
GNU/Linux
Programmer’s Manual

Maintainers:
Alejandro Colomar <alx@kernel.org> 2020 - present (5.09 - HEAD)

Michael Kerrisk <mtk.manpages@gmail.com> 2004 - 2021 (2.00 - 5.13)
Andries Brouwer <aeb@cwi.nl> 1995 - 2004 (1.6 - 1.70)

Rik Faith 1993 - 1995 (1.0 - 1.5)

INTRO(1) General Commands Manual INTRO(1)

NAME
intro - introduction to commands

DESCRIPTION
This section describes publicly accessible commands in alphabetic order.

The name of a particular machine at the head of the page means that the command lives there and not nec-
essarily elsewhere. ‘Local’ means the same, without being specific about where.

SEE ALSO
Section (7) for databases.
Section (8) for ‘hidden’ commands for booting, maintenance, etc.
Section (9) for commands that involve the Teletype 5620 terminal.
How to get started, in the Introduction.

DIAGNOSTICS
Upon termination each command returns two bytes of status, one supplied by the system giving the cause
for termination, and (in the case of ‘normal’ termination) one supplied by the program; see exit(2). The
former byte is 0 for normal termination, the latter is customarily 0 for successful execution, nonzero to in-
dicate troubles such as erroneous parameters, bad or inaccessible data, or other inability to cope with the
task at hand. It is called variously ‘exit code’, ‘exit status’ or ‘return code’, and is described only where
special conventions are involved.

2

2500(1) General Commands Manual 2500(1)

NAME
2500 - BVH2500 videotape recorder

SYNOPSIS
2500 [-lq]

DESCRIPTION
2500 is an interpreter of commands to control a SONY BVH2500 1-inch video recorder, whose inputs
and outputs have already been set up. The options are

-l Create a log file; useful in pursuit of bugs.

-q Suppress the initial status report.

Most of the commands require an intimate knowledge of the equipment. The simpler commands are de-
scribed below; see the help command for a complete list. Times are given as [[hrs.]min.]sec.fr where
there are 30 frames per second. The commands are

cue t Move the tape to time t.

help Produce a list of all commands.

loop t0 t1 fps
Play from t0 through t1 and back again at fps frames per second.

play Start playing the tape from the current frame.

snap n When in still record mode, record the current input onto the next n frames. A missing n is
taken to be 1.

status Print some status information. The command status status prints all available status infor-
mation.

still t Go into still record mode and cue to time t. The command returns before the tape transport is
done; usually it must be followed by

still mode on|off
Turn still mode on or off.

stop Stop the tape transport.

view t0 t1 Play from t0 through t1. wait Wait for the previous tape transport command to finish.

! Interpret the rest of the line as a sh(1) command.

Comment. Ignore the rest of the line.

EXAMPLES
Assuming you have already set up the video switch to feed the BVH2500, the following script will record
(or rerecord) a movie starting at 2 minutes.
still 2.0.0
wait
!generate an image
snap 1
repeat the last two lines as necessary
still mode off
stop

BUGS
The BVH2500 will misbehave if the pause between snaps (in still record mode) is too long, or if you
record for many hours on end. The latter problem can be avoided by using scripts that run for 2 or 3 hours
and sleeping for 10 minutes between scripts with the tape transport off.
Commands in the help list are (incorrectly) capitalized.

3

300(1) General Commands Manual 300(1)

NAME
300, 300s - handle special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+12] [-n] [-dt,l,c]

300s [+12] [-n] [-dt,l,c]

DESCRIPTION
300 supports special functions and optimizes the use of the DASI 300 (GSI 300 or DTC 300) terminal;
300s performs the same functions for the DASI 300s (GSI 300s or DTC 300s) terminal. It converts half-
line forward, half-line reverse, and full-line reverse motions to the correct vertical motions. It also at-
tempts to draw Greek letters and other special symbols. It permits convenient use of 12-pitch text. It also
reduces printing time 5 to 70%. 300 can be used to print equations neatly, in the sequence:

neqn file . . . nroff 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to handle 12-pitch text, fractional line
spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals normally allow only two combi-
nations: 10-pitch, 6 lines/inch, or 12-pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per
inch combination, the user should turn the PITCH switch to 12, and use the +12 option.

-n controls the size of half-line spacing. A half-line is, by default, equal to 4 vertical plot incre-
ments. Because each increment equals 1/48 of an inch, a 10-pitch line-feed requires 8 incre-
ments, while a 12-pitch line-feed needs only 6. The first digit of n overrides the default value,
thus allowing for individual taste in the appearance of subscripts and superscripts. For exam-
ple, nroff (1) half-lines could be made to act as quarter-lines by using -2. The user could also
obtain appropriate half-lines for 12-pitch, 8 lines/inch mode by using the option -3 alone, hav-
ing set the PITCH switch to 12-pitch.

-dt,l,c controls delay factors. The default setting is -d3,90,30. DASI 300 terminals sometimes pro-
duce peculiar output when faced with very long lines, too many tab characters, or long strings
of blankless, non-identical characters. One null (delay) character is inserted in a line for every
set of t tabs, and for every contiguous string of c non-blank, non-tab characters. If a line is
longer than l bytes, 1+(total length)/20 nulls are inserted at the end of that line. Items can be
omitted from the end of the list, implying use of the default values. Also, a value of zero for t
(c) results in two null bytes per tab (character). The former may be needed for C programs,
the latter for files like /etc/passwd. Because terminal behavior varies according to the specific
characters printed and the load on a system, the user may have to experiment with these values
to get correct output. The -d option exists only as a last resort for those few cases that do not
otherwise print properly. For example, the file /etc/passwd may be printed using -d3,30,5.
The value -d0,1 is a good one to use for C programs that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing carriage return and line-feed
delays. The stty(1) modes nl0 cr2 or nl0 cr3 are recommended for most uses.

300 can be used with the nroff -s flag or .rd requests, when it is necessary to insert paper manually or
change fonts in the middle of a document. Instead of hitting the return key in these cases, you must use
the line-feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files . . . and nroff files . . . 300
nroff -T300-12 files . . . and nroff files . . . 300 +12

The use of 300 can thus often be avoided unless special delays or options are required; in a few cases,
however, the additional movement optimization of 300 may produce better-aligned output.

The neqn(1) names of, and resulting output for, the Greek and special characters supported by 300 are
shown in greek(7).

4

300(1) General Commands Manual 300(1)

SEE ALSO
450(1), eqn(1), graph(1G), mesg(1), stty(1), tabs(1), tbl(1), tplot(1G), troff(1), greek(7).

BUGS
Some special characters cannot be correctly printed in column 1 because the print head cannot be moved
to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed platen instead of a forms trac-
tor; although good enough for drafts, the latter has a tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text after one or more reverse line-feeds.

5

450(1) General Commands Manual 450(1)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of, the DASI 450 terminal, or any terminal that is
functionally identical, such as the DIABLO 1620 or XEROX 1700. It converts half-line forward, half-line
reverse, and full-line reverse motions to the correct vertical motions. It also attempts to draw Greek letters
and other special symbols in the same manner as 300(1). 450 can be used to print equations neatly, in the
sequence:

neqn file . . . nroff 450

WARNING: make sure that the PLOT switch on your terminal is ON before 450 is used. The SPACING
switch should be put in the desired position (either 10- or 12-pitch). In either case, vertical spacing is 6
lines/inch, unless dynamically changed to 8 lines per inch by an appropriate escape sequence.

450 can be used with the nroff (1) -s flag or .rd requests, when it is necessary to insert paper manually or
change fonts in the middle of a document. Instead of hitting the return key in these cases, you must use
the line-feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of the following:

nroff -T450 files . . .
or

nroff -T450-12 files . . .

The use of 450 can thus often be avoided unless special delays or options are required; in a few cases,
however, the additional movement optimization of 450 may produce better-aligned output.

The neqn(1) names of, and resulting output for, the Greek and special characters supported by 450 are
shown in greek(7).

SEE ALSO
300(1), eqn(1), graph(1G), mesg(1), stty(1), tabs(1), tbl(1), tplot(1G), troff(1), greek(7).

BUGS
Some special characters cannot be correctly printed in column 1 because the print head cannot be moved
to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed platen instead of a forms trac-
tor; although good enough for drafts, the latter has a tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text after one or more reverse line-feeds.

6

ACRO(1) General Commands Manual ACRO(1)

NAME
acro - find acronyms in a text file

SYNOPSIS
acro [-flags][-ver] file ...

DESCRIPTION
Acro searches for acronyms in a text file. It prints each sentence containing an acronym. Acro also prints
a frequency count of all acronyms used in the text.

Acro skips lines that begin with a dot, "."; so text files that contain standard nroff (1) and mm(1) macros
are acceptable input.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

USES
Acro can be used to locate acronyms in a text. The user can then check to see that an acronym is fully de-
fined when it is first used.

FILES
/tmp/$$* temporary files

SEE ALSO
nroff(1), mm(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

7

ADB(1) General Commands Manual ADB(1)

NAME
adb - debugger

SYNOPSIS
adb [option ...] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files and to provide a controlled
environment for the execution of UNIX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then the sym-
bolic features of adb cannot be used although the file can still be examined. The default for objfil is Corfil
is assumed to be a core image file produced after executing objfil; the default for corfil is

Requests to adb are read from the standard input and responses are to the standard output. Quit signals
are ignored; interrupts cause return to the next adb command. The options are

-w Create objfil and corfil if they don’t exist; open them for writing as well as reading.

-Ipath
Directory in which to look for relative pathnames in $< and $<< commands.

In general requests to adb have the following form. Multiple requests on one line must be separated by

[address] [, count] [command]

If address is present then the current position, called ‘dot’, is set to address. Initially dot is set to 0. In
general commands are repeated count times. Dot advances between repetitions. The default count is 1.
Address and count are expressions.

Some formats, data sizes, and command details have different behavior on different systems. See the MA-
CHINE DEPENDENCIES attachment for details.

Expressions
Expressions are computed with sufficient precision to address the largest possible file; generally this
means a long integer. On the VAX, expressions are 32 bits; on the Cray, 64 bits.

. The value of dot.

+ The value of dot incremented by the current increment.

ˆ The value of dot decremented by the current increment.

" The last address typed.

integer
A number in the default radix; see the $d command. Regardless of the default, the prefixes and
(zero oh) force interpretation in octal radix; the prefixes and force interpretation in decimal radix;
the prefixes and force interpretation in hexadecimal radix. Thus and all represent sixteen.

integer. fraction
A floating point number.

´cccc ´
The ASCII value of one or more characters. may be used to escape a

<name
The value of name, which is either a variable name or a register name. Adb maintains a number
of variables named by single letters or digits. The register names are those printed by the $r
command.

symbol
A symbol is a sequence of upper or lower case letters, underscores or digits, not starting with a
digit. may be used to escape other characters. The value of the symbol is taken from the symbol
table in objfil.

routine.name
The address of the variable name in the specified C routine. Both routine and name are symbols.
If name is omitted the value is the address of the most recently activated C stack frame corre-
sponding to routine; if routine is omitted, the active procedure is assumed.

8

ADB(1) General Commands Manual ADB(1)

(exp) The value of the expression exp.

Monadic operators

*exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed by exp in objfil.

-exp Integer negation.

˜exp Bitwise complement.

%exp If exp is used as an address, it is in register space; see ‘Addresses’.

Dyadic operators are left associative and are less binding than monadic operators.

e1+e2 Integer addition.

e1-e2 Integer subtraction.

e1*e2 Integer multiplication.

e1%e2
Integer division.

e1&e2
Bitwise conjunction.

e1|e2 Bitwise disjunction.

e1#e2 E1 rounded up to the next multiple of e2.

Commands
Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are
available. (The commands and may be followed by see ‘Addresses’ for further details.)

? f Locations starting at address in objfil are printed according to the format f .

/ f Locations starting at address in corfil are printed according to the format f.

= f The value of address itself is printed in the styles indicated by the format f . (For i format is
printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format character may
be preceded by a decimal integer that is a repeat count for the format character. If no format is given then
the last format is used.

Most format letters fetch some data, print it, and advance (a local copy of) dot by the number of bytes
fetched. The total number of bytes in a format becomes the current increment. ‘Long integers’ are full
words, the size of an expression item: e.g. 4 bytes on the VAX, 8 bytes on the Cray. ‘Short integers’ are
some useful shorter size: 2 byte short integers on the VAX, 2 byte parcels on the Cray.

r Print short integer in the current default radix.
R Print long integer in the current default radix.
o Print short integer in octal.
O Print long integer in octal.
q Print short in signed octal.
Q Print long in signed octal.
d Print short in decimal.
D Print long in decimal.
x Print short in hexadecimal.
X Print long in hexadecimal.
u Print short in unsigned decimal.
U Print long in unsigned decimal.
f Print as a floating point number.
F Print double-precision floating point.
b Print the addressed byte in octal.
c Print the addressed character.

9

ADB(1) General Commands Manual ADB(1)

C Print the addressed character. Control characters are printed in the form ˆX and the
delete character is printed as

s Print the addressed characters until a zero character is reached. Advance dot by the
length of the string, including the zero terminator.

S Print a string using the ˆX escape convention (see C above).
Y Print a long integer in date format (see ctime(3)).
i Print as machine instructions. This style of printing causes variables 0, (1, ...) to be set

to the offset parts of the first (second, ...) operand of the instruction.
a Print the value of dot in symbolic form. Dot is unaffected.
p Print the addressed value in symbolic form. Dot is advanced by the size of a machine

address (4 bytes on the VAX, 8 bytes on the Cray).
t When preceded by an integer tabs to the next appropriate tab stop. For example, 8t

moves to the next 8-space tab stop. Dot is unaffected.
n Print a newline. Dot is unaffected.
"..." Print the enclosed string. Dot is unaffected.
ˆ Dot is decremented by the current increment. Nothing is printed.
+ Dot is incremented by 1. Nothing is printed.
- Dot is decremented by 1. Nothing is printed.

newline
Update dot by the current increment. Repeat the previous command with a count of 1.

[?/]l value mask
Words starting at dot are masked with mask and compared with value until a match is found. If l
is used, the match is for a short integer; L matches longs. If no match is found then dot is un-
changed; otherwise dot is set to the matched location. If mask is omitted then -1 is used.

[?/]w value ...
Write the short value into the addressed location. If the command is W, write a long. Option -w
must be in effect.

[?/]m b e f [?]
New values for (b, e, f) in the first map entry are recorded. If less than three expressions are
given then the remaining map parameters are left unchanged. The address type (instruction or
data) is unchanged in any case. If the or is followed by then the second segment of the mapping
is changed. If the list is terminated by or then the file (objfil or corfil respectively) is used for
subsequent requests. For example, will cause to refer to objfil.

>name
Dot is assigned to the variable or register named.

! A shell is called to read the rest of the line following ‘!’.

$modifier
Miscellaneous commands. The available modifiers are:

< f Read commands from the file f . If f cannot be found, try /usr/lib/adb/f. If this com-
mand is executed in a file, further commands in the file are not seen. If f is omitted, the
current input stream is terminated. If a count is given, and is zero, the command will be
ignored. The value of the count will be placed in variable 9 before the first command in
f is executed.

<< f Similar to < except it can be used in a file of commands without causing the file to be
closed. Variable 9 is saved during the execution of this command, and restored when it
completes. There is a (small) limit to the number of << files that can be open at once.

> f Append output to the file f , which is created if it does not exist. If f is omitted, output
is returned to the terminal.

? Print process id, the signal which caused stopping or termination, as well as the regis-
ters. This is the default if modifier is omitted.

r Print the general registers and the instruction addressed by pc. Dot is set to pc.
R Like $r, but include miscellaneous registers such as the kernel stack pointer.

10

ADB(1) General Commands Manual ADB(1)

b Print all breakpoints and their associated counts and commands.
c C stack backtrace. If address is given then it is taken as the address of the current

frame; otherwise, the current C frame pointer is used. If C is used then the names and
(long) values of all parameters, automatic and static variables are printed for each active
function. If count is given then only the first count frames are printed.

a Set the maximum number of arguments printed by $c or $C to address. The default is
20.

d Set the default radix to address and report the new value. Address is interpreted in the
(old) current radix; never changes the default radix. To make decimal the default radix,
use A radix of zero (the initial default) is a special case; input with a leading zero is oc-
tal, that with a leading sharp-sign is hexadecimal, other numbers are decimal. When the
default radix is zero, the default output radix is appropriate to the machine: hexadecimal
on the VAX, octal on the Cray.

e The names and values of all external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
q Exit from adb.
v Print all non zero variables in the current radix.
m Print the address maps.
k Simulate kernel memory management.
p Simulate per-process memory management.

$k and $p are used for system debugging. Their details vary with machine and operat-
ing system.

:modifier
Manage a subprocess. Available modifiers are:

bc Set breakpoint at address. The breakpoint is executed count-1 times before causing a
stop. Each time the breakpoint is encountered the command c is executed. If this com-
mand is omitted or sets dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address.
r Run objfil as a subprocess. If address is given explicitly then the program is entered at

this point; otherwise the program is entered at its standard entry point. count specifies
how many breakpoints are to be ignored before stopping. Arguments to the subprocess
may be supplied on the same line as the command. An argument starting with < or >
causes the standard input or output to be established for the command. All signals are
enabled on entry to the subprocess.

cs The subprocess is continued. If s is omitted or nonzero, the subprocess is sent the sig-
nal that caused it to stop; if 0 is specified, no signal is sent. Breakpoints and single-step-
ping don’t count as signals. Breakpoint skipping is the same as for r.

ss As for c except that the subprocess is single stepped count times. If a signal is sent, it is
received before the first instruction is executed. If there is no current subprocess then
objfil is run as a subprocess as for r. In this case no signal can be sent; the remainder of
the line is treated as arguments to the subprocess.

k The current subprocess, if any, is terminated.

Variables
Adb provides a number of variables. Named variables are set initially by adb but are not used subse-
quently. Numbered variables are reserved for communication as follows.

0, 1, ...
The offset parts of the first, second, ... operands of the last instruction printed. Meaningless if
the operand was a register.

9 The count on the last $< or $<< command.

On entry the following are set from the system header in the corfil. If corfil does not appear to be a core
image then these values are set from objfil.

b The base address of the data segment.

11

ADB(1) General Commands Manual ADB(1)

d The data segment size.
e The entry point.
m The ‘magic’ number (a.out(5)).
s The stack segment size.
t The text segment size.

Addresses
The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by one or more quadruples (t, b, e, f), each mapping addresses of type t
(instruction, data, user block) in the range b through e to the part of the file beginning at address f . An
address a of type t is mapped to a file address by finding a quadruple of type t, for which b≤a<e; the file
address is address+ f −b. As a special case, if an instruction space address is not found, a second search is
made for the same address in data space.

Typically, the text segment of a program is mapped as instruction space, the data and bss segments as data
space. If objfil is an a.out, or if corfil is a core image or process file, maps are set accordingly. Other-
wise, a single ‘data space’ map is set up, with b and f set to zero, and e set to a huge number; thus the en-
tire file can be examined without address translation.

The ? and / commands attempt to examine instruction and data space respectively. ?* tries for data space
(in objfil); /* accesses instruction space (in corfil).

Registers in process and core images are a special case; they live in a special ‘register’ address space. The
contents of register 0 are located at address %0; register 1 at %4 (if registers are 4 bytes long); and so on.
% addresses are mapped to the registers for the ‘current frame,’ set by local variable references, and reset
to the outermost frame (the ‘real’ registers) whenever a process runs or a stack trace is requested.

Simulated memory management translations (the $k and $p commands) are done before the mapping de-
scribed above.

FILES
parameter files

SEE ALSO
cin(1), pi(9) nm(1), proc(4), a.out(5), bigcore(1)
J. F. Maranzano and S. R. Bourne, ‘A Tutorial Introduction to ADB’ in Bell Laboratories, UNIX Program-
mer’s Manual, Volume 2, Holt, Rinehart and Winston (1984)

DIAGNOSTICS
‘Adb’ when there is no current command or format. Exit status is 0, unless last command failed or re-
turned nonzero status.

BUGS
Either the explanation or the implementation of register variables is too complex and arcane.

MACHINE DEPENDENCIES
PDP-11

Short integers (printed by r format) are 2 bytes; long integers (printed by R format) are 4 bytes. Ad-
dresses printed by a format are 2 bytes.

Register variables match the hardware in the obvious way: r0 is at address %0, r1 at %2, and so on.

The default output radix is octal.

$k and $p are unimplemented.

VAX
Short integers are 2 bytes, long integers are 4 bytes, addresses are 4 bytes.

Register variables match the hardware in the obvious way: r0 is at address %0, r1 at %4, and so on.

The default output radix is hexadecimal.

$k sets the system base register pointer to address. System space addresses are thereafter mapped accord-
ing to the system page table starting at that physical address. An address of zero turns off mapping.

$p sets the process control block pointer to address; user space addresses are thereafter translated accord-
ing to the user page tables described by the PCB. Kernel mapping must already be in effect. Address

12

ADB(1) General Commands Manual ADB(1)

may be a physical address (that of the PCB) or the system space virtual address of a page table entry
pointing to the PCB (the number stored in p_addr). If address is zero, user mapping is turned off; ad-
dresses less than 0x80000000 will be treated as physical addresses.

The command will initialize registers and mapping from a kernel crash dump.

Cray
Short integers are 2 bytes; long integers are 8 bytes. Addresses are 8 bytes.

Registers are funny, and yet to be described.

The default output radix is octal.

$k and $p are unimplemented.

13

ALTRAN (1) General Commands Manual ALTRAN (1)

NAME
altran - language for algebraic manipulation

SYNOPSIS
altran [option]

DESCRIPTION
Altran compiles the language described in the reference via Fortran as an intermediate language. The
files may have names ending in .al, for Altran source, .f, for Fortan source, or .o for binary object files.
The output normally includes a .f file for each .al file, a .o file for each old or new .f file, an executable file
a.out, and a listing file whose name ends in .list for each .al file.

All the options of f77(1) and ld(1) are accepted with the same meanings.

The executable a.out file accepts two parameters. One is of the form p=n where n is the number of deci-
mal digits of precision to be used for long integers, 18≤n≤ 900, default 18. The other parameter is of the
form w=n where n is the workspace size in thousands of words, 10≤n≤ 800, default 50.

FILES
/usr/lib/altran the compiler proper
/usr/lib/libal.a library
fort.[789] intermediate files
*.al
*.f
*.o
*.list

SEE ALSO
f77(1), ld(1)
W. S Brown, ALTRAN User’s Manual, Bell Laboratories, Murray Hill, NJ, 1977

BUGS
Run-time output is voluminous.

alice 14

APL(1) General Commands Manual APL(1)

NAME
apl - an apl interpreter

SYNOPSIS
apl

DESCRIPTION
Apl is an APL interpreter. All of the operators are exactly as in apl\360. Overstrikes are often required,
and they work (use ctrl-h).

Function definition is not what you would expect. Functions are loaded from files. The first line of the
file is the function header, as you would expect it but with no del. The rest of the file is the lines of the
function. Lines are numbered, but there are no square brackets with line numbers. If you say)READ
FILE it will load the function in that file. If you say)EX FILE it will put you in the editor to change that
file. Upon exit, it will read the file in as though by)READ.

All of the usual operators are available, including domino. Also available are monadic encode and ep-
silon.

The following apl system commands are available.

)ASCII
changes terminal to accept and print ASCII characters and operators; this is the default. If you
are stuck in APL mode on an ASCII terminal, ‘"’ is ‘)’ and lowercase letters map to uppercase.

)APL
changes terminal to accept and print APL characters. Erase is set to Ω and kill is set to α.

)DIGITS n
sets the number of digits displayed to n, from 1 to 19.

)FUZZ n
sets the fuzz to n.

)ORIGIN n
sets the origin to n, which should be 1 or 0.

)WIDTH n
sets apl’s idea of your terminal’s carriage width.

)ERASE n
gets rid of function or variable named n.

)SAVE n
saves all variables and functions (workspace) in file named n. Workspaces are sensitive to
changes in apl.

)LOAD n
gets the workspace in file n (which must have been)SAVE’d.)

)COPY n
like)LOAD but variables and functions are not erased. Things in the loaded file take precedence
over stuff already in.

)CLEAR
clears the workspace.

)DROP n
deletes file n in your directory, which need not be saved from apl.

)CONTINUE
exits and saves workspace in file continue which is loaded next time you run apl.

)OFF
exits apl.

)READ n
reads in a function from file n. The first line is the header, with no del’s. The full APL360
header is accepted. All other lines in the file are lines in the function. Lines are implicitly

4th Berkeley Distribution 8/26/80 15

APL(1) General Commands Manual APL(1)

numbered, and transfers are as usual. There are no labels.

)EDIT n
runs the editor ed(1) on file n, and then)READ’s the file when you leave the editor.

)EX n
runs the editor ex(1) on file n, and then)READ’s the file when you leave the editor.

