
GETOPT(1) User Commands GETOPT(1)

NAME
getopt - parse command options (enhanced)

SYNOPSIS
getopt optstring parameters
getopt [options] [--] optstring parameters
getopt [options] -o|--options optstring [options] [--] parameters

DESCRIPTION
getopt is used to break up (parse) options in command lines for easy parsing by shell procedures,
and to check for legal options. It uses the GNU getopt(3) routines to do this.

The parameters getopt is called with can be divided into two parts: options which modify the
way getopt will do the parsing (the options and the optstring in the SYNOPSIS), and the
parameters which are to be parsed (parameters in the SYNOPSIS). The second part will start
at the first non-option parameter that is not an option argument, or after the first occurrence of
’--’. If no ’-o’ or ’--options’ option is found in the first part, the first parameter of the second
part is used as the short options string.

If the environment variable GETOPT_COMPATIBLE is set, or if the first parameter is not an
option (does not start with a ’-’, the first format in the SYNOPSIS), getopt will generate out-
put that is compatible with that of other versions of getopt(1). It will still do parameter shuffling
and recognize optional arguments (see section COMPATIBILITY for more information).

Traditional implementations of getopt(1) are unable to cope with whitespace and other (shell-spe-
cific) special characters in arguments and non-option parameters. To solve this problem, this
implementation can generate quoted output which must once again be interpreted by the shell
(usually by using the eval command). This has the effect of preserving those characters, but you
must call getopt in a way that is no longer compatible with other versions (the second or third
format in the SYNOPSIS). To determine whether this enhanced version of getopt(1) is
installed, a special test option (-T) can be used.

OPTIONS
-a, --alternative

Allow long options to start with a single ’-’.

-h, --help
Display help text and exit. No other output is generated.

-l, --longoptions longopts
The long (multi-character) options to be recognized. More than one option name may be
specified at once, by separating the names with commas. This option may be given more
than once, the longopts are cumulative. Each long option name in longopts may be fol-
lowed by one colon to indicate it has a required argument, and by two colons to indicate
it has an optional argument.

-n, --name progname
The name that will be used by the getopt(3) routines when it reports errors. Note that
errors of getopt(1) are still reported as coming from getopt.

-o, --options shortopts
The short (one-character) options to be recognized. If this option is not found, the first
parameter of getopt that does not start with a ’-’ (and is not an option argument) is
used as the short options string. Each short option character in shortopts may be fol-
lowed by one colon to indicate it has a required argument, and by two colons to indicate
it has an optional argument. The first character of shortopts may be ’+’ or ’-’ to influ-
ence the way options are parsed and output is generated (see section SCANNING
MODES for details).

util-linux June 2012 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt

GETOPT(1) User Commands GETOPT(1)

-q, --quiet
Disable error reporting by getopt(3)

-Q, --quiet-output
Do not generate normal output. Errors are still reported by getopt(3), unless you also use
-q.

-s, --shell shell
Set quoting conventions to those of shell. If the -s option is not given, the BASH conven-
tions are used. Valid arguments are currently ’sh’ ’bash’, ’csh’, and ’tcsh’.

-u, --unquoted
Do not quote the output. Note that whitespace and special (shell-dependent) characters
can cause havoc in this mode (like they do with other getopt(1) implementations).

-T, --test
Test if your getopt(1) is this enhanced version or an old version. This generates no out-
put, and sets the error status to 4. Other implementations of getopt(1), and this version if
the environment variable GETOPT_COMPATIBLE is set, will return ’--’ and error
status 0.

-V, --version
Display version information and exit. No other output is generated.

PARSING
This section specifies the format of the second part of the parameters of getopt (the parameters
in the SYNOPSIS). The next section (OUTPUT) describes the output that is generated.
These parameters were typically the parameters a shell function was called with. Care must be
taken that each parameter the shell function was called with corresponds to exactly one parame-
ter in the parameter list of getopt (see the EXAMPLES). All parsing is done by the GNU
getopt(3) routines.

