
dpkg−source(1) dpkg utilities dpkg−source(1)

NAME
dpkg-source - Debian source package (.dsc) manipulation tool

SYNOPSIS
dpkg-source [option...] command

DESCRIPTION
dpkg-source packs and unpacks Debian source archives.

None of these commands allow multiple options to be combined into one, and they do not allow
the value for an option to be specified in a separate argument.

COMMANDS
-x, --extract filename.dsc [output-directory]

Extract a source package. The --extract alias was added in dpkg 1.17.14. One non-
option argument must be supplied, the name of the Debian source control file (.dsc). An
optional second non-option argument may be supplied to specify the directory to extract
the source package to, this must not exist. If no output directory is specified, the source
package is extracted into a directory named source-version under the current working
directory.

dpkg-source will read the names of the other file(s) making up the source package from
the control file; they are assumed to be in the same directory as the .dsc.

The files in the extracted package will have their permissions and ownerships set to those
which would have been expected if the files and directories had simply been created -
directories and executable files will be 0777 and plain files will be 0666, both modified by
the extractors’ umask; if the parent directory is setgid then the extracted directories will
be too, and all the files and directories will inherit its group ownership.

If the source package uses a non-standard format (currently this means all formats except
1.0), its name will be stored in debian/source/format so that the following builds of
the source package use the same format by default.

-b, --build directory [format-specific-parameters]
Build a source package. The --build alias was added in dpkg 1.17.14. The first non-
option argument is taken as the name of the directory containing the debianized source
tree (i.e. with a debian sub-directory and maybe changes to the original files). Depending
on the source package format used to build the package, additional parameters might be
accepted.

dpkg-source will build the source package with the first format found in this ordered
list: the format indicated with the --format command line option, the format indicated in
debian/source/format, 1.0. The fallback to 1.0 is deprecated and will be removed at
some point in the future, you should always document the desired source format in
debian/source/format. See section SOURCE PACKAGE FORMATS for an
extensive description of the various source package formats.

--print-format directory
Print the source format that would be used to build the source package if dpkg-source
--build directory was called (in the same conditions and with the same parameters).

--before-build directory
Run the corresponding hook of the source package format. This hook is called before any
build of the package (dpkg-buildpackage calls it very early even before debian/rules
clean). This command is idempotent and can be called multiple times. Not all source for-
mats implement something in this hook, and those that do usually prepare the source tree
for the build for example by ensuring that the Debian patches are applied.

Debian Project 2013-12-05 1

dpkg−source(1) dpkg utilities dpkg−source(1)

--after-build directory
Run the corresponding hook of the source package format. This hook is called after any
build of the package (dpkg-buildpackage calls it last). This command is idempotent
and can be called multiple times. Not all source formats implement something in this
hook, and those that do usually use it to undo what --before-build has done.

--commit [directory] ...
Record changes in the source tree unpacked in directory. This command can take supple-
mentary parameters depending on the source format. It will error out for formats where
this operation doesn’t mean anything.

-?, --help
Show the usage message and exit.

--version
Show the version and exit.

OPTIONS
Generic build options

-ccontrol-file
Specifies the main source control file to read information from. The default is
debian/control. If given with relative pathname this is interpreted starting at the
source tree’s top level directory.

-lchangelog-file
Specifies the changelog file to read information from. The default is debian/changelog.
If given with relative pathname this is interpreted starting at the source tree’s top level
directory.

-Fchangelog-format
Specifies the format of the changelog. See dpkg-parsechangelog(1) for information
about alternative formats.

--format=value
Use the given format for building the source package. It does override any format given in
debian/source/format.

-Vname=value
Set an output substitution variable. See deb-substvars(5) for a discussion of output
substitution.

-Tsubstvars-file
Read substitution variables in substvars-file; the default is to not read any file. This
option can be used multiple times to read substitution variables from multiple files.

-Dfield=value
Override or add an output control file field.