)VI n
runs the editor vi(1) on file n, and then)READ’s the file when you leave the editor.

)LIB
lists out all of the files in the current directory.

)FNS
lists out all current functions.

)VARS
lists out all current variables.

)DEBUG
toggles a debugging switch, which can produce vast amounts of hopelessly cryptic output.

FILES
apl_ws - temporary workspace file
continue - continue workspace

AUTHORS
Ken Thompson, Ross Harvey, Douglas Lanam

BUGS
This program has not been extensively used or tested.

4th Berkeley Distribution 8/26/80 16

APL(1) General Commands Manual APL(1)

ASCII CHAR MNEMONICS
& Λ and # × times
- - minus + + add
< < less than > > greater than
= = equal to , , comma
% ÷ divide * * exponential (power)
! ! factorial and combinations ? ? deal
.le ≤ less than or equal .ge ≥ greater than or equal
.ne ≠ not equal .om Ω omega (not used)
.ep ε epsilon .rh ρ shape (rho)
.nt ¬ not (also ´˜´) .tk - take (also ´ˆ´)
.dr ↓ drop .it ι iota
.ci circular function .al α alpha (not used)
.cl maximum (ceiling) .fl minimum (floor)
.dl ∆ del (not used) .de ∇ upside down del
.jt ° small circle (null) .qd quad
.ss ⊂ right U (not used) .sc ⊃ left U (not used)
.si ∩ Down U .su ∪ U (not used)
.[ˆ ∇ upside-down del .bv decode (base)
.rp encode (rep) .br residue (mod)
.sp ← assignment (also ’_’) .go → goto
.or V or .nn Λ̃ nand
.nr ṽ nor .lg * log
.rv reversal .tr \ transpose
.rb reverse bar .cb ,- comma bar (not used)
.sb /- slash bar .bb \- blackslash bar
.gu ∆ grade up .gd ∇ grade down
.qq ′ quote quad .dm : domino
.lm ∩° lamp .ib I-beam
.ex execute (not used) .fr format(not used)
.di diamond (not used) .ot out (not used)
.ld ∆̃ locked del (not used) ._a A alias for ´A´
._b B alias for ´B´ ._c C alias for ´C´
._d D alias for ´D´ ._e E alias for ´E´
._f F alias for ´F´ ._g G alias for ´G´
._h H alias for ´H´ ._i I alias for ´I´
._j J alias for ´J´ ._k K alias for ´K´
._l L alias for ´L´ ._m M alias for ´M´
._n N alias for ´N´ ._o O alias for ´O´
._p P alias for ´P´ ._q Q alias for ´Q´
._r R alias for ´R´ ._s S alias for ´S´
._t T alias for ´T´ ._u U alias for ´U´
._v V alias for ´V´ ._w W alias for ´W´
._x X alias for ´X´ ._y Y alias for ´Y´
._z Z alias for ´Z´

4th Berkeley Distribution 8/26/80 17

APPLY (1) General Commands Manual APPLY (1)

NAME
apply, pick - repeatedly apply a command; select arguments

SYNOPSIS
apply [-ac] [-n] command arg ...

pick [arg ...]

DESCRIPTION
Apply runs the named command on each argument arg in turn. Normally arguments are chosen singly;
the optional number n specifies the number of arguments to be passed to command. If n is zero, com-
mand is run without arguments once for each arg. Character sequences of the form %d in command,
where d is a digit from 1 to 9, are replaced by the dth following unused arg. If any such sequences occur,
n is ignored, and the number of arguments passed to command is the maximum value of d in command.
The character may be changed by the -a option.

Pick writes each argument to the standard error and reads a reply. If the reply is the argument is echoed to
the standard output; if the reply is pick exits without reading any more arguments; there is no output for
any other response. If there are no arguments, lines of the standard input are taken instead.

EXAMPLES
apply echo *

Time-consuming way to do

apply -2 cmp a1 b1 a2 b2
Compare the ‘a’ files to the ‘b’ files.

wc -l ‘pick *.[ch]‘
Interactively select ‘.c’ and ‘.h’ files and count the lines in each.

apply "wc -l %1" ‘pick *.[ch]‘
Same, but use a separate process to count each file.

SEE ALSO
sh(1)

BUGS
There is no way to pass a literal if is apply’s argument expansion character.

18

APSEND(1) General Commands Manual APSEND(1)

NAME
apsend - send troff output to phototypesetter

SYNOPSIS
apsend [options] [file ...]

DESCRIPTION
Apsend sends troff(1) output from the named files or from the standard input to the Murray Hill computer
center for high-quality typesetting.

The options, which need only be spelled far enough to be unique, are

account=xx
comp center account number (default from password file)

bin=xx
comp center bin number (default from password file)

mailto=xx
mailing instructions, up to 28 characters, instead of comp center bin

comment=xx
up to 30 characters, for file entry (default value is file or

device=imagen
Print on laser printer instead of phototypesetter.

FILES
record of apsend activity

SEE ALSO
troff(1), lp(1), font(5)

BUGS
Do not be misled by the historical name of this program. The correct troff device selection is -Tpost,
which is fortunately the default.

19

AR(1) General Commands Manual AR(1)

NAME
ar, ranlib - archive and library maintainer

SYNOPSIS
ar key [posname] afile [file ...]

ranlib archive ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file, afile. If it is not to be modified, the
archive may be read from standard input, indicated by the name . The main use of a ar is to create and
update library files for the loader ld(1). It can be used, though, for any similar purpose.

Key is one character from the set drqtpmx, optionally concatenated with one or more of vuaibcl. The
files are constituents of the archive afile. The meanings of the key characters are:

d Delete files from the archive file.

r Replace files in the archive file. Optional modifiers are
u Only replace files with modified dates later than that of the archive.
a Place new files after posname in the archive rather than at the end.
b or i Place new files before posname in the archive.

q Quick. Append files to the end of the archive without checking for duplicates. Avoids quadratic
behavior in

t List a table of contents of the archive. If names are given, only those files are listed.

p Print the named files in the archive.

m Move the named files to the end or elsewhere, specified as with

x Extract the named files. If no names are given, all files in the archive are extracted. In neither
case does x alter the archive file.

v Verbose. Give a file-by-file description of the making of a new archive file from the old archive
and the constituent files. With p, precede each file with a name. With t, give a long listing of all
information about the files, somewhat like a listing by ls(1), showing

mode uid/gid size date name

c Create. Normally ar will create a new archive when afile does not exist, and give a warning.
Option c discards any old contents and suppresses the warning.

l Local. Normally ar places its temporary files in the directory This option causes them to be
placed in the local directory.

Ranlib makes a table-of-contents file for each library archive. With this table the loader ld(1) will extract
files as if it were repeatedly invoked until no more subroutines can be found.

EXAMPLES
ar cr lib.a *.o; ranlib lib.a

Replace the contents of library with the object files in the current directory.

pcat old.a.z | ar t -
List the contents of an archived and compressed collection of old files; see pack(1).

FILES
temporaries

SEE ALSO
ld(1), ar(5)

BUGS
If the same file is mentioned twice in an argument list, it may be put in the archive twice.
Ld(1) warnings that a library is newer than its table of contents happen when a library is copied.

20

AS(1) General Commands Manual AS(1)

NAME
as - assembler

SYNOPSIS
as [option ...] [name ...]

DESCRIPTION
As assembles the named files, or the standard input if no file name is specified. The options are:

-dn Specifies the number of bytes n (1, 2, or 4) to be assembled for offsets which involve forward or
external references, and which have sizes unspecified in the assembly language. Default is -d4.

-L Save defined labels that begin with which are normally discarded to save space in the resultant
symbol table. The compilers generate such temporary labels.

-V Use virtual memory for intermediate storage, rather than a temporary file.

-W Do not complain about errors.

-J Use long branches to resolve jumps when byte-displacement branches are insufficient. This must
be used when a compiler-generated assembly contains branches of more than 32K bytes.

-R Make initialized data segments read-only, by concatenating them to the text segments. This obvi-
ates the need to run editor scripts on assembly code to make initialized data read-only and
shared.

-t Specifies a directory to receive the temporary file, other than the default

-oobj Place output in file obj. Default is

All undefined symbols in the assembly are treated as global.

FILES
default temporary file

default object file

SEE ALSO
ld(1), nm(1), adb(1), pi(9) a.out(5)
J. F. Reiser and R. R. Henry ‘Assembler Reference Manual’, Unix Programmer’s Manual, Seventh Edi-
tion, Virtual VAX-11 Version, 1980, Volume 2C (Berkeley)

BUGS
-J should be eliminated; the assembler should automatically choose among byte, word and long branches.

21

as80() as80()

NAME
as80 assembler for the 8080 and Z80 microprocessors

SYNOPSIS
as80 [lhzi] name ...

DESCRIPTION
as80 assembles the concatenation of the named files. The output of the assembly is left on the file 80.out
. It is executable if no errors occurred during the assembly, and if there were no unresolved external refer-
ences.

The -l option causes as80 to produce a listing on the standard output.

The -h option causes as80 to produce the output listing in hex. Octal is default.

Register names: a,b,c,d,e,h,l,af,bc,de,hl,ix,iy,sp
Condition codes: nz,z,nc,c,po,pe,p,m
Psuedo operations: .globl,.text.textorg,.data,.dataorg

.bss,.bssorg,.byte,.word,.list,

FILES
as80 the assembler
"80.out"
OPCODES the external instruction set

DIAGNOSTICS
When an input file cannot be read, its name and a "can’t open" diagnostic is produced and assembly
ceases. Whenever sytactic or semantic errors are encountered, a single-character diagnostic is produced.
The possible diagnostics are:

[byte constant error
(Parentheses error
" String not terminated properly
E Illegal expression
R Illegal register usage
G Garbage (unknown) character
M Multiply defined symbol
P ‘.’ different in pass 1 and 2
T A 16 bit expression has been truncated to an 8 bit value
U Undefined symbol
X Syntax error

BUGS
If .list 1 is ever encountered, a listing will start to come out whether or not -l was selected.

22

ASA(1) General Commands Manual ASA(1)

NAME
asa - interpret ASA control characters

SYNOPSIS
asa [file]

DESCRIPTION
Asa takes files which were written with ASA carriage control characters, usually by FORTRAN pro-
grams, converts them to a form suitable for printing on a terminal, line printer, and so on, and writes the
results on the standard output.

The control characters handled are:

´ ´ single space
´0´ double space
´-´ triple space
´+´ overprint the previous line
´1´ start a new page

If no file names are given, the standard input is used.

Each input file given starts a new page. A skip to a new page on the first line of the first input file is ig-
nored.

23

ASCII (1) General Commands Manual ASCII (1)

NAME
ascii - interpret ASCII characters

SYNOPSIS
ascii [-oxdbn] [-nct] [-e] [text]

DESCRIPTION
Ascii prints the ASCII values corresponding to characters and vice versa. The values are interpreted in a
settable numeric base; -o specifies octal (the default), -d decimal, -x hexadecimal, and -bn base n.

With no arguments, ascii reproduces in the specified base. Characters of text are converted to their ASCII
values, one per line. If, however, the first text argument is a valid number in the specified base, conversion
goes the opposite way. Control characters are printed as they appear in Other options are:

-n Force numeric output.

-c Force character output.

-t Convert from numbers to running text; do not interpret control characters or insert newlines.

-e Interpret remaining arguments as text.

EXAMPLES
Print the

ASCII table base 10.

Print the octal value of ‘p’.

Show which character is octal 160.

SEE ALSO
ascii(6)

24

AT (1) General Commands Manual AT (1)

NAME
at − execute commands at a later time

SYNOPSIS
at [-r] time [day] [file]

at -l

DESCRIPTION
At squirrels away a copy of the named file (standard input default) to be used as input to sh(1) at a speci-
fied later time. A cd command to the current directory is inserted at the beginning, followed by assign-
ments to all environment variables. When the script is run, it uses the userid and groupid of the creator of
the copy.

The time is 1 to 4 digits, with an optional following or for AM, PM, noon or midnight. One and two digit
numbers are taken to be hours, three and four digits to be hours and minutes. If no letters follow the dig-
its, a 24 hour clock time is understood.

The optional day is either a month name followed by a day number, or a day of the week; if the word fol-
lows, invocation is moved seven days further off. Names of months and days may be recognizably trun-
cated. A year number, spelled out in full, may follow the month.

The options are

-r Remove the specified activity.

-l List all activities scheduled for this user.

At programs are executed by periodic execution of from cron(8). The granularity of at depends upon how
often atrun is executed.

The standard output and standard error files are lost unless redirected.

EXAMPLES
at 0800 dec 24
echo ho ho ho | mail claus

at -r ‘at -l‘
Remove a scheduled activity.

FILES
/usr/spool/at/yy.ddd .hhmm.*

activity for year, day, hour

last hhmm

activities in progress

SEE ALSO
calendar(1), pwd(1), sleep(1), cron(8)

BUGS
Due to the granularity of the execution of atrun, there may be bugs in scheduling things almost exactly 24
hours into the future.

25

AWK (1) General Commands Manual AWK (1)

NAME
awk - pattern-directed scanning and processing language

SYNOPSIS
awk [-F fs] [-v var=value] ... [-f] prog [file ...]

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns in prog, which may appear as one
literal argument or as one or more file names each preceded by -f. With each pattern may be associated an
action to be performed when a line of a file matches the pattern. Each line is matched against the pattern
portion of every pattern-action statement in order; the associated action is performed for each matched
pattern. The file name means the standard input. Any file of the form var=value is treated as an assign-
ment, not a filename, and is executed at the time it would have been opened if it were a filename. Option
-v designates an assignment to be done before prog is executed.

An input line is made up of fields separated by white space, or by regular expression FS. The fields are
denoted $1, $2, ..., while $0 refers to the entire line.

A pattern-action statement has the form

pattern { action }

A missing { action } means print the line; a missing pattern always matches. Pattern-action statements are
separated by newlines or semicolons.

An action is a sequence of statements. A statement can be one of the following:

if(expression) statement [else statement]
while(expression) statement
for(expression ; expression ; expression) statement
for(var in array) statement
do statement while(expression)
break
continue
{ [statement ...] }
expression # commonly var = expression
print [expression-list] [> expression]
printf format [, expression-list] [> expression]
return [expression]
next # skip remaining patterns on this input line
delete array[expression]# delete an array element
exit [expression] # exit immediately; status is expression

Statements are terminated by semicolons, newlines or right braces. An empty expression-list stands for
$0. String constants are quoted " ", with the usual C escapes recognized within. Expressions take on
string or numeric values as appropriate, and are built using the operators + - * / % ˆ (exponentiation), and
concatenation (indicated by white space). The operators ! ++ -- += -= *= /= %= ˆ= > >= < <= == != &&
|| ?: are also available in expressions. Variables may be scalars, array elements (denoted x[i]) or fields.
Variables are initialized to the null string. Array subscripts may be any string, not necessarily numeric;
this allows for a form of associative memory. Multiple subscripts such as [i,j,k] are permitted; the con-
stituents are concatenated, separated by the value of SUBSEP.

The print statement prints its arguments on the standard output (or on a file if > file or >> file is present or
on a pipe if |cmd is present), separated by the current output field separator, and terminated by the output
record separator. file and cmd may be literal names or parenthesized expressions; identical string values
in different statements denote the same open file. The printf statement formats its expression list accord-
ing to the format (see printf(3)) . The built-in function close(expr) closes the file or pipe expr.

The mathematical functions exp, log, sqrt, sin, cos, and atan2 are built in. Other built-in functions:

length
the length of its argument taken as a string, or of $0 if no argument.

26

AWK (1) General Commands Manual AWK (1)

rand random number on (0,1)

srand sets seed for rand and returns the previous seed.

int truncates to an integer value

substr(s, m, n)
the n-character substring of s that begins at position m counted from 1.

index(s, t)
the position in s where the string t occurs, or 0 if it does not.

match(s, r)
the position in s where the regular expression r occurs, or 0 if it does not. The variables
RSTART and RLENGTH are set to the position and length of the matched string.

split(s, a, fs)
splits the string s into array elements a[1], a[2], ..., a[n], and returns n. The separation is done
with the regular expression fs or with the field separator FS if fs is not given.

sub(r, t, s)
substitutes t for the first occurrence of the regular expression r in the string s. If s is not given,
$0 is used.

gsub same as sub except that all occurrences of the regular expression are replaced; sub and gsub re-
turn the number of replacements.

sprintf(fmt, expr, ...)
the string resulting from formatting expr ... according to the printf(3) format fmt

system(cmd)
executes cmd and returns its exit status

The ‘‘function’’ getline sets $0 to the next input record from the current input file; getline < file sets $0 to
the next record from file. getline x sets variable x instead. Finally, cmd | getline pipes the output of cmd
into getline; each call of getline returns the next line of output from cmd . In all cases, getline returns 1
for a successful input, 0 for end of file, and -1 for an error.

Patterns are arbitrary Boolean combinations (with ! || &&) of regular expressions and relational expres-
sions. Regular expressions are as in egrep; see gre(1). Isolated regular expressions in a pattern apply to
the entire line. Regular expressions may also occur in relational expressions, using the operators ˜ and !˜.
/re/ is a constant regular expression; any string (constant or variable) may be used as a regular expression,
except in the position of an isolated regular expression in a pattern.

A pattern may consist of two patterns separated by a comma; in this case, the action is performed for all
lines from an occurrence of the first pattern though an occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression
expression in array-name
(expr,expr,...) in array-name

where a relop is any of the six relational operators in C, and a matchop is either ˜ (matches) or !˜ (does not
match). A conditional is an arithmetic expression, a relational expression, or a Boolean combination of
these.

The special patterns BEGIN and END may be used to capture control before the first input line is read
and after the last. BEGIN and END do not combine with other patterns.

Variable names with special meanings:

FS regular expression used to separate fields; also settable by option -F fs.

NF number of fields in the current record

NR ordinal number of the current record

27

AWK (1) General Commands Manual AWK (1)

FNR ordinal number of the current record in the current file

FILENAME
the name of the current input file

RS input record separator (default newline)

OFS output field separator (default blank)

ORS output record separator (default newline)

OFMT
output format for numbers (default %.6g)

SUBSEP
separates multiple subscripts (default 034)

ARGC
argument count, assignable

ARGV
argument array, assignable; non-null members are taken as filenames

ENVIRON
array of environment variables; subscripts are names.

Functions may be defined (at the position of a pattern-action statement) thus:

function foo(a, b, c) { ...; return x }

Parameters are passed by value if scalar and by reference if array name; functions may be called recur-
sively. Parameters are local to the function; all other variables are global. Thus local variables may be
created by providing excess parameters in the function definition.

EXAMPLES
length > 72

Print lines longer than 72 characters.

{ print $2, $1 }
Print first two fields in opposite order.

BEGIN { FS = ",[\t]*|[\t]+" }
{ print $2, $1 }
Same, with input fields separated by comma and/or blanks and tabs.

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Add up first column, print sum and average.

/start/, /stop/
Print all lines between start/stop pairs.

BEGIN { # Simulate echo(1)
for (i = 1; i < ARGC; i++) printf "%s ", ARGV[i]
printf "\n"
exit }

SEE ALSO
gre(1), lex(1), sed(1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, The AWK Programming Language, Addison-Wesley, 1988.

BUGS
There are no explicit conversions between numbers and strings. To force an expression to be treated as a
number add 0 to it; to force it to be treated as a string concatenate "" to it.
The scope rules for variables in functions are a botch; the syntax is worse.

28

BACKUP(1) General Commands Manual BACKUP(1)

NAME
backup - backup and recover files

SYNOPSIS
backup recover [option ...] file ...

backup grep [option ...] pattern ...

backup fetch [option ...] [file ...]

backup stats [option ...]

backup backup [file ...]

backup munge

backup mount [option ...] mountpt

DESCRIPTION
The backup programs save and restore archival copies of files in an optical disk store on a central system
(see backup(5)). Backup occurs automatically daily (see backup(8)) and upon specific request via backup
backup. Backup grep shows backup copy names for specific files, and backup fetch restores data from
specific backup copies. Backup recover is a combination of these two; it fetches the most recent copy.
All the backup programs describe their options when presented with a bad option such as -?.

Backup recover retrieves files by name. The names should be full pathnames rooted at /n/; if not, backup
tries to guess names that begin with /n/. Directories should be recovered before their contents. Regular
files that are linked together will stay linked if they are recovered together. The options for recover are:

-o dir The argument is restored as an entry in the directory dir.
-v Verbose (enforced).
-F Restore directories as files containing a null-terminated list of element names.
-r Recursively recover any subdirectories.
-d Create any missing intermediate directories.
-Dold=new

Replace the prefix old of the original filename with new to form the new output filename.
-m The names are backup copy names, as determined from backup grep, not original filenames.
-fdevice

Use device rather than /dev/worm0 for the WORM. Device may be on another machine: ma-
chine!device. An initial w implies a WORM device; a j implies a jukebox. A numeric device
means /dev/wormdevice.

-e Cause the worm fetch server on the backup system to terminate gracefully.
-i Append .n to the output name for each file where n is an increasing integer. This is useful for re-

covering multiple copies of the same file.

A diagnostic like need disk backup2a means you need to mount the A side of the cartridge labeled
backup2.

Backup grep searches for names of backed up files that match the strings patterns. If the pattern is a lit-
eral (no -e) that looks like a filename, it reports the filename catenated with // and the time of the most re-
cent backup copy. If the pattern is a literal that looks like the output under option -d, it reports the name
of the corresponding backup copy. The options are:

-d Print file change times (ctime, see stat(2)) as integers rather than as dates.
-e Interpret patterns as regular expressions given in the notation of regexp(3). Warning: this option

can execute extremely slowly; it is almost always better to use gre(1) on on the backup machine;
see backup(5).

-a Print all names in the database.
-V Treat pattern as a literal filename and list all versions of the file.
-<n Only list entries with a date less than or equal to n. If n is not a simple integer date, it is inter-

preted as by timec(3).
->n Only list entries with a date greater than or equal to n.
-D Print the most recent entry for every file name starting with pattern, taking into account any cut-

off date, but turning off option -e.

29

BACKUP(1) General Commands Manual BACKUP(1)

Backup fetch takes from its arguments or from standard input backup copy names as reported by backup
grep (such as v2345/987) and restores the corresponding files. It accepts the same options as backup re-
cover except -m; -v is really optional. Irrelevant prefixes are stripped from backup copy names. Thus the
output of the backup grep command can be used directly.

Backup stats provides statistics about the files backed up. By default, it looks for all systems and all users
and gives a grand total. The options are

-i Give information per system or user rather than a total.

-s systems
-u users

With option -i, restrict the total to the systems or users named in comma-separated lists. The
name expands to all systems or all users.

-d Print average number of files and bytes for the last 1 day, 7 days and 30 days.

Backup backup backs up files. If no file names are given, they are taken from standard input. File names
are interpreted as in backup recover. The files are safely on the backup system when the command exits
but will normally take a day to get into the backup database.

Backup munge causes the backup system to process any received files. When this terminates (assuming
no errors), the files have been put onto backup media and have been absorbed into the database.

Backup mount is an experimental way to access backed up files. The specified part of the backup files (set
by -Droot or / by default) is mounted at mountpt. There is one option

-d date
Make the mounted hierarchy reflect the state at the given date. The mounting can be reversed
with umount; see mount(8).

EXAMPLES
backup stats -i -s ’*’

Get totals for all systems.

backup fetch ‘backup grep -d \‘backup grep -d /n/bowell/etc/passwd\‘‘
What backup recover does for you.

backup recover /n/coma/usr/rob/fortunes
cd /n/coma/usr/rob; backup recover fortunes

Two ways to get the latest available copy of /n/coma/usr/rob/fortunes.

backup grep -V /n/coma/usr/rob/fortunes
List all available copies of /n/coma/usr/rob/fortunes with their dates.

backup recover -m -o /tmp /n/wild/usr/backup/v/v919/678
backup recover -m -o /tmp v919/678

Two ways to recover a specific backup copy and place the result in /tmp.
/n/wild/usr/backup/v/v919/678 is the name of the backup copy; the file will be restored to its
home machine, not to wild.

backup grep -V /n/coma/usr/rob/fortunes | backup fetch -i -o .
Recover all the versions of the fortunes file into fortunes.1, fortunes.2, ... in the current direc-
tory.

FILES
home of all datafiles and executables (on client machines)

SEE ALSO
worm(8), backup(5), backup(8)

BUGS
Recovery via symbolic links may not work; use the non-linked pathname.

30

BADGE(A) BADGE(A)

NAME
badge - print Bell Labs badge

SYNOPSIS
badge string1 string2 [picture.ps]

DESCRIPTION
Badge is an ASCII-to-PostScript converter that frames its arguments in a pleasant, colorful badge, suitable
for laminating. File picture.ps is assumed to contain 24-bit color encapsulated PostScript. If it is omitted
or doesn’t exist, a blank box will appear; goofy and donald (see FILES) are available for the camera-shy.

