
GIT−BRANCH(1)                                      Git Manual GIT−BRANCH(1)

NAME
git-branch - List, create, or delete branches

SYNOPSIS
git branch [--color[=<when>] | --no-color] [-r | -a]
[--list] [-v [--abbrev=<length> | --no-abbrev]]
[--column[=<options>] | --no-column]
[(--merged | --no-merged | --contains) [<commit>]] [<pattern>...]
git branch [--set-upstream | --track | --no-track] [-l] [-f] <branchname> [<start-point>]
git branch (--set-upstream-to=<upstream> | -u <upstream>) [<branchname>]
git branch --unset-upstream [<branchname>]
git branch (-m | -M) [<oldbranch>] <newbranch>
git branch (-d | -D) [-r] <branchname>...
git branch --edit-description [<branchname>]

DESCRIPTION
If --list is given, or if there are no non-option arguments, existing branches are listed; the current
branch will be highlighted with an asterisk. Option -r causes the remote-tracking branches to be
listed, and option -a shows both local and remote branches. If a <pattern> is given, it is used as a
shell wildcard to restrict the output to matching branches. If multiple patterns are given, a
branch is shown if it matches any of the patterns. Note that when providing a <pattern>, you
must use --list; otherwise the command is interpreted as branch creation.

With --contains, shows only the branches that contain the named commit (in other words, the
branches whose tip commits are descendants of the named commit). With --merged, only
branches merged into the named commit (i.e. the branches whose tip commits are reachable from
the named commit) will be listed. With --no-merged only branches not merged into the named
commit will be listed. If the <commit> argument is missing it defaults to HEAD (i.e. the tip of
the current branch).

The command’s second form creates a new branch head named <branchname> which points to
the current HEAD, or <start-point> if given.

Note that this will create the new branch, but it will not switch the working tree to it; use git
checkout <newbranch> to switch to the new branch.

When a local branch is started off a remote-tracking branch, Git sets up the branch (specifically
the branch.<name>.remote and branch.<name>.merge configuration entries) so that git pull will
appropriately merge from the remote-tracking branch. This behavior may be changed via the
global branch.autosetupmerge configuration flag. That setting can be overridden by using the
--track and --no-track options, and changed later using git branch --set-upstream-to.

With a -m or -M option, <oldbranch> will be renamed to <newbranch>. If <oldbranch> had a
corresponding reflog, it is renamed to match <newbranch>, and a reflog entry is created to
remember the branch renaming. If <newbranch> exists, -M must be used to force the rename to
happen.

With a -d or -D option, <branchname> will be deleted. You may specify more than one branch for
deletion. If the branch currently has a reflog then the reflog will also be deleted.

Use -r together with -d to delete remote-tracking branches. Note, that it only makes sense to
delete remote-tracking branches if they no longer exist in the remote repository or if git fetch was
configured not to fetch them again. See also the prune subcommand of git-remote(1) for a way
to clean up all obsolete remote-tracking branches.

OPTIONS
-d, --delete

Delete a branch. The branch must be fully merged in its upstream branch, or in HEAD if no
upstream was set with --track or --set-upstream.

Git 2.1.4                                                   10/05/2018                                                             1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-remote


GIT−BRANCH(1)                                      Git Manual GIT−BRANCH(1)

-D
Delete a branch irrespective of its merged status.

-l, --create-reflog
Create the branch’s reflog. This activates recording of all changes made to the branch ref,
enabling use of date based sha1 expressions such as <branchname>@{yesterday}. Note that in
non-bare repositories, reflogs are usually enabled by default by the core.logallrefupdates
config option.

-f, --force
Reset <branchname> to <startpoint> if <branchname> exists already. Without -fgit branch
refuses to change an existing branch.

-m, --move
Move/rename a branch and the corresponding reflog.

-M
Move/rename a branch even if the new branch name already exists.

--color[=<when>]
Color branches to highlight current, local, and remote-tracking branches. The value must be
always (the default), never, or auto.

--no-color
Turn off branch colors, even when the configuration file gives the default to color output.
Same as --color=never.

--column[=<options>], --no-column
Display branch listing in columns. See configuration variable column.branch for option
syntax.--column and --no-column without options are equivalent to always and never
respectively.

This option is only applicable in non-verbose mode.

-r, --remotes
List or delete (if used with -d) the remote-tracking branches.

-a, --all
List both remote-tracking branches and local branches.

--list
Activate the list mode.  git branch <pattern> would try to create a branch, use git branch
--list <pattern> to list matching branches.

-v, -vv, --verbose
When in list mode, show sha1 and commit subject line for each head, along with relationship
to upstream branch (if any). If given twice, print the name of the upstream branch, as well
(see also git remote show <remote>).