-Ufield Remove an output control file field.

-Zcompression, --compression=compression
Specify the compression to use for created files (tarballs and diffs). Note that this option
will not cause existing tarballs to be recompressed, it only affects new files. Supported
values are: gzip, bzip2, lzma and xz. The default is xz for formats 2.0 and newer, and gzip
for format 1.0. xz is only supported since dpkg 1.15.5.

-zlevel, --compression-level=level
Compression level to use. As with -Z it only affects newly created files. Supported values
are: 1 to 9, best, and fast. The default is 9 for gzip and bzip2, 6 for xz and lzma.

Debian Project 2013-12-05 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/dpkg-parsechangelog
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/deb-substvars

dpkg−source(1) dpkg utilities dpkg−source(1)

-i[regex], --diff-ignore[=regex]
You may specify a perl regular expression to match files you want filtered out of the list
of files for the diff. (This list is generated by a find command.) (If the source package is
being built as a version 3 source package using a VCS, this can be used to ignore uncom-
mited changes on specific files. Using -i.* will ignore all of them.)

The -i option by itself enables this setting with a default regex (preserving any modifica-
tion to the default regex done by a previous use of --extend-diff-ignore) that will filter
out control files and directories of the most common revision control systems, backup and
swap files and Libtool build output directories. There can only be one active regex, of
multiple -i options only the last one will take effect.

This is very helpful in cutting out extraneous files that get included in the diff, e.g. if you
maintain your source in a revision control system and want to use a checkout to build a
source package without including the additional files and directories that it will usually
contain (e.g. CVS/, .cvsignore, .svn/). The default regex is already very exhaustive, but if
you need to replace it, please note that by default it can match any part of a path, so if
you want to match the begin of a filename or only full filenames, you will need to provide
the necessary anchors (e.g. ’(ˆ|/)’, ’($|/)’) yourself.

--extend-diff-ignore=regex
The perl regular expression specified will extend the default value used by --diff-ignore
and its current value (if set). It does this by concatenating |regex to the existing value.
This option is convenient to use in debian/source/options to exclude some auto-gener-
ated files from the automatic patch generation.

-I[file-pattern], --tar-ignore[=file-pattern]
If this option is specified, the pattern will be passed to tar(1)’s --exclude option when it
is called to generate a .orig.tar or .tar file. For example, -ICVS will make tar skip over
CVS directories when generating a .tar.gz file. The option may be repeated multiple times
to list multiple patterns to exclude.

-I by itself adds default --exclude options that will filter out control files and directories
of the most common revision control systems, backup and swap files and Libtool build
output directories.

Note: While they have similar purposes, -i and -I have very different syntax and semantics. -i
can only be specified once and takes a perl compatible regular expression which is matched
against the full relative path of each file. -I can specified multiple times and takes a filename pat-
tern with shell wildcards. The pattern is applied to the full relative path but also to each part of
the path individually. The exact semantic of tar’s --exclude option is somewhat complicated, see
https://www.gnu.org/software/tar/manual/tar.html#wildcards for a full documentation.

The default regex and patterns for both options can be seen in the output of the --help com-
mand.

Generic extract options
--no-copy

Do not copy original tarballs near the extracted source package.

--no-check
Do not check signatures and checksums before unpacking.

--require-valid-signature
Refuse to unpack the source package if it doesn’t contain an OpenPGP signature that can
be verified either with the user’s trustedkeys.gpg keyring, one of the vendor-specific
keyrings, or one of the official Debian keyrings (/usr/share/keyrings/debian-keyring.gpg
and /usr/share/keyrings/debian-maintainers.gpg).

Debian Project 2013-12-05 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/tar
https://www.gnu.org/software/tar/manual/tar.html#wildcards

dpkg−source(1) dpkg utilities dpkg−source(1)

--ignore-bad-version
Turns the bad source package version check into a non-fatal warning. This option should
only be necessary when extracting ancient source packages with broken versions, just for
backwards compatibility.