EXAMPLES
badge "DONALD F" DUCK /usr/games/ps/donald | lp -dpeacock

badge "P J" "WEINBERGER" /usr/games/ps/goofy | lp -dpeacock

BUGS
Very long names (over 1.75 inches in 14 point type) are not accounted for.

Unlike a similar badge provided by security, the logo adheres to corporate standards.

FILES
/usr/games/ps/donald
/usr/games/ps/goofy
/usr/games/ps/logo A corporate logo.

31

BASENAME(1) General Commands Manual BASENAME(1)

NAME
basename, dirname - strip filename affixes

SYNOPSIS
basename string [suffix]

dirname string

DESCRIPTION
These functions split off useful parts of a pathname; they are typically used inside substitution marks ‘ ‘ in
shell scripts.

Basename deletes any prefix ending in and the suffix, if present in string, from string, and prints the result
on the standard output.

Dirname places on standard output the name of the directory in which a file named string would nomi-
nally be found. The calculation is syntactic and independent of the contents of the file system.

EXAMPLES
cc $1 -o ‘basename $1 .c‘

Compile into where is or

cc $1 -o ‘dirname $1‘/‘basename $1 .c‘
Compile into

SEE ALSO
sh(1)

32

BASIC(1) General Commands Manual BASIC(1)

NAME
basic, bas, bite - basic language interpreters

SYNOPSIS
/usr/bin/lcl/basic

/usr/bin/lcl/bas

/usr/bin/lcl/bite

DESCRIPTION
Of these three completely different Basic interpreters, basic is the biggest, and unfortunately the best.
Caveat emptor.

grigg 33

BC(1) General Commands Manual BC(1)

NAME
bc - arbitrary-precision arithmetic language

SYNOPSIS
bc [-c] [-l] [file ...]

DESCRIPTION
Bc is an interactive processor for a language that resembles C but provides arithmetic on numbers of arbi-
trary length with up to 100 digits right of the decimal point. It takes input from any files given, then reads
the standard input. The -l argument stands for the name of an arbitrary precision math library. The fol-
lowing syntax for bc programs is like that of C; L means letter a-z, E means expression, S means state-
ment.

Lexical

comments are enclosed in /* */

newlines end statements

Names

simple variables: L
array elements: L[E]
The words ibase, obase, and scale

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E)

sqrt(E)

length(E)
number of significant decimal digits

scale(E)
number of digits right of decimal point

L(E,...,E)

Operators

+ - * / % ˆ (% is remainder; ˆ is power)

++ -- (prefix and postfix; apply to names)

== <= >= != < >

= += -= *= /= %= ˆ=

Statements
E
{ S ; ... ; S }
if (E) S
while (E) S
for (E ; E ;E) S
null statement
break
quit
"text"

Function definitions
define L (L , ... , L){
auto L , ... , L
S ; ... ; S
return (E)
}

34

BC(1) General Commands Manual BC(1)

Functions in
-l math library
s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assignment. Text in
quotes, which may include newlines, is also printed. Either semicolons or newlines may separate state-
ments. Assignment to scale influences the number of digits to be retained on arithmetic operations in the
manner of dc(1). Assignments to ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All variables
are global to the program. Automatic variables are pushed down during function calls. In a declaration of
an array as a function argument or automatic variable empty square brackets must follow the array name.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless the -c (compile only) option
is present. In this case the dc input is sent to the standard output instead.

EXAMPLES
Define a function to compute an approximate value of the exponential. Use it to print 10 values. (The ex-
ponential function in the library gives better answers.)

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=1; 1==1; i++){

a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+c

}
}
for(i=1; i<=10; i++) e(i)

FILES
mathematical library

SEE ALSO
dc(1), hoc(1)

BUGS
No or operators.
A statement must have all three
A is interpreted when read, not when executed.

35

BCP(1) General Commands Manual BCP(1)

NAME
bcp − reformat black-and-white picture files

SYNOPSIS
bcp [option ...] [file1 [file2]]

DESCRIPTION
Bcp copies black-and-white (B&W) image file1 to file2, optionally changing the file format and trans-
forming the image. If file1 is a directory name, then every leaf of its file tree is processed in turn; and, in
this case, if file2 also is specified, it is made the root directory of an isomorphic tree of output files. If
file2 is not specified, all output is catenated to stdout.

Bcp can copy among all the B&W picfile(5) formats, and some others. The default output format is
TYPE=ccitt-g4. Image transformations include trimming, translation, scaling, and rotation, performed in
that order (not in argument order).

Input files in picfile(5) format must begin with an ASCII TYPE=type header line. Types supported both
as input and output are:

dump One byte/pixel. NCHAN=1 is required. On input, the grey pixel values are thresholded to
B&W; see option -T. On output, black becomes 0 and white 255.

bitmap One bit/pixel. Essentially Sun rasterfile format, with a picfile(5) header replacing the Sun bi-
nary header.

ccitt-g4 CCITT Group 4 FAX encoding, strongly compressive on printed text. Also, ccitt-g31
(Group 3, 1-dim) and ccitt-g32 (Group 3, 2-dim; see -k).

Other supported types are:

binary One bit/pixel encoding; obsolescent, but needed for old image archives. Both input and out-
put.

rle Fast run-length encoding; obsolescent, but needed for old image archives. Input or output,
but not both.

pico Same as dump. Input only.

cdf ‘Compound document format’, used in AT&T FAX Connection product. Input only. Only
the first of multiple pages is read.

Other formats not using a TYPE=type header, are: bitfile(9) format; tiff 5.0 format; PostScript bitmap for-
mat (output only); and Sun rasterfile format. Input tiff files may be encoded using the Group 3 or Group 4
schemes, LZW algorithm, modified Huffman encoding, Apple PackBits, or uncompressed. Sun rasterfiles
may be encoded using no compression, or the byte-length encoding scheme.

The options are:

-B[io] Read/write bitfile(9) format (no TYPE=type header).

-Fc Write tiff format, compression scheme c, where c is g3 or g31 (1-dim Group 3), g32 (2-dim
Group 3), g4 (Group 4), L (LZW compression), P (Apple PackBits), or N (no compression).

-M Write TYPE=bitmap format.

-P Write Postscript format.

-Rx,y Force output resolutions to x,y (pixels/inch). If ,y is missing, it is taken to be the same as x.
Overrides -xx,y. Requires a RES=x y line in the header (but, see -Z).

-R= Force the output resolution to be equal to the greater of the input resolutions.

-S Write Sun rasterfile format (standard encoding).

-Tt Threshold. When reading TYPE=dump, assign black to grey levels less than t, and white to
others. Default: -T128.

-Zx,y Force input RES=x y.

36

BCP(1) General Commands Manual BCP(1)

-b Write TYPE=binary format.

-g4
-4 Write TYPE=ccitt-g4 format. Similarly, -g31 or -31 and -g32 or -32.

-kn Set the ‘k’ for ccitt-g32 encoding on output (default -k4).

-ox,y Offset (translate) the image by x,y pixels. The width and height of the picture are not
changed.

-p Write TYPE=dump NCHAN=1 format. Map black to 0, white to 255.

-r Write TYPE=rle format.

-tl Rotate the image to bring the left edge of the page to the top. Set top-left corner of the ro-
tated image at the top-left corner of the image.

-td Rotate the image d degrees counterclockwise about its center. d is a real number.

-wl,t,r,b Specify window (trim the image): l,t is the left-top corner and r,b the right-bottom corner
measured in pixels. If the new margins are outside the original picture, the new area is set to
white. An argument given as leaves the edge unchanged.

-xx,y Expand/contract (scale) the image, by real factors x and y. If ,y is missing, y is taken to be
the same as x. May be overridden by -Rx,y. Requires a RES=x y line in the header (but, see
-Z).

SEE ALSO
cscan(1), imscan(1), ocr(1), pico(1), picfile(5)
CCITT facsimile coding standards Rec. T.4(1988) and T.6(1988).

BUGS
Concatenated pages are supported, but only if each new page has a complete header.
Scaling is accomplished by naive replication/deletion of pixels.
Rotation by small angles exhibits aliasing effects, and is slow.
Rotations -tr and -tb are unfinished.
CCITT FAX ‘uncompressed’ (or, ‘transparent’) mode is not implemented.
Postscript output is useful only for small images.
WINDOW=l t r b where l or t is non-zero may not be handled correctly for every combination of file
types.
tiff LZW compression may not be working properly (input and output).
TYPE=rle can’t be both input and output.
Should be merged with T. Duff’s pcp.

37

BDIFF(1) General Commands Manual BDIFF(1)

NAME
bdiff - big diff

SYNOPSIS
bdiff file1 file2 [n] [-s]

DESCRIPTION
Bdiff is used in a manner analogous to diff(1) to find which lines must be changed in two files to bring
them into agreement. Its purpose is to allow processing of files which are too large for diff . Bdiff ignores
lines common to the beginning of both files, splits the remainder of each file into n-line segments, and in-
vokes diff upon corresponding segments. The value of n is 3500 by default. If the optional third argu-
ment is given, and it is numeric, it is used as the value for n. This is useful in those cases in which
3500-line segments are too large for diff , causing it to fail. If file1 (file2) is - , the standard input is read.
The optional -s (silent) argument specifies that no diagnostics are to be printed by bdiff (note, however,
that this does not suppress possible exclamations by diff . If both optional arguments are specified, they
must appear in the order indicated above.

The output of bdiff is exactly that of diff , with line numbers adjusted to account for the segmenting of the
files (that is, to make it look as if the files had been processed whole). Note that because of the segment-
ing of the files, bdiff does not necessarily find a smallest sufficient set of file differences.

FILES
/tmp/bd?????

SEE ALSO
diff(1).

DIAGNOSTICS
Use help(1) for explanations.

38

BIGCORE(1) General Commands Manual BIGCORE(1)

NAME
bigcore, coreid - permit big core images, identify source of image

SYNOPSIS
bigcore command

coreid [file]

DESCRIPTION
Bigcore calls the named command with no restriction on the size of core images. By default, no core im-
age will be written when a program aborts if it would be larger than a megabyte.

Coreid reads the file or the specified core image file, and prints on the standard output the argument list of
the program that produced the core image.

FILES
SEE ALSO

core(5)

BUGS
Coreid only works for core images from C and Fortran programs.
The arguments shown are those at the time of the dump, not at invocation of the program.

39

BISON (1) General Commands Manual BISON (1)

NAME
bison - GNU Project parser generator (yacc replacement)

SYNOPSIS
bison [-dvy] file

DESCRIPTION
Bison is a parser generator in the style of yacc(1). It should be upwardly compatible with input files de-
signed for yacc.

Input files should follow the yacc convention of ending in ‘‘.y’’. Unlike yacc, the generated files do not
have fixed names, but instead use the prefix of the input file. For instance, a grammar description file
named parse.y would produce the generated parser in a file named parse.tab.c, instead of yacc’s y.tab.c.

Bison takes three optional flags.

-d Produce a .tab.h file, similar to yacc’s y.tab.h file.

-v Be verbose. Analogous to the same flag for yacc.

-y Use fixed output file names. I.e., force the output to be in files y.tab.c, y.tab.h, and so on. This is
for full yacc compatibility.

FILES
/usr/lib/bison.simple simple parser
/usr/lib/bison.hairy complicated parser

SEE ALSO
yacc(1)

DIAGNOSTICS
‘‘Self explanatory.’’

local 40

BITSHIP(1) General Commands Manual BITSHIP(1)

NAME
bitship - convert file to or from visible representation

SYNOPSIS
bitship [-a | -b]

DESCRIPTION
Bitship -a pipes an arbitrary file into a visible ASCII-95 representation. Bitship -b performs the inverse
transformation. If you are sending a file to someone for the first time, you should probably include a copy
of the source code.

FILES
/usr/src/cmd/bitship.c

DIAGNOSTICS
"Usage:..." in case of an error in the command line.

BUGS
There is no error correction. Illegal characters in a "visible" file produce garbage.

41

BMD08V (I) BMD08V (I)

NAME
bmd08v - Analysis of Variance

SYNOPSIS
bmd08v

DESCRIPTION
Bmd08v performs analysis of variance for any hierarchical design with equal cell sizes. This includes the
nested, partially nested and partially crossed, and fully crossed designs. Separate analyses may be per-
formed on several dependent variables simultaneously. Bmd08v takes its input from the standard input
and writes its results on the standard output. All bmd control cards must have the identifying field in up-
per case (eg. PROBLM, INDEX, FINISH, etc.). One important departure from previous versions con-
cerns the variable format card - it is no longer necessary! If you specify 0 for the number of variable for-
mat cards, the data will be assumed to be in "free format" - items separated by blanks or commas.

EXAMPLES
In the first example, data contains the bmd control cards and the input data. Output is directed to the stan-
dard output.

bmd08v <data

In the second example, prefix contains the initial bmd control cards, data contains the input data, and fin-
ish contains the FINISH card (many users prefer not to contaminate their data files). Output is directed to
file output.

cat prefix data finish | bmd08v >output

FILES
/tmp/1????? temporary file
/tmp/2????? temporary file

SEE ALSO
BMD User’s Guide, /usr/doc/bmd08v

BUGS
Temporary files are not always scratched.

3rd Berkeley Distribution 42

BPRINT (1) General Commands Manual BPRINT (1)

NAME
bprint - expression profiler

SYNOPSIS
bprint [option ...] [file ...]

DESCRIPTION
bprint produces on the standard output a listing of the programs compiled by lcc with the -b option. Exe-
cuting an a.out so compiled appends profiling data to prof.out. The first token of each expression in the
listing is preceded by the number of times it was executed enclosed in angle brackets as determined from
the data in prof.out. bprint interprets the following options.

-c Compress the prof.out file, which otherwise grows with every execution of a.out.

-b Print an annotated listing as described above.

-n Include line numbers in the listing.

-f Print only the number of invocations of each function. A second -f summarizes call sites instead
of callers.

-Idir specifies additional directories in which to seek files given in prof.out that do not begin with ‘/’.

If any file names are given, only the requested data for those files are printed in the order presented. If no
options are given, -b is assumed.

FILES
prof.out profiling data
/usr/lib/bbexit.o creates prof.out when a.out exits

SEE ALSO
lcc(1), prof(1)

BUGS
Macros and comments can confuse bprint because it uses post-expansion source coordinates to annotate
pre-expansion source files. If bprint sees that it’s about to print a statement count inside a number or
identifier, it moves the count to just before the token.

Can’t cope with an ill-formed prof.out.

local - 9/24/91 43

BUNDLE(1) General Commands Manual BUNDLE(1)

NAME
bundle - collect files for distribution

SYNOPSIS
bundle file ...

DESCRIPTION
Bundle writes on its standard output a shell script for sh(1) that, when executed, will recreate the original
files. Its main use is for distributing small numbers of text files by mail(1).

Although less refined than standard archives from ar(1), cpio(1), or tar(1), a bundle file is self-document-
ing and complete; little preparation is required on the receiving machine.

EXAMPLES
bundle makefile *.[ch] | mail elsewhere!mark

Send a makefile to Mark together with related and files. Upon receiving the mail, Mark may save
the file sans postmark, say in gift/horse, then do

cd gift; sh horse; make

SEE ALSO
ar(1), cpio(1), tar(1), mail(1)

BUGS
Bundle will not create directories and is unsatisfactory for non-ASCII files.
Beware of gift horses.

44

BYTEYEARS(1) General Commands Manual BYTEYEARS(1)

NAME
byteyears - time-space product for file residency

SYNOPSIS
byteyears [-a] [file]

DESCRIPTION
Byteyears reports the product of the age of each file in years and the length in bytes. Files for which this
number is large may be reasonable candidates for deletion. If the file is a directory, byteyears reports (re-
cursively) on everything in that directory. If no arguments are given, the current directory is assumed. If
the -a option is given, the time since last access is used instead of the time since last modification.

Each line of output contains the number of byte years (rounded to the nearest integer), the size of the file
in bytes, the time last modified, and the name of the file.

EXAMPLES
byteyears | sort -r | sed 10q

List the ten leading candidates in the current directory.

45

C++(1) General Commands Manual C++(1)

NAME
CC, cfront - C++ compiler

SYNOPSIS
CC [option ...] file ...

cfront [option ...] file ...

DESCRIPTION
CC compiles and links C++ programs in the manner of cc(1). It handles source files with names ending in
assembler files in and object files in Various passes of the compiler can be substituted via environment
variables listed under ‘FILES’. Options include those of cc(1) except -B and -t, those of ld(1), those of
cfront, and in addition

-F Run only the macro preprocessor cpp(8) and cfront on the named .c files, and send the result to
the standard output.

-.suffix
Instead of the standard output, place -E and -F output in files whose name is that of the source
with .suffix substituted for

Cfront reads C++ code (without preprocessing) from the standard input and writes equivalent C code on
the standard output. The options are

+d Don’t expand inline functions.

+x file Take size and alignment information from file for cross compiling.

+e0
+e1 Make external declarations (+e0) or definitions (+e1) for virtual function tables. These tables

may appear as static data in every compilation; the options are intended to save redundant space.

+a0 Produce classic C output (default).

+a1 Produce ANSI C output. If this option is used with CC, then an ANSI C compiler such as lcc
must be specified in environment variable ccC.

+fname
Use name to identify the source file in diagnostics.

+L Produce ANSI standard #line directives instead of #number.

FILES
cppC=/lib/cpp

C preprocessor

cfrontC=/usr/bin/cfront
C++ translator

ccC=/bin/cc
C compiler

munchC=/usr/lib/munch
linker postprocessor for static initialization

C++ library

standard directory for C++
files

Other files as in cc

SEE ALSO
cc(1), ld(1)
B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1986
B. Stroustrup, C++ Reference Manual, AT&T Bell Laboratories, May 1989

46

CALENDAR(1) General Commands Manual CALENDAR(1)

NAME
calendar - reminder service

SYNOPSIS
calendar [-] [n]

DESCRIPTION
Calendar consults calendar files and prints out lines that contain today’s date or any date up through the
nth working day hence (n=1 by default). Most American-style month-day dates such as Aug. 19, august
19, 8/19, etc., are recognized, but not The symbol denotes every month as in * 19 or */19. A year may
follow the day, as in August 19 86, 8/19/86, or Aug. 19, 1986.

By default, the program consults the file in directory $HOME (see sh(1)), or in the current directory if a
home directory is not known. Other calendar files to be consulted may be specified by calendar lines in
one of the forms

#include file
#include machine!file

where file is the name of some other calendar and machine is the name of a machine or service accessible
via con(1).

When the optional argument is present, calendar reminds all users of their calendar engagements by
mail(1). Normally this happens daily in the wee hours under control of cron(8). Calendars not in home
directories, or recipients not registered as users, may be registered for reminder service by placing lines of
the form calendarfile mailname in file

EXAMPLES
#include /usr/pub/btlcalendar
#include /n/coma/usr/pub/btlcalendar
#include mh/astro/coma.calendar!/usr/pub/btlcalendar

Ways to subscribe to a public calendar by (1) users of (2) users elsewhere who have netfs(8) ac-
cess to coma, and (3) users elsewhere without netfs access.

FILES
SEE ALSO

at(1)
BUGS

#includes do not nest.
The mail reminder service doesn’t work when it finds fewer than two calendars.
Your calendar must be public information for you to get reminder service.
Holidays are what the program says they are.

47

CAN (1) General Commands Manual CAN (1)

NAME
can, bcan, dcan, tcan, xcan - interface to Canon laser-printer spooler

SYNOPSIS
can [option ...] [file ...]

bcan [option ...] [file ...]

dcan [option ...] [file ...]

tcan [option ...] [file ...]

xcan [option ...] [file ...]

DESCRIPTION
These commands print files (standard input by default) on Canon laser printers. Four commands, all spe-
cial cases of the generic xcan, handle particular kinds of data files:

can ASCII text

bcan bitmap images created by blitblt(9)

dcan output from troff(1)

tcan output for a Tektronix 4014 terminal, as produced by plot(1)

The destination printer is determined in the following ways, listed in order of decreasing precedence.

option -d dest
environment variable
printer named in file

Printers at the mother site are:

3 3rd floor, end of 9S corridor (seki)
4 4th floor, stair 8 (swift)
8 3rd floor, stair 8 (tukey)
9 4th floor, stair 9 (wild)
j jones room (jones)
u unix room (panther)
/name printer attached to machine with Datakit destination name

Options:

-d dest
Select the destination printer.

-f font Set the font (default for can; see font(7)

-L (landscape) Rotate bcan pages 90 degrees.

-l n Set number of lines per page for can (default 66).

-m n Set bcan magnification (default 2).

-n Spool only, input has already been formatted by a remote xcan.

-o list Print only pages whose page numbers appear in the comma-separated list of numbers and ranges.
A range n-m means pages n through m; a range -b means from the beginning to page n; a range
n- means from page n to the end. -o implies -r.

-r print pages in reverse order (default for can and dcan).

-sb make xcan expect bcan input; -sb implies defaults of -x176 and -y96.

-sc make xcan expect can input; -sc does not imply -r.

-sd make xcan expect dcan input; -sd does not imply -r.

-st make xcan expect tcan input.

-t n tcan scale factor is (n/100)/(n%100). The default is 813, i.e., 13 tekpoints become 8 dots on the
laser printer.

48

CAN (1) General Commands Manual CAN (1)

-u user
set the name which appears on the banner page; default is login name.

-x n set the horizontal offset of the print image, measured in dots (default 48). There are 240 dots to
the inch.

-y n set the vertical offset of the print image (default 0), except in tcan, where this option specifies n
extra tekpoints vertically.

FILES
default destination
font directory
spool directory

SEE ALSO
pr(1), lpr(1), blitblt(9) plot(1), font(7)

BUGS
The ‘landscape’ option is supported only by bcan; -o and -r are supported only by can and dcan.
There ought to be a way to determine the service class from the input data.

49

CAT (1) General Commands Manual CAT (1)

NAME
cat - catenate and print

SYNOPSIS
cat [file ...]

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus

cat file

prints a file and

cat file1 file2 >file3

concatenates the first two files and places the result on the third.

If no file is given, or if the argument is encountered, cat reads from the standard input. Output is buffered
in blocks matching the input.

SEE ALSO
p(1), pr(1), cp(1)

BUGS
Beware of and which destroy input files before reading them.

50

CB(1) General Commands Manual CB(1)

NAME
cb - C program beautifier

SYNOPSIS
cb [option ...] [file ...]

DESCRIPTION
Cb reads C programs either from the named files or from the standard input and writes them on the stan-
dard output with spacing and indentation that displays the structure of the code. The options are:

-s Place newlines as in Kernighan and Ritchie. (Original newlines are preserved by default.)

-j Join split lines.

-l leng
Split lines that are longer than leng, 120 by default.

SEE ALSO
pr(1), troff(1), lp(1), font(6)
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1988.

BUGS
Punctuation hidden in preprocessor statements causes cb to make indentation errors.

51

CBT (1) General Commands Manual CBT (1)

NAME
cbt - btree utilities

SYNOPSIS
cbt creat name ...
cbt report name ...
cbt cat [-R] name ...
cbt squash [-odest] name
cbt build [-R] name
cbt add [-R] name
cbt delete [-R] name
cbt look [-R] name

DESCRIPTION
A B-tree name corresponds to a pair of files named name.T and name.F. Name.T contains an access tree,
and name.F contains the data.

The version of the command creates empty B-trees.

The version of the command scans each B-tree and reports how many records it contains.

The version of the command scans the B-tree in key-sort order, writing on its standard output. With no
option, writes each key followed by a tab, followed by the record, followed by a new-line. If option -R
(raw) is present, each key-record pair has the format

struct {
short keylen;
char key[keylen];
short reclen;
char rec[reclen];

};

Keys and records are not null-terminated and consecutive key-record pairs are not separated by new-lines.
Keys may be no longer than 255 bytes.

The version of the command compresses the access tree to minimal size. Option -o names the squashed
database dest, leaving the original database unaltered.

The version of the command reads a sorted list of keys and records from the standard input and fills the
file with them. Input is in the form produced by the corresponding option.

The (delete, version of the command inserts (removes, looks up) records. Input (and output of is in the
form produced by the corresponding option. The records may be unsorted. In newline-separated input,
only the keys need be present.

EXAMPLES
sort ’-t<tab>’ +0 -1 inputfile | cbt build btreefile

<tab> denotes a tab character

FILES
temporaries for

squash

SEE ALSO
cbt(3)

52

CC(1) General Commands Manual CC(1)

NAME
cc, lcc - C compilers

SYNOPSIS
cc [option ...] file ...

lcc [option ...] file ...

DESCRIPTION
Cc compiles the classic C language; lcc compiles ANSI. They are otherwise similar. In the absence of op-
tions, any named source files are compiled into object files and then linked, together with any named ob-
ject files, into a single executable file named Compilation normally has four phases: preprocessing of #
directives, compilation to assembly language, assembly, and linking. Suffixes of file names determine
which phases they participate in:

.c C source to be preprocessed and compiled. Object code for this file is finally placed in a corre-
spondingly named file, except when exactly one file is being compiled and linked.

