
EVENTFD(2) Linux Programmer’s Manual EVENTFD(2)

NAME
eventfd - create a file descriptor for event notification

SYNOPSIS
#include <sys/eventfd.h>

int eventfd(unsigned int initval, int flags);

DESCRIPTION
eventfd() creates an eventfd object that can be used as an event wait/notify mechanism by user-
space applications, and by the kernel to notify user-space applications of events. The object con-
tains an unsigned 64-bit integer (uint64_t) counter that is maintained by the kernel. This counter
is initialized with the value specified in the argument initval.

The following values may be bitwise ORed in flags to change the behavior of eventfd():

EFD_CLOEXEC (since Linux 2.6.27)
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the descrip-
tion of the O_CLOEXEC flag in open(2) for reasons why this may be useful.

EFD_NONBLOCK (since Linux 2.6.27)
Set the O_NONBLOCK file status flag on the new open file description. Using this
flag saves extra calls to fcntl(2) to achieve the same result.

EFD_SEMAPHORE (since Linux 2.6.30)
Provide semaphore-like semantics for reads from the new file descriptor. See below.

In Linux up to version 2.6.26, the flags argument is unused, and must be specified as zero.

As its return value, eventfd() returns a new file descriptor that can be used to refer to the
eventfd object. The following operations can be performed on the file descriptor:

read(2) Each successful read(2) returns an 8-byte integer. A read(2) will fail with the
error EINVAL if the size of the supplied buffer is less than 8 bytes.

The value returned by read(2) is in host byte order—that is, the native byte order for
integers on the host machine.

The semantics of read(2) depend on whether the eventfd counter currently has a nonzero
value and whether the EFD_SEMAPHORE flag was specified when creating the
eventfd file descriptor:

* If EFD_SEMAPHORE was not specified and the eventfd counter has a nonzero
value, then a read(2) returns 8 bytes containing that value, and the counter’s value is
reset to zero.

* If EFD_SEMAPHORE was specified and the eventfd counter has a nonzero value,
then a read(2) returns 8 bytes containing the value 1, and the counter’s value is decre-
mented by 1.

* If the eventfd counter is zero at the time of the call to read(2), then the call either
blocks until the counter becomes nonzero (at which time, the read(2) proceeds as
described above) or fails with the error EAGAIN if the file descriptor has been made
nonblocking.

write(2) A write(2) call adds the 8-byte integer value supplied in its buffer to the counter.
The maximum value that may be stored in the counter is the largest unsigned 64-bit
value minus 1 (i.e., 0xfffffffffffffffe). If the addition would cause the counter’s value to
exceed the maximum, then the write(2) either blocks until a read(2) is performed on the
file descriptor, or fails with the error EAGAIN if the file descriptor has been made non-
blocking.

A write(2) will fail with the error EINVAL if the size of the supplied buffer is less than 8
bytes, or if an attempt is made to write the value 0xffffffffffffffff.

Linux 2014-07-08 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write

EVENTFD(2) Linux Programmer’s Manual EVENTFD(2)

poll(2), select(2) (and similar)
The returned file descriptor supports poll(2) (and analogously epoll(7)) and select(2), as
follows:

* The file descriptor is readable (the select(2) readfds argument; the poll(2) POLLIN
flag) if the counter has a value greater than 0.

* The file descriptor is writable (the select(2) writefds argument; the poll(2) POLL-
OUT flag) if it is possible to write a value of at least 1 without blocking.

* If an overflow of the counter value was detected, then select(2) indicates the file
descriptor as being both readable and writable, and poll(2) returns a POLLERR
event. As noted above, write(2) can never overflow the counter. However an overflow
can occur if 2ˆ64 eventfd signal posts were performed by the KAIO subsystem (theo-
retically possible, but practically unlikely). If an overflow has occurred, then read(2)
will return that maximum uint64_t value (i.e., 0xffffffffffffffff).

The eventfd file descriptor also supports the other file-descriptor multiplexing APIs: pse-
lect(2) and ppoll(2).

close(2) When the file descriptor is no longer required it should be closed. When all file
descriptors associated with the same eventfd object have been closed, the resources for
object are freed by the kernel.

A copy of the file descriptor created by eventfd() is inherited by the child produced by fork(2).
The duplicate file descriptor is associated with the same eventfd object. File descriptors created
by eventfd() are preserved across execve(2), unless the close-on-exec flag has been set.

RETURN VALUE
On success, eventfd() returns a new eventfd file descriptor. On error, -1 is returned and errno is
set to indicate the error.

ERRORS
EINVAL

An unsupported value was specified in flags.

EMFILE
The per-process limit on open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
Could not mount (internal) anonymous inode device.

ENOMEM
There was insufficient memory to create a new eventfd file descriptor.