SOURCE PACKAGE FORMATS
If you don’t know what source format to use, you should probably pick either 3.0 (quilt) or 3.0
(native). See https://wiki.debian.org/Projects/DebSrc3.0 for information on the deployment of
those formats within Debian.

Format: 1.0
A source package in this format consists either of a .orig.tar.gz associated to a .diff.gz or a sin-
gle .tar.gz (in that case the package is said to be native).

Extracting

Extracting a native package is a simple extraction of the single tarball in the target directory.
Extracting a non-native package is done by first unpacking the .orig.tar.gz and then applying
the patch contained in the .diff.gz file. The timestamp of all patched files is reset to the extrac-
tion time of the source package (this avoids timestamp skews leading to problems when autogen-
erated files are patched). The diff can create new files (the whole debian directory is created that
way) but can’t remove files (empty files will be left over).

Building

Building a native package is just creating a single tarball with the source directory. Building a
non-native package involves extracting the original tarball in a separate .orig directory and regen-
erating the .diff.gz by comparing the source package directory with the .orig directory.

Build options (with --build):

If a second non-option argument is supplied it should be the name of the original source directory
or tarfile or the empty string if the package is a Debian-specific one and so has no Debianisation
diffs. If no second argument is supplied then dpkg-source will look for the original source tarfile
package_upstream-version.orig.tar.gz or the original source directory directory.orig depending
on the -sX arguments.

-sa, -sp, -sk, -su and -sr will not overwrite existing tarfiles or directories. If this is desired then
-sA, -sP, -sK, -sU and -sR should be used instead.

-sk Specifies to expect the original source as a tarfile, by default package_upstream-ver-
sion.orig.tar.extension. It will leave this original source in place as a tarfile, or copy it
to the current directory if it isn’t already there. The tarball will be unpacked into direc-
tory.orig for the generation of the diff.

-sp Like -sk but will remove the directory again afterwards.

-su Specifies that the original source is expected as a directory, by default package-upstream-
version.orig and dpkg-source will create a new original source archive from it.

-sr Like -su but will remove that directory after it has been used.

-ss Specifies that the original source is available both as a directory and as a tarfile. dpkg-
source will use the directory to create the diff, but the tarfile to create the .dsc. This
option must be used with care - if the directory and tarfile do not match a bad source ar-
chive will be generated.

-sn Specifies to not look for any original source, and to not generate a diff. The second argu-
ment, if supplied, must be the empty string. This is used for Debian-specific packages
which do not have a separate upstream source and therefore have no debianisation diffs.

Debian Project 2013-12-05 4

https://wiki.debian.org/Projects/DebSrc3.0

dpkg−source(1) dpkg utilities dpkg−source(1)

-sa or -sA
Specifies to look for the original source archive as a tarfile or as a directory - the second
argument, if any, may be either, or the empty string (this is equivalent to using -sn). If a
tarfile is found it will unpack it to create the diff and remove it afterwards (this is equiva-
lent to -sp); if a directory is found it will pack it to create the original source and remove
it afterwards (this is equivalent to -sr); if neither is found it will assume that the package
has no debianisation diffs, only a straightforward source archive (this is equivalent to
-sn). If both are found then dpkg-source will ignore the directory, overwriting it, if -sA
was specified (this is equivalent to -sP) or raise an error if -sa was specified. -sA is the
default.

--abort-on-upstream-changes
The process fails if the generated diff contains changes to files outside of the debian sub-
directory. This option is not allowed in debian/source/options but can be used in
debian/source/local-options.

Extract options (with --extract):

In all cases any existing original source tree will be removed.

-sp Used when extracting then the original source (if any) will be left as a tarfile. If it is not
already located in the current directory or if an existing but different file is there it will
be copied there. (This is the default).

-su Unpacks the original source tree.

-sn Ensures that the original source is neither copied to the current directory nor unpacked.
Any original source tree that was in the current directory is still removed.

