
MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

NAME
mysqlbinlog - utility for processing binary log files

SYNOPSIS
mysqlbinlog [options] log_file ...

DESCRIPTION
The servers binary log consists of files containing “events” that describe modifications to database
contents. The server writes these files in binary format. To display their contents in text format,
use the mysqlbinlog utility. You can also use mysqlbinlog to display the contents of relay log
files written by a slave server in a replication setup because relay logs have the same format as
binary logs. The binary log and relay log are discussed further in Section 5.4.4, “The Binary Log”,
and Section 17.2.2, “Replication Relay and Status Logs”.

Invoke mysqlbinlog like this:

shell> mysqlbinlog [options] log_file ...

For example, to display the contents of the binary log file named binlog.000003, use this
command:

shell> mysqlbinlog binlog.0000003

The output includes events contained in binlog.000003. For statement-based logging, event
information includes the SQL statement, the ID of the server on which it was executed, the
timestamp when the statement was executed, how much time it took, and so forth. For row-based
logging, the event indicates a row change rather than an SQL statement. See Section 17.1.2,
“Replication Formats”, for information about logging modes.

Events are preceded by header comments that provide additional information. For example:

at 141
#100309 9:28:36 server id 123 end_log_pos 245
Query thread_id=3350 exec_time=11 error_code=0

In the first line, the number following at indicates the file offset, or starting position, of the event
in the binary log file.

The second line starts with a date and time indicating when the statement started on the server
where the event originated. For replication, this timestamp is propagated to slave servers. server
id is the server_id value of the server where the event originated. end_log_pos indicates where the
next event starts (that is, it is the end position of the current event + 1). thread_id indicates
which thread executed the event. exec_time is the time spent executing the event, on a master
server. On a slave, it is the difference of the end execution time on the slave minus the beginning
execution time on the master. The difference serves as an indicator of how much replication lags
behind the master. error_code indicates the result from executing the event. Zero means that no
error occurred.

Note
When using event groups, the file offsets of events may be grouped together and the
comments of events may be grouped together. Do not mistake these grouped events for blank
file offsets.

The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql)
to redo the statements in the log. This is useful for recovery operations after a server crash. For
other usage examples, see the discussion later in this section and in Section 7.5, “Point-in-Time
(Incremental) Recovery Using the Binary Log”.

Normally, you use mysqlbinlog to read binary log files directly and apply them to the local
MySQL server. It is also possible to read binary logs from a remote server by using the --read-
from-remote-server option. To read remote binary logs, the connection parameter options can
be given to indicate how to connect to the server. These options are --host, --password, --port,

MySQL 5.5 08/28/2018 1

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

--protocol, --socket, and --user; they are ignored except when you also use the --read-from-
remote-server option.

When running mysqlbinlog against a large binary log, be careful that the filesystem has enough
space for the resulting files. To configure the directory that mysqlbinlog uses for temporary files,
use the TMPDIR environment variable.

mysqlbinlog supports the following options, which can be specified on the command line or in
the [mysqlbinlog] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

• --help, -?

Display a help message and exit.
• --base64-output[=value]

This option determines when events should be displayed encoded as base-64 strings using
BINLOG statements. The option has these permissible values (not case-sensitive):

• AUTO (automatic) or UNSPEC (unspecified) displays BINLOG statements
automatically when necessary (that is, for format description events and row events).
If no --base64-output option is given, the effect is the same as
--base64-output=AUTO.

Note
Automatic BINLOG display is the only safe behavior if you intend to use the output of

mysqlbinlog to re-execute binary log file contents. The other option values are intended only

for debugging or testing purposes because they may produce output that does not include all

events in executable form.

• ALWAYS displays BINLOG statements whenever possible. If the --base64-output
option is given without a value, the effect is the same as
--base64-output=ALWAYS.

Note
Changes to replication in MySQL 5.6 make output generated by this option unusable, so

ALWAYS is deprecated in MySQL 5.5 and will be an invalid value in MySQL 5.6

• NEVER causes BINLOG statements not to be displayed. mysqlbinlog exits with an
error if a row event is found that must be displayed using BINLOG.

• DECODE-ROWS specifies to mysqlbinlog that you intend for row events to be
decoded and displayed as commented SQL statements by also specifying the
--verbose option. Like NEVER, DECODE-ROWS suppresses display of BINLOG
statements, but unlike NEVER, it does not exit with an error if a row event is found.