.i C source to be compiled without preprocessing; # directives are ignored by cc, forbidden by lcc.

.s Assembler source to be assembled, producing a file.

.o A preexisting object file to be linked.

Both compilers accept options of ld(1), the most common of which are -o (to substitute a name for a.out)
and -l (to link from a library), and in addition

-c Suppress the linking phase, producing .o files but no a.out.

-g Produce additional symbol table information for debuggers such as pi(9)

-O Invoke an object-code improver; superfluous in lcc.

-w Suppress warning diagnostics. In lcc, #pragma ref variable supplies a dummy reference to sup-
press an unused-variable diagnostic.

-p Arrange for the compiler to produce code which counts the number of times each routine is
called; also, if linking takes place, replace the standard startup routine by one which arranges to
gather profiling data for later examination by prof(1).

-pg Like -p but for gprof instead of prof(1).

-S Compile the named C programs, and leave the assembler-language output in .s files.

-E Run the preprocessor on the named C programs, and send the result to the standard output.

-C Prevent the preprocessor from eliding comments.

-Dname=def
-Dname

Define the name to the preprocessor, as if by If no definition is given, the name is defined as Lcc
predefines a few symbols on most machines; option -v exposes them.

-Uname
Remove any initial definition of name.

-Idir files whose names do not begin with are always sought first in the directory of the file argument,
then in directories named in -I options, then in directories on a standard list.

These options are peculiar to cc:

-P Run the preprocessor on each file. Produce no line numbers. Place results in files.

-R Cause as(1) to make initialized variables shared and read-only.

-Bstring
Find substitute compiler passes in the files named string with the suffixes cpp, ccom and c2. If
string is empty, use a standard backup version.

-t[p012]
Find only the designated compiler passes in the files whose names are constructed by a -B op-
tion. In the absence of a -B option, the string is taken to be

53

CC(1) General Commands Manual CC(1)

These options are peculiar to lcc:

-N Do not search standard directories for include files. Omit non-ANSI language extensions.

-A Warn about calls to functions without prototypes.

-b produce code that writes an expression-level profile into prof.out. bprint(1) produces an anno-
tated listing, and -Wf-a uses the profile to improve register assignments.

-dn Generate jump tables for switches with density at least n, a floating-point constant between zero
and one, 0.5 by default.

-P Write declarations for all defined globals on standard error.

-n Produce code that reports and aborts upon dereferencing a zero pointer.

-M Run only the preprocessor to generate make(1) dependencies on the standard output.

-t Produce code to print trace messages at function entry and exit.

-Wpopt
Pass preprocessor option opt to the (Gnu) preprocessor. For example, -Wp-T allows ANSI tri-
graph sequences.

-Waopt, -Wlopt, -Wfopt
Pass option opt to the assembler (as(1)), loader (ld(1)), or compiler proper.

-Bstr Use the compiler strrcc instead of the default version. Str usually ends with a slash.

-v Report compiler steps (and some version numbers) as they are executed. A second -v causes
steps to be reported but not executed.

Lcc supports asm(string). The given string constant is copied to the generated assembly language output
with occurrences of %name replaced by the address or register for identifier name if it is visible. Other-
wise, %name is simply copied to the output. Wide-character literals are treated as plain char literals; ints
and long ints are the same size, as are doubles and long doubles.

EXAMPLES
lcc -N -I/usr/include/libc file.c

Use local include files instead of ANSI standard ones, which lack most functions of Section 2 of
this manual, and often disagree (especially about const) with those in Section 3. See intro(3).

FILES
Different machines use different file names, so this list is only representative. Lcc option -v exposes the
correct names.

linked output

temporary

preprocessor,
cpp(8)

ANSI preprocessor

cc compiler proper

optional optimizer for
cc

assembler,
as(1)

lcc compiler proper

runtime startoff

startoff for profiling

standard library, see
intro(3)

54

CC(1) General Commands Manual CC(1)

directory for
cc files

directory for
ANSI standard files

directory for local
lcc include files

SEE ALSO
lint(1), ld(1), strip(1), nm(1), prof(1), bprint(1), cin(1), adb(1), pi(9) c++(1)
B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd Ed., Prentice-Hall, 1988

BUGS
Cc cannot handle the flag of ld.
Lcc currently uses the pre-ANSI library.

MACHINE DEPENDENCIES
VAX

-pg is unimplemented.
Cc and lcc use incompatible bit-field layouts and structure return conventions.

MIPS
Lcc does not implement -p or -pg, and its -g supports breakpoints but not the examination of variables.
Cc and lcc use incompatible bit-field layouts.

Sun
Lcc options -Bdynamic and -Bstatic give the binding strategy; see ld(1).
Cc and lcc use incompatible bit-field layouts and structure return conventions.

55

CHARGE(1) General Commands Manual CHARGE(1)

NAME
charge, charges - change (show) charges for share system usage calculations

SYNOPSIS
charge [-flags]
charges [-flags]

DESCRIPTION
Charge will change the costs associated with the usage calculations for the Share Scheduler. The flag -C,
if used, should be mentioned first to cause charge to read the existing values, instead of working on de-
fault values. The alternate name is used to show the charges currently in operation, for which the default
assumes -C, unless the flag - is used. The optional flags are as follows:-

- Causes charges to show the default settings for the charging parameters.

-C Causes charge to read in the current values, which it will use instead of the defaults.
Must be first flag if used.

-Dh1,h2 Will set the decay rate for process priorities with normal nice so that they will decay to
half their initial value in h1 seconds, and set the decay rate for process priorities with
maximum nice so that they will decay to half their initial value in h2 seconds.

-Ehalf-life Will set the decay rate for users’ process rates so that they will decay to half their initial
value in half-life seconds.

-F flags Sets various global scheduling flags — see share(5) for details. Flags are assumed to be
in octal.

-Gmaxgroups Sets the maximum depth for the scheduling tree.

-Khalf-life[s] Will set the decay rate for users’ usages so that they will decay to half their initial value
in half-life hours. If the half-life is followed by the character s, then the number will be
interpreted as seconds.

-Nmaxnormu Upper bound on normalised usage used in process priority calculations. The number can
be added to a running process’s priority every clock tick, so it should be small enough
not to overrun the value maxupri in too short a time interval (ie: it should be less than
(maxupri*(1-pri_decay)) / HZ, see the output of charges -v for the low priority value of
pri_decay.)

-Pmaxpri Absolute upper bound for a process’s priority. (Something less than the largest non-neg-
ative integer.)

-Qmaxupri Upper bound for normal processes’ priorities. Idle processes run with priorities in the
range maxupri<pri<maxpri.

-Rdelta Sets the run-rate for the share scheduler in seconds.

-Smaxusers Sets the maximum number of users and groups that can be active. Note that this cannot
exceed the maximum configured in the kernel.

-Umaxusage Upper bound for ‘‘reasonable’’ usages. Users with usages larger than this are grouped
together and given a normalised usage which prevents them from interfering with ‘‘nor-
mal’’ users.

-Xmaxushare If the LIMSHARE scheduling flag is on, then this parameter limits the maximum effective
share an individual user can have to maxushare times their allocated share.

-Ymingshare If the ADJGROUPS scheduling flag is on, and any group is getting less than mingshare
times its allocated share, the costs incurred by the group members will be adjusted down
to compensate. (Does not affect the long-term charges.)

-bbio The charge for a disk block I/O operation.

-mclick The charge for a memory tick.

-ssyscall The charge for a system call.

SHARE 56

CHARGE(1) General Commands Manual CHARGE(1)

-ttick The charge for a CPU tick.

-v Show scheduling feed-back parameters (charges only).

-ytio The charge for a stream I/O operation. (This is really dependent on the number of kernel
buffer operations, so a write(1) will cost the same as a write(64) to an ordinary stream, or
a write(1024) to a pipe.)

percent The percentage change to apply to all the charges.

EXAMPLES
charge 10

will change the costs to 10% of the default.
charges

show the current charges.
charges -

show the default settings.

SEE ALSO
/usr/include/sys/charges.h The default values in the kernel.
/usr/include/sys/share.h Definition of charges structure.
share(5) A description of the Share Scheduler.

BUGS
The percent flag will also affect any new constants, so bias them accordingly.

Charges works out the current charging percentage by using the difference between the default cost for
‘‘ticks’’ and the current setting.

The defaults are hardly ever relevant.

SHARE 57

CHDATE(1) General Commands Manual CHDATE(1)

NAME
touch, chdate - set modification or access date of a file

SYNOPSIS
touch [-c] file ...

chdate [-am] date file ...

DESCRIPTION
Touch attempts to set the modification time of the files to the current time. If a file does not exist, it will
be created unless option -c is present.

Chdate sets the access and modification times of files. The date comprises two or more arguments: a
month (3 letters or more), a day number, an optional time in hour:min[:sec] form, and an optional year. A
missing year means a time in the last 12 months. The options are

-a Change the access time only.

-m Change the modification time only.

Chdate knows how to carry between fields of a date. Only a file’s owner or the super-user can change its
date.

EXAMPLES
chdate jul 4 12:00 1976 independence
chdate jul -3 1976 independence # backdate one week

SEE ALSO
ls(1), utime in chmod(2), stat(2), timec(3), chmod(1), chown(8)

DIAGNOSTICS
Chdate returns the number of files on which the date could not be changed.

BUGS
Touch will not touch directories.

The first file name for chdate cannot begin with a digit.

58

CHECKNR(1) General Commands Manual CHECKNR(1)

NAME
checknr - check nroff/troff files

SYNOPSIS
checknr [-s] [-f] [-a.x1.y1.x2.y2.xn.yn] [-c.x1.x2.x3xn] file ...

DESCRIPTION
Checknr checks a list of nroff (1) or troff(1) input files for certain kinds of errors involving mismatched
opening and closing delimiters and unknown commands. Delimeters checked are:

(1) Font changes using \fx ... \fP.

(2) Size changes using \sx ... \s0.

(3) Macros that come in open ... close forms, for example, the .TS and .TE macros which must al-
ways come in pairs.

Checknr knows about the ms(7) and me(7) macro packages.

Additional pairs of macros can be added to the list using the -a option. This must be followed by groups
of six characters, each group defining a pair of macros. The six characters are a period, the first macro
name, another period, and the second macro name. For example, to define a pair .BS and .ES, use
-a.BS.ES

The -c option defines commands which would otherwise be complained about as undefined.

The -f option requests checknr to ignore \f font changes.

The -s option requests checknr to ignore \s size changes.

Checknr is intended to be used on documents that are prepared with checknr in mind, much the same as
lint. It expects a certain document writing style for \f and \s commands, in that each \fx must be termi-
nated with \fP and each \sx must be terminated with \s0. While it will work to directly go into the next
font or explicitly specify the original font or point size, and many existing documents actually do this,
such a practice will produce complaints from checknr. Since it is probably better to use the \fP and \s0
forms anyway, you should think of this as a contribution to your document preparation style.

SEE ALSO
nroff(1), troff(1), ms(7), me(7), checkeqn(1)

DIAGNOSTICS
Complaints about unmatched delimiters.
Complaints about unrecognized commands.
Various complaints about the syntax of commands.

AUTHOR
Mark Horton

BUGS
There is no way to define a 1 character macro name using -a

4th Berkeley Distribution 4/5/80 59

CHMOD(1) General Commands Manual CHMOD(1)

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...

DESCRIPTION
The mode of each named file is changed according to mode, which may be absolute or symbolic. An ab-
solute mode is an octal number constructed from the OR of the following modes. (Modes that contain a
1000 bit are incompatible with other modes that have any bits among 7000.)

4000 set user ID on execution
3000 set exclusive access mode (1 writer or n readers)
2000 set group ID on execution
1000 set synchronized access mode (1 writer and n readers)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission ...]

The who part is a combination of the letters u (for user’s permissions), g (group) and o (other). The letter
a stands for ugo. If who is omitted, the default is a.

Op can be + to add permission to the file’s mode, - to take away permission and = to assign permission
absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or group id) e
(set exclusive access mode) and y (set synchronized access mode). Letters u, g or o indicate that permis-
sion is to be taken from the current mode. Omitting permission is only useful with = to take away all per-
missions.

Multiple symbolic modes separated by commas may be given. Operations are performed in the order
specified. The letter s is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode.

Synchronized access guards against inconsistent updates by preventing concurrent opens for writing. Ex-
clusive access guards against inconsistent views by preventing concurrent opens if one is for writing.

EXAMPLES
chmod o-w file

Deny write permission to others.

chmod +x file
Make file executable.

SEE ALSO
ls(1), chmod(2), stat(2), chdate(1), chown(8)

60

CHUNK (1) General Commands Manual CHUNK (1)

NAME
chunk - segment text into phrase units

SYNOPSIS
chunk [-flags][-ver] [file ...]

DESCRIPTION
Chunk segments text into phrase units by beginning a new line at the end of each unit it identifies.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

USES
This program is useful for reading research, and it can be used to reformat text files for easier editing.
Additionally, editors may find it easier to edit a text whose microstructure is typographically clear.

BUGS
Since chunk runs deroff(1) on the input text, formatting commands (and thus paragraph and heading struc-
tures) are lost in the output.

Chunk will think unfamiliar abbreviations are the end of a sentence, and hence the end of the chunk.

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

61

CIN (1) General Commands Manual CIN (1)

NAME
cin - C interpreter

SYNOPSIS
cin [option ...] [file ...] [-- arg ...]

DESCRIPTION
Cin interprets a C program comprising the file arguments as in cc(1). The special name signifies standard
input. When called with no file arguments, cin defaults to -i. Arguments arg are passed to the interpreted
program as cin_argv[1], cin_argv[2], ... and cin_argc.

Options -Dname=def , -Dname, -Lname, -Uname, -Iname, -lx, -oname, and -uname are as in cc. Op-
tions -O and -g are ignored. Other options are:

-0name
Pass name to the interpreted program as cin_argv[0].

-Cname
Use name as the interpreter startup file (by default, the file The interpreter startup file is ignored
by using -C/dev/null.

-Fi:o:e
Use file descriptors i,o,e as standard input, standard output, and standard error for the interpreter,
as distinct from the interpreted code (by default, 0, 1, and 2).

-S Enable interactive mode after run-time errors.

-Vname:n
Declare function name to have a variable number of arguments, the first n of which are to be
type-checked.

-c Parse files but do not execute the program.

-i Enable interactive interpretation. C statements are evaluated immediately using local and global
variables. Non-void values are printed. Function, variable, and C pre-processor declarations are
stored in the current ‘view’. A function definition must include its return type. Declarations and
statements can appear in any order and identifiers can be redeclared.

-r Prohibit multiply-declared global variables.

-s Do not catch signals using signal(2) (by default, cin catches SIGBUS, SIGEMT, SIGFPE,
SIGILL, SIGINT, SIGIOT, SIGSEGV, SIGSYS, SIGTRAP).

-v Print the user and system times associated with loading files and executing the program, as in
time(1).

+option
Turn off the specified option.

The functions and variables listed below are predefined in cin and libcin.a. Their arguments are typed ac-
cording to these conventions:

char * func, *message, *mod , *name, *ref , *string;
enode *code;
int level, line;
long (*after)();
unsigned long addr;
void (*before)(), (*routine)();

This first group of functions and variables are the most commonly used. To use them load and include

int cin_break(name, line, string)
If string is (char *)0, place a cin_system in file name before line number line. Otherwise, place
the C-language statement specified by string in file name before line number line. Thus, string
is read and evaluated within the prevailing context of the function without stopping execution.
Return 0 if line number line cannot be found in file name.

62

CIN (1) General Commands Manual CIN (1)

int cin_dump(name)
Create an and place it in the file name. Return 0 if name cannot be created.

void cin_info(string)
Where string is:

breakpoint
Print cin’s cin_breaks and cin_stopins.

log Print cin’s interactive mode log file name.

memory
Print cin’s memory usage.

spy Print cin’s spies.

symboltable
Print cin’s symbol table.

undefined
Print cin’s undefined variables.

usage Print cin’s usage message.

version
Print cin’s version number.

view List the available views. The current view is starred (*).

where Print a trace of function calls.

wrapper
Print cin’s wrappers.

int cin_load(string)
Evaluate string as invocation arguments of cin. Return 0 if arguments are not valid.

int cin_log(name)
mv(1) the interactive mode session log to file name. Return 0 if name cannot be mved.

void cin_make(string)
If string is (char *)0, then re-load any file that is out of date. Otherwise, run $MAKE, passing
string as arguments, and scan its standard output for lines that begin with pound sign (#). Char-
acters following the pound sign are executed as a C-language statement.

int cin_pp(func, level)
Print the C-language for the function func. Where level is:

0 Print declaration.

1 Print declaration and body.

Return 0 if func cannot be found.

void cin_quit()
Flush output and exit cin. If all else fails, use _exit(2).

int cin_reset()
Preserve function definitions, zero bss variables, and restore initialized data variables to their
original values. Return 0 if state cannot be reset.

void cin_return()
Return from a call to cin_system.

void cin_run(string)
Set cin_argv[1], cin_argv[2], ... and cin_argc from string and then main(cin_argc, cin_argv).

int cin_spy(func, name, mod , ref)
Trace variable references and modifications. If mod is not (char *)0, place the C-language state-
ment specified by mod after the variable name is modified in the function func. If ref is not
(char *)0, place the C-language statement specified by ref before the variable name is

63

CIN (1) General Commands Manual CIN (1)

referenced in the function func. If function value func is (char *)0, search all functions. Return
0 if name cannot be found in func.

void cin_step()
Step over function calls to the next C-language statement in the current or previous function.

void cin_stepin()
Step into any function to the next C-language statement.

void cin_stepout()
Step out of the current function back to the next C-language statement in the previous function.

int cin_stopin(func, string)
If string is (char *)0, place a cin_system before the first executable line in the function func, ei-
ther in the current view or wherever func can be found. Otherwise, place the C-language state-
ment specified by string before the first executable line in the function func, either in the current
view or wherever it can be found. Thus, string is read and evaluated within the prevailing con-
text of the function without stopping execution. Return 0 if function func cannot be found.

char *cin_sync(string)
Where string is:

filename
Return the non-interactive C source file name being executed.

lineno
Return the non-interactive C source line number being executed.

void cin_system()
Start a cin_read-cin_eval-cin_print loop.

int cin_unbreak(name, line, string)
Clear a cin_break or a cin_stopin in file name before line number line with string string. Re-
turn 0 if cin_break or cin_stopin cannot be cleared.

int cin_unload(name)
Unload the object file name. Return 0 if name cannot be unloaded.

int cin_unspy(func, name, mod , ref)
Remove the C-language statement specified by mod after the variable name is modified, and the
C-language statement specified by ref before the variable name is referenced in the function
func. Return 0 if spy cannot be cleared.

int cin_unstopin(func, string)
Clear a cin_stopin or cin_break at the first executable line in the function func with string
string in either the current view or wherever func can be found. Return 0 if the cin_stopin or
cin_break cannot be cleared.

int cin_unwrapper(func, before, after)
Remove the call of function before before the function func is called. Remove the call of func-
tion after after the function func is called. Return 0 if func cannot be found.

int cin_view(name)
Change the current view to name. Return 0 if the view cannot be found.

int cin_wrapper(func, before, after)
If before is not (void (*)())0, call the function before with the arguments of function func before
the function func is called. If after is not (long (*)())0, call the function after with the argument
of the return value of function func after the function func is called. The return value of func-
tion after is substituted for the return value of function func. Return 0 if name cannot be found
either in the current view or any other view.

extern int cin_argc
The number of elements passed to the interpreted program.

64

CIN (1) General Commands Manual CIN (1)

extern char **cin_argv
An array of the arguments passed to the interpreted program.

extern char *cin_filename
The current C source file name being executed.

extern int cin_level
The number of nested calls to cin_system.

extern char *cin_libpath
A colon (:) -separated list of libraries to search for undefined routines (by default, the libraries
specified on the command line and

extern int cin_lineno
The current C source line number being executed.

extern char *cin_prompt
The interactive mode prompt (by default, the string ‘‘cin> ’’).

These are some of the less frequently used functions and variables in cin. They are primarily used by cin
library or language developers.

enode *cin_compile(code)
Analyze code and return an optimized program. Return (enode *)0 if code cannot be compiled.

int cin_epp(func)
Print the enodes for function func. Return 0 if func cannot be found.

enode *cin_eprint(code)
Print the code as enodes. Return the argument.

char *cin_error_code_set(message, string)
Where message is:

dynamic error
When cin detects a divide by zero, a modulus by zero, a null pointer access, or an ab-
normal signal execute the C-language statement specified by string.

undefined function
When cin detects an undefined function execute the C-language statement specified by
string.

undefined symbol
When cin detects an undefined symbol execute the C-language statement specified by
string.

If string is (char *)0, execute cin_system(). Return the old string for message.

enode *cin_eval(code)
Execute the code as if it were present in the program where cin_eval is called. Return the result-
ing program.

ident *cin_find_ident(name)
If name is not (char *)0, return the identifier for the variable name either in the current view or
wherever name can be found. If name is (char *)0, return the identifier for the previous non-
(char *)0 value of the variable name in the next view where name can be found. Return (ident
*)0 if name cannot be found.

struct nlist *cin_find_nlist(addr)
Return the loader symbol table entry for the external address addr. Return (struct nlist *)0 if
addr cannot be found.

void (*cin_info_set())(string, routine)
Inform cin_info that it should call routine when it is passed string. Return the old routine for
string.

65

CIN (1) General Commands Manual CIN (1)

char *cin_ltof(line)
Return the function name at line number line in the current view. Return (char *)0 if a function
cannot be found for line.

void cin_pop(level)
Replace level interpreted function calls from the stack with cin_system.

enode *cin_print(code, level)
Print the code as C-language code. Where level is:

0 Print declaration.

1 Print declaration and body.

Return the code argument.

enode *cin_read(string)
Read string and return a program. Return (enode *)0 if string cannot be parsed.

char *cin_slashify(string)
Return a pointer to storage obtained from malloc(3) and there create a character array from string
by translating backspace, form feed, newline, carriage return, horizontal tab, vertical tab, back-
slash, single quote, and double quote into \b, \f, \n, \r, \t, \v, \\, \’, and \" respectively. Other non-
printable characters are translated into \ddd octal notation.

extern int cin_err_fd
Cin’s standard error file descriptor.

extern int cin_in_fd
Cin’s standard input file descriptor.

extern int cin_out_fd
Cin’s standard output file descriptor.

extern stackelem *cin_stack
The trace of function calls.

extern view *cin_views
The list of available views.

EXAMPLES
The world’s shortest ‘‘Hello world’’ program.

cin> printf("Hello world\n");
Hello world
(int)12

Setting breakpoints and tracing function calls.
$ cin -lcin
cin> int f(x) { return x <= 1 ? 1 : x * f(x - 1); }
extern int f();
cin> cin_stopin("f", (char*)0);
/tmp/cin006795: 1: f: set breakpoint: (char *)0
(int)1
cin> f(2);
/tmp/int006795: 1: f: stopped execution:
cin> cin_return();
/tmp/int006795: 1: f: stopped execution:
cin> (void)cin_info("where");
/tmp/cin006795: 5: cin_system: info: where: ()
/tmp/cin006795: 1: f: info: where: (x = (int)1)
/tmp/cin006795: 1: f: info: where: (x = (int)2)
/tmp/cin006795: 3: cin_system: info: where: ()
cin> x;
(int)1
cin> cin_return();

66

CIN (1) General Commands Manual CIN (1)

(int)2
cin> cin_quit();
$

FILES
default interactive log

various function and variable declarations

various predefined functions

interpreter startup file

other files as in cc(1)

SEE ALSO
Cin User Manual
Cin Reference Manual
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
lint(1), ar(1), cc(1)

BUGS
The addresses of etext, edata, and end are not meaningful with incrementally loaded code.

67

CITE(1) General Commands Manual CITE(1)

NAME
cite - process citations in a document

SYNOPSIS
cite [-s] [-u] [files]

DESCRIPTION
Cite is a troff(1) preprocessor for forward and backward references. It copies the files or the standard in-
put to standard output, observing lines of the forms

.CD "key" "definition"

.CU "key"text

Each .CD line is remembered. A later .CU with the same key will be replaced by the definition for that
key; the text will be copied verbatim. If no definition is yet available for a .CU reference, the key will be
replaced by ZZ.

At the location of each .CD command, cite causes troff to send the line (with macro substitutions) to the
standard error file. The resulting definitions may be included at the beginning of another cite-troff run,
effectively eliminating forward references. Unfortunately, the definition file may contain obsolete defini-
tions (included from a previous run) plus other troff messages. These should be deleted using option -s.

The options are

-s Place only the latest definitions on the standard output; shunt non-cite data to standard error.