All the -sX options are mutually exclusive. If you specify more than one only the last one will be
used.

--skip-debianization
Skips application of the debian diff on top of the upstream sources.

Format: 2.0
Also known as wig&pen. This format is not recommended for wide-spread usage, the format 3.0
(quilt) replaces it. Wig&pen was the first specification of a new-generation source package format.

The behaviour of this format is the same as the 3.0 (quilt) format except that it doesn’t use an
explicit list of patches. All files in debian/patches/ matching the perl regular expression [w-]+
must be valid patches: they are applied at extraction time.

When building a new source package, any change to the upstream source is stored in a patch
named zz_debian-diff-auto.

Format: 3.0 (native)
This format is an extension of the native package format as defined in the 1.0 format. It supports
all compression methods and will ignore by default any VCS specific files and directories as well
as many temporary files (see default value associated to -I option in the --help output).

Format: 3.0 (quilt)
A source package in this format contains at least an original tarball (.orig.tar.ext where ext can
be gz, bz2, lzma and xz) and a debian tarball (.debian.tar.ext). It can also contain additional
original tarballs (.orig-component.tar.ext). component can only contain alphanumeric characters
and hyphens (-).

Extracting

The main original tarball is extracted first, then all additional original tarballs are extracted in
subdirectories named after the component part of their filename (any pre-existing directory is
replaced). The debian tarball is extracted on top of the source directory after prior removal of any
pre-existing debian directory. Note that the debian tarball must contain a debian sub-directory

Debian Project 2013-12-05 5

dpkg−source(1) dpkg utilities dpkg−source(1)

but it can also contain binary files outside of that directory (see --include-binaries option).

All patches listed in debian/patches/debian.series or debian/patches/series are then
applied. If the former file is used and the latter one doesn’t exist (or is a symlink), then the latter
is replaced with a symlink to the former. This is meant to simplify usage of quilt to manage the
set of patches. Note however that while dpkg-source parses correctly series files with explicit
options used for patch application (stored on each line after the patch filename and one or more
spaces), it does ignore those options and always expect patches that can be applied with the -p1
option of patch. It will thus emit a warning when it encounters such options, and the build is
likely to fail.

Contrary to quilt’s default behaviour, patches are expected to apply without any fuzz. When that
is not the case, you should refresh such patches with quilt, or dpkg-source will error out while
trying to apply them.

Similarly to quilt’s default behaviour, the patches can remove files too.

The file .pc/applied-patches is created if some patches have been applied during the extraction.

Building

All original tarballs found in the current directory are extracted in a temporary directory by fol-
lowing the same logic as for the unpack, the debian directory is copied over in the temporary
directory, and all patches except the automatic patch (debian-changes-version or debian-
changes, depending on --single-debian-patch) are applied. The temporary directory is com-
pared to the source package directory. When the diff is non-empty, the build fails unless --single-
debian-patch or --auto-commit has been used, in which case the diff is stored in the automatic
patch. If the automatic patch is created/deleted, it’s added/removed from the series file and from
the quilt metadata.

Any change on a binary file is not representable in a diff and will thus lead to a failure unless the
maintainer deliberately decided to include that modified binary file in the debian tarball (by list-
ing it in debian/source/include-binaries). The build will also fail if it finds binary files in the
debian sub-directory unless they have been whitelisted through debian/source/include-bina-
ries.

The updated debian directory and the list of modified binaries is then used to generate the debian
tarball.

The automatically generated diff doesn’t include changes on VCS specific files as well as many
temporary files (see default value associated to -i option in the --help output). In particular, the
.pc directory used by quilt is ignored during generation of the automatic patch.

Note: dpkg-source --before-build (and --build) will ensure that all patches listed in the series
file are applied so that a package build always has all patches applied. It does this by finding
unapplied patches (they are listed in the series file but not in .pc/applied-patches), and if the
first patch in that set can be applied without errors, it will apply them all. The option --no-
preparation can be used to disable this behavior.