-q, --quiet
Be more quiet when creating or deleting a branch, suppressing non-error messages.

--abbrev=<length>
Alter the sha1’s minimum display length in the output listing. The default value is 7 and can
be overridden by the core.abbrev config option.

--no-abbrev
Display the full sha1s in the output listing rather than abbreviating them.

-t, --track
When creating a new branch, set up branch.<name>.remote and branch.<name>.merge
configuration entries to mark the start-point branch as upstream from the new branch. This
configuration will tell git to show the relationship between the two branches in git status and
git branch -v. Furthermore, it directs git pull without arguments to pull from the upstream

Git 2.1.4                                                   10/05/2018                                                             2



GIT−BRANCH(1)                                      Git Manual GIT−BRANCH(1)

when the new branch is checked out.

This behavior is the default when the start point is a remote-tracking branch. Set the
branch.autosetupmerge configuration variable to false if you want git checkout and git branch
to always behave as if --no-track were given. Set it to always if you want this behavior when
the start-point is either a local or remote-tracking branch.

--no-track
Do not set up upstream configuration, even if the branch.autosetupmerge configuration
variable is true.

--set-upstream
If specified branch does not exist yet or if --force has been given, acts exactly like --track.
Otherwise sets up configuration like --track would when creating the branch, except that
where branch points to is not changed.

-u <upstream>, --set-upstream-to=<upstream>
Set up <branchname>s tracking information so <upstream> is considered <branchname>s
upstream branch. If no <branchname> is specified, then it defaults to the current branch.

--unset-upstream
Remove the upstream information for <branchname>. If no branch is specified it defaults to
the current branch.

--edit-description
Open an editor and edit the text to explain what the branch is for, to be used by various
other commands (e.g.  request-pull).

--contains [<commit>]
Only list branches which contain the specified commit (HEAD if not specified). Implies --list.

--merged [<commit>]
Only list branches whose tips are reachable from the specified commit (HEAD if not
specified). Implies --list.

--no-merged [<commit>]
Only list branches whose tips are not reachable from the specified commit (HEAD if not
specified). Implies --list.

<branchname>
The name of the branch to create or delete. The new branch name must pass all checks
defined by git-check-ref-format(1). Some of these checks may restrict the characters
allowed in a branch name.

<start-point>
The new branch head will point to this commit. It may be given as a branch name, a
commit-id, or a tag. If this option is omitted, the current HEAD will be used instead.

<oldbranch>
The name of an existing branch to rename.

<newbranch>
The new name for an existing branch. The same restrictions as for <branchname> apply.

EXAMPLES
Start development from a known tag

$ git clone git://git.kernel.org/pub/scm/.../linux-2.6 my2.6
$ cd my2.6
$ git branch my2.6.14 v2.6.14 (1)
$ git checkout my2.6.14

1. This step and the next one could be combined into a single step with checkout -b my2.6.14
v2.6.14.

Git 2.1.4                                                   10/05/2018                                                             3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-check-ref-format


GIT−BRANCH(1)                                      Git Manual GIT−BRANCH(1)

Delete an unneeded branch

$ git clone git://git.kernel.org/.../git.git my.git
$ cd my.git
$ git branch -d -r origin/todo origin/html origin/man (1)
$ git branch -D test (2)

1. Delete the remote-tracking branches todo, html and man. The next fetch or pull will create
them again unless you configure them not to. See git-fetch(1).
2. Delete the test branch even if the master branch (or whichever branch is currently checked
out) does not have all commits from the test branch.

NOTES
If you are creating a branch that you want to checkout immediately, it is easier to use the git
checkout command with its -b option to create a branch and check it out with a single command.

The options --contains, --merged and --no-merged serve three related but different purposes:
• --contains <commit> is used to find all branches which will need special attention if

<commit> were to be rebased or amended, since those branches contain the specified
<commit>.

• --merged is used to find all branches which can be safely deleted, since those branches are
fully contained by HEAD.

• --no-merged is used to find branches which are candidates for merging into HEAD, since
those branches are not fully contained by HEAD.

SEE ALSO 
git-check-ref-format(1), git-fetch(1), git-remote(1), “Understanding history: What is a
branch?”[1] in the Git User’s Manual.

GIT
Part of the git(1) suite

NOTES
1. “Understanding history: What is a branch?”

file:///usr/share/doc/git/html/user-manual.html#what-is-a-branch

Git 2.1.4                                                   10/05/2018                                                             4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-fetch
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-check-ref-format
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-fetch
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-remote
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git

	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	NOTES
	SEE ALSO
	GIT
	NOTES

