
CLONE(2) Linux Programmer’s Manual CLONE(2)

NAME
clone, __clone2 - create a child process

SYNOPSIS
/* Prototype for the glibc wrapper function */

#include <sched.h>

int clone(int (*fn)(void *), void *child_stack,
int flags, void *arg, ...
/* pid_t *ptid, struct user_desc *tls, pid_t *ctid */);

/* Prototype for the raw system call */

long clone(unsigned long flags, void *child_stack,
void *ptid, void *ctid,
struct pt_regs *regs);

Feature Test Macro Requirements for glibc wrapper function (see feature_test_macros(7)):

clone():
Since glibc 2.14:

_GNU_SOURCE
Before glibc 2.14:

_BSD_SOURCE || _SVID_SOURCE /* _GNU_SOURCE also suffices */

DESCRIPTION
clone() creates a new process, in a manner similar to fork(2).

This page describes both the glibc clone() wrapper function and the underlying system call on
which it is based. The main text describes the wrapper function; the differences for the raw sys-
tem call are described toward the end of this page.

Unlike fork(2), clone() allows the child process to share parts of its execution context with the
calling process, such as the memory space, the table of file descriptors, and the table of signal
handlers. (Note that on this manual page, calling process normally corresponds to parent process.
But see the description of CLONE_PARENT below.)

The main use of clone() is to implement threads: multiple threads of control in a program that
run concurrently in a shared memory space.

When the child process is created with clone(), it executes the function fn(arg). (This differs
from fork(2), where execution continues in the child from the point of the fork(2) call.) The fn
argument is a pointer to a function that is called by the child process at the beginning of its exe-
cution. The arg argument is passed to the fn function.

When the fn(arg) function application returns, the child process terminates. The integer returned
by fn is the exit code for the child process. The child process may also terminate explicitly by
calling exit(2) or after receiving a fatal signal.

The child_stack argument specifies the location of the stack used by the child process. Since the
child and calling process may share memory, it is not possible for the child process to execute in
the same stack as the calling process. The calling process must therefore set up memory space for
the child stack and pass a pointer to this space to clone(). Stacks grow downward on all proces-
sors that run Linux (except the HP PA processors), so child_stack usually points to the topmost
address of the memory space set up for the child stack.

The low byte of flags contains the number of the termination signal sent to the parent when the
child dies. If this signal is specified as anything other than SIGCHLD, then the parent process
must specify the __WALL or __WCLONE options when waiting for the child with wait(2). If
no signal is specified, then the parent process is not signaled when the child terminates.

flags may also be bitwise-or’ed with zero or more of the following constants, in order to specify

Linux 2014-09-21 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/wait

CLONE(2) Linux Programmer’s Manual CLONE(2)

what is shared between the calling process and the child process:

CLONE_CHILD_CLEARTID (since Linux 2.5.49)
Erase child thread ID at location ctid in child memory when the child exits, and do a
wakeup on the futex at that address. The address involved may be changed by the
set_tid_address(2) system call. This is used by threading libraries.

CLONE_CHILD_SETTID (since Linux 2.5.49)
Store child thread ID at location ctid in child memory.

CLONE_FILES (since Linux 2.0)
If CLONE_FILES is set, the calling process and the child process share the same file
descriptor table. Any file descriptor created by the calling process or by the child process
is also valid in the other process. Similarly, if one of the processes closes a file descriptor,
or changes its associated flags (using the fcntl(2) F_SETFD operation), the other
process is also affected.

If CLONE_FILES is not set, the child process inherits a copy of all file descriptors
opened in the calling process at the time of clone(). (The duplicated file descriptors in
the child refer to the same open file descriptions (see open(2)) as the corresponding file
descriptors in the calling process.) Subsequent operations that open or close file descrip-
tors, or change file descriptor flags, performed by either the calling process or the child
process do not affect the other process.

CLONE_FS (since Linux 2.0)
If CLONE_FS is set, the caller and the child process share the same filesystem informa-
tion. This includes the root of the filesystem, the current working directory, and the
umask. Any call to chroot(2), chdir(2), or umask(2) performed by the calling process or
the child process also affects the other process.