Recording changes

--commit [directory] [patch-name] [patch-file]
Generates a patch corresponding to the local changes that are not managed by the quilt
patch system and integrates it in the patch system under the name patch-name. If the
name is missing, it will be asked interactively. If patch-file is given, it is used as the patch
corresponding to the local changes to integrate. Once integrated, an editor is launched so
that you can edit the meta-information in the patch header.

Passing patch-file is mainly useful after a build failure that pre-generated this file, and on
this ground the given file is removed after integration. Note also that the changes con-
tained in the patch file must already be applied on the tree and that the files modified by

Debian Project 2013-12-05 6

dpkg−source(1) dpkg utilities dpkg−source(1)

the patch must not have supplementary unrecorded changes.

If the patch generation detects modified binary files, they will be automatically added to
debian/source/include-binaries so that they end up in the debian tarball (exactly like
dpkg-source --include-binaries --build would do).

Build options

--allow-version-of-quilt-db=version
Allow dpkg-source to build the source package if the version of the quilt metadata is
the one specified, even if dpkg-source doesn’t know about it. Effectively this says that
the given version of the quilt metadata is compatible with the version 2 that dpkg-
source currently supports. The version of the quilt metadata is stored in .pc/.version.

--include-removal
Do not ignore removed files and include them in the automatically generated patch.

--include-timestamp
Include timestamp in the automatically generated patch.

--include-binaries
Add all modified binaries in the debian tarball. Also add them to
debian/source/include-binaries: they will be added by default in subsequent builds
and this option is thus no more needed.

--no-preparation
Do not try to prepare the build tree by applying patches which are apparently unapplied.

--single-debian-patch
Use debian/patches/debian-changes instead of debian/patches/debian-changes-
version for the name of the automatic patch generated during build. This option is partic-
ularly useful when the package is maintained in a VCS and a patch set can’t reliably be
generated. Instead the current diff with upstream should be stored in a single patch. The
option would be put in debian/source/local-options and would be accompanied by a
debian/source/local-patch-header file explaining how the Debian changes can be best
reviewed, for example in the VCS that is used.

--create-empty-orig
Automatically create the main original tarball as empty if it’s missing and if there are
supplementary original tarballs. This option is meant to be used when the source package
is just a bundle of multiple upstream software and where there’s no main software.

--no-unapply-patches, --unapply-patches
By default, dpkg-source will automatically unapply the patches in the --after-build
hook if it did apply them during --before-build. Those options allow you to forcefully
disable or enable the patch unapplication process. Those options are only allowed in
debian/source/local-options so that all generated source packages have the same
behavior by default.

--abort-on-upstream-changes
The process fails if an automatic patch has been generated. This option can be used to
ensure that all changes were properly recorded in separate quilt patches prior to the
source package build. This option is not allowed in debian/source/options but can be
used in debian/source/local-options.

--auto-commit
The process doesn’t fail if an automatic patch has been generated, instead it’s immedi-
ately recorded in the quilt series.

Extract options

Debian Project 2013-12-05 7

dpkg−source(1) dpkg utilities dpkg−source(1)

--skip-debianization
Skips extraction of the debian tarball on top of the upstream sources.

--skip-patches
Do not apply patches at the end of the extraction.

Format: 3.0 (custom)
This format is special. It doesn’t represent a real source package format but can be used to create
source packages with arbitrary files.

Build options

All non-option arguments are taken as files to integrate in the generated source package. They
must exist and are preferably in the current directory. At least one file must be given.

--target-format=value
Required. Defines the real format of the generated source package. The generated .dsc
file will contain this value in its Format field and not 3.0 (custom).

Format: 3.0 (git)
This format is experimental.

A source package in this format consists of a single bundle of a git repository .git to hold the
source of a package. There may also be a .gitshallow file listing revisions for a shallow git clone.