For examples that show the effect of --base64-output and --verbose on row event output,
see the section called “MYSQLBINLOG ROW EVENT DISPLAY”.
• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface
to use for connecting to the MySQL server.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.14, “Character Set
Configuration”.

• --database=db_name, -d db_name

This option causes mysqlbinlog to output entries from the binary log (local log only)
that occur while db_name is been selected as the default database by USE.

The --database option for mysqlbinlog is similar to the --binlog-do-db option for
mysqld, but can be used to specify only one database. If --database is given multiple
times, only the last instance is used.

The effects of this option depend on whether the statement-based or row-based logging
format is in use, in the same way that the effects of --binlog-do-db depend on whether

MySQL 5.5 08/28/2018 2

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

statement-based or row-based logging is in use.

Statement-based logging. The --database option works as follows:
• While db_name is the default database, statements are output whether they modify

tables in db_name or a different database.
• Unless db_name is selected as the default database, statements are not output, even if

they modify tables in db_name.
• There is an exception for CREATE DATABASE, ALTER DATABASE, and DROP

DATABASE. The database being created, altered, or dropped is considered to be the
default database when determining whether to output the statement.

Suppose that the binary log was created by executing these statements using statement-
based-logging:

INSERT INTO test.t1 (i) VALUES(100);
INSERT INTO db2.t2 (j) VALUES(200);
USE test;
INSERT INTO test.t1 (i) VALUES(101);
INSERT INTO t1 (i) VALUES(102);
INSERT INTO db2.t2 (j) VALUES(201);
USE db2;
INSERT INTO test.t1 (i) VALUES(103);
INSERT INTO db2.t2 (j) VALUES(202);
INSERT INTO t2 (j) VALUES(203);

mysqlbinlog --database=test does not output the first two INSERT statements because
there is no default database. It outputs the three INSERT statements following USE test, but
not the three INSERT statements following USE db2.

mysqlbinlog --database=db2 does not output the first two INSERT statements because
there is no default database. It does not output the three INSERT statements following USE
test, but does output the three INSERT statements following USE db2.

Row-based logging. mysqlbinlog outputs only entries that change tables belonging to
db_name. The default database has no effect on this. Suppose that the binary log just
described was created using row-based logging rather than statement-based logging.
mysqlbinlog --database=test outputs only those entries that modify t1 in the test
database, regardless of whether USE was issued or what the default database is. If a server
is running with binlog_format set to MIXED and you want it to be possible to use
mysqlbinlog with the --database option, you must ensure that tables that are modified are
in the database selected by USE. (In particular, no cross-database updates should be used.)

Note
Prior to MySQL NDB Cluster 7.2.2, this option did not work correctly with NDB Cluster tables

unless, unless the binary log was generated using --log-bin-use-v1-row-events=0. (Bug

#13067813)

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqlbinlog.trace.

• --debug-check

Print some debugging information when the program exits.
• --debug-info

Print debugging information and memory and CPU usage statistics when the program
exits.

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.6, “Pluggable
Authentication”.

MySQL 5.5 08/28/2018 3

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

This option was added in MySQL 5.5.10.
• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If
the file does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted
relative to the current directory if given as a relative path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error
occurs. file_name is interpreted relative to the current directory if given as a relative path
name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix
of str. For example, mysqlbinlog normally reads the [client] and [mysqlbinlog] groups. If
the --defaults-group-suffix=_other option is given, mysqlbinlog also reads the
[client_other] and [mysqlbinlog_other] groups.

• --disable-log-bin, -D

Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-
log option and are sending the output to the same MySQL server. This option also is
useful when restoring after a crash to avoid duplication of the statements you have logged.

This option causes mysqlbinlog to include a SET sql_log_bin = 0 statement in its output
to disable binary logging of the remaining output. Manipulating the session value of the
sql_log_bin system variable is a restricted operation, so this option requires that you have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable
Privileges”.

• --force-if-open, -F

Read binary log files even if they are open or were not closed properly.
• --force-read, -f

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it
prints a warning, ignores the event, and continues. Without this option, mysqlbinlog
stops if it reads such an event.

• --hexdump, -H

Display a hex dump of the log in comments, as described in the section called
“MYSQLBINLOG HEX DUMP FORMAT”. The hex output can be helpful for replication
debugging.

• --host=host_name, -h host_name

Get the binary log from the MySQL server on the given host.
• --local-load=dir_name, -l dir_name

Prepare local temporary files for LOAD DATA INFILE in the specified directory.
Important
These temporary files are not automatically removed by mysqlbinlog or any other MySQL

program.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from
an option file, --no-defaults can be used to prevent them from being read.