If CLONE_FS is not set, the child process works on a copy of the filesystem information
of the calling process at the time of the clone() call. Calls to chroot(2), chdir(2),
umask(2) performed later by one of the processes do not affect the other process.

CLONE_IO (since Linux 2.6.25)
If CLONE_IO is set, then the new process shares an I/O context with the calling
process. If this flag is not set, then (as with fork(2)) the new process has its own I/O
context.

The I/O context is the I/O scope of the disk scheduler (i.e, what the I/O scheduler uses
to model scheduling of a process’s I/O). If processes share the same I/O context, they
are treated as one by the I/O scheduler. As a consequence, they get to share disk time.
For some I/O schedulers, if two processes share an I/O context, they will be allowed to
interleave their disk access. If several threads are doing I/O on behalf of the same
process (aio_read(3), for instance), they should employ CLONE_IO to get better I/O
performance.

If the kernel is not configured with the CONFIG_BLOCK option, this flag is a no-op.

CLONE_NEWIPC (since Linux 2.6.19)
If CLONE_NEWIPC is set, then create the process in a new IPC namespace. If this
flag is not set, then (as with fork(2)), the process is created in the same IPC namespace
as the calling process. This flag is intended for the implementation of containers.

An IPC namespace provides an isolated view of System V IPC objects (see svipc(7)) and
(since Linux 2.6.30) POSIX message queues (see mq_overview(7)). The common charac-
teristic of these IPC mechanisms is that IPC objects are identified by mechanisms other
than filesystem pathnames.

Objects created in an IPC namespace are visible to all other processes that are members
of that namespace, but are not visible to processes in other IPC namespaces.

Linux 2014-09-21 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_tid_address
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chroot
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chdir
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/umask
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chroot
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chdir
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/umask
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/aio_read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/svipc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/mq_overview

CLONE(2) Linux Programmer’s Manual CLONE(2)

When an IPC namespace is destroyed (i.e., when the last process that is a member of the
namespace terminates), all IPC objects in the namespace are automatically destroyed.

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWIPC.
This flag can’t be specified in conjunction with CLONE_SYSVSEM.

For further information on IPC namespaces, see namespaces(7).

CLONE_NEWNET (since Linux 2.6.24)
(The implementation of this flag was completed only by about kernel version 2.6.29.)

If CLONE_NEWNET is set, then create the process in a new network namespace. If
this flag is not set, then (as with fork(2)) the process is created in the same network
namespace as the calling process. This flag is intended for the implementation of contain-
ers.

A network namespace provides an isolated view of the networking stack (network device
interfaces, IPv4 and IPv6 protocol stacks, IP routing tables, firewall rules, the /proc/net
and /sys/class/net directory trees, sockets, etc.). A physical network device can live in
exactly one network namespace. A virtual network device (veth) pair provides a pipe-like
abstraction that can be used to create tunnels between network namespaces, and can be
used to create a bridge to a physical network device in another namespace.

When a network namespace is freed (i.e., when the last process in the namespace termi-
nates), its physical network devices are moved back to the initial network namespace (not
to the parent of the process). For further information on network namespaces, see names-
paces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWNET.

CLONE_NEWNS (since Linux 2.4.19)
If CLONE_NEWNS is set, the cloned child is started in a new mount namespace, ini-
tialized with a copy of the namespace of the parent. If CLONE_NEWNS is not set,
the child lives in the same mount namespace as the parent.

For further information on mount namespaces, see namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWNS. It is
not permitted to specify both CLONE_NEWNS and CLONE_FS in the same clone()
call.

CLONE_NEWPID (since Linux 2.6.24)
If CLONE_NEWPID is set, then create the process in a new PID namespace. If this
flag is not set, then (as with fork(2)) the process is created in the same PID namespace as
the calling process. This flag is intended for the implementation of containers.

For further information on PID namespaces, see namespaces(7) and pid_namespaces(7)

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWPID.
This flag can’t be specified in conjunction with CLONE_THREAD or CLONE_PAR-
ENT.

CLONE_NEWUSER
(This flag first became meaningful for clone() in Linux 2.6.23, the current clone()
semantics were merged in Linux 3.5, and the final pieces to make the user namespaces
completely usable were merged in Linux 3.8.)