The parameters are parsed from left to right. Each parameter is classified as a short option, a
long option, an argument to an option, or a non-option parameter.

A simple short option is a ’-’ followed by a short option character. If the option has a required
argument, it may be written directly after the option character or as the next parameter (i.e. sep-
arated by whitespace on the command line). If the option has an optional argument, it must be
written directly after the option character if present.

It is possible to specify several short options after one ’-’, as long as all (except possibly the last)
do not have required or optional arguments.

A long option normally begins with ’--’ followed by the long option name. If the option has a
required argument, it may be written directly after the long option name, separated by ’=’, or as
the next argument (i.e. separated by whitespace on the command line). If the option has an
optional argument, it must be written directly after the long option name, separated by ’=’, if
present (if you add the ’=’ but nothing behind it, it is interpreted as if no argument was present;
this is a slight bug, see the BUGS). Long options may be abbreviated, as long as the abbrevia-
tion is not ambiguous.

Each parameter not starting with a ’-’, and not a required argument of a previous option, is a
non-option parameter. Each parameter after a ’--’ parameter is always interpreted as a non-option
parameter. If the environment variable POSIXLY_CORRECT is set, or if the short option
string started with a ’+’, all remaining parameters are interpreted as non-option parameters as
soon as the first non-option parameter is found.

OUTPUT
Output is generated for each element described in the previous section. Output is done in the
same order as the elements are specified in the input, except for non-option parameters. Output
can be done in compatible (unquoted) mode, or in such way that whitespace and other special
characters within arguments and non-option parameters are preserved (see QUOTING). When

util-linux June 2012 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt

GETOPT(1) User Commands GETOPT(1)

the output is processed in the shell script, it will seem to be composed of distinct elements that
can be processed one by one (by using the shift command in most shell languages). This is imper-
fect in unquoted mode, as elements can be split at unexpected places if they contain whitespace
or special characters.

If there are problems parsing the parameters, for example because a required argument is not
found or an option is not recognized, an error will be reported on stderr, there will be no output
for the offending element, and a non-zero error status is returned.

For a short option, a single ’-’ and the option character are generated as one parameter. If the
option has an argument, the next parameter will be the argument. If the option takes an optional
argument, but none was found, the next parameter will be generated but be empty in quoting
mode, but no second parameter will be generated in unquoted (compatible) mode. Note that
many other getopt(1) implementations do not support optional arguments.

If several short options were specified after a single ’-’, each will be present in the output as a sep-
arate parameter.

For a long option, ’--’ and the full option name are generated as one parameter. This is done
regardless whether the option was abbreviated or specified with a single ’-’ in the input. Argu-
ments are handled as with short options.

Normally, no non-option parameters output is generated until all options and their arguments
have been generated. Then ’--’ is generated as a single parameter, and after it the non-option
parameters in the order they were found, each as a separate parameter. Only if the first character
of the short options string was a ’-’, non-option parameter output is generated at the place they
are found in the input (this is not supported if the first format of the SYNOPSIS is used; in
that case all preceding occurrences of ’-’ and ’+’ are ignored).

QUOTING
In compatible mode, whitespace or ’special’ characters in arguments or non-option parameters are
not handled correctly. As the output is fed to the shell script, the script does not know how it is
supposed to break the output into separate parameters. To circumvent this problem, this imple-
mentation offers quoting. The idea is that output is generated with quotes around each parame-
ter. When this output is once again fed to the shell (usually by a shell eval command), it is split
correctly into separate parameters.

Quoting is not enabled if the environment variable GETOPT_COMPATIBLE is set, if the
first form of the SYNOPSIS is used, or if the option ’-u’ is found.