-u Place on standard error a list of undefined or unused citations.

EXAMPLES
cite file.defs file | troff -ms 2>temp.defs >/dev/null
cite -s temp.defs >file.defs
cite file.defs file | troff -ms 2>temp.defs | lp

Run cite-troff to collect updated definitions in temp.defs.
Eliminate old definitions, putting updates back in file.defs.
Run cite-troff again, using latest definitions.

SEE ALSO
troff(1)

68

CLEAR(1) General Commands Manual CLEAR(1)

NAME
clear - clear terminal screen

SYNOPSIS
clear

DESCRIPTION
Clear clears the screen of the terminal on its standard output. It depends upon the environment variable
TERM to know how to do it.

FILES
SEE ALSO

term(7)

69

CMP(1) General Commands Manual CMP(1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-lsL] file1 file2 [offset1 [offset2]]

DESCRIPTION
The two files are compared. If the contents differ a diagnostic results, otherwise there is no output.

The options are:

l Print the byte number (decimal) and the differing bytes (octal) for each difference.

s Print nothing for differing files, but set the return code.

L Print the line number of the first differing byte.

If offsets are given, comparison starts at the designated byte position of the corresponding file. Offsets
that begin with 0x are hexadecimal; with 0, octal; with anything else, decimal.

SEE ALSO
diff(1), comm(1)

DIAGNOSTICS
Cmp reports ‘EOF’ and identifies the file if one file is short. It reports the number of the first disagreeing
byte if contents differ. The return code is 0 for identical files, 1 for different files, and 2 for an inaccessi-
ble or missing argument.

70

COLUMN (1) General Commands Manual COLUMN (1)

NAME
col, 2, 3, 4, 5, 6, mc, fold, expand - column alignment

SYNOPSIS
col [-bfx]

2 [file]

mc [-] [-N] [-t] [file ...]

fold [-N] [file ...]

expand [-stops] [file ...]

DESCRIPTION
These programs rearrange files for appearance’s sake. All read the standard input and write the standard
output. Some optionally read from files instead.

Col overlays lines to expunge reverse line feeds (ESC-7) and half line feeds (ESC-9 and ESC-8) as pro-
duced by nroff for .2C in ms(6) and for tbl(1). It normally emits only full line feeds; option -f (fine) al-
lows half line feeds too. Option -b removes backspaces, printing just one of each pile of overstruck char-
acters. Col normally converts white space to tabs; option -x overrides this feature. Other escaped charac-
ters and non-printing characters, except for SO and SI, are ignored.

Col should not be used for printing on an HP ThinkJet printer with think (thinkblt(9.1)), which performs
the col function itself.

Commands 2, 3, 4, 5, 6 convert their input to 2-, 3-, 4-, 5-, or 6-column form, with consecutive input lines
arranged across each row.

Fold inserts newlines after each N characters (default n=80, or mux(9) window size) of long lines.

Mc splits the input into as many columns as will fit in N print positions (default N=80). Under option -
each input line ending in a colon is printed separately (see example). On output, multiple spaces are con-
verted to tabs; this is suppressed by option -t.

Expand replaces tabs by spaces. The optional stops argument is a comma-separated list of tab stops,
counted from 0; default is every 8 columns.

EXAMPLES
tbl file | nroff -ms | col | hp

Format some tables for printing on typewriters; use col to remove reverse line feeds and hp (see
ul(1)) to do underlining, etc., on an HP terminal.

ls directory1 directory2 | mc -
List files in multiple columns, separated by directory.

SEE ALSO
pr(1)

BUGS
Col can’t back up more than 128 lines or handle more than 800 characters per line, and understands (013)
as reverse line feed.

71

COMM(1) General Commands Manual COMM(1)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [-123] file1 file2

DESCRIPTION
Comm reads file1 and file2, which are ordered in ASCII collating sequence, and produces a three column
output: lines only in file1; lines only in file2; and lines in both files. The filename means the standard in-
put.

Flag or suppresses printing of the corresponding column.

EXAMPLES
comm -12 file1 file2

Print lines common to two sorted files.

deroff -w /usr/lib/upas/names.last | tr a-z A-Z | sort -u >temp
spell temp | comm -13 - temp

Print names that are known both to mail(1) and spell(1)

SEE ALSO
sort(1), cmp(1), diff(1), uniq(1), join(1)

72

CON (1) General Commands Manual CON (1)

NAME
con, rx - remote login and execution

SYNOPSIS
con [-l] machine

rx [-n] machine [command-word ...]

/usr/bin/m/machine [command-word ...]

DESCRIPTION
Con connects to the computer whose network address is machine and logs in if possible. Standard input
and output go to the local machine. Option -l prevents automatic login; a normal login dialog ensues.

The quit signal (control-\) is a local escape. It prompts with the local machine name and >>. Legitimate
responses to the prompt are

i Send a quit [sic] signal to the remote machine.
q, x, or . Exit.
b Send a break.
!command Execute command locally.

Rx executes one shell command on the remote machine as if logged in there, but with local standard input
and output. Unquoted shell metacharacters in the command are interpreted locally, quoted ones remotely.
The assignment REXEC=1 appears in the remote environment. With no arguments, rx just diagnoses
availability. Option -n ignores sporadic end-of-file indications on a sick network.

Network addresses for both con and rx have the form network!host or simply host. Supported networks
are (Datakit) and (TCP/IP, usually Ethernet).

Directory contains machine names as commands: /usr/bin/m/machine with no argument runs an appro-
priate flavor of con for the named machine. If given arguments, /usr/bin/m/machine runs rx with those
arguments. If is in the sh(1) search path, the names become commands for navigating the local cluster.

EXAMPLES
rx overthere cat file1 >file2

Copy remote file1 to local file2.

rx overthere cat file1 ">file2"
Copy remote file1 to remote file2.

eqn paper | rx pipe troff -ms | rx arend lp
Parallel processing: do each stage of a pipeline on a different machine.

FILES
authentication

servers

SEE ALSO
push(1), dcon(1), cu(1), dkmgr(8), svcmgr(8), tcpmgr(8), ipc(3)
D. L. Presotto, ‘Interprocess Communication in the Eighth Edition UNIX System’, this manual, Volume 2

BUGS
The remote standard error and standard output are combined and go inseparably to the local standard out-
put.
Under rx, a program that should behave specially towards terminals may not: sh(1) will not prompt, vi(1)
will not manage the screen, etc. Nrx (see dcon(1)) avoids this trouble, but has others of its own.
Con and rx may not guess the right kind of connection. In case of trouble, try the programs in dcon(1).
The names in are conventions, not actual network addresses.

73

COSPAN (1) General Commands Manual COSPAN (1)

NAME
cospan, psr - coordination-specification analyzer and pretty-printer

SYNOPSIS
cospan [option ...] file

psr [option ...] file ...

DESCRIPTION
Cospan analyzes the behavior of coordinating systems. Three types of input file are distinguished by suf-
fix:

.sr The normal case. The file contains S/R specifications as described in the reference, possibly in-
cluding cpp(8) commands, to be compiled into

.c C code, which is compiled and linked into

.an executable analysis program.

The options are

-Dname=value
-Dname
-Uname
-Idirectory

Same as in cc(1).

-v Produce verbose syntax error messages.

-p Suppress file-name/line-number information for embedded C code.

-i Produce an implementation version of the C code.

-m Produce a merged version of the C code.

-n Compile no transition checks (except deadlocks). By default, the analysis gives a warning on the
first stability violation and aborts on non-semi-deterministic resolutions.

-b Use C built-in (machine-dependent) integer division operations. By default, an S/R integer divi-
sion i/ j results in the greatest integer not higher then the mathematical quotient, and the remain-
der operation i mod j yields a result in the range 0... j-1.

-Copt Pass option -opt to the C compiler.

-hsize Set the state hash table size to the next prime after size ; default is 32693.

-Hsize
Similar to -hsize, except that states which produce hash collisions are ignored.

-tsecs Abort analysis after the specified number of seconds.

-Vs Produce verbose analysis output messages. The string s, by default specifies message types: ad-
vice, warning, error, or list.

-r Restart previously aborted analysis. Recovery is possible in cases of hangups, interrupts, soft-
ware termination signals (due to a kill command), timer alarms, no-space conditions, and aborts
due to -c or -L requests.

-d Abort on deadlocks. By default, the analysis gives a warning on the first deadlock and reports
the number of deadlocks in the analysis summary.

-s Abort on stability failures.

-l List analysis on standard output.

-T Time each translation and execution step.
-Lnumber,number

List analysis, reporting states in the given range, and abort after searching the upper bound.
-cnumber

Check each back-edge in the component identified by the given number and abort analysis.

74

COSPAN (1) General Commands Manual COSPAN (1)

CC=name
Use an alternate C compiler; default is CC=cc.

The order of the arguments is arbitrary, and several options may be combined to a single argument, pro-
vided that option values are terminated by white space. Options can be preset by defining the environ-
ment variable COSPANOPT.

Psr is a pretty-printer for S/R specifications. It places troff(1) or nroff output on the standard output.

The options, which may be reset between files, are:

-d Show current date in page footer.

-m show file modification time in footer (default).

-nN Number every N th line; default is -n0, no numbering.

-sN Set type size to N points, vertical spacing to N /60 inch, and tab stops every N /20 inch.

-wN Set the page width to N (in troff notation).
-fF Use the troff font F and its italic, bold, and bold-italic counterparts. Known fonts are Bembo,

CW, Euro, Futura, H, Hcond, Memphis, Optima, PA, R.
-.request

Issue a troff request before printing the next file. Multiple requests may be given.
-Tname

As in troff. Applies to all files. If name is omitted, troff input is written on standard output.

Psr sets the escape character to BEL. The \ character is copied without interpretation, to allow printing of
embedded C code. The macro .SO may be used to include troff text that uses the standard escape charac-
ter.

The strings DT, L, and R contain today’s date, the left-hand, and the right-hand side of the page header,
respectively.

EXAMPLES
COSPANOPT=-TlImyincludedir cospan myfile.sr

equivalent to cospan -T -l -Imyincludedir myfile.sr.

psr -.ll6.5i -.lt6.5i myfile.sr
equivalent to psr -w6.5i myfile.sr

FILES
recovery data
error track
list output (

-L option)
merging data
temporary file
S/R compiler
S/R verbose compiler
header file
implementation header file
analysis object library
troff preprocessor
troff macros

SEE ALSO
Z. Har’El and R. P. Kurshan, COSPAN User’s Guide, 11211-871009-21TM, AT&T Bell Laboratories.
spin(1), d202(1)

75

COURIER(1) General Commands Manual COURIER(1)

NAME
courier - remote procedure call compiler

SYNOPSIS
courier [-x] specfile

DESCRIPTION
Courier compiles the Mesa-like specification language associated with the Courier remote procedure call
protocol.

FILES
prog.cr Courier specification file for prog.

The following files are generated by courier from the above:

prog.h definitions and typedefs
prog_stubs.c mappings between C and Courier
prog_server.c server routines
prog_client.c client routines

BUGS
Note that program names are restricted to 5 characters to keep generated filenames within the 14 character
limit.

SEE ALSO
Eric C. Cooper, ‘Writing Distributed Programs with Courier’
‘Courier: The Remote Procedure Call Protocol,’ Xerox System Integration Standard 038112, December
1981.

76

CP(1) General Commands Manual CP(1)

NAME
cp, mv, ln, reccp - copy, move, or link files

SYNOPSIS
cp [-z] file1 file2
cp [-z] file ... directory

mv [-f] file1 file2
mv [-f] file ... directory

ln [-s] file1 file2
ln [-s] file ... directory

reccp [-z] file1 file2
reccp [-z] file ... directory

DESCRIPTION
In the first form of each command, file2 is any name except an existing directory. In the second form the
command copies, moves, or links one or more files into a directory under their original filenames, as if by
a sequence of commands in the first form. Thus is equivalent to

Cp copies the contents of plain file1 to file2. The mode and owner of file2 are preserved if it already ex-
ists; the mode of file1 is used otherwise.

Mv moves file1 to file2. If the two files are in the same file system, the name file1 is simply changed to
file2; if they are in different file systems, file1 is copied and then removed. If file2 already exists, it is re-
moved before file1 is moved. In this case the mode of file2 is reported if it is not writable and the stan-
dard input is a terminal. Respond (and newline) to permit removal.

Ln links plain file1 and file2. File2 becomes an alternate name for, and is otherwise identical to, file1.
File2 must be in the same file system as file1 and must not already exist.

Reccp copies plain files like cp, but copies directories and their contents recursively. It attempts to dupli-
cate linkage and dates. When run by the super-user, it preserves ownership and copies device files as de-
vice files.

The options are:

-z Preserve ‘holes’; see lseek(2).

-f Forcibly remove file2 without asking.

-s Make symbolic links: record the (arbitrary) name file1 in file2. Except in special cases, such as
rm(1) and lstat (see stat(2)), subsequent references to file2 are treated as references to file1. See
link(2) for details.

EXAMPLES
mkdir /usr1/ken; cp /usr/ken/* /usr1/ken

Place in /usr1/ken copies of all files from /usr/ken.

reccp /usr/ken /usr1
mkdir /usr1/ken; reccp /usr/ken/* /usr1/ken

Two ways to duplicate in /usr1/ken the whole file hierarchy from /usr/ken.

SEE ALSO
cat(1), link(2), stat(2), push(1), uucp(1), rcp(1), cpio(1)

DIAGNOSTICS
Cp, mv, and reccp refuse to copy or move files onto themselves or directories into themselves.

BUGS
Mv to a different file system is imperfect: if file1 is a plain file links to it are broken; if it is a directory,
nothing happens.

77

CPIO(1) General Commands Manual CPIO(1)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o [acBv]

cpio -i [BcdmrtuvfsSb6] [pattern ...]

cpio -p [adlmruv] directory

DESCRIPTION
Cpio -o (copy out) reads the standard input to obtain a list of path names and copies those files onto the
standard output together with path name and status information.

Cpio -i (copy in) extracts files from the standard input which is assumed to be the product of a previous
cpio -o. Only files with names that match the patterns are selected. Patterns are given in the name-gen-
erating notation of sh(1); the default is * (all files). The extracted files are conditionally created and
copied into the current directory tree based upon the options described below. File ownership is preserved
if possible.

Cpio -p (pass) reads from the standard input a list of path names of files to copy into the destination direc-
tory.

The options are:

a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5,120 bytes to the record (does not apply to the pass option; mean-

ingful only with data directed to or from
d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
r Interactively rename files. An empty name (newline only) causes a file to be skipped.
t Print a table of contents of the input. No files are created.
u Copy unconditionally (normally an older file will not overwrite a newer file).
v (Verbose) List file names; -vt looks like ls -l.
l Whenever possible, link files rather than copying them. Usable only with the -p option.
m Retain previous file modification time. This option is ineffective on directories that are being

copied.
f Copy in all files except those in patterns.
s Swap bytes. Use only with the -i option.
S Swap halfwords. Use only with the -i option.
b Swap both bytes and halfwords. Use only with the -i option.
6 Process an old (i.e., UNIX Sixth Edition format) file. Only useful with -i (copy in).

EXAMPLES
ls | cpio -oc >/dev/mt1

Copy the contents of the current directory to a tape.

mkdir newdir
cd olddir
find . -print | cpio -pd ../newdir

Reproduce a directory hierarchy; newdir must exist.

SEE ALSO
ar(1), bundle(1), tar(1), find(1), cpio(5), cp(1)

BUGS
Path names are restricted to 128 characters.
Does not know about symbolic links.
If there are too many unique linked files, linking information is lost.
Only the super-user can copy special files.
The archive size is reported in archaic ‘blocks’ of 512 bytes.

78

CRAY (1) General Commands Manual CRAY (1)

NAME
cray - run job remotely on cray-xmp

SYNOPSIS
cray [options] [jcl [[+] file]]

c1sts

DESCRIPTION
Cray submits the named files to the MHCC Cray. A plus sign stands for a Cray end-of-file, which sepa-
rates jcl, source code, and data files. A file jcl that doesn’t exist in the current directory is searched for in
the directory specified by the shell environment variable CRAYJCL.

-oofile Send the job output to ofile.

-ppages If the jcl file doesn’t begin with a job line, cray supplies one. In that case, the option
-pn specifies the maximum number of pages (actually, 45-line blocks) that can be out-
put; the default is 100.

-sn Run the job at service grade n. (The default is fastest is long runs should be at

-tseconds If the jcl file doesn’t begin with a job line, specifies the maximum running time; the de-
fault is 15.

C1sts gives a status report on the cray.

EXAMPLES
Run a Fortran program and subroutine, reading from param on unit 5 and writing on unit 6,

cray -o output ft + main.f sub.f + param
Run a Fortran program and subroutine, reading from param on unit 5 and writing on unit 6,

BUGS
Because of a problem with the standard input, the -o option is required for remote execution via Datakit.

THE FIRST TIME
An incredible amount of busywork is required the first time you use this command. Get an account on
mhuxa by filing an application at the computer center accounting office, and if possible get password ag-
ing turned off. Set up your on your home machine and in the comp center so that remote execution in ei-
ther direction gets a silent login. (Otherwise, you may get a ‘Bad magic number’ message when trying to
execute a push.) (Try copying the mhuxa file Set up mail forwarding from mhuxa to your home machine.
(See Now, from your home machine, execute

to be sure everything is set up properly. The first time you try this, you will be asked to login; this legal-
izes remote execution from your home machine onto the comp center machine. For the reverse direction,
your user id should be added to on your home machine. Export from your on your home machine. By
editing a copy of in your bin, you can arrange for special action to be taken when your output arrives; the
default is mail notification. Now you should be ready to run; try

If you don’t get some job output back from the cray within a few minutes, something is wrong.

79

CRYPT (1) General Commands Manual CRYPT (1)

NAME
crypt, encrypt, decrypt - encode/decode

SYNOPSIS
/usr/games/crypt [password]

/usr/games/encrypt [-p] [password]

/usr/games/decrypt [-p] [password]

DESCRIPTION
These commands read from the standard input and write on the standard output. The password is an en-
ciphering key. If no password is given, one is demanded from the terminal; echoing is turned off while it
is being typed in. Crypt uses a relatively simple, fast method (rotor machine) for both enciphering and de-
ciphering. Encrypt and decrypt use a more robust, slower method (DES). Files enciphered by crypt are
not intelligible to encrypt/decrypt, and vice versa.

It is prudent to supply the key from the terminal, not from the command line, and to pick a reasonably ob-
scure and long key (6 letters for crypt and much longer for encrypt).

Under option -p encrypt enciphers into printing characters, which can be sent by mail(1). Decrypt can
distinguish ciphertext from clear: it will work on a full mail message, headers and all.

FILES
for typed key

SEE ALSO
ed(1), makekey(8)
J. A. Reeds and P. J. Weinberger, ‘File Security and the Unix Crypt Command,’ AT&T Bell Laboratories
Technical Journal, 63 (1984) 1673-1684

BUGS
Crypt is breakable by knowledgeable cryptanalysts. Its only practical use is for mildly private data trans-
mission. Encrypt/decrypt gives strong protection for transmission over untrusted channels between
trusted machines.
It is unwise to count on encryption of any sort for safe storage of documents.

80

CSCAN (1) General Commands Manual CSCAN (1)

NAME
cscan - scan documents on canon scanner

SYNOPSIS
cscan [option ...] [file ...]

DESCRIPTION
Cscan acquires black-and-white images using the Canon 9030 Laser Copier flatbed document scanner lo-
cated in the Graphics Lab. Each file receives one image; multiple files are scanned as fast as possible
(every 12s, after a startup delay). If no file is specified, one image is written to the standard output.

Each image is compressed using the CCITT FAX Group 4 standard and supplied with a header as de-
scribed in picfile(5). The default page format is 3456 by 4400 pixels (i.e. letter-size 8.64"× 11.0" at 400
pixels/inch digitizing resolution).

The options are:

-fx,y Format is x by y pixels. X is truncated to a multiple of 32.

-fL Double-letter format -f4416,6800 or 11"× 17" at 400 pixels/inch (the largest possible).

-ss Sleep between scans for an extra s seconds.

-v Verbose: announce each file as it arrives.

SEE ALSO
bcp(1), ocr(1), picfile(5)

BUGS
Although only 10s are required to acquire and compress each image, it can take 40s for the first file to ap-
pear, due largely to networking latencies involving rcp(1).
Cscan is unkillable: scanning continues and the files keep coming.
The automatic document feeder is not supported.
The resolution recorded in the header is always 400 pixels/inch, even though it is possible manually to
zoom to other resolutions.

coma,pipe 81

CSH(1) General Commands Manual CSH(1)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [-cefinstvVxX] [arg ...]

DESCRIPTION
Csh is a first implementation of a command language interpreter incorporating a history mechanism (see
History Substitutions) job control facilities (see Jobs) and a C-like syntax. So as to be able to use its job
control facilities, users of csh must (and automatically) use the new tty driver summarized in newtty(4)
and fully described in tty(4). This new tty driver allows generation of interrupt characters from the key-
board to tell jobs to stop. See stty(1) for details on setting options in the new tty driver.

An instance of csh begins by executing commands from the file ‘.cshrc’ in the home directory of the in-
voker. If this is a login shell then it also executes commands from the file ‘.login’ there. It is typical for
users on crt’s to put the command ‘‘stty crt’’ in their .login file, and to also invoke tset(1) there.

In the normal case, the shell will then begin reading commands from the terminal, prompting with ‘% ’.
Processing of arguments and the use of the shell to process files containing command scripts will be de-
scribed later.

The shell then repeatedly performs the following actions: a line of command input is read and broken into
words. This sequence of words is placed on the command history list and then parsed. Finally each com-
mand in the current line is executed.

When a login shell terminates it executes commands from the file ‘.logout’ in the users home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following exceptions. The characters
‘&’ ‘|’ ‘;’ ‘<’ ‘>’ ‘(’ ‘)’ form separate words. If doubled in ‘&&’, ‘| |’, ‘<<’ or ‘>>’ these pairs form sin-
gle words. These parser metacharacters may be made part of other words, or prevented their special
meaning, by preceding them with ‘\’. A newline preceded by a ‘\’ is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, ‘´’, ‘`’ or ‘"’, form parts of a word; metachar-
acters in these strings, including blanks and tabs, do not form separate words. These quotations have se-
mantics to be described subsequently. Within pairs of ‘´’ or ‘"’ characters a newline preceded by a ‘\’
gives a true newline character.

When the shell’s input is not a terminal, the character ‘#’ introduces a comment which continues to the
end of the input line. It is prevented this special meaning when preceded by ‘\’ and in quotations using
‘`’, ‘´’, and ‘"’.

Commands

A simple command is a sequence of words, the first of which specifies the command to be executed. A
simple command or a sequence of simple commands separated by ‘|’ characters forms a pipeline. The
output of each command in a pipeline is connected to the input of the next. Sequences of pipelines may
be separated by ‘;’, and are then executed sequentially. A sequence of pipelines may be executed without
immediately waiting for it to terminate by following it with an ‘&’.

Any of the above may be placed in ‘(’ ‘)’ to form a simple command (which may be a component of a
pipeline, etc.) It is also possible to separate pipelines with ‘| |’ or ‘&&’ indicating, as in the C language,
that the second is to be executed only if the first fails or succeeds respectively. (See Expressions.)

Jobs

The shell associates a job with each pipeline. It keeps a table of current jobs, printed by the jobs com-
mand, and assigns them small integer numbers. When a job is started asynchronously with ‘&’, the shell
prints a line which looks like:

[1] 1234

indicating that the jobs which was started asynchronously was job number 1 and had one (top-level)
process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key ˆZ (control-Z) which sends a
STOP signal to the current job. The shell will then normally indicate that the job has been ‘Stopped’, and

4th Berkeley Distribution 9/28/80 82

CSH(1) General Commands Manual CSH(1)

print another prompt. You can then manipulate the state of this job, putting it in the background with the
bg command, or run some other commands and then eventually bring the job back into the foreground
with the foreground command fg. A ˆZ takes effect immediately and is like an interrupt in that pending
output and unread input are discarded when it is typed. There is another special key ˆY which does not
generate a STOP signal until a program attempts to read(2) it. This can usefully be typed ahead when you
have prepared some commands for a job which you wish to stop after it has read them.

A job being run in the background will stop if it tries to read from the terminal. Background jobs are nor-
mally allowed to produce output, but this can be disabled by giving the command ‘‘stty tostop’’. If you
set this tty option, then background jobs will stop when they try to produce output like they do when they
try to read input.

There are several ways to refer to jobs in the shell. The character ‘%’ introduces a job name. If you wish
to refer to job number 1, you can name it as ‘%1’. Just naming a job brings it to the foreground; thus
‘%1’ is a synonym for ‘fg %1’, bringing job 1 back into the foreground. Similarly saying ‘%1 &’ re-
sumes job 1 in the background. Jobs can also be named by prefixes of the string typed in to start them, if
these prefixes are unambiguous, thus ‘%ex’ would normally restart a suspended ex(1) job, if there were
only one suspended job whose name began with the string ‘ex’. It is also possible to say ‘%?string’ which
specifies a job whose text contains string, if there is only one such job.