If CLONE_NEWUSER is set, then create the process in a new user namespace. If this
flag is not set, then (as with fork(2)) the process is created in the same user namespace as
the calling process.

For further information on user namespaces, see namespaces(7) and user_namespaces(7)

Linux 2014-09-21 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/pid_namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/user_namespaces

CLONE(2) Linux Programmer’s Manual CLONE(2)

Before Linux 3.8, use of CLONE_NEWUSER required that the caller have three capa-
bilities: CAP_SYS_ADMIN, CAP_SETUID, and CAP_SETGID. Starting with
Linux 3.8, no privileges are needed to create a user namespace.

This flag can’t be specified in conjunction with CLONE_THREAD or CLONE_PAR-
ENT. For security reasons, CLONE_NEWUSER cannot be specified in conjunction
with CLONE_FS.

For further information on user namespaces, see user_namespaces(7).

CLONE_NEWUTS (since Linux 2.6.19)
If CLONE_NEWUTS is set, then create the process in a new UTS namespace, whose
identifiers are initialized by duplicating the identifiers from the UTS namespace of the
calling process. If this flag is not set, then (as with fork(2)) the process is created in the
same UTS namespace as the calling process. This flag is intended for the implementation
of containers.

A UTS namespace is the set of identifiers returned by uname(2); among these, the
domain name and the hostname can be modified by setdomainname(2) and sethost-
name(2), respectively. Changes made to the identifiers in a UTS namespace are visible to
all other processes in the same namespace, but are not visible to processes in other UTS
namespaces.

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWUTS.

For further information on UTS namespaces, see namespaces(7).

CLONE_PARENT (since Linux 2.3.12)
If CLONE_PARENT is set, then the parent of the new child (as returned by getp-
pid(2)) will be the same as that of the calling process.

If CLONE_PARENT is not set, then (as with fork(2)) the child’s parent is the calling
process.

Note that it is the parent process, as returned by getppid(2), which is signaled when the
child terminates, so that if CLONE_PARENT is set, then the parent of the calling
process, rather than the calling process itself, will be signaled.

CLONE_PARENT_SETTID (since Linux 2.5.49)
Store child thread ID at location ptid in parent and child memory. (In Linux
2.5.32-2.5.48 there was a flag CLONE_SETTID that did this.)

CLONE_PID (obsolete)
If CLONE_PID is set, the child process is created with the same process ID as the call-
ing process. This is good for hacking the system, but otherwise of not much use. Since
2.3.21 this flag can be specified only by the system boot process (PID 0). It disappeared
in Linux 2.5.16.

CLONE_PTRACE (since Linux 2.2)
If CLONE_PTRACE is specified, and the calling process is being traced, then trace the
child also (see ptrace(2)).

CLONE_SETTLS (since Linux 2.5.32)
The newtls argument is the new TLS (Thread Local Storage) descriptor. (See
set_thread_area(2).)

CLONE_SIGHAND (since Linux 2.0)
If CLONE_SIGHAND is set, the calling process and the child process share the same
table of signal handlers. If the calling process or child process calls sigaction(2) to change
the behavior associated with a signal, the behavior is changed in the other process as
well. However, the calling process and child processes still have distinct signal masks and
sets of pending signals. So, one of them may block or unblock some signals using

Linux 2014-09-21 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/user_namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/uname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setdomainname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sethostname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sethostname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getppid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getppid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getppid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ptrace
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_thread_area
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigaction

CLONE(2) Linux Programmer’s Manual CLONE(2)

sigprocmask(2) without affecting the other process.

If CLONE_SIGHAND is not set, the child process inherits a copy of the signal han-
dlers of the calling process at the time clone() is called. Calls to sigaction(2) performed
later by one of the processes have no effect on the other process.

Since Linux 2.6.0-test6, flags must also include CLONE_VM if CLONE_SIGHAND
is specified

CLONE_STOPPED (since Linux 2.6.0-test2)
If CLONE_STOPPED is set, then the child is initially stopped (as though it was sent
a SIGSTOP signal), and must be resumed by sending it a SIGCONT signal.