Extracting

The bundle is cloned as a git repository to the target directory. If there is a gitshallow file, it is
installed as ‘.git/shallow‘ inside the cloned git repository.

Note that by default the new repository will have the same branch checked out that was checked
out in the original source. (Typically master, but it could be anything.) Any other branches will
be available under ‘remotes/origin/‘.

Building

Before going any further, some checks are done to ensure that we don’t have any non-ignored
uncommitted changes.

git-bundle(1) is used to generate a bundle of the git repository. By default, all branches and
tags in the repository are included in the bundle.

Build options

--git-ref=ref
Allows specifying a git ref to include in the git bundle. Use disables the default behavior
of including all branches and tags. May be specified multiple times. The ref can be the
name of a branch or tag to include. It may also be any parameter that can be passed to
git-rev-list(1). For example, to include only the master branch, use --git-ref=master.
To include all tags and branches, except for the private branch, use --git-ref=--all --git-
ref=ˆprivate

--git-depth=number
Creates a shallow clone with a history truncated to the specified number of revisions.

Format: 3.0 (bzr)
This format is experimental. It generates a single tarball containing the bzr repository.

Extracting

The tarball is unpacked and then bzr is used to checkout the current branch.

Building

Before going any further, some checks are done to ensure that we don’t have any non-ignored
uncommitted changes.

Then the VCS specific part of the source directory is copied over to a temporary directory. Before

Debian Project 2013-12-05 8

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-bundle
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-rev-list

dpkg−source(1) dpkg utilities dpkg−source(1)

this temporary directory is packed in a tarball, various cleanup are done to save space.

DIAGNOSTICS
no source format specified in debian/source/format

The file debian/source/format should always exist and indicate the desired source format. For
backwards compatibility, format 1.0 is assumed when the file doesn’t exist but you should not rely
on this: at some point in the future dpkg-source will be modified to fail when that file doesn’t
exist.

The rationale is that format 1.0 is no longer the recommended format, you should usually pick
one of the newer formats (3.0 (quilt), 3.0 (native)) but dpkg-source will not do this automati-
cally for you. If you want to continue using the old format, you should be explicit about it and
put 1.0 in debian/source/format.

the diff modifies the following upstream files
When using source format 1.0 it is usually a bad idea to modify upstream files directly as the
changes end up hidden and mostly undocumented in the .diff.gz file. Instead you should store
your changes as patches in the debian directory and apply them at build-time. To avoid this com-
plexity you can also use the format 3.0 (quilt) that offers this natively.

cannot represent change to file
Changes to upstream sources are usually stored with patch files, but not all changes can be repre-
sented with patches: they can only alter the content of plain text files. If you try replacing a file
with something of a different type (for example replacing a plain file with a symlink or a direc-
tory), you will get this error message.

newly created empty file file will not be represented in diff
Empty files can’t be created with patch files. Thus this change is not recorded in the source pack-
age and you are warned about it.

executable mode perms of file will not be represented in diff
Patch files do not record permissions of files and thus executable permissions are not stored in the
source package. This warning reminds you of that fact.

special mode perms of file will not be represented in diff
Patch files do not record permissions of files and thus modified permissions are not stored in the
source package. This warning reminds you of that fact.

FILE FORMATS
debian/source/format

This file contains on a single line the format that should be used to build the source package (pos-
sible formats are described above). No leading or trailing spaces are allowed.

debian/source/include−binaries
This file contains a list of binary files (one per line) that should be included in the debian tarball.
Leading and trailing spaces are stripped. Lines starting with # are comments and are skipped.
Empty lines are ignored.

debian/source/options
This file contains a list of long options that should be automatically prepended to the set of com-
mand line options of a dpkg-source --build or dpkg-source --print-format call. Options like
--compression and --compression-level are well suited for this file.