The shell maintains a notion of the current and previous jobs. In output pertaining to jobs, the current job
is marked with a ‘+’ and the previous job with a ‘-’. The abbreviation ‘%+’ refers to the current job and
‘%-’ refers to the previous job. For close analogy with the syntax of the history mechanism (described
below), ‘%%’ is also a synonym for the current job.

Status reporting

This shell learns immediately whenever a process changes state. It normally informs you whenever a job
becomes blocked so that no further progress is possible, but only just before it prints a prompt. This is
done so that it does not otherwise disturb your work. If, however, you set the shell variable notify, the
shell will notify you immediately of changes of status in background jobs. There is also a shell command
notify which marks a single process so that its status changes will be immediately reported. By default
notify marks the current process; simply say ‘notify’ after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that ‘You have stopped jobs.’
You may use the jobs command to see what they are. If you do this or immediately try to exit again, the
shell will not warn you a second time, and the suspended jobs will be terminated.

Substitutions

We now describe the various transformations the shell performs on the input in the order in which they oc-
cur.

History substitutions

History substitutions place words from previous command input as portions of new commands, making it
easy to repeat commands, repeat arguments of a previous command in the current command, or fix
spelling mistakes in the previous command with little typing and a high degree of confidence. History
substitutions begin with the character ‘!’ and may begin anywhere in the input stream (with the proviso
that they do not nest.) This ‘!’ may be preceded by an ‘\’ to prevent its special meaning; for convenience,
a ‘!’ is passed unchanged when it is followed by a blank, tab, newline, ‘=’ or ‘(’. (History substitutions
also occur when an input line begins with ‘- ’. This special abbreviation will be described later.) Any in-
put line which contains history substitution is echoed on the terminal before it is executed as it could have
been typed without history substitution.

Commands input from the terminal which consist of one or more words are saved on the history list. The
history substitutions reintroduce sequences of words from these saved commands into the input stream.
The size of which is controlled by the history variable; the previous command is always retained, regard-
less of its value. Commands are numbered sequentially from 1.

For definiteness, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c

4th Berkeley Distribution 9/28/80 83

CSH(1) General Commands Manual CSH(1)

12 diff ∗write.c

The commands are shown with their event numbers. It is not usually necessary to use event numbers, but
the current event number can be made part of the prompt by placing an ‘!’ in the prompt string.

With the current event 13 we can refer to previous events by event number ‘!11’, relatively as in ‘!-2’ (re-
ferring to the same event), by a prefix of a command word as in ‘!d’ for event 12 or ‘!wri’ for event 9, or
by a string contained in a word in the command as in ‘!?mic?’ also referring to event 9. These forms,
without further modification, simply reintroduce the words of the specified events, each separated by a
single blank. As a special case ‘!!’ refers to the previous command; thus ‘!!’ alone is essentially a redo.

To select words from an event we can follow the event specification by a ‘:’ and a designator for the de-
sired words. The words of a input line are numbered from 0, the first (usually command) word being 0,
the second word (first argument) being 1, etc. The basic word designators are:

0 first (command) word
n n ’th argument
- first argument, i.e. ‘1’
$ last argument
% word matched by (immediately preceding) ?s ? search
x -y range of words
-y abbreviates ‘0-y ’
∗ abbreviates ‘- -$’, or nothing if only 1 word in event
x ∗ abbreviates ‘x -$’
x - like ‘x ∗ ’ but omitting word ‘$’

The ‘:’ separating the event specification from the word designator can be omitted if the argument selector
begins with a ‘- ’, ‘$’, ‘∗ ’ ‘-’ or ‘%’. After the optional word designator can be placed a sequence of
modifiers, each preceded by a ‘:’. The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.
r Remove a trailing ‘.xxx’ component, leaving the root name.
e Remove all but the extension ‘.xxx’ part.
s/l /r / Substitute l for r
t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change globally, prefixing the above, e.g. ‘g&’.
p Print the new command but do not execute it.
q Quote the substituted words, preventing further substitutions.
x Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a ‘g’ the modification is applied only to the first modifiable word. With substitutions,
it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the editors, but rather strings.
Any character may be used as the delimiter in place of ‘/’; a ‘\’ quotes the delimiter into the l and r
strings. The character ‘&’ in the right hand side is replaced by the text from the left. A ‘\’ quotes ‘&’
also. A null l uses the previous string either from a l or from a contextual scan string s in ‘!?s ?’. The
trailing delimiter in the substitution may be omitted if a newline follows immediately as may the trailing
‘?’ in a contextual scan.

A history reference may be given without an event specification, e.g. ‘!$’. In this case the reference is to
the previous command unless a previous history reference occurred on the same line in which case this
form repeats the previous reference. Thus ‘!?foo?- !$’ gives the first and last arguments from the com-
mand matching ‘?foo?’.

A special abbreviation of a history reference occurs when the first non-blank character of an input line is a
‘- ’. This is equivalent to ‘!:s- ’ providing a convenient shorthand for substitutions on the text of the previ-
ous line. Thus ‘-lb- lib’ fixes the spelling of ‘lib’ in the previous command. Finally, a history substitu-
tion may be surrounded with ‘{’ and ‘}’ if necessary to insulate it from the characters which follow. Thus,
after ‘ls -ld ˜paul’ we might do ‘!{l}a’ to do ‘ls -ld ˜paula’, while ‘!la’ would look for a command start-
ing ‘la’.

Quotations with ´ and "

4th Berkeley Distribution 9/28/80 84

CSH(1) General Commands Manual CSH(1)

The quotation of strings by ‘´’ and ‘"’ can be used to prevent all or some of the remaining substitutions.
Strings enclosed in ‘´’ are prevented any further interpretation. Strings enclosed in ‘"’ are yet variable and
command expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case (see Com-
mand Substitition below) does a ‘"’ quoted string yield parts of more than one word; ‘´’ quoted strings
never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and modified by the alias and un-
alias commands. After a command line is scanned, it is parsed into distinct commands and the first word
of each command, left-to-right, is checked to see if it has an alias. If it does, then the text which is the
alias for that command is reread with the history mechanism available as though that command were the
previous input line. The resulting words replace the command and argument list. If no reference is made
to the history list, then the argument list is left unchanged.

Thus if the alias for ‘ls’ is ‘ls -l’ the command ‘ls /usr’ would map to ‘ls -l /usr’, the argument list here
being undisturbed. Similarly if the alias for ‘lookup’ was ‘grep !- /etc/passwd’ then ‘lookup bill’ would
map to ‘grep bill /etc/passwd’.

If an alias is found, the word transformation of the input text is performed and the aliasing process begins
again on the reformed input line. Looping is prevented if the first word of the new text is the same as the
old by flagging it to prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can ‘alias print ´pr \!∗ |
lpr´’ to make a command which pr’s its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero or more words. Some of
these variables are set by the shell or referred to by it. For instance, the argv variable is an image of the
shell’s argument list, and words of this variable’s value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset commands. Of the vari-
ables referred to by the shell a number are toggles; the shell does not care what their value is, only
whether they are set or not. For instance, the verbose variable is a toggle which causes command input to
be echoed. The setting of this variable results from the -v command line option.

Other operations treat variables numerically. The ‘@’ command permits numeric calculations to be per-
formed and the result assigned to a variable. Variable values are, however, always represented as (zero or
more) strings. For the purposes of numeric operations, the null string is considered to be zero, and the
second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable substitution is
performed keyed by ‘$’ characters. This expansion can be prevented by preceding the ‘$’ with a ‘\’ ex-
cept within ‘"’s where it always occurs, and within ‘´’s where it never occurs. Strings quoted by ‘`’ are
interpreted later (see Command substitution below) so ‘$’ substitution does not occur there until later, if at
all. A ‘$’ is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable expanded separately.
Otherwise, the command name and entire argument list are expanded together. It is thus possible for the
first (command) word to this point to generate more than one word, the first of which becomes the com-
mand name, and the rest of which become arguments.

Unless enclosed in ‘"’ or given the ‘:q’ modifier the results of variable substitution may eventually be
command and filename substituted. Within ‘"’ a variable whose value consists of multiple words expands
to a (portion of) a single word, with the words of the variables value separated by blanks. When the ‘:q’
modifier is applied to a substitution the variable will expand to multiple words with each word separated
by a blank and quoted to prevent later command or filename substitution.

The following metasequences are provided for introducing variable values into the shell input. Except as
noted, it is an error to reference a variable which is not set.

$name

4th Berkeley Distribution 9/28/80 85

CSH(1) General Commands Manual CSH(1)

${name}
Are replaced by the words of the value of variable name, each separated by a blank. Braces insulate
name from following characters which would otherwise be part of it. Shell variables have names
consisting of up to 20 letters and digits starting with a letter. The underscore character is considered
a letter.
If name is not a shell variable, but is set in the environment, then that value is returned (but : modi-
fiers and the other forms given below are not available in this case).

$name[selector]
${name[selector]}

May be used to select only some of the words from the value of name. The selector is subjected to
‘$’ substitution and may consist of a single number or two numbers separated by a ‘-’. The first
word of a variables value is numbered ‘1’. If the first number of a range is omitted it defaults to ‘1’.
If the last member of a range is omitted it defaults to ‘$#name’. The selector ‘∗ ’ selects all words.
It is not an error for a range to be empty if the second argument is omitted or in range.

$#name
${#name}

Gives the number of words in the variable. This is useful for later use in a ‘[selector]’.

$0
Substitutes the name of the file from which command input is being read. An error occurs if the
name is not known.

$number
${number}

Equivalent to ‘$argv[number]’.

$∗
Equivalent to ‘$argv[∗]’.

The modifiers ‘:h’, ‘:t’, ‘:r’, ‘:q’ and ‘:x’ may be applied to the substitutions above as may ‘:gh’, ‘:gt’ and
‘:gr’. If braces ‘{’ ’}’ appear in the command form then the modifiers must appear within the braces.
The current implementation allows only one ‘:’ modifier on each ‘$’ expansion.

The following substitutions may not be modified with ‘:’ modifiers.

$?name
${?name}

Substitutes the string ‘1’ if name is set, ‘0’ if it is not.

$?0
Substitutes ‘1’ if the current input filename is know, ‘0’ if it is not.

$$
Substitute the (decimal) process number of the (parent) shell.

$<
Substitutes a line from the standard input, with no further interpretation thereafter. It can be used to
read from the keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied selectively to the arguments
of builtin commands. This means that portions of expressions which are not evaluated are not subjected
to these expansions. For commands which are not internal to the shell, the command name is substituted
separately from the argument list. This occurs very late, after input-output redirection is performed, and
in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in ‘`’. The output from such a command is
normally broken into separate words at blanks, tabs and newlines, with null words being discarded, this
text then replacing the original string. Within ‘"’s, only newlines force new words; blanks and tabs are
preserved.

In any case, the single final newline does not force a new word. Note that it is thus possible for a

4th Berkeley Distribution 9/28/80 86

CSH(1) General Commands Manual CSH(1)

command substitution to yield only part of a word, even if the command outputs a complete line.

Filename substitution

If a word contains any of the characters ‘∗ ’, ‘?’, ‘[’ or ‘{’ or begins with the character ‘˜’, then that word is
a candidate for filename substitution, also known as ‘globbing’. This word is then regarded as a pattern,
and replaced with an alphabetically sorted list of file names which match the pattern. In a list of words
specifying filename substitution it is an error for no pattern to match an existing file name, but it is not re-
quired for each pattern to match. Only the metacharacters ‘∗ ’, ‘?’ and ‘[’ imply pattern matching, the
characters ‘˜’ and ‘{’ being more akin to abbreviations.

In matching filenames, the character ‘.’ at the beginning of a filename or immediately following a ‘/’, as
well as the character ‘/’ must be matched explicitly. The character ‘∗ ’ matches any string of characters,
including the null string. The character ‘?’ matches any single character. The sequence ‘[...]’ matches any
one of the characters enclosed. Within ‘[...]’, a pair of characters separated by ‘-’ matches any character
lexically between the two.

The character ‘˜’ at the beginning of a filename is used to refer to home directories. Standing alone, i.e.
‘˜’ it expands to the invokers home directory as reflected in the value of the variable home. When fol-
lowed by a name consisting of letters, digits and ‘-’ characters the shell searches for a user with that name
and substitutes their home directory; thus ‘˜ken’ might expand to ‘/usr/ken’ and ‘˜ken/chmach’ to
‘/usr/ken/chmach’. If the character ‘˜’ is followed by a character other than a letter or ‘/’ or appears not at
the beginning of a word, it is left undisturbed.

The metanotation ‘a{b,c,d}e’ is a shorthand for ‘abe ace ade’. Left to right order is preserved, with results
of matches being sorted separately at a low level to preserve this order. This construct may be nested.
Thus ‘˜source/s1/{oldls,ls}.c’ expands to ‘/usr/source/s1/oldls.c /usr/source/s1/ls.c’ whether or not these
files exist without any chance of error if the home directory for ‘source’ is ‘/usr/source’. Similarly
‘../{memo,∗ box}’ might expand to ‘../memo ../box ../mbox’. (Note that ‘memo’ was not sorted with the
results of matching ‘∗ box’.) As a special case ‘{’, ‘}’ and ‘{}’ are passed undisturbed.

Input/output

The standard input and standard output of a command may be redirected with the following syntax:

< name
Open file name (which is first variable, command and filename expanded) as the standard input.

<< word
Read the shell input up to a line which is identical to word. Word is not subjected to variable, file-
name or command substitution, and each input line is compared to word before any substitutions
are done on this input line. Unless a quoting ‘\’, ‘"’, ‘´’ or ‘`’ appears in word variable and com-
mand substitution is performed on the intervening lines, allowing ‘\’ to quote ‘$’, ‘\’ and ‘`’. Com-
mands which are substituted have all blanks, tabs, and newlines preserved, except for the final new-
line which is dropped. The resultant text is placed in an anonymous temporary file which is given
to the command as standard input.

> name
>! name
>& name
>&! name

The file name is used as standard output. If the file does not exist then it is created; if the file exists,
its is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character special file (e.g. a ter-
minal or ‘/dev/null’) or an error results. This helps prevent accidental destruction of files. In this
case the ‘!’ forms can be used and suppress this check.

The forms involving ‘&’ route the diagnostic output into the specified file as well as the standard
output. Name is expanded in the same way as ‘<’ input filenames are.

>> name
>>& name
>>! name

4th Berkeley Distribution 9/28/80 87

CSH(1) General Commands Manual CSH(1)

>>&! name
Uses file name as standard output like ‘>’ but places output at the end of the file. If the variable no-
clobber is set, then it is an error for the file not to exist unless one of the ‘!’ forms is given. Other-
wise similar to ‘>’.

A command receives the environment in which the shell was invoked as modified by the input-output pa-
rameters and the presence of the command in a pipeline. Thus, unlike some previous shells, commands
run from a file of shell commands have no access to the text of the commands by default; rather they re-
ceive the original standard input of the shell. The ‘<<’ mechanism should be used to present inline data.
This permits shell command scripts to function as components of pipelines and allows the shell to block
read its input. Note that the default standard input for a command run detached is not modified to be the
empty file ‘/dev/null’; rather the standard input remains as the original standard input of the shell. If this
is a terminal and if the process attempts to read from the terminal, then the process will block and the user
will be notified (see Jobs above.)

Diagnostic output may be directed through a pipe with the standard output. Simply use the form ‘| &’
rather than just ‘|’.

Expressions

A number of the builtin commands (to be described subsequently) take expressions, in which the opera-
tors are similar to those of C, with the same precedence. These expressions appear in the @, exit, if, and
while commands. The following operators are available:

| | && | - & == != =˜ !˜ <= >= < > << >> + - ∗ / % ! ˜ ()

Here the precedence increases to the right, ‘==’ ‘!=’ ‘=˜’ and ‘!˜’, ‘<=’ ‘>=’ ‘<’ and ‘>’, ‘<<’ and ‘>>’,
‘+’ and ‘-’, ‘∗ ’ ‘/’ and ‘%’ being, in groups, at the same level. The ‘==’ ‘!=’ ‘=˜’ and ‘!˜’ operators com-
pare their arguments as strings; all others operate on numbers. The operators ‘=˜’ and ‘!˜’ are like ‘!=’
and ‘==’ except that the right hand side is a pattern (containing, e.g. ‘∗ ’s, ‘?’s and instances of ‘[...]’)
against which the left hand operand is matched. This reduces the need for use of the switch statement in
shell scripts when all that is really needed is pattern matching.

Strings which begin with ‘0’ are considered octal numbers. Null or missing arguments are considered ‘0’.
The result of all expressions are strings, which represent decimal numbers. It is important to note that no
two components of an expression can appear in the same word; except when adjacent to components of
expressions which are syntactically significant to the parser (‘&’ ‘|’ ‘<’ ‘>’ ‘(’ ‘)’) they should be sur-
rounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in ‘{’ and ‘}’ and
file enquiries of the form ‘-l name’ where l is one of:

r read access
w write access
x execute access
e existence
o ownership
z zero size
f plain file
d directory

The specified name is command and filename expanded and then tested to see if it has the specified rela-
tionship to the real user. If the file does not exist or is inaccessible then all enquiries return false, i.e. ‘0’.
Command executions succeed, returning true, i.e. ‘1’, if the command exits with status 0, otherwise they
fail, returning false, i.e. ‘0’. If more detailed status information is required then the command should be
executed outside of an expression and the variable status examined.

Control flow

The shell contains a number of commands which can be used to regulate the flow of control in command
files (shell scripts) and (in limited but useful ways) from terminal input. These commands all operate by
forcing the shell to reread or skip in its input and, due to the implementation, restrict the placement of
some of the commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if statement require

4th Berkeley Distribution 9/28/80 88

CSH(1) General Commands Manual CSH(1)

that the major keywords appear in a single simple command on an input line as shown below.

If the shell’s input is not seekable, the shell buffers up input whenever a loop is being read and performs
seeks in this internal buffer to accomplish the rereading implied by the loop. (To the extent that this al-
lows, backward goto’s will succeed on non-seekable inputs.)

Builtin commands

Builtin commands are executed within the shell. If a builtin command occurs as any component of a
pipeline except the last then it is executed in a subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias for name. The final form assigns
the specified wordlist as the alias of name; wordlist is command and filename substituted. Name is
not allowed to be alias or unalias.

alloc
Shows the amount of dynamic core in use, broken down into used and free core, and address of the
last location in the heap. With an argument shows each used and free block on the internal dynamic
memory chain indicating its address, size, and whether it is used or free. This is a debugging com-
mand and may not work in production versions of the shell; it requires a modified version of the
system memory allocator.

bg
bg %job ...

Puts the current or specified jobs into the background, continuing them if they were stopped.

break
Causes execution to resume after the end of the nearest enclosing foreach or while. The remaining
commands on the current line are executed. Multi-level breaks are thus possible by writing them all
on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shells working directory to directory name. If no argument is given then change to the
home directory of the user.
If name is not found as a subdirectory of the current directory (and does not begin with ‘/’, ‘./’ or
‘../’), then each component of the variable cdpath is checked to see if it has a subdirectory name.
Finally, if all else fails but name is a shell variable whose value begins with ‘/’, then this is tried to
see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the commands on the
current line are executed.

default:
Labels the default case in a switch statement. The default should come after all case labels.

dirs
Prints the directory stack; the top of the stack is at the left, the first directory in the stack being the
current directory.

echo wordlist
echo -n wordlist

The specified words are written to the shells standard output, separated by spaces, and terminated

4th Berkeley Distribution 9/28/80 89

CSH(1) General Commands Manual CSH(1)

with a newline unless the -n option is specified.

else
end
endif
endsw

See the description of the foreach, if, switch, and while statements below.

eval arg ...
(As in sh(1).) The arguments are read as input to the shell and the resulting command(s) executed.
This is usually used to execute commands generated as the result of command or variable substitu-
tion, since parsing occurs before these substitutions. See tset(1) for an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

The shell exits either with the value of the status variable (first form) or with the value of the speci-
fied expr (second form).

fg
fg %job ...

Brings the current or specified jobs into the foreground, continuing them if they were stopped.

foreach name (wordlist)
...

end
The variable name is successively set to each member of wordlist and the sequence of commands
between this command and the matching end are executed. (Both foreach and end must appear
alone on separate lines.)

The builtin command continue may be used to continue the loop prematurely and the builtin com-
mand break to terminate it prematurely. When this command is read from the terminal, the loop is
read up once prompting with ‘?’ before any statements in the loop are executed. If you make a mis-
take typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no ‘\’ escapes are recognized and words are delimited by null characters in the out-
put. Useful for programs which wish to use the shell to filename expand a list of words.

goto word
The specified word is filename and command expanded to yield a string of the form ‘label’. The
shell rewinds its input as much as possible and searches for a line of the form ‘label:’ possibly pre-
ceded by blanks or tabs. Execution continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at locating commands
(and avoiding exec’s). An exec is attempted for each component of the path where the hash func-
tion indicates a possible hit, and in each component which does not begin with a ‘/’.

history
history n
history -r n

Displays the history event list; if n is given only the n most recent events are printed. The -r option
reverses the order of printout to be most recent first rather than oldest first.

if (expr) command
If the specified expression evaluates true, then the single command with arguments is executed.
Variable substitution on command happens early, at the same time it does for the rest of the if com-
mand. Command must be a simple command, not a pipeline, a command list, or a parenthesized
command list. Input/output redirection occurs even if expr is false, when command is not executed
(this is a bug).

4th Berkeley Distribution 9/28/80 90

CSH(1) General Commands Manual CSH(1)

if (expr) then
...

else if (expr2) then
...

else
...

endif
If the specified expr is true then the commands to the first else are executed; else if expr2 is true
then the commands to the second else are executed, etc. Any number of else-if pairs are possible;
only one endif is needed. The else part is likewise optional. (The words else and endif must ap-
pear at the beginning of input lines; the if must appear alone on its input line or after an else.)

jobs
jobs -l

Lists the active jobs; given the -l options lists process id’s in addition to the normal information.

kill %job
kill -sig %job ...
kill pid
kill -sig pid ...
kill -l

Sends either the TERM (terminate) signal or the specified signal to the specified jobs or processes.
Signals are either given by number or by names (as given in /usr/include/signal.h, stripped of the
prefix ‘‘SIG’’). The signal names are listed by ‘‘kill -l’’. There is no default, saying just ‘kill’ does
not send a signal to the current job. If the signal being sent is TERM (terminate) or HUP (hangup),
then the job or process will be sent a CONT (continue) signal as well.

limit
limit resource
limit resource maximum-use

Limits the consumption by the current process and each process it creates to not individually exceed
maximum-use on the specified resource. If no maximum-use is given, then the current limit is
printed; if no resource is given, then all limitations are given.

Resources controllable currently include cputime (the maximum number of cpu-seconds to be used
by each process), filesize (the largest single file which can be created), datasize (the maximum
growth of the data+stack region via sbrk(2) beyond the end of the program text), stacksize (the
maximum size of the automatically-extended stack region), and coredumpsize (the size of the
largest core dump that will be created).

The maximum-use may be given as a (floating point or integer) number followed by a scale factor.
For all limits other than cputime the default scale is ‘k’ or ‘kilobytes’ (1024 bytes); a scale factor of
‘m’ or ‘megabytes’ may also be used. For cputime the default scaling is ‘seconds’, while ‘m’ for
minutes or ‘h’ for hours, or a time of the form ‘mm:ss’ giving minutes and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of the names suffice.

login
Terminate a login shell, replacing it with an instance of /bin/login. This is one way to log off, in-
cluded for compatibility with sh(1).

logout
Terminate a login shell. Especially useful if ignoreeof is set.

newgrp
Changes the group identification of the caller; for details see newgrp(1). A new shell is executed by
newgrp so that the shell state is lost.

nice
nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. The second form sets the nice to the given number.

4th Berkeley Distribution 9/28/80 91

CSH(1) General Commands Manual CSH(1)

The final two forms run command at priority 4 and number respectively. The super-user may spec-
ify negative niceness by using ‘nice -number ...’. Command is always executed in a sub-shell, and
the restrictions place on commands in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be ignored for the remainder of the
script. The second form causes the specified command to be run with hangups ignored. All
processes detached with ‘&’ are effectively nohup’ed.

notify
notify %job ...