• --offset=N, -o N

Skip the first N entries in the log.
• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p),
you cannot have a space between the option and the password. If you omit the password
value following the --password or -p option on the command line, mysqlbinlog prompts

MySQL 5.5 08/28/2018 4

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

for one.

Specifying a password on the command line should be considered insecure. See
Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to
avoid giving the password on the command line.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth
option is used to specify an authentication plugin but mysqlbinlog does not find it. See
Section 6.3.6, “Pluggable Authentication”.

This option was added in MySQL 5.5.10.
• --port=port_num, -P port_num

The TCP/IP port number to use for connecting to a remote server.
• --position=N

Deprecated. Use --start-position instead. --position was removed in MySQL 5.5.3.
• --print-defaults

Print the program name and all options that it gets from option files.
• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other
connection parameters normally would cause a protocol to be used other than the one you
want. For details on the permissible values, see Section 4.2.2, “Connecting to the MySQL
Server”.

• --read-from-remote-server, -R

Read the binary log from a MySQL server rather than reading a local log file. Any
connection parameter options are ignored unless this option is given as well. These options
are --host, --password, --port, --protocol, --socket, and --user.

This option requires that the remote server be running. It works only for binary log files
on the remote server, not relay log files.

• --result-file=name, -r name

Direct output to the given file.
• --server-id=id

Display only those events created by the server having the given server ID.
• --server-id-bits=N

Use only the first N bits of the server_id to identify the server. If the binary log was
written by a mysqld with server-id-bits set to less than 32 and user data stored in the
most significant bit, running mysqlbinlog with --server-id-bits set to 32 enables this
data to be seen.

This option is supported only by the versions of mysqlbinlog supplied with the NDB
Cluster distribution, or built from the NDB Cluster sources.

• --set-charset=charset_name

Add a SET NAMES charset_name statement to the output to specify the character set to
be used for processing log files.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory
to a local server. The default value is MYSQL. The shared-memory name is case-sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --short-form, -s

Display only the statements contained in the log, without any extra information or row-

MySQL 5.5 08/28/2018 5

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

based events. This is for testing only, and should not be used in production systems.
• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the
named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and
indicate where to find SSL keys and certificates. See Section 6.4.2, “Command Options for
Encrypted Connections”.

• --start-datetime=datetime

Start reading the binary log at the first event having a timestamp equal to or later than
the datetime argument. The datetime value is relative to the local time zone on the
machine where you run mysqlbinlog. The value should be in a format accepted for the
DATETIME or TIMESTAMP data types. For example:

shell> mysqlbinlog --start-datetime=2005-12-25 11:25:56 binlog.000003

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and
Recovery Strategy”.

• --start-position=N, -j N

Start reading the binary log at the first event having a position equal to or greater than N.
This option applies to the first log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and
Recovery Strategy”.

• --stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal to or later than
the datetime argument. This option is useful for point-in-time recovery. See the description
of the --start-datetime option for information about the datetime value.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and
Recovery Strategy”.

• --stop-position=N

Stop reading the binary log at the first event having a position equal to or greater than N.
This option applies to the last log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and
Recovery Strategy”.

• --to-last-log, -t

Do not stop at the end of the requested binary log from a MySQL server, but rather
continue printing until the end of the last binary log. If you send the output to the same
MySQL server, this may lead to an endless loop. This option requires --read-from-
remote-server.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to a remote server.
• --verbose, -v

Reconstruct row events and display them as commented SQL statements. If this option is
given twice, the output includes comments to indicate column data types and some
metadata.

For examples that show the effect of --base64-output and --verbose on row event
output, see the section called “MYSQLBINLOG ROW EVENT DISPLAY”.

• --version, -V

Display version information and exit.

MySQL 5.5 08/28/2018 6

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

In MySQL 5.5, the version number shown for mysqlbinlog is always 3.3.

You can also set the following variable by using --var_name=value syntax:
• open_files_limit

Specify the number of open file descriptors to reserve.

