
DUP(2) Linux Programmer’s Manual DUP(2)

NAME
dup, dup2, dup3 - duplicate a file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

#define _GNU_SOURCE /* See feature_test_macros(7)
*/
#include <fcntl.h> /* Obtain O_* constant definitions */
#include <unistd.h>

int dup3(int oldfd, int newfd, int flags);

DESCRIPTION
The dup() system call creates a copy of the file descriptor oldfd, using the lowest-numbered
unused descriptor for the new descriptor.

After a successful return, the old and new file descriptors may be used interchangeably. They
refer to the same open file description (see open(2)) and thus share file offset and file status flags;
for example, if the file offset is modified by using lseek(2) on one of the descriptors, the offset is
also changed for the other.

The two descriptors do not share file descriptor flags (the close-on-exec flag). The close-on-exec
flag (FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

dup2()
The dup2() system call performs the same task as dup(), but instead of using the lowest-num-
bered unused file descriptor, it uses the descriptor number specified in newfd. If the descriptor
newfd was previously open, it is silently closed before being reused.

The steps of closing and reusing the file descriptor newfd are performed atomically. This is
important, because trying to implement equivalent functionality using close(2) and dup() would
be subject to race conditions, whereby newfd might be reused between the two steps. Such reuse
could happen because the main program is interrupted by a signal handler that allocates a file
descriptor, or because a parallel thread allocates a file descriptor.

Note the following points:

* If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.

* If oldfd is a valid file descriptor, and newfd has the same value as oldfd, then dup2() does
nothing, and returns newfd.

dup3()
dup3() is the same as dup2(), except that:

* The caller can force the close-on-exec flag to be set for the new file descriptor by specifying
O_CLOEXEC in flags. See the description of the same flag in open(2) for reasons why this
may be useful.

* If oldfd equals newfd, then dup3() fails with the error EINVAL.

RETURN VALUE
On success, these system calls return the new descriptor. On error, -1 is returned, and errno is
set appropriately.

ERRORS
EBADF

oldfd isn’t an open file descriptor, or newfd is out of the allowed range for file descriptors.

Linux 2014-07-08 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/lseek
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/close
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open


DUP(2) Linux Programmer’s Manual DUP(2)

EBUSY
(Linux only) This may be returned by dup2() or dup3() during a race condition with
open(2) and dup().

EINTR
The dup2() or dup3() call was interrupted by a signal; see signal(7).

EINVAL
(dup3()) flags contain an invalid value. Or, oldfd was equal to newfd.

EMFILE
The process already has the maximum number of file descriptors open and tried to open a
new one.

VERSIONS
dup3() was added to Linux in version 2.6.27; glibc support is available starting with version 2.9.

CONFORMING TO 
dup(), dup2(): SVr4, 4.3BSD, POSIX.1-2001.

dup3() is Linux-specific.

NOTES
The error returned by dup2() is different from that returned by fcntl(..., F_DUPFD, ...) when
newfd is out of range. On some systems, dup2() also sometimes returns EINVAL like
F_DUPFD.

If newfd was open, any errors that would have been reported at close(2) time are lost. If this is of
concern, then—unless the program is single-threaded and does not allocate file descriptors in sig-
nal handlers—the correct approach is not to close newfd before calling dup2(), because of the
race condition described above. Instead, code something like the following could be used:

/* Obtain a duplicate of ’newfd’ that can subsequently
be used to check for close() errors; an EBADF error
means that ’newfd’ was not open. */

tmpfd = dup(newfd);
if (tmpfd == -1 && errno != EBADF) {
/* Handle unexpected dup() error */
}

/* Atomically duplicate ’oldfd’ on ’newfd’ */

if (dup2(oldfd, newfd) == -1) {
/* Handle dup2() error */
}

/* Now check for close() errors on the file originally
referred to by ’newfd’ */

if (tmpfd != -1) {
if (close(tmpfd) == -1) {
/* Handle errors from close */
}
}

SEE ALSO 
close(2), fcntl(2), open(2)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

Linux 2014-07-08 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/signal
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/close
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/close
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	DESCRIPTION
	dup2()
	dup3()

	RETURN VALUE
	ERRORS
	EBADF
	EBUSY
	EINTR
	EINVAL
	EMFILE

	VERSIONS
	CONFORMING TO
	NOTES
	SEE ALSO
	COLOPHON