Each option should be put on a separate line. Empty lines and lines starting with # are ignored.
The leading -- should be stripped and short options are not allowed. Optional spaces are allowed
around the = symbol and optional quotes are allowed around the value. Here’s an example of
such a file:

let dpkg-source create a debian.tar.bz2 with maximal compression compression = bzip2 com-
pression-level = 9 # use debian/patches/debian-changes as automatic patch single-debian-patch
ignore changes on config.{sub,guess} extend-diff-ignore = (ˆ|/)(config.sub|config.guess)$

Debian Project 2013-12-05 9

dpkg−source(1) dpkg utilities dpkg−source(1)

Note: format options are not accepted in this file, you should use debian/source/format
instead.

debian/source/local−options
Exactly like debian/source/options except that the file is not included in the generated source
package. It can be useful to store a preference tied to the maintainer or to the VCS repository
where the source package is maintained.

debian/source/local−patch−header and debian/source/patch−header
Free form text that is put on top of the automatic patch generated in formats 2.0 or 3.0 (quilt).
local-patch-header is not included in the generated source package while patch-header is.

debian/patches/series
This file lists all patches that have to be applied (in the given order) on top of the upstream
source package. Leading and trailing spaces are stripped. Lines starting with # are comments and
are skipped. Empty lines are ignored. Remaining lines start with a patch filename (relative to the
debian/patches/ directory) up to the first space character or the end of line. Optional quilt
options can follow up to the end of line or the first # preceded by one or more spaces (which
marks the start of a comment up to the end of line).

BUGS
The point at which field overriding occurs compared to certain standard output field settings is
rather confused.

SEE ALSO
dpkg-deb(1), dpkg(1), dselect(1).

Debian Project 2013-12-05 10

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/dpkg-deb
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/dpkg

	NAME
	SYNOPSIS
	DESCRIPTION
	COMMANDS
	-x , --extract filename.dsc [output-directory]
	-b , --build directory [format-specific-parameters]
	 --print-format directory
	 --before-build directory
	 --after-build directory
	--commit [directory] ...
	-? , --help
	--version

	OPTIONS
	Generic build options
	-c control-file
	-l changelog-file
	-F changelog-format
	--format= value
	-V name = value
	-T substvars-file
	-D field = value
	-U field
	-Z compression, --compression =compression
	-z level, --compression-level =level
	-i [regex] , --diff-ignore [=regex]
	--extend-diff-ignore =regex
	-I [file-pattern] , --tar-ignore [=file-pattern]

	Generic extract options
	--no-copy
	--no-check
	--require-valid-signature
	--ignore-bad-version

	SOURCE PACKAGE FORMATS
	Format: 1.0
	-sk
	-sp
	-su
	-sr
	-ss
	-sn
	-sa or -sA
	--abort-on-upstream-changes
	-sp
	-su
	-sn
	--skip-debianization

	Format: 2.0
	Format: 3.0 (native)
	Format: 3.0 (quilt)
	 --commit [directory] [patch-name] [patch-file]
	--allow-version-of-quilt-db= version
	--include-removal
	--include-timestamp
	--include-binaries
	--no-preparation
	--single-debian-patch
	--create-empty-orig
	--no-unapply-patches, --unapply-patches
	--abort-on-upstream-changes
	--auto-commit
	--skip-debianization
	--skip-patches

	Format: 3.0 (custom)
	--target-format= value

	Format: 3.0 (git)
	--git-ref= ref
	--git-depth= number

	Format: 3.0 (bzr)

	DIAGNOSTICS
	no source format specified in debian/source/format
	the diff modifies the following upstream files
	cannot represent change to file
	newly created empty file file will not be represented in diff
	executable mode perms of file will not be represented in diff
	special mode perms of file will not be represented in diff

	FILE FORMATS
	debian/source/format
	debian/source/include-binaries
	debian/source/options
	debian/source/local-options
	debian/source/local-patch-header and debian/source/patch-header
	debian/patches/series

	BUGS
	SEE ALSO