This flag was deprecated from Linux 2.6.25 onward, and was removed altogether in Linux
2.6.38.

CLONE_SYSVSEM (since Linux 2.5.10)
If CLONE_SYSVSEM is set, then the child and the calling process share a single list
of System V semaphore adjustment (semadj) values (see semop(2)). In this case, the
shared list accumulates semadj values across all processes sharing the list, and semaphore
adjustments are performed only when the last process that is sharing the list terminates
(or ceases sharing the list using unshare(2)). If this flag is not set, then the child has a
separate semadj list that is initially empty.

CLONE_THREAD (since Linux 2.4.0-test8)
If CLONE_THREAD is set, the child is placed in the same thread group as the calling
process. To make the remainder of the discussion of CLONE_THREAD more read-
able, the term thread is used to refer to the processes within a thread group.

Thread groups were a feature added in Linux 2.4 to support the POSIX threads notion of
a set of threads that share a single PID. Internally, this shared PID is the so-called
thread group identifier (TGID) for the thread group. Since Linux 2.4, calls to getpid(2)
return the TGID of the caller.

The threads within a group can be distinguished by their (system-wide) unique thread
IDs (TID). A new thread’s TID is available as the function result returned to the caller
of clone(), and a thread can obtain its own TID using gettid(2).

When a call is made to clone() without specifying CLONE_THREAD, then the result-
ing thread is placed in a new thread group whose TGID is the same as the thread’s TID.
This thread is the leader of the new thread group.

A new thread created with CLONE_THREAD has the same parent process as the call-
er of clone() (i.e., like CLONE_PARENT), so that calls to getppid(2) return the same
value for all of the threads in a thread group. When a CLONE_THREAD thread ter-
minates, the thread that created it using clone() is not sent a SIGCHLD (or other ter-
mination) signal; nor can the status of such a thread be obtained using wait(2). (The
thread is said to be detached.)

After all of the threads in a thread group terminate the parent process of the thread
group is sent a SIGCHLD (or other termination) signal.

If any of the threads in a thread group performs an execve(2), then all threads other than
the thread group leader are terminated, and the new program is executed in the thread
group leader.

If one of the threads in a thread group creates a child using fork(2), then any thread in
the group can wait(2) for that child.

Since Linux 2.5.35, flags must also include CLONE_SIGHAND if
CLONE_THREAD is specified (and note that, since Linux 2.6.0-test6, CLONE_SIG-
HAND also requires CLONE_VM to be included).

Linux 2014-09-21 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigprocmask
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigaction
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/semop
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/unshare
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getpid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/gettid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getppid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/wait

CLONE(2) Linux Programmer’s Manual CLONE(2)

Signals may be sent to a thread group as a whole (i.e., a TGID) using kill(2), or to a spe-
cific thread (i.e., TID) using tgkill(2).

Signal dispositions and actions are process-wide: if an unhandled signal is delivered to a
thread, then it will affect (terminate, stop, continue, be ignored in) all members of the
thread group.

Each thread has its own signal mask, as set by sigprocmask(2), but signals can be pend-
ing either: for the whole process (i.e., deliverable to any member of the thread group),
when sent with kill(2); or for an individual thread, when sent with tgkill(2). A call to sig-
pending(2) returns a signal set that is the union of the signals pending for the whole
process and the signals that are pending for the calling thread.

If kill(2) is used to send a signal to a thread group, and the thread group has installed a
handler for the signal, then the handler will be invoked in exactly one, arbitrarily selected
member of the thread group that has not blocked the signal. If multiple threads in a
group are waiting to accept the same signal using sigwaitinfo(2), the kernel will arbitrar-
ily select one of these threads to receive a signal sent using kill(2).

CLONE_UNTRACED (since Linux 2.5.46)
If CLONE_UNTRACED is specified, then a tracing process cannot force
CLONE_PTRACE on this child process.

CLONE_VFORK (since Linux 2.2)
If CLONE_VFORK is set, the execution of the calling process is suspended until the
child releases its virtual memory resources via a call to execve(2) or _exit(2) (as with
vfork(2)).

If CLONE_VFORK is not set, then both the calling process and the child are schedula-
ble after the call, and an application should not rely on execution occurring in any partic-
ular order.