Causes the shell to notify the user asynchronously when the status of the current or specified jobs
changes; normally notification is presented before a prompt. This is automatic if the shell variable
notify is set.

onintr
onintr -
onintr label

Control the action of the shell on interrupts. The first form restores the default action of the shell on
interrupts which is to terminate shell scripts or to return to the terminal command input level. The
second form ‘onintr -’ causes all interrupts to be ignored. The final form causes the shell to execute
a ‘goto label’ when an interrupt is received or a child process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being ignored, all forms of onintr
have no meaning and interrupts continue to be ignored by the shell and all invoked commands.

popd
popd +n

Pops the directory stack, returning to the new top directory. With a argument ‘+n’ discards the n th
entry in the stack. The elements of the directory stack are numbered from 0 starting at the top.

pushd
pushd name
pushd +n

With no arguments, pushd exchanges the top two elements of the directory stack. Given a name ar-
gument, pushd changes to the new directory (ala cd) and pushes the old current working directory
(as in csw) onto the directory stack. With a numeric argument, rotates the n th argument of the di-
rectory stack around to be the top element and changes to it. The members of the directory stack
are numbered from the top starting at 0.

rehash
Causes the internal hash table of the contents of the directories in the path variable to be recom-
puted. This is needed if new commands are added to directories in the path while you are logged
in. This should only be necessary if you add commands to one of your own directories, or if a sys-
tems programmer changes the contents of one of the system directories.

repeat count command
The specified command which is subject to the same restrictions as the command in the one line if
statement above, is executed count times. I/O redirections occur exactly once, even if count is 0.

set
set name
set name=word
set name[index]=word
set name=(wordlist)

The first form of the command shows the value of all shell variables. Variables which have other
than a single word as value print as a parenthesized word list. The second form sets name to the
null string. The third form sets name to the single word. The fourth form sets the index’th compo-
nent of name to word; this component must already exist. The final form sets name to the list of
words in wordlist. In all cases the value is command and filename expanded.

4th Berkeley Distribution 9/28/80 92

CSH(1) General Commands Manual CSH(1)

These arguments may be repeated to set multiple values in a single set command. Note however,
that variable expansion happens for all arguments before any setting occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The most commonly used
environment variable USER, TERM, and PATH are automatically imported to and exported from
the csh variables user, term, and path; there is no need to use setenv for these.

shift
shift variable

The members of argv are shifted to the left, discarding argv[1]. It is an error for argv not to be set
or to have less than one word as value. The second form performs the same function on the speci-
fied variable.

source name
The shell reads commands from name. Source commands may be nested; if they are nested too
deeply the shell may run out of file descriptors. An error in a source at any level terminates all
nested source commands. Input during source commands is never placed on the history list.

stop
stop %job ...

Stops the current or specified job which is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal with ˆZ. This is most
often used to stop shells started by su(1)

switch (string)
case str1:

...
breaksw

...
default:

...
breaksw

endsw
Each case label is successively matched, against the specified string which is first command and
filename expanded. The file metacharacters ‘∗ ’, ‘?’ and ‘[...]’ may be used in the case labels, which
are variable expanded. If none of the labels match before a ‘default’ label is found, then the execu-
tion begins after the default label. Each case label and the default label must appear at the begin-
ning of a line. The command breaksw causes execution to continue after the endsw. Otherwise
control may fall through case labels and default labels as in C. If no label matches and there is no
default, execution continues after the endsw.

time
time command

With no argument, a summary of time used by this shell and its children is printed. If arguments are
given the specified simple command is timed and a time summary as described under the time vari-
able is printed. If necessary, an extra shell is created to print the time statistic when the command
completes.

umask
umask value

The file creation mask is displayed (first form) or set to the specified value (second form). The
mask is given in octal. Common values for the mask are 002 giving all access to the group and read
and execute access to others or 022 giving all access except no write access for users in the group or
others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus all aliases are removed by
‘unalias ∗ ’. It is not an error for nothing to be unaliased.

4th Berkeley Distribution 9/28/80 93

CSH(1) General Commands Manual CSH(1)

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unlimit resource
unlimit

Removes the limitation on resource. If no resource is specified, then all resource limitations are re-
moved.

unset pattern
All variables whose names match the specified pattern are removed. Thus all variables are removed
by ‘unset ∗ ’; this has noticeably distasteful side-effects. It is not an error for nothing to be unset.

unsetenv pattern
Removes all variables whose name match the specified pattern from the environment. See also the
setenv command above and printenv(1).

wait
All background jobs are waited for. It the shell is interactive, then an interrupt can disrupt the wait,
at which time the shell prints names and job numbers of all jobs known to be outstanding.

while (expr)
...

end
While the specified expression evaluates non-zero, the commands between the while and the match-
ing end are evaluated. Break and continue may be used to terminate or continue the loop prema-
turely. (The while and end must appear alone on their input lines.) Prompting occurs here the first
time through the loop as for the foreach statement if the input is a terminal.

%job
Brings the specified job into the foreground.

%job &
Continues the specified job in the background.

@
@ name = expr
@ name[index] = expr

The first form prints the values of all the shell variables. The second form sets the specified name
to the value of expr. If the expression contains ‘<’, ‘>’, ‘&’ or ‘|’ then at least this part of the ex-
pression must be placed within ‘(’ ‘)’. The third form assigns the value of expr to the index’th argu-
ment of name. Both name and its index’th component must already exist.

The operators ‘∗ =’, ‘+=’, etc are available as in C. The space separating the name from the assign-
ment operator is optional. Spaces are, however, mandatory in separating components of expr which
would otherwise be single words.

Special postfix ‘++’ and ‘--’ operators increment and decrement name respectively, i.e. ‘@ i++’.

Pre-defined and environment variables

The following variables have special meaning to the shell. Of these, argv, cwd, home, path, prompt, shell
and status are always set by the shell. Except for cwd and status this setting occurs only at initialization;
these variables will not then be modified unless this is done explicitly by the user.

This shell copies the environment variable USER into the variable user, TERM into term, and HOME into
home, and copies these back into the environment whenever the normal shell variables are reset. The en-
vironment variable PATH is likewise handled; it is not necessary to worry about its setting other than in
the file .cshrc as inferior csh processes will import the definition of path from the environment, and re-ex-
port it if you then change it. (It could be set once in the .login except that commands through net(1)
would not see the definition.)

argv Set to the arguments to the shell, it is from this variable that positional parameters are
substituted, i.e. ‘$1’ is replaced by ‘$argv[1]’, etc.

4th Berkeley Distribution 9/28/80 94

CSH(1) General Commands Manual CSH(1)

cdpath Gives a list of alternate directories searched to find subdirectories in chdir commands.

cwd The full pathname of the current directory.

echo Set when the -x command line option is given. Causes each command and its argu-
ments to be echoed just before it is executed. For non-builtin commands all expansions
occur before echoing. Builtin commands are echoed before command and filename
substitution, since these substitutions are then done selectively.

history Can be given a numeric value to control the size of the history list. Any command
which has been referenced in this many events will not be discarded. Too large values
of history may run the shell out of memory. The last executed command is always
saved on the history list.

home The home directory of the invoker, initialized from the environment. The filename ex-
pansion of ‘˜’ refers to this variable.

ignoreeof If set the shell ignores end-of-file from input devices which are terminals. This pre-
vents shells from accidentally being killed by control-D’s.

mail The files where the shell checks for mail. This is done after each command completion
which will result in a prompt, if a specified interval has elapsed. The shell says ‘You
have new mail.’ if the file exists with an access time not greater than its modify time.

If the first word of the value of mail is numeric it specifies a different mail checking in-
terval, in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says ‘New mail in name’ when there
is mail in the file name.

noclobber As described in the section on Input/output, restrictions are placed on output redirec-
tion to insure that files are not accidentally destroyed, and that ‘>>’ redirections refer to
existing files.

noglob If set, filename expansion is inhibited. This is most useful in shell scripts which are not
dealing with filenames, or after a list of filenames has been obtained and further expan-
sions are not desirable.

nonomatch If set, it is not an error for a filename expansion to not match any existing files; rather
the primitive pattern is returned. It is still an error for the primitive pattern to be mal-
formed, i.e. ‘echo [’ still gives an error.

notify If set, the shell notifies asynchronously of job completions. The default is to rather
present job completions just before printing a prompt.

path Each word of the path variable specifies a directory in which commands are to be
sought for execution. A null word specifies the current directory. If there is no path
variable then only full path names will execute. The usual search path is ‘.’, ‘/bin’ and
‘/usr/bin’, but this may vary from system to system. For the super-user the default
search path is ‘/etc’, ‘/bin’ and ‘/usr/bin’. A shell which is given neither the -c nor the
-t option will normally hash the contents of the directories in the path variable after
reading .cshrc, and each time the path variable is reset. If new commands are added to
these directories while the shell is active, it may be necessary to give the rehash or the
commands may not be found.

prompt The string which is printed before each command is read from an interactive terminal
input. If a ‘!’ appears in the string it will be replaced by the current event number un-
less a preceding ‘\’ is given. Default is ‘% ’, or ‘# ’ for the super-user.

shell The file in which the shell resides. This is used in forking shells to interpret files which
have execute bits set, but which are not executable by the system. (See the description
of Non-builtin Command Execution below.) Initialized to the (system-dependent)
home of the shell.

status The status returned by the last command. If it terminated abnormally, then 0200 is
added to the status. Builtin commands which fail return exit status ‘1’, all other builtin
commands set status ‘0’.

4th Berkeley Distribution 9/28/80 95

CSH(1) General Commands Manual CSH(1)

time Controls automatic timing of commands. If set, then any command which takes more
than this many cpu seconds will cause a line giving user, system, and real times and a
utilization percentage which is the ratio of user plus system times to real time to be
printed when it terminates.

verbose Set by the -v command line option, causes the words of each command to be printed
after history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin command the shell attempts to execute the
command via exec(2). Each word in the variable path names a directory from which the shell will at-
tempt to execute the command. If it is given neither a -c nor a -t option, the shell will hash the names in
these directories into an internal table so that it will only try an exec in a directory if there is a possibility
that the command resides there. This greatly speeds command location when a large number of directo-
ries are present in the search path. If this mechanism has been turned off (via unhash), or if the shell was
given a -c or -t argument, and in any case for each directory component of path which does not begin
with a ‘/’, the shell concatenates with the given command name to form a path name of a file which it then
attempts to execute.

Parenthesized commands are always executed in a subshell. Thus ‘(cd ; pwd) ; pwd’ prints the home di-
rectory; leaving you where you were (printing this after the home directory), while ‘cd ; pwd’ leaves you
in the home directory. Parenthesized commands are most often used to prevent chdir from affecting the
current shell.

If the file has execute permissions but is not an executable binary to the system, then it is assumed to be a
file containing shell commands an a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to the argument list to form the
shell command. The first word of the alias should be the full path name of the shell (e.g. ‘$shell’). Note
that this is a special, late occurring, case of alias substitution, and only allows words to be prepended to
the argument list without modification.

Argument list processing

If argument 0 to the shell is ‘-’ then this is a login shell. The flag arguments are interpreted as follows:

-c Commands are read from the (single) following argument which must be present. Any remaining
arguments are placed in argv.

-e The shell exits if any invoked command terminates abnormally or yields a non-zero exit status.

-f The shell will start faster, because it will neither search for nor execute commands from the file
‘.cshrc’ in the invokers home directory.

-i The shell is interactive and prompts for its top-level input, even if it appears to not be a terminal.
Shells are interactive without this option if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This may aid in syntactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A ‘\’ may be used to escape the newline at the end of
this line and continue onto another line.

-v Causes the verbose variable to be set, with the effect that command input is echoed after history
substitution.

-x Causes the echo variable to be set, so that commands are echoed immediately before execution.

-V Causes the verbose variable to be set even before ‘.cshrc’ is executed.

-X Is to -x as -V is to -v.

After processing of flag arguments if arguments remain but none of the -c, -i, -s, or -t options was given
the first argument is taken as the name of a file of commands to be executed. The shell opens this file, and
saves its name for possible resubstitution by ‘$0’. Since many systems use either the standard version 6 or
version 7 shells whose shell scripts are not compatible with this shell, the shell will execute such a ‘stan-
dard’ shell if the first character of a script is not a ‘#’, i.e. if the script does not start with a comment.

4th Berkeley Distribution 9/28/80 96

CSH(1) General Commands Manual CSH(1)

Remaining arguments initialize the variable argv.

Signal handling

The shell normally ignores quit signals. Jobs running detached (either by ‘&’ or the bg or %... & com-
mands) are immune to signals generated from the keyboard, including hangups. Other signals have the
values which the shell inherited from its parent. The shells handling of interrupts and terminate signals in
shell scripts can be controlled by onintr. Login shells catch the terminate signal; otherwise this signal is
passed on to children from the state in the shell’s parent. In no case are interrupts allowed when a login
shell is reading the file ‘.logout’.

AUTHOR
William Joy. Job control and directory stack features first implemented by J.E. Kulp of I.I.A.S.A, Laxen-
burg, Austria, with different syntax than that used now.

FILES
˜/.cshrc Read at beginning of execution by each shell.
˜/.login Read by login shell, after ‘.cshrc’ at login.
˜/.logout Read by login shell, at logout.
/bin/sh Standard shell, for shell scripts not starting with a ‘#’.
/tmp/sh∗ Temporary file for ‘<<’.
/etc/passwd Source of home directories for ‘˜name’.

LIMITATIONS
Words can be no longer than 1024 characters. The system limits argument lists to 10240 characters. The
number of arguments to a command which involves filename expansion is limited to 1/6’th the number of
characters allowed in an argument list. Command substitutions may substitute no more characters than
are allowed in an argument list. To detect looping, the shell restricts the number of alias substititutions on
a single line to 20.

SEE ALSO
sh(1), newcsh(1), access(2), exec(2), fork(2), killpg(2), pipe(2), sigsys(2), umask(2), vlimit(2), wait(2),
jobs(3), sigset(3), tty(4), a.out(5), environ(5), ‘An introduction to the C shell’

BUGS
When a command is restarted from a stop, the shell prints the directory it started in if this is different from
the current directory; this can be misleading (i.e. wrong) as the job may have changed directories inter-
nally.

Shell builtin functions are not stoppable/restartable. Command sequences of the form ‘a ; b ; c’ are also
not handled gracefully when stopping is attempted. If you suspend ‘b’, the shell will then immediately
execute ‘c’. This is especially noticeable if this expansion results from an alias. It suffices to place the
sequence of commands in ()’s to force it to a subshell, i.e. ‘(a ; b ; c)’.

Control over tty output after processes are started is primitive; perhaps this will inspire someone to work
on a good virtual terminal interface. In a virtual terminal interface much more interesting things could be
done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell procedures should be
provided rather than aliases.

Commands within loops, prompted for by ‘?’, are not placed in the history list. Control structure should
be parsed rather than being recognized as built-in commands. This would allow control commands to be
placed anywhere, to be combined with ‘|’, and to be used with ‘&’ and ‘;’ metasyntax.

It should be possible to use the ‘:’ modifiers on the output of command substitutions. All and more than
one ‘:’ modifier should be allowed on ‘$’ substitutions.

4th Berkeley Distribution 9/28/80 97

CTAGS(1) General Commands Manual CTAGS(1)

NAME
ctags - create a tags file

SYNOPSIS
ctags [-BFatuwx] name ...

DESCRIPTION
Ctags makes a tags file for ex(1) from the specified C, Pascal and Fortran sources. A tags file gives the lo-
cations of specified objects (in this case functions and typedefs) in a group of files. Each line of the tags
file contains the object name, the file in which it is defined, and an address specification for the object def-
inition. Functions are searched with a pattern, typedefs with a line number. Specifiers are given in separate
fields on the line, separated by blanks or tabs. Using the tags file, ex can quickly find these objects defini-
tions.

If the -x flag is given, ctags produces a list of object names, the line number and file name on which each
is defined, as well as the text of that line and prints this on the standard output. This is a simple index
which can be printed out as an off-line readable function index.

Files whose name ends in .c or .h are assumed to be C source files and are searched for C routine and
macro definitions. Others are first examined to see if they contain any Pascal or Fortran routine defini-
tions; if not, they are processed again looking for C definitions.

Other options are:

-F use forward searching patterns (/.../) (default).

-B use backward searching patterns (?...?).

-a append to tags file.

-t create tags for typedefs.

-w suppressing warning diagnostics.

-u causing the specified files to be updated in tags, that is, all references to them are deleted, and the
new values are appended to the file. (Beware: this option is implemented in a way which is rather
slow; it is usually faster to simply rebuild the tags file.)

The tag main is treated specially in C programs. The tag formed is created by prepending M to the name
of the file, with a trailing .c removed, if any, and leading pathname components also removed. This makes
use of ctags practical in directories with more than one program.

FILES
tags output tags file

SEE ALSO
ex(1), vi(1)

AUTHOR
Ken Arnold; FORTRAN added by Jim Kleckner; Bill Joy added Pascal and -x, replacing cxref; C type-
defs added by Ed Pelegri-Llopart.

BUGS
Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a very sim-
pleminded way. No attempt is made to deal with block structure; if you have two Pascal procedures in
different blocks with the same name you lose.

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hack.

Does not know about #ifdefs.

Should know about Pascal types. Relies on the input being well formed to detect typedefs. Use of -tx
shows only the last line of typedefs.

4th Berkeley Distribution 98

CU(1) General Commands Manual CU(1)

NAME
cu, ct - call out to a terminal or another system

SYNOPSIS
cu [-htn] [-p parity] [-s speed] telno [service-class]

ct [option ...] phone-number [service-class]

DESCRIPTION
Cu places a data call to a given telephone number and expects a computer to answer. It manages an inter-
active conversation with possible transfers of text files. Telno is the telephone number, consisting of digits
with minus signs at appropriate places to indicate delay for second or subsequent dial tones. A telephone
number may also be expressed symbolically. A symbolic number is looked up in the files and whose lines
look like this:

symbolic-number actual-number service-class comment

The actual number may be preceded by options such as -t. The comment, if present, is printed out when
the connection is made.

The options are

-n Print the the called number but do not call it.

-t Tandem: use DC1/DC3 (control-S/control-Q) protocol to stop transmission from the remote sys-
tem when the local terminal buffers are almost full. This argument should only be used if the re-
mote system understands that protocol.

-h Half-duplex: echo locally the characters that are sent to the remote system.

-s speed
Set the line speed; means 1200 baud, etc. The default depends on service class.

-p parity
Set the parity of transmitted characters: 0, 1, e, o mean zero, one, even, odd parity. 0 is the de-
fault.

The service class is expressed as in dialout(3). A special class causes the telno argument to be taken as
the pathname of a terminal line. Cu opens the file, sets line speed and other modes, and proceeds as if
connected. The default line speed is 9600 baud.

An explicit service class on the command line overrides any specified in a file.

After making the connection, cu runs as two processes: the sending process reads the standard input and
passes most of it to the remote system; the receiving process reads from the remote system and passes
most data to the standard output. Lines beginning with have special meanings.

The sending process interprets:

˜.
˜EOT Terminate the conversation.

˜< file Send the contents of file to the remote system, as though typed at the terminal.

˜! Invoke an interactive shell on the local system.

˜!cmd Run the command on the local system (via

˜$cmd Run the command locally and send its output to the remote system.

˜b
˜%break

Send a break (300 ms space).

˜%take from [to]
Copy file from (on the remote system) to file to on the local system. If to is omitted, the from
name is used both places.

˜%put from [to]
Copy file from (on local system) to file to on remote system. If to is omitted, the from name is
used both places.

99

CU(1) General Commands Manual CU(1)

˜˜text send the line ˜text.

WARNING: Using cu to reach your home machine from a machine you don’t trust can be hazardous to
your password.

Ct places a telephone call to a remote terminal and allows a user to log in on that terminal in the normal
fashion. The terminal must be equipped with an auto-answer modem.

The phone number and service class are as in cu. The options are

-c count
If the number doesn’t answer, try count times before giving up (default 5).

-w interval
Space retries interval seconds apart (default 60).

-h Try to hang up the phone before placing the call. This is useful for a ‘call me right back’
arrangement.

FILES
SEE ALSO

con(1), ttyld(4), dialout(3)

BUGS
Unless erase and kill characters are the same on the two machines, they will be damaged by ˜%put.
˜%take uses ˜> at the beginning of line to synchronize transmission. This sequence can cause misfunc-
tion if it is received for any other purpose.

100

CUT (1) General Commands Manual CUT (1)

NAME
cut, paste - rearrange columns of data

SYNOPSIS
cut -clist [file ...]

cut -flist [-dchar] [file ...]

paste [-s] [-dchars] file ...

DESCRIPTION
Cut selects fields from each line of the files (standard input default). In data base parlance, it projects a
relation. The fields can be fixed length, as on a punched card (option -c), or be marked with a delimiter
character (option -f).

The meanings of the options follow. A list is an increasing sequence of integers separated by commas, or
by - to indicate a range, for example

-clist The list specifies character positions.

-flist The list specifies field numbers.

-dchar
The character is the delimiter for option -f. Default is tab.

-s Suppress lines with no delimiter characters. Normally such lines pass through untouched under
option -f.

Paste concatenates corresponding lines of the input files and places the result on the standard output. The
file name refers to the standard input. Lines are glued together with characters taken circularly from the
set chars. The set may contain the special escape sequences \n (newline), \t (tab), \\ (backslash), and \0
(empty string, not a null character). The options are

-dchars
The output separator characters. Default is a tab.

-s Paste together lines of one file, treating every line as if it came from a distinct input.

EXAMPLES
cut -d: -f1,3 /etc/passwd

Print map from login names to userids, see passwd(5).

NAME=‘who am i | cut -f1 -d" "‘
Set to current login name (subtly different from getuid(1)).

ls | paste - - - -
ls | paste -s ’-d\t\n’ -

4-column and 2-column file listing

SEE ALSO
gre(1), awk(1), sed(1), pr(1), column(1)

BUGS
Cut should handle disordered lists under option -f.
In default of file names, paste should read the the standard input.

101

D202(1) General Commands Manual D202(1)

NAME
d202, tc - typesetter filters

SYNOPSIS
d202 [option ...] [file ...]

e202 [option ...] [file ...]

tc [option ...] [file ...]

DESCRIPTION
D202 and its companions print files created by troff(1) on various devices:

d202 Mergenthaler Linotron 202
e202 same, with half-tone and extra graphics capability
tc Tektronix 4014 display

If no file is mentioned, the standard input is printed. The following options are understood.

-b Report whether the typesetter is busy; do not print.

-olist Print pages whose numbers are given in the comma-separated list. The list contains comma-sep-
arated numbers N and ranges N1-N2. A missing N1 means the lowest-numbered page, a miss-
ing N2 means the highest.

-sn Stop after every n pages of output. (Default 1 on 4014). Proceed when the ‘RUN’ button is
pushed on the typesetter (d202) or newline on the terminal (tc).

-t Direct output to the standard output instead of the typesetter. Don’t wait between pages in tc.

-w Wait for typesetter to become free, then print.

-f dir Take font information from directory dir instead of the default.

-ar Set the aspect ratio to r (default r=1.5). Tc only.

While waiting between pages tc accepts !command to insert a shell command; +n to skip forward n
pages; -n to skip backwards n pages; ar to set the aspect ratio; and ? to print the list of available actions.

FILES
202 description files

SEE ALSO
lp(1), troff(1), proof(9) apsend(1), font(5)

BUGS
E202, largely a superset of d202, should be combined with d202.

102

DAG(1) General Commands Manual DAG(1)

NAME
dag - preprocessor for drawing directed graphs

SYNOPSIS
dag [option ...] [file ...]

DESCRIPTION
Dag is a pic(1) or PostScript preprocessor for laying out directed graphs. It does well on acyclic graphs
(dags) and other graphs that can be drawn hierarchically. Graph statements are contained between .GD
(node ranks increase downward) or .GR (rightward) and .GE. Edges point in the direction of increasing
rank if possible; the other direction is favored for edges within rank. A summary of statements follows.

edge from tail to head0 edge-items, to head1 edge-items, to head2 edge-items...; Create edges from the
tail node to the head node(s). Nodes are created if they do not already exist. Edge-items (described be-
low) and the noise words edge, from, to, and comma are optional. Node names may be quoted to protect
blanks or keywords.

ordered tail head0 head1 head2...; Make edges with heads in given left-to-right order on the same rank.
May contain noise words and edge-items.

path node0 node1 node2...; Make a path of edges. May contain noise words and edge-items.

backedge tail head0 head1 head2...; Same as edges with opposite node ranking preferred.

backpath node0 node1 node2...; Make a path of backedges.

draw nodes node-items; Set properties of subsequently created nodes. Legal node-items:

as shape
Known shapes are Box, Circle, Doublecircle, Ellipse (default), Diamond, Square,
Plaintext. Other shapes may be specified within braces {} in the output language (e.g.
pic) or defined; see below.

label "string"
Label with string instead of node name.

pointsize points

heightinches

color "string"
Hue-saturation-brightness triple; works only with PostScript.

draw nodelist node-items; Set properties of listed nodes.

draw edges edge-items; Set properties of subsequently created edges. Legal edge-items:

dotted, dashed, solid, invis

label "string"

weight n
High-weight edges are kept short. Default weight 1.

color "string"

pointsize points

minimum rank nodelist; Listed nodes must be on the topmost rank (leftmost with .GR).
maximum rank nodelist; Bottommost or rightmost rank.
same rank nodelist;

separate ranks inches how ; Set minimum separation between ranks. The optional how is exactly or
equally.

separate nodes inches ;

The options are

-O Place nodes ‘optimally’; practical for graphs of a few dozen nodes.