You can pipe the output of mysqlbinlog into the mysql client to execute the events contained in
the binary log. This technique is used to recover from a crash when you have an old backup (see
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”). For example:

shell> mysqlbinlog binlog.000001 | mysql -u root -p

Or:

shell> mysqlbinlog binlog.[0-9]* | mysql -u root -p

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the
statement log first (for example, to remove statements that you do not want to execute for some
reason). After editing the file, execute the statements that it contains by using it as input to the
mysql program:

shell> mysqlbinlog binlog.000001 > tmpfile
shell> ... edit tmpfile ...
shell> mysql -u root -p < tmpfile

When mysqlbinlog is invoked with the --start-position option, it displays only those events
with an offset in the binary log greater than or equal to a given position (the given position must
match the start of one event). It also has options to stop and start when it sees an event with a
given date and time. This enables you to perform point-in-time recovery using the --stop-
datetime option (to be able to say, for example, “roll forward my databases to how they were
today at 10:30 a.m.”).

If you have more than one binary log to execute on the MySQL server, the safe method is to
process them all using a single connection to the server. Here is an example that demonstrates
what may be unsafe:

shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using multiple connections to the server causes problems if the
first log file contains a CREATE TEMPORARY TABLE statement and the second log contains a
statement that uses the temporary table. When the first mysql process terminates, the server
drops the temporary table. When the second mysql process attempts to use the table, the server
reports “unknown table.”

To avoid problems like this, use a single mysql process to execute the contents of all binary logs
that you want to process. Here is one way to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e source /tmp/statements.sql

mysqlbinlog can produce output that reproduces a LOAD DATA INFILE operation without the
original data file. mysqlbinlog copies the data to a temporary file and writes a LOAD DATA
LOCAL INFILE statement that refers to the file. The default location of the directory where
these files are written is system-specific. To specify a directory explicitly, use the --local-load
option.

Because mysqlbinlog converts LOAD DATA INFILE statements to LOAD DATA LOCAL
INFILE statements (that is, it adds LOCAL), both the client and the server that you use to

MySQL 5.5 08/28/2018 7

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

process the statements must be configured with the LOCAL capability enabled. See Section 6.1.6,
“Security Issues with LOAD DATA LOCAL”.

Warning
The temporary files created for LOAD DATA LOCAL statements are not automatically
deleted because they are needed until you actually execute those statements. You should
delete the temporary files yourself after you no longer need the statement log. The files can
be found in the temporary file directory and have names like original_file_name-#-#.

MYSQLBINLOG HEX DUMP FORMAT
The --hexdump option causes mysqlbinlog to produce a hex dump of the binary log contents:

shell> mysqlbinlog --hexdump master-bin.000001

The hex output consists of comment lines beginning with #, so the output might look like this for
the preceding command:

/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
at 4
#051024 17:24:13 server id 1 end_log_pos 98
Position Timestamp Type Master ID Size Master Pos Flags
00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00
00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|
00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|
00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|
Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
at startup
ROLLBACK;

Hex dump output currently contains the elements in the following list. This format is subject to
change. For more information about binary log format, see MySQL Internals: The Binary
Log[1].

• Position: The byte position within the log file.
• Timestamp: The event timestamp. In the example shown, 9d fc 5c 43 is the representation

of 051024 17:24:13 in hexadecimal.
• Type: The event type code.
• Master ID: The server ID of the master that created the event.
• Size: The size in bytes of the event.
• Master Pos: The position of the next event in the original master log file.
• Flags: Event flag values.

MYSQLBINLOG ROW EVENT DISPLAY
The following examples illustrate how mysqlbinlog displays row events that specify data
modifications. These correspond to events with the WRITE_ROWS_EVENT,
UPDATE_ROWS_EVENT, and DELETE_ROWS_EVENT type codes. The
--base64-output=DECODE-ROWS and --verbose options may be used to affect row event
output.

Suppose that the server is using row-based binary logging and that you execute the following
sequence of statements:

CREATE TABLE t
(
id INT NOT NULL,
name VARCHAR(20) NOT NULL,
date DATE NULL
) ENGINE = InnoDB;

MySQL 5.5 08/28/2018 8

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

START TRANSACTION;
INSERT INTO t VALUES(1, apple, NULL);
UPDATE t SET name = pear, date = 2009-01-01 WHERE id = 1;
DELETE FROM t WHERE id = 1;
COMMIT;

By default, mysqlbinlog displays row events encoded as base-64 strings using BINLOG
statements. Omitting extraneous lines, the output for the row events produced by the preceding
statement sequence looks like this:

shell> mysqlbinlog log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
BINLOG
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
/*!*/;
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
BINLOG
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
/*!*/;
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
BINLOG
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
/*!*/;