CLONE_VM (since Linux 2.0)
If CLONE_VM is set, the calling process and the child process run in the same memory
space. In particular, memory writes performed by the calling process or by the child
process are also visible in the other process. Moreover, any memory mapping or unmap-
ping performed with mmap(2) or munmap(2) by the child or calling process also affects
the other process.

If CLONE_VM is not set, the child process runs in a separate copy of the memory
space of the calling process at the time of clone(). Memory writes or file map-
pings/unmappings performed by one of the processes do not affect the other, as with
fork(2).

C library/kernel ABI differences
The raw clone() system call corresponds more closely to fork(2) in that execution in the child
continues from the point of the call. As such, the fn and arg arguments of the clone() wrapper
function are omitted. Furthermore, the argument order changes. The raw system call interface
on x86 and many other architectures is roughly:

long clone(unsigned long flags, void *child_stack,
void *ptid, void *ctid,
struct pt_regs *regs);

Another difference for the raw system call is that the child_stack argument may be zero, in which
case copy-on-write semantics ensure that the child gets separate copies of stack pages when either
process modifies the stack. In this case, for correct operation, the CLONE_VM option should
not be specified.

For some architectures, the order of the arguments for the system call differs from that shown
above. On the score, microblaze, ARM, ARM 64, PA-RISC, arc, Power PC, xtensa, and MIPS

Linux 2014-09-21 6

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/kill
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/tgkill
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigprocmask
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/kill
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/tgkill
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigpending
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigpending
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/kill
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigwaitinfo
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/kill
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/_exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/vfork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/munmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork

CLONE(2) Linux Programmer’s Manual CLONE(2)

architectures, the order of the fourth and fifth arguments is reversed. On the cris and s390 archi-
tectures, the order of the first and second arguments is reversed.

blackfin, m68k, and sparc
The argument-passing conventions on blackfin, m68k, and sparc are different from the descrip-
tions above. For details, see the kernel (and glibc) source.

ia64
On ia64, a different interface is used:

int __clone2(int (*fn)(void *),
void *child_stack_base, size_t stack_size,
int flags, void *arg, ...
/* pid_t *ptid, struct user_desc *tls, pid_t *ctid */);

The prototype shown above is for the glibc wrapper function; the raw system call interface has no
fn or arg argument, and changes the order of the arguments so that flags is the first argument,
and tls is the last argument.

__clone2() operates in the same way as clone(), except that child_stack_base points to the lowest
address of the child’s stack area, and stack_size specifies the size of the stack pointed to by
child_stack_base.

Linux 2.4 and earlier
In Linux 2.4 and earlier, clone() does not take arguments ptid, tls, and ctid.

RETURN VALUE
On success, the thread ID of the child process is returned in the caller’s thread of execution. On
failure, -1 is returned in the caller’s context, no child process will be created, and errno will be set
appropriately.

ERRORS
EAGAIN

Too many processes are already running; see fork(2).

EINVAL
CLONE_SIGHAND was specified, but CLONE_VM was not. (Since Linux
2.6.0-test6.)

EINVAL
CLONE_THREAD was specified, but CLONE_SIGHAND was not. (Since Linux
2.5.35.)

EINVAL
Both CLONE_FS and CLONE_NEWNS were specified in flags.

EINVAL (since Linux 3.9)
Both CLONE_NEWUSER and CLONE_FS were specified in flags.

EINVAL
Both CLONE_NEWIPC and CLONE_SYSVSEM were specified in flags.

EINVAL
One (or both) of CLONE_NEWPID or CLONE_NEWUSER and one (or both) of
CLONE_THREAD or CLONE_PARENT were specified in flags.

EINVAL
Returned by clone() when a zero value is specified for child_stack.

EINVAL
CLONE_NEWIPC was specified in flags, but the kernel was not configured with the
CONFIG_SYSVIPC and CONFIG_IPC_NS options.

Linux 2014-09-21 7

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork

CLONE(2) Linux Programmer’s Manual CLONE(2)

EINVAL
CLONE_NEWNET was specified in flags, but the kernel was not configured with the
CONFIG_NET_NS option.

