
JPNEVULATOR(1) User Commands JPNEVULATOR(1)

NAME
jpnevulator - Just another serial sniffer

SYNOPSIS
jpnevulator [OPTION]... <FILE>

DESCRIPTION
jpnevulator is a handy serial sniffer. You can use it to send data on a serial device too. You can
read or write from/to one or more serial devices at the same time.

In write (--write) mode data to be sent on the serial device(s) is read from a file or stdin in hexa-
decimal notation. The input format is FD or 0xFD. Of course all input is treated case-insensitive.
Spaces may or may not be included in the input. So DEADBEEF is exactly the same as DE AD
BE EF. Data is sent on the serial device(s) line by line.

In read (--read) mode data to be read from the serial device(s) is written to a file or stdout in
hexadecimal notation. Skim through the options for several enhancements in the output. It’s even
possible to pass(--pass) on the data between the several serial devices.

Mandatory arguments to long options are mandatory for short options too.

Generic options:

-l, --alias-separator
Use the given string as the alias separator. See --tty for more information.

-f, --file=NAME
In write mode read the contents of the file given and send them on the serial device(s)
and in read mode write the contents of the serial device(s) to the file given.

-h, --help
Shows a brief list of options.

-o, --count=BYTES
Exit after reading / writing the given amount of bytes.

-r, --read
Put the program in read mode. This way you read the data from the given serial
device(s) and write it to the file given or stdout if none given. See the read options sec-
tion for more read specific options.

-t, --tty=NAME:ALIAS
The serial device to read from or write to. Use multiple times to read/write from/to more
than one serial device(s). For handy reference you can also separate an alias from the tty
name with a collon ’:’. If a collon is for some strange reason part of your device name, you
can use the --alias-separator option to specify another separation string. If an alias is
given it will be used as the name of the serial device.

-v, --version
Output the version information, a small GPL notice and exit.

-w, --write
Put the program in write mode. This way you read data from a given file or stdin if none
given and write it to the serial device(s) given. See the write options section for more
write specific options.

Read options:

-a, --ascii
Besides the hexadecimal output also display an extra column with the data in the ASCII
representation. Non printable characters are displayed as a dot ’.’. The ASCII data is dis-
played after the hexadecimal data.

jpnevulator 2.1.3 August 2014 1

JPNEVULATOR(1) User Commands JPNEVULATOR(1)

-b, --byte-count
Besides the hexadecimal output also display an extra column with the current index num-
ber of the byte in the output. These numbers are displayed in front of the hexadecimal
data. When readin from multiple serial devices at the same time the index number will
increase per serial device.

-C, --control
Monitor modem control bits (line enable, data terminal ready, request to send, secondary
TXD, secondary RXD, clear to send, carrier detect, ring and data set ready) too and
notify changes. Use the --control-poll option to specify how often to poll for the bits.

-D, --control-poll=MICROSECONDS
The control poll is the amount of microseconds to wait in between two checks of the
modem control bits if nothing else is happening.

-P, --pass
This one passes all the data between the serial devices. Handy if you want to put your
serial sniffer in between the serial devices you want to sniff.

-q, --pty=:ALIAS
The pseudo-terminal device to read from. Use multiple times to read from more than one
pseudo-terminal device(s). For handy reference you can also use an alias to name the pty.
Make sure it starts with a collon ’:’. Use the --alias-separator option if you for some rea-
son don’t like to use a collon. If an alias is given it will be used as the name of the
pseudo-terminal device.

-e, --timing-delta=MICROSECONDS
The timing delta is the amount of microseconds between two bytes that the latter is con-
sidered to be part of a new package. The default is 100 miliseconds. Use this option in
conjunction with the --timing-print option.

-g, --timing-print
Print a line of timing information before every continues stream of bytes. When multiple
serial devices are given also print the name or alias of the device where the data is coming
from.

-i, --width=WIDTH
The number of bytes to display on one line. The default is 16.

Write options:

-c, --checksum
Append a single checksum byte to the line of data written to the serial device(s) chosen.
This checksum is a simple modulo 256 addition of all input bytes on a line.

-z, --crc8=POLY
Append a crc8 checksum to the line of data written to the serial device(s) chosen. Use
the optionally given poly as the polynomial. Specify the polynomial as hexadecimal value,
as in 0x07 (the default).

-y, --crc16=POLY
Append a crc16 checksum to the line of data written to the serial device(s) chosen. Use
the optionally given poly as the polynomial. Specify the polynomial as hexadecimal value,
as in 0xA001 (the default).