Different shells use different quoting conventions. You can use the ’-s’ option to select the shell
you are using. The following shells are currently supported: ’sh’, ’bash’, ’csh’ and ’tcsh’. Actu-
ally, only two ’flavors’ are distinguished: sh-like quoting conventions and csh-like quoting conven-
tions. Chances are that if you use another shell script language, one of these flavors can still be
used.

SCANNING MODES
The first character of the short options string may be a ’-’ or a ’+’ to indicate a special scanning
mode. If the first calling form in the SYNOPSIS is used they are ignored; the environment vari-
able POSIXLY_CORRECT is still examined, though.

If the first character is ’+’, or if the environment variable POSIXLY_CORRECT is set, pars-
ing stops as soon as the first non-option parameter (i.e. a parameter that does not start with a
’-’) is found that is not an option argument. The remaining parameters are all interpreted as non-
option parameters.

If the first character is a ’-’, non-option parameters are outputted at the place where they are
found; in normal operation, they are all collected at the end of output after a ’--’ parameter has
been generated. Note that this ’--’ parameter is still generated, but it will always be the last
parameter in this mode.

util-linux June 2012 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt

GETOPT(1) User Commands GETOPT(1)

COMPATIBILITY
This version of getopt(1) is written to be as compatible as possible to other versions. Usually you
can just replace them with this version without any modifications, and with some advantages.

If the first character of the first parameter of getopt is not a ’-’, getopt goes into compatibility
mode. It will interpret its first parameter as the string of short options, and all other arguments
will be parsed. It will still do parameter shuffling (i.e. all non-option parameters are output at the
end), unless the environment variable POSIXLY_CORRECT is set.

The environment variable GETOPT_COMPATIBLE forces getopt into compatibility mode.
Setting both this environment variable and POSIXLY_CORRECT offers 100% compatibility
for ’difficult’ programs. Usually, though, neither is needed.

In compatibility mode, leading ’-’ and ’+’ characters in the short options string are ignored.

RETURN CODES
getopt returns error code 0 for successful parsing, 1 if getopt(3) returns errors, 2 if it does not
understand its own parameters, 3 if an internal error occurs like out-of-memory, and 4 if it is
called with -T.

EXAMPLES
Example scripts for (ba)sh and (t)csh are provided with the getopt(1) distribution, and are
optionally installed in /usr/share/getopt/ or /usr/share/doc/ in the util-linux subdirectory.

ENVIRONMENT
POSIXLY_CORRECT

This environment variable is examined by the getopt(3) routines. If it is set, parsing stops
as soon as a parameter is found that is not an option or an option argument. All remain-
ing parameters are also interpreted as non-option parameters, regardless whether they
start with a ’-’.

GETOPT_COMPATIBLE
Forces getopt to use the first calling format as specified in the SYNOPSIS.

BUGS
getopt(3) can parse long options with optional arguments that are given an empty optional argu-
ment (but can not do this for short options). This getopt(1) treats optional arguments that are
empty as if they were not present.

The syntax if you do not want any short option variables at all is not very intuitive (you have to
set them explicitly to the empty string).

AUTHOR
Frodo Looijaard

SEE ALSO
getopt(3), bash(1), tcsh(1).

AVAILABILITY
The getopt command is part of the util-linux package and is available from Linux Kernel Archive.

util-linux June 2012 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/getopt
mailto:frodo@frodo.looijaard.name
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/bash
ftp://ftp.kernel.org/pub/linux/utils/util-linux/

	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-a , --alternative
	-h , --help
	-l , --longoptions longopts
	-n , --name progname
	-o , --options shortopts
	-q , --quiet
	 -Q , --quiet-output
	-s , --shell shell
	-u , --unquoted
	-T , --test
	-V , --version

	PARSING
	OUTPUT
	QUOTING
	SCANNING MODES
	COMPATIBILITY
	RETURN CODES
	EXAMPLES
	ENVIRONMENT
	BUGS
	AUTHOR
	SEE ALSO
	AVAILABILITY