EINVAL
CLONE_NEWPID was specified in flags, but the kernel was not configured with the
CONFIG_PID_NS option.

EINVAL
CLONE_NEWUTS was specified in flags, but the kernel was not configured with the
CONFIG_UTS option.

ENOMEM
Cannot allocate sufficient memory to allocate a task structure for the child, or to copy
those parts of the caller’s context that need to be copied.

EPERM
CLONE_NEWIPC, CLONE_NEWNET, CLONE_NEWNS, CLONE_NEW-
PID, or CLONE_NEWUTS was specified by an unprivileged process (process without
CAP_SYS_ADMIN).

EPERM
CLONE_PID was specified by a process other than process 0.

EPERM
CLONE_NEWUSER was specified in flags, but either the effective user ID or the
effective group ID of the caller does not have a mapping in the parent namespace (see
user_namespaces(7)).

EPERM (since Linux 3.9)
CLONE_NEWUSER was specified in flags and the caller is in a chroot environment
(i.e., the caller’s root directory does not match the root directory of the mount namespace
in which it resides).

EUSERS (since Linux 3.11)
CLONE_NEWUSER was specified in flags, and the call would cause the limit on the
number of nested user namespaces to be exceeded. See user_namespaces(7).

VERSIONS
There is no entry for clone() in libc5. glibc2 provides clone() as described in this manual page.

CONFORMING TO
clone() is Linux-specific and should not be used in programs intended to be portable.

NOTES
In the kernel 2.4.x series, CLONE_THREAD generally does not make the parent of the new
thread the same as the parent of the calling process. However, for kernel versions 2.4.7 to 2.4.18
the CLONE_THREAD flag implied the CLONE_PARENT flag (as in kernel 2.6).

For a while there was CLONE_DETACHED (introduced in 2.5.32): parent wants no child-exit
signal. In 2.6.2 the need to give this together with CLONE_THREAD disappeared. This flag
is still defined, but has no effect.

On i386, clone() should not be called through vsyscall, but directly through int 0x80.

BUGS
Versions of the GNU C library that include the NPTL threading library contain a wrapper func-
tion for getpid(2) that performs caching of PIDs. This caching relies on support in the glibc
wrapper for clone(), but as currently implemented, the cache may not be up to date in some cir-
cumstances. In particular, if a signal is delivered to the child immediately after the clone() call,
then a call to getpid(2) in a handler for the signal may return the PID of the calling process (the
parent), if the clone wrapper has not yet had a chance to update the PID cache in the child.
(This discussion ignores the case where the child was created using CLONE_THREAD, when

Linux 2014-09-21 8

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/user_namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/user_namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getpid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getpid

CLONE(2) Linux Programmer’s Manual CLONE(2)

getpid(2) should return the same value in the child and in the process that called clone(), since
the caller and the child are in the same thread group. The stale-cache problem also does not
occur if the flags argument includes CLONE_VM.) To get the truth, it may be necessary to use
code such as the following:

#include <syscall.h>

pid_t mypid;

mypid = syscall(SYS_getpid);

EXAMPLE
The following program demonstrates the use of clone() to create a child process that executes in
a separate UTS namespace. The child changes the hostname in its UTS namespace. Both parent
and child then display the system hostname, making it possible to see that the hostname differs in
the UTS namespaces of the parent and child. For an example of the use of this program, see
setns(2).

Program source
#define _GNU_SOURCE
#include <sys/wait.h>
#include <sys/utsname.h>
#include <sched.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE);
} while (0)

static int /* Start function for cloned child */
childFunc(void *arg)
{
struct utsname uts;

/* Change hostname in UTS namespace of child */

if (sethostname(arg, strlen(arg)) == -1)
errExit(sethostname);

/* Retrieve and display hostname */

if (uname(&uts) == -1)
errExit(uname);
printf(uts.nodename in child: %sn, uts.nodename);

/* Keep the namespace open for a while, by sleeping.
This allows some experimentation--for example, another
process might join the namespace. */

sleep(200);

return 0; /* Child terminates now */
}

#define STACK_SIZE (1024 * 1024) /* Stack size for cloned child */

int
main(int argc, char *argv[])
{
char *stack; /* Start of stack buffer */
char *stackTop; /* End of stack buffer */

