script interpreter. To do this we cre-
ate a script whose interpreter is our myecho program:

$ cat > script
#!./myecho script-arg
ˆD
$ chmod +x script

We can then use our program to exec the script:

$ ./execve ./script
argv[0]: ./myecho
argv[1]: script-arg
argv[2]: ./script
argv[3]: hello
argv[4]: world

SEE ALSO 
chmod(2), fork(2), ptrace(2), execl(3), fexecve(3), getopt(3), credentials(7), environ(7), path_reso-
lution(7), ld.so(8)

Linux 2014-10-02 6

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chmod
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ptrace
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/execl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fexecve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/credentials
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/environ
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/path_resolution
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/path_resolution
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/ld.so


EXECVE(2) Linux Programmer’s Manual EXECVE(2)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

Linux 2014-10-02 7

http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	DESCRIPTION
	Interpreter scripts
	Limits on size of arguments and environment

	RETURN VALUE
	ERRORS
	E2BIG
	EACCES
	EACCES
	EACCES
	EACCES
	EAGAIN (since Linux 3.1)
	EFAULT
	EINVAL
	EIO
	EISDIR
	ELIBBAD
	ELOOP
	EMFILE
	ENAMETOOLONG
	ENFILE
	ENOENT
	ENOEXEC
	ENOMEM
	ENOTDIR
	EPERM
	EPERM
	ETXTBSY

	CONFORMING TO
	NOTES
	Interpreter scripts
	execve() and EAGAIN
	Historical

	EXAMPLE
	SEE ALSO
	COLOPHON