To see the row events as comments in the form of “pseudo-SQL” statements, run mysqlbinlog
with the --verbose or -v option. The output will contain lines beginning with ###:

shell> mysqlbinlog -v log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
BINLOG
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
/*!*/;
INSERT INTO test.t
SET
@1=1
@2=apple
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
BINLOG
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
/*!*/;
UPDATE test.t

MySQL 5.5 08/28/2018 9

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

WHERE
@1=1
@2=apple
@3=NULL
SET
@1=1
@2=pear
@3=2009:01:01
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
BINLOG
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
/*!*/;
DELETE FROM test.t
WHERE
@1=1
@2=pear
@3=2009:01:01

Specify --verbose or -v twice to also display data types and some metadata for each column. The
output will contain an additional comment following each column change:

shell> mysqlbinlog -vv log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
BINLOG
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
/*!*/;
INSERT INTO test.t
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2=apple /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
BINLOG
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
/*!*/;
UPDATE test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2=apple /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2=pear /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=2009:01:01 /* DATE meta=0 nullable=1 is_null=0 */
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

MySQL 5.5 08/28/2018 10

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

BINLOG
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
/*!*/;
DELETE FROM test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2=pear /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=2009:01:01 /* DATE meta=0 nullable=1 is_null=0 */

You can tell mysqlbinlog to suppress the BINLOG statements for row events by using the
--base64-output=DECODE-ROWS option. This is similar to --base64-output=NEVER
but does not exit with an error if a row event is found. The combination of
--base64-output=DECODE-ROWS and --verbose provides a convenient way to see row
events only as SQL statements:

shell> mysqlbinlog -v --base64-output=DECODE-ROWS log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
INSERT INTO test.t
SET
@1=1
@2=apple
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
UPDATE test.t
WHERE
@1=1
@2=apple
@3=NULL
SET
@1=1
@2=pear
@3=2009:01:01
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
DELETE FROM test.t
WHERE
@1=1
@2=pear
@3=2009:01:01

Note
You should not suppress BINLOG statements if you intend to re-execute mysqlbinlog
output.

The SQL statements produced by --verbose for row events are much more readable than the
corresponding BINLOG statements. However, they do not correspond exactly to the original SQL
statements that generated the events. The following limitations apply:

• The original column names are lost and replaced by @N, where N is a column number.
• Character set information is not available in the binary log, which affects string column

display:

MySQL 5.5 08/28/2018 11

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

• There is no distinction made between corresponding binary and nonbinary string
types (BINARY and CHAR, VARBINARY and VARCHAR, BLOB and TEXT). The
output uses a data type of STRING for fixed-length strings and VARSTRING for
variable-length strings.

• For multibyte character sets, the maximum number of bytes per character is not
present in the binary log, so the length for string types is displayed in bytes rather
than in characters. For example, STRING(4) will be used as the data type for values
from either of these column types:

CHAR(4) CHARACTER SET latin1
CHAR(2) CHARACTER SET ucs2

• Due to the storage format for events of type UPDATE_ROWS_EVENT, UPDATE
statements are displayed with the WHERE clause preceding the SET clause.

Proper interpretation of row events requires the information from the format description event at
the beginning of the binary log. Because mysqlbinlog does not know in advance whether the rest
of the log contains row events, by default it displays the format description event using a
BINLOG statement in the initial part of the output.

If the binary log is known not to contain any events requiring a BINLOG statement (that is, no
row events), the --base64-output=NEVER option can be used to prevent this header from
being written.

COPYRIGHT
Copyright 1997, 2018, Oracle and/or its affiliates. All rights reserved.

This documentation is free software; you can redistribute it and/or modify it only under the
terms of the GNU General Public License as published by the Free Software Foundation; version 2
of the License.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program; if
not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA or see http://www.gnu.org/licenses/.

NOTES
1. MySQL Internals: The Binary Log

http://dev.mysql.com/doc/internals/en/binary-log.html

SEE ALSO
For more information, please refer to the MySQL Reference Manual, which may already be
installed locally and which is also available online at http://dev.mysql.com/doc/.

AUTHOR
Oracle Corporation (http://dev.mysql.com/).

MySQL 5.5 08/28/2018 12

http://www.gnu.org/licenses/.
http://dev.mysql.com/doc/internals/en/binary-log.html
http://dev.mysql.com/doc/.
http://dev.mysql.com/

	NAME
	SYNOPSIS
	DESCRIPTION
	MYSQLBINLOG HEX DUMP FORMAT
	MYSQLBINLOG ROW EVENT DISPLAY
	COPYRIGHT
	NOTES
	SEE ALSO
	AUTHOR