-k, --delay-byte=MICROSECONDS
This delay is an optional amount of microseconds to wait in between every input byte is
sent on the serial device(s).

-d, --delay-line=MICROSECONDS
This delay is an optional amount of microseconds to wait in between every input line is
sent on the serial device(s).

jpnevulator 2.1.3 August 2014 2

JPNEVULATOR(1) User Commands JPNEVULATOR(1)

-j, --fuck-up
This is the special fuck up option. When the calculation of a checksum is chosen (see
checksum and crc* options) the checkum will be crippled on purpose. Carefully named
after the special Jan Arie de Bruin ’fuck up crc’ button.

-n, --no-send
Do not actually send the bytes on the serial device(s). Rather pointless, but seemed one
day long ago to be a rather handy feature.

-p, --print
Besided sending the data on the serial device(s) also write the data to stdout.

-s, --size=SIZE
The maximum number of bytes per line to send on the serial device(s). The default is 22,
coming from back in the Cham2 days of the program.

DIAGNOSTICS
Normally, exit status is 0 if the program did run with no problem whatsoever. If the exit status is
not equal to 0 an error message is printed on stderr which should help you solve the problem.

BUGS
Order of bytes broke when reading several tty devices at once

The display of incoming bytes can be broke if you use multiple tty devices to read from. At the
moment I do not have a solution for this problem. Since I use select() to watch the several tty
devices and after the select() I have to read() them one by one, I can not completely 100% display
which bytes came after which on different tty devices. Take the example below:

$ jpnevulator --ascii --timing-print --tty /dev/ttyS0 --tty /dev/ttyUSB0 --read
2006-05-30 13:23:49.461075: /dev/ttyS0
00 00 05 3B 0D 00 00 05 ...;....
2006-05-30 13:23:49.461113: /dev/ttyUSB0
00 05 3B 0D 00 00 05 3B 0D ..;....;.
2006-05-30 13:23:49.473074: /dev/ttyS0
3B 0D 00 00 05 3B 0D ;....;.
2006-05-30 13:23:49.473105: /dev/ttyUSB0
00 12 05 06 39 00 12 05 06 39 1F 00 22 80 00 0E9....9.....
$

And now see the order in which things really got sent on the line:

/dev/ttyS0:
00 00 05 3B 0D
/dev/ttyUSB0:
00 00 05 3B 0D
/dev/ttyS0:
00 00 05 3B 0D
/dev/ttyUSB0:
00 00 05 3B 0D
/dev/ttyS0:
00 00 05 3B 0D
/dev/ttyUSB0:
00 00 05 3B 0D 00 12 05 06 39 00 12 05 06 39 ...

As you can see /dev/ttyUSB0 receives the echo of all things sent by /dev/ttyS0. This is exactly
what happens. But since there does exist a small time between the select() who is happy express-
ing something is available and the read() who does get the available data, some extra data will be
available. I have no idea on how I can use high level system call like select() and read() and be
still able to put the bytes in the correct order. Anyone an idea?

jpnevulator 2.1.3 August 2014 3

JPNEVULATOR(1) User Commands JPNEVULATOR(1)

AUTHOR
Written by Freddy Spierenburg.

REPORTING BUGS
Report bugs to <freddy@snarl.nl>.

COPYRIGHT
Copyright 2006-2014 Freddy Spierenburg

jpnevulator 2.1.3 August 2014 4

	NAME
	SYNOPSIS
	DESCRIPTION
	-l, --alias-separator
	-f, --file=NAME
	-h, --help
	-o, --count=BYTES
	-r, --read
	-t, --tty=NAME:ALIAS
	-v, --version
	-w, --write
	-a, --ascii
	-b, --byte-count
	-C, --control
	-D, --control-poll=MICROSECONDS
	-P, --pass
	-q, --pty=:ALIAS
	-e, --timing-delta=MICROSECONDS
	-g, --timing-print
	-i, --width=WIDTH
	-c, --checksum
	-z, --crc8=POLY
	-y, --crc16=POLY
	-k, --delay-byte=MICROSECONDS
	-d, --delay-line=MICROSECONDS
	-j, --fuck-up
	-n, --no-send
	-p, --print
	-s, --size=SIZE

	DIAGNOSTICS
	BUGS
	AUTHOR
	REPORTING BUGS
	COPYRIGHT