Linux 2014-09-21 9

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getpid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setns

CLONE(2) Linux Programmer’s Manual CLONE(2)

pid_t pid;
struct utsname uts;

if (argc < 2) {
fprintf(stderr, Usage: %s <child-hostname>n, argv[0]);
exit(EXIT_SUCCESS);
}

/* Allocate stack for child */

stack = malloc(STACK_SIZE);
if (stack == NULL)
errExit(malloc);
stackTop = stack + STACK_SIZE; /* Assume stack grows downward */

/* Create child that has its own UTS namespace;
child commences execution in childFunc() */

pid = clone(childFunc, stackTop, CLONE_NEWUTS | SIGCHLD, argv[1]);
if (pid == -1)
errExit(clone);
printf(clone() returned %ldn, (long) pid);

/* Parent falls through to here */

sleep(1)
/* Give child time to change its hostname */

/* Display hostname in parents UTS namespace. This will be
different from hostname in childs UTS namespace. */

if (uname(&uts) == -1)
errExit(uname);
printf(uts.nodename in parent: %sn, uts.nodename);

if (waitpid(pid, NULL, 0) == -1) /* Wait for child */
errExit(waitpid);
printf(child has terminatedn);

exit(EXIT_SUCCESS);
}

SEE ALSO
fork(2), futex(2), getpid(2), gettid(2), kcmp(2), set_thread_area(2), set_tid_address(2), setns(2),
tkill(2), unshare(2), wait(2), capabilities(7), namespaces(7), pthreads(7)

COLOPHON
This page is part of release 3.74 of the Linux man-pages project. A description of the project,
information about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man-pages/.

Linux 2014-09-21 10

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/sleep
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/futex
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getpid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/gettid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/kcmp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_thread_area
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_tid_address
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setns
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/tkill
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/unshare
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/capabilities
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/pthreads
http://www.kernel.org/doc/man-pages/.

	NAME
	SYNOPSIS
	Since glibc 2.14:
	Before glibc 2.14:

	DESCRIPTION
	CLONE_CHILD_CLEARTID (since Linux 2.5.49)
	CLONE_CHILD_SETTID (since Linux 2.5.49)
	CLONE_FILES (since Linux 2.0)
	CLONE_FS (since Linux 2.0)
	CLONE_IO (since Linux 2.6.25)
	CLONE_NEWIPC (since Linux 2.6.19)
	CLONE_NEWNET (since Linux 2.6.24)
	CLONE_NEWNS (since Linux 2.4.19)
	CLONE_NEWPID (since Linux 2.6.24)
	CLONE_NEWUSER
	CLONE_NEWUTS (since Linux 2.6.19)
	CLONE_PARENT (since Linux 2.3.12)
	CLONE_PARENT_SETTID (since Linux 2.5.49)
	CLONE_PID (obsolete)
	CLONE_PTRACE (since Linux 2.2)
	CLONE_SETTLS (since Linux 2.5.32)
	CLONE_SIGHAND (since Linux 2.0)
	CLONE_STOPPED (since Linux 2.6.0-test2)
	CLONE_SYSVSEM (since Linux 2.5.10)
	CLONE_THREAD (since Linux 2.4.0-test8)
	CLONE_UNTRACED (since Linux 2.5.46)
	CLONE_VFORK (since Linux 2.2)
	CLONE_VM (since Linux 2.0)
	C library/kernel ABI differences
	blackfin, m68k, and sparc
	ia64
	Linux 2.4 and earlier

	RETURN VALUE
	ERRORS
	EAGAIN
	EINVAL
	EINVAL
	EINVAL
	EINVAL (since Linux 3.9)
	EINVAL
	EINVAL
	EINVAL
	EINVAL
	EINVAL
	EINVAL
	EINVAL
	ENOMEM
	EPERM
	EPERM
	EPERM
	EPERM (since Linux 3.9)
	EUSERS (since Linux 3.11)

	VERSIONS
	CONFORMING TO
	NOTES
	BUGS
	EXAMPLE
	Program source

	SEE ALSO
	COLOPHON