VERSIONS
eventfd() is available on Linux since kernel 2.6.22. Working support is provided in glibc since
version 2.8. The eventfd2() system call (see NOTES) is available on Linux since kernel 2.6.27.
Since version 2.9, the glibc eventfd() wrapper will employ the eventfd2() system call, if it is
supported by the kernel.

CONFORMING TO
eventfd() and eventfd2() are Linux-specific.

NOTES
Applications can use an eventfd file descriptor instead of a pipe (see pipe(2)) in all cases where a
pipe is used simply to signal events. The kernel overhead of an eventfd file descriptor is much
lower than that of a pipe, and only one file descriptor is required (versus the two required for a
pipe).

When used in the kernel, an eventfd file descriptor can provide a bridge from kernel to user space,

Linux 2014-07-08 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/pselect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/pselect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ppoll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/close
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/pipe

EVENTFD(2) Linux Programmer’s Manual EVENTFD(2)

allowing, for example, functionalities like KAIO (kernel AIO) to signal to a file descriptor that
some operation is complete.

A key point about an eventfd file descriptor is that it can be monitored just like any other file
descriptor using select(2), poll(2), or epoll(7). This means that an application can simultaneously
monitor the readiness of traditional files and the readiness of other kernel mechanisms that sup-
port the eventfd interface. (Without the eventfd() interface, these mechanisms could not be mul-
tiplexed via select(2), poll(2), or epoll(7).)

C library/kernel ABI differences
There are two underlying Linux system calls: eventfd() and the more recent eventfd2(). The
former system call does not implement a flags argument. The latter system call implements the
flags values described above. The glibc wrapper function will use eventfd2() where it is avail-
able.

Additional glibc features
The GNU C library defines an additional type, and two functions that attempt to abstract some
of the details of reading and writing on an eventfd file descriptor:

typedef uint64_t eventfd_t;

int eventfd_read(int fd, eventfd_t *value);
int eventfd_write(int fd, eventfd_t value);

The functions perform the read and write operations on an eventfd file descriptor, returning 0 if
the correct number of bytes was transferred, or -1 otherwise.

EXAMPLE
The following program creates an eventfd file descriptor and then forks to create a child process.
While the parent briefly sleeps, the child writes each of the integers supplied in the program’s
command-line arguments to the eventfd file descriptor. When the parent has finished sleeping, it
reads from the eventfd file descriptor.

The following shell session shows a sample run of the program:

$./a.out 1 2 4 7 14
Child writing 1 to efd
Child writing 2 to efd
Child writing 4 to efd
Child writing 7 to efd
Child writing 14 to efd
Child completed write loop
Parent about to read
Parent read 28 (0x1c) from efd

Program source

#include <sys/eventfd.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h> /* Definition of uint64_t */

#define handle_error(msg)
do { perror(msg); exit(EXIT_FAILURE); } while (0)

int
main(int argc, char *argv[])
{
int efd, j;
uint64_t u;

Linux 2014-07-08 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll

EVENTFD(2) Linux Programmer’s Manual EVENTFD(2)

ssize_t s;

if (argc < 2) {
fprintf(stderr, Usage: %s <num>...n, argv[0]);
exit(EXIT_FAILURE);
}

efd = eventfd(0, 0);
if (efd == -1)
handle_error(eventfd);

switch (fork()) {
case 0:
for (j = 1; j < argc; j++) {
printf(Child writing %s to efdn, argv[j]);
u = strtoull(argv[j], NULL, 0);
/* strtoull() allows various bases */
s = write(efd, &u, sizeof(uint64_t));
if (s != sizeof(uint64_t))
handle_error(write);
}
printf(Child completed write loopn);

exit(EXIT_SUCCESS);

default:
sleep(2)

printf(Parent about to readn);
s = read(efd, &u, sizeof(uint64_t));
if (s != sizeof(uint64_t))
handle_error(read);
printf(Parent read %llu (0x%llx) from efdn,
(unsigned long long) u, (unsigned long long) u);
exit(EXIT_SUCCESS);

case -1:
handle_error(fork);
}
}

SEE ALSO
futex(2), pipe(2), poll(2), read(2), select(2), signalfd(2), timerfd_create(2), write(2), epoll(7),
sem_overview(7)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

Linux 2014-07-08 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/futex
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/pipe
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/signalfd
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/timerfd_create
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/sem_overview
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	DESCRIPTION
	EFD_CLOEXEC (since Linux 2.6.27)
	EFD_NONBLOCK (since Linux 2.6.27)
	EFD_SEMAPHORE (since Linux 2.6.30)
	read (2)
	write (2)
	poll (2), select (2) (and similar)
	close (2)

	RETURN VALUE
	ERRORS
	EINVAL
	EMFILE
	ENFILE
	ENODEV
	ENOMEM

	VERSIONS
	CONFORMING TO
	NOTES
	C library/kernel ABI differences
	Additional glibc features

	EXAMPLE
	Program source

	SEE ALSO
	COLOPHON