103

DAG(1) General Commands Manual DAG(1)

-Tps Prepare output for PostScript rather than pic.
-Tsimple

Output similar to that of graphdraw(9)
-Tcip Output readable by cip(9)

-pwidthxheight,marginwidthxmarginheight
Set PostScript page dimensions; marginwidth and/or marginheight may be omitted.

-l Disable automatic loading of the dag graphics library.

The introductory .GD or .GR line may carry optional parameters in the form .GD width height fill. Width
and height are maximum values in inches; fill causes the graph to be stretched to the full dimensions.

Graphics code written in the output language (pic or PostScript) may be embedded between .PS and .PE.
Macros defined with three arguments—label, width, and height—may be used as shape names in node-
items.

EXAMPLES
.GD 2 2
a b c;
path a x y;
draw nodes as Box;
a z label "hi" weight 1000;
draw edges dashed;
b x;
same rank b x;
.GE
a b c; path a x y; draw nodes as Box; a z label "hi" weight 1000; draw edges dashed; b x; same rank b x;

FILES
default

TOOLS=/usr/lib

SEE ALSO
pic(1), lp(1), graphdraw(9) psi(9) troff(1)
E. R. Gansner, S. C. North, K. P. Vo, ‘DAG—A Program that Draws Directed Graphs’, this man-
ual, Volume 2

BUGS
The delimiter .GD is nonstandard; it may be called .GS in installations where ped(9) is not used.
Troff lacks dotted or dashed splines; use PostScript.
Edge labels may overlap.

104

DATE(1) General Commands Manual DATE(1)

NAME
date - print or set the date

SYNOPSIS
date [yymmddhhmm [. ss]]

DESCRIPTION
If no argument is given, the current date and time are printed. If an argument is given and the user is the
super-user, the current date is set. yy is the last two digits of the year; the first mm is the month number;
dd is the day number in the month; hh is the hour number (24 hour system); the second mm is the minute
number; .ss is optional and is the seconds. The year, month and day may be omitted, the current values
being the defaults. The system operates in GMT. Date takes care of the conversion to and from local
standard and daylight time. The options are

-u Set or report GMT rather than local time.

-n Set or report the date as the number of seconds since the epoch.

EXAMPLES
date 10080045

Set the date to Oct 8, 12:45 AM, local time.

FILES
to record time-setting

SEE ALSO
utmp(5)

DIAGNOSTICS
‘No permission’ if a non-super user tries to change the date; ‘bad conversion’ if the date is invalid.

105

DC(1) General Commands Manual DC(1)

NAME
dc - desk calculator

SYNOPSIS
dc [file]

DESCRIPTION
Dc is an arbitrary precision desk calculator. Ordinarily it operates on decimal integers, but one may spec-
ify an input base, output base, and a number of fractional digits to be maintained. The overall structure of
dc is a stacking (reverse Polish) calculator. If an argument is given, input is taken from that file until its
end, then from the standard input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken string of the digits
0-9A-F. It may be preceded by an underscore _ to input a negative number. Numbers may con-
tain decimal points.

+ - / ∗ % ˆ
Add subtract multiply divide remainder or exponentiate the top two values on the stack. The two
entries are popped off the stack; the result is pushed on the stack in their place. Any fractional
part of an exponent is ignored.

sx
Sx Pop the top of the stack and store into a register named x, where x may be any character. Under

operation S register x is treated as a stack and the value is pushed on it.

lx
Lx Push the value in register x onto the stack. The register x is not altered. All registers start with

zero value. Under operation L register x is treated as a stack and its top value is popped onto the
main stack.

d Duplicate the top value on the stack.

p Print the top value on the stack. The top value remains unchanged. P interprets the top of the
stack as an ASCII string, removes it, and prints it.

f Print the values on the stack.

q
Q Exit the program. If executing a string, the recursion level is popped by two. Under operation Q

the top value on the stack is popped and the string execution level is popped by that value.

x Treat the top element of the stack as a character string and execute it as a string of dc commands.

X Replace the number on the top of the stack with its scale factor.

[...] Put the bracketed ASCII string on the top of the stack.

<x >x =x
Pop and compare the top two elements of the stack. Register x is executed if they obey the stated
relation.

v Replace the top element on the stack by its square root. Any existing fractional part of the argu-
ment is taken into account, but otherwise the scale factor is ignored.

! Interpret the rest of the line as a UNIX command.

c Clear the stack.

i The top value on the stack is popped and used as the number base for further input.

I Push the input base on the top of the stack.

o The top value on the stack is popped and used as the number base for further output. In bases
larger than 10, each ‘digit’ prints as a group of decimal digits.

O Push the output base on the top of the stack.

106

DC(1) General Commands Manual DC(1)

k Pop the top of the stack, and use that value as a non-negative scale factor: the appropriate number
of places are printed on output, and maintained during multiplication, division, and exponentia-
tion. The interaction of scale factor, input base, and output base will be reasonable if all are
changed together.

z Push the stack level is pushed onto the stack.

Z Replace the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal) and executed.

; : Used by bc for array operations.

The scale factor set by k determines how many digits are kept to the right of the decimal point. If s is the
current scale factor, sa is the scale of the first operand, sb is the scale of the second, and b is the (integer)
second operand, results are truncated to the following scales.

[CB]+,[CB]- max(sa,sb)
[CB]∗ min(sa+sb , max(s,sa,sb))
[CB]/ s
[CB]% so that dividend = divisor∗ quotient + remainder; remainder has sign of dividend
[CB]ˆ min(sa×|b|, max(s,sa))
[CB]v max(s,sa)

EXAMPLES
[la1+dsa∗pla10>y]sy
0sa1
lyx

Print the first ten values of n!

SEE ALSO
bc(1), hoc(1)

DIAGNOSTICS
x where x is an octal number: an internal error.
‘Out of headers’ for too many numbers being kept around.
‘Nesting depth’ for too many levels of nested execution.

BUGS
When the input base exceeds 16, there is no notation for digits greater than F.

107

DCON (1) General Commands Manual DCON (1)

NAME
dcon, ndcon, rlogin, nrx, rsh, scriptcon - remote login and execution

SYNOPSIS
dcon [option ...] machine

ndcon machine

rlogin machine

nrx machine [command-word ...]

rsh [option ...] machine [command-word ...]

scriptcon machine script

DESCRIPTION
Do not read this page unless you are familiar with con(1).

Dcon, ndcon, and rlogin are analogs (or special cases) of con(1) for specific kinds of network connection.
They support the same local escape convention with the quit signal.

Similarly, nrx and rsh are analogs of rx.

Network addresses are as in con(1). The default networks for the various commands are

dcon, ndcon, nrx
dk

rlogin, rsh tcp

Dcon connects to the remote machine, and attempts automatically to log in under the login id of the in-
voking user. Option -l turns off automatic login; the remote machine will ask for a login id and password.

Ndcon behaves like dcon but provides a more transparent transport protocol. In particular terminal line
disciplines are preserved and it is possible to download into a mux(9) window across an ndcon connection.

Rlogin is like dcon, but uses the connection protocol found on Berkeley systems.

Rx (see con(1)) executes one shell command on the remote machine as if logged in there, with local stan-
dard input and output. It uses a connection protocol specific to Research machines.

Nrx is to rx as ndcon is to dcon: it runs a command remotely with line discipline preserved.

Rsh is to rx as rlogin is to dcon: it runs a command remotely using the Berkeley execution protocol.

Scriptcon provides a connection like dcon -l, except that the login and other initial protocol are controlled
by a script file. The first line of the file gives a string (e.g. expected from the remote machine; the second
gives the local response, and so on in alternation. Unrecognized data from the remote machine are ig-
nored. Warning: a script that contains a password may compromise the security of the remote system,
hence scriptcon should be used only for restricted logins.

Con tries to connect using the protocol of ndcon; if that fails, it tries that of dcon, then that of rlogin. Rx
attempts its own style of connection; if that fails, it tries that of rsh.

SEE ALSO
con(1), dkmgr(8), svcmgr(8), tcpmgr(8), ipc(3)
D. L. Presotto, ‘Interprocess Communication in the Eighth Edition UNIX System’, this manual, Volume 2

BUGS
If a program run by nrx won’t let go, for example by ignoring signals, there is no way of getting out short
of hanging up.
There is no error correction or retry in a scriptcon script.

108

DD(1) General Commands Manual DD(1)

NAME
dd, dblbuf - convert and copy a file

SYNOPSIS
dd [option=value]

dblbuf [-b blocksize] [file]

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The standard input
and output are used by default. The input and output block size may be specified to take advantage of raw
physical I/O. The options are

if= file
Set the input file (standard input by default).

of= file
Set the output file (standard output by default).

ibs=n Set input block size to n bytes (default 512).

obs=n
Set output block size (default 512).

bs=n Set both input and output block size, superseding ibs and obs. If no conversion is specified, pre-
serve the input block size instead of packing short blocks into the output buffer. This is particu-
larly efficient since no in-core copy need be done.

cbs=n
Set conversion buffer size.

skip=n
Skip n input records before copying.

iseek=n
Seek n records forward on input file before copying.

files=n
Copy and concatenate n input files (makes sense only where input is a magnetic tape or similar
device).

oseek=n
Aeek n records from beginning of output file before copying.

count=n
Copy only n input records.

conv=ascii Convert EBCDIC to ASCII.
ebcdic

Convert ASCII to EBCDIC.
ibm Like ebcdic but with a slightly different character map.
block Convert variable length ASCII records to fixed length.
unblock

Convert fixed length ASCII records to variable length.
lcase Map alphabetics to lower case.
ucase Map alphabetics to upper case.
swab Swap every pair of bytes.
noerror

Do not stop processing on an error.
sync Pad every input record to ibs bytes.

Where sizes are specified, a number of bytes is expected. A number may end with or to specify multipli-
cation by 1024, 512, or 2 respectively; a pair of numbers may be separated by to indicate a product. Mul-
tiple conversions may be specified in the style:

is used only if or conversion is specified. In the first two cases, n characters are copied into the conversion
buffer, any specified character mapping is done, trailing blanks are trimmed and new-line is added before

109

DD(1) General Commands Manual DD(1)

sending the line to the output. In the latter three cases, characters are read into the conversion buffer and
blanks are added to make up an output record of size n. If is unspecified or zero, the and options convert
the character set without changing the block structure of the input file; the and options become a simple
file copy.

Dblbuf copies the named file, or the standard input if no file is specified, to the standard output. Output
is written in blocks matching the input up to the given blocksize, or 32768 bytes if not specified.

Dblbuf uses multiple processes to run faster, which is particularly useful in dealing with a device such as
a streaming tape drive.

EXAMPLES
dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into an ASCII file.
Note the use of raw magtape to handle arbitrary record sizes.

tar cf /dev/stdout /usr | dblbuf >/dev/rmt1
Copy the directory to tape on

SEE ALSO
cp(1), tar(1), cpio(1)

DIAGNOSTICS
Dd reports the number of full + partial input and output blocks handled.

BUGS
The ASCII/EBCDIC conversion tables for dd were taken from the 256-character standard in CACM Nov,
1968. The conversion, while less blessed as a standard, corresponds better to certain IBM print train con-
ventions. There is no universal solution.
Options if and of are verbose equivalents of < and >.

110

DEROFF(1) General Commands Manual DEROFF(1)

NAME
deroff, demonk, detex, delatex - remove formatting requests

SYNOPSIS
deroff [option ...] file ...

demonk [option ...] file ...

detex file

delatex file

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and troff(1) requests and non-text arguments,
backslash constructions, and constructs of preprocessors such as eqn, pic, and tbl(1). Remaining text is
written on the standard output. Deroff follows files included by and commands; if a file has already been
included, a for that file is ignored and a terminates execution. If no input file is given, deroff reads from
standard input.

The options are

-w Output a word list, one ‘word’ (string of letters, digits, and properly embedded ampersands and
apostrophes, beginning with a letter) per line. Other characters are skipped. Otherwise, the out-
put follows the original, with the deletions mentioned above.

-i Ignore and requests.

-ms
-mm Remove titles, attachments, etc., as well as ordinary troff constructs, from ms(6) or mm docu-

ments.

-ml Same as -mm, but remove lists as well.

Demonk removes all monk(1) commands and then invokes deroff to handle both troff commands and pre-
processor constructs. Demonk follows files included by and commands as well as troff and requests. If
no input file is given, demonk reads from standard input.

Demonk recognizes the following options and passes all options except -b and -d to deroff .

-i Ignore monk and commands as well as troff and requests.

-b Do not output blank lines resulting from the removal of monk commands.

-ddir Use non-standard monk database directory dir.

Detex and delatex do for tex(1) and latex(6) files what deroff -w does for troff files. Delatex largely sub-
sumes detex.

SEE ALSO
troff(1), monk(1), tex(1), spell(1), wwb(1)

BUGS
These filters are not complete interpreters of troff or tex. For example, macro definitions containing cause
chaos in deroff when the popular delimiters for eqn are in effect.
Text inside macros is emitted at place of definition, not place of call.

111

DICTADD(1) General Commands Manual DICTADD(1)

NAME
dictadd - add phrases to user’s diction or sexist dictionary

SYNOPSIS
dictadd [-flags][-ver]

DESCRIPTION
Dictadd adds words and/or phrases to the user’s dictionaries for use by the wwb(1), proofr(1), dict-
plus(1), diction (1), and sexist(1) programs. Sexist searches a text for sexist phrases, while the other pro-
grams search a text for wordy or misused diction. These programs allow the user to have dictionary files
containing additional words and/or phrases for the programs to locate or ignore. Dictadd automatically
sets up these dictionary files.

Dictadd asks users whether they want to add words to $HOME/lib/ddict, $HOME/lib/sexdict, or some
other file. The results depend on the user’s response, as shown below.

User’s request Dictadd’s action

$HOME/lib/ddict adds words and/or phrases to the user’s dictionary, $HOME/lib/ddict. This
file is checked automatically by wwb and proofr and can be specified for use
by dictplus and diction. (See diction(1)

$HOME/lib/sexdict adds words and/or phrases to the user’s dictionary, $HOME/lib/sexdict. This
file is checked automatically by sexist.

filename adds words to filename, to be used with diction, dictplus, or sexist.

In all cases, dictadd questions whether the user wants instructions, and prompts with ">" for more words
or phrases. If the dictionary is not in existence when dictadd is invoked, it is created. If the dictionary al-
ready exists, dictadd adds to it. To quit, type "q" after the prompt.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

EXAMPLE
1. The sequence:

dictadd (carriage return)
(program asks if the user wants the words to be added to $HOME/lib/ddict)
y (user responds yes)
(program asks if the user wants instructions)
[˜]phrase 1 (carriage return)
[˜]phrase 2 (carriage return)
[˜]phrase n (carriage return)

will add phrases to $HOME/lib/ddict. Phrases to be ignored must be preceded by a tilde(˜), phrases to be
located require no special symbol. When finished, type "q" on a line by itself.

SEE ALSO
diction(1), dictplus(1), proofr(1), sexist(1), suggest(1), wwb(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

112

DICTPLUS(1) General Commands Manual DICTPLUS(1)

NAME
dictplus - automatic combination of diction and suggest

SYNOPSIS
dictplus [-flags][-ver][-f pfile [-n]][file ...]

DESCRIPTION
Dictplus automatically combines diction and suggest. Options are:

-f pfile Use the user’s phrase file, pfile, in addition to the default file of bad or wordy diction.
Dictadd(1) can be used to set up this file.

-n Locate the phrases in pfile instead of the default phrase file. -n cannot be used without
-f pfile.

Dictplus is one of the programs run under the proofr(1) and wwb(1) commands.

Dictadd(1) adds words and/or phrases that are to be located or ignored by diction or dictplus to the user’s
dictionary, $HOME/lib/ddict . Dictadd gives instructions on the necessary format for phrases to be lo-
cated or ignored by diction or dictplus. $HOME/lib/ddict is only used by diction and dictplus when it is
specified by the -f flag. Proofr(1) checks $HOME/lib/ddict automatically when it runs dictplus.

All programs can take the following two options that give information on the programs:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

EXAMPLES
1. The command:

dictplus -f patfile filename

will print sentences from filename that contain bad or wordy diction, including or suppressing phrases as
specified in patfile. Suggested replacements for bad phrases will also be printed. (The patfile can be
$HOME/lib/ddict.)

FILES
/tmp/$$∗ temporary files used by dictplus

SEE ALSO
diction(1), suggest(1), proofr(1), wwb(1), worduse(1), sexist(1), dictadd(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

113

DIFF(1) General Commands Manual DIFF(1)

NAME
diff, diff3 - differential file comparison

SYNOPSIS
diff [option ...] file1 file2

diff3 [-ex3] file1 file2 file3

DESCRIPTION
When run on regular files diff tells what lines must be changed in the files to bring them into agreement.
Except in rare circumstances, diff finds a smallest sufficient set of differences. If neither file is a direc-
tory, then one may be meaning the standard input. If one file is a directory, then a file in that directory
with basename the same as that of the other file is used.

If both files are directories, similarly named files in the two directories are compared by the method of
diff for text files and cmp(1) otherwise. Options when comparing directories are:

-r Apply diff recursively to similarly named subdirectories.

-s Report files that are the same (normally not mentioned).

There are several options for output format; the default output format contains lines of these forms:

n1a n3,n4
n1,n2d n3
n1,n2c n3,n4

These lines resemble ed commands to convert file1 into file2. The numbers after the letters pertain to
file2. In fact, by exchanging for and reading backward one may ascertain equally how to convert file2
into file1. As in ed, identical pairs where n1=n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by then all the
lines that are affected in the second file flagged by

-e Produce a script of and for ed(1) to recreate file2 from file1. When comparing directories, pro-
duce a sh(1) script to convert text files common to the two directories.

-cn Include n extra lines of context with each set of differences. The output format is modified: the
output begins with identification of the files involved and their creation dates and changes are
separated by lines of ∗’s. Lines removed from file1 are marked with those added to file2 are
marked Lines which are changed from one file to the other are marked in both files with

-h Do a fast, half-hearted job, useful only when changed stretches are short and well separated, but
does work on files of unlimited length.

-b Ignore trailing blanks (spaces and tabs) and treat other strings of blanks as if they were a single
space.

-B Ignore all blanks.

Diff3 compares three versions of a file and publishes the various disagreeing ranges of text. One of the
following indicators introduces each reported difference.

==== All three files differ.

==== f
File f differs, where f is 1, 2, or 3.

Disagreeing fragments from the three files follow the ==== line, each identified by a diff -like range indi-
cation:

f :n1a File f lacks text that other files have; their text would be appended after line n1.

f :n1,n2c
f :n1c Lines n1 through n2 (or line n1 only) of file f would have to be changed to agree with some

other file. The original contents follow, unless a higher-numbered file has the same contents.

Under option -e, diff3 publishes a script for ed(1) that will incorporate into file1 all changes between file2
and file3, i.e. the changes that normally would be flagged ==== and ====3. Option -x (-3) produces a
script to incorporate only changes flagged ==== (====3).

114

DIFF(1) General Commands Manual DIFF(1)

EXAMPLES
(cat diff0-1 diff1-2 diff2-3; echo ’1,$p’) | ed - file0 >file3

An ancestral has been kept along with a chain of version-to-version difference files made thus:
The shell command reconstructs the latest version.

if diff3 mod1 old mod2 | grep -s ’ˆ====$’
then :
else (diff3 -e mod1 old mod2; echo ’1,$p’) | ed - mod1 >new
fi

Compare two different modified versions with an old file. If no modifications interfere with each
other (grep finds no ==== lines), make a new file incorporating both modifications.

FILES
for -h

SEE ALSO
cmp(1), comm(1), ed(1), idiff(1)

DIAGNOSTICS
Diff yields exit status is 0 for no differences, 1 for some, 2 for trouble.

BUGS
Text lines that consist of a single ‘.’ will defeat options -e, -x, and -3.
Superfluous output may result for files that differ only in insignificant blanks when comparing directories
under option -b.
Option -c is unpardonably bizarre.

115

DIRED(1) General Commands Manual DIRED(1)

NAME
dired - directory editor

SYNOPSIS
dired [option ...] [file]

DESCRIPTION
Dired displays a directory listing like (see ls(1)) and allows you to prowl around the listed entries, delet-
ing, editing, and displaying them. It requires a cursor-addressed terminal identified in environment vari-
able TERM; see term(9) to simulate such terminals in mux(9)

With no file argument, the current directory is listed. With only one file argument, the argument is inter-
preted as a directory and it is listed. With multiple arguments, the arguments are interpreted as filenames.
The options are:

-[sr][nsrw]
Sort the file list by name (default), size, access time, or modification time. Ordering for s is in-
creasing if by name, decreasing otherwise. Ordering is opposite for r.

-wn If n is f, use the full screen; if h, use half the screen (default); if a number, use n lines for the di-
rectory listing, reserving the rest of the screen for quick file display.

The fields of a dired listing are: mode, link count, owner, size, write date and name. A cursor shows the
current entry.

Commands consist of single characters; arguments are prompted for at the bottom of the screen. To get a
complete list, use the help command. Fuller descriptions of less obvious commands are given below.

! Prompt for a shell command. The command is executed with characters in the command are re-
placed by the pathname of the current entry, and characters by the basename.

. Repeat the previous ! shell command, using the current entry to replace or

d Mark the current entry for deletion. Deletion of a directory is recursive.

e If the current entry is a file, edit it with the editor e, or an editor named by the environment vari-
able EDITOR. If it is a directory, invoke dired recursively for that directory.

h
? Display a help file.

m Display the current file with the pager p(1), or another pager named by the environment variable
PAGER.

q Quit this directory level of dired. List the files marked for deletion and request confirmation be-
fore deleting them.

t Type. Display the current file. In two-window mode pause after each screenfull until you type a
carriage return. The display may be interrupted.

FILES
help file

SEE ALSO
ls(1)

DIAGNOSTICS
While dired is preparing a listing it reports ‘Reading’, and types a dot for each 10 files.

BUGS
Long lines and diagnostics can foul up the display.
Needs a command to search for a given file.
The off-line print command is broken.

116

DIS(1) General Commands Manual DIS(1)

NAME
dis - display input as refreshed page on VDU output

SYNOPSIS
dis [-ttimeout] [-crefresh]

DESCRIPTION
Dis looks up the terminal capability database for the characteristics of the device represented by the envi-
ronment variable "TERM". Assuming that the standard input consists of repetitive pages, Dis then uses
cursor addressing to write changed data only on its standard output. Pages are delimited by a form-feed
or by a timeout, if requested.

The timeout is specified by the flag -t followed by a number representing seconds.

If the -c flag is specified, the screen is completely redrawn every refresh updates.

EXAMPLES
(while true; do date; echo ’\f\c’; sleep 10; done)|dis

FILES
/etc/termcap

SEE ALSO
termlib(3), or curses(3).

DIAGNOSTICS
If your terminal doesn’t have cursor addressing.

SHARE 117

DIST (1) General Commands Manual DIST (1)

NAME
dist — distribute files to a remote machine

SYNOPSIS
dist [-nv] [-d hosts] [-[Ff] hostfile] [-D old=new] [-[Xx] command] file ...

dist -q [-v] [systems ...]

dist -r [-v] [-D old=new] [-R rootdir] system [job ...]

DESCRIPTION
Dist distributes files to other systems, where they are installed under the same names. Dist operates by
packing the files with mkdist(1), and queueing the resulting package in a spool directory to be picked up
by the remote systems.

Dist has several forms of use. In the first (default) form, dist packages the named files and queues them
for remote systems. By default, the list of remote systems is taken from /usr/lib/dist/destinations/de-
fault. The -d option allows a list of destination systems to be specified as a single argument (containing
system names separated by spaces). Similarly, the -f option allows a list of systems to be taken from a
file. The -F option is like -f, except it looks in a standard place for the file. Multiple -d, -f, and -F options
may be combined. If any destinations are specified via the command line, the default destinations file is
not read. The -D, -X, and -x options are passed to mkdist. By default, after packaging and queueing the
files for distribution, dist notifies each remote system that the package is available, and the remote system
then dials back and immediately downloads the package. The -n option suppresses this notification.

In the second form, when the -q option is given, dist displays the queue contents on each remote system
named in the command line. If no remote systems are named, dist displays the local queue.

The third form, with the -r option, makes a network call to the named system and attempts to download
and install the named jobs. If no jobs are named, it attempts to download all jobs on the remote system.
The -D and -R options are passed to insdist(1)-r form is rarely used, since the default behavior is for re-
mote systems to automatically dial back when a package is announced.

In all three forms of the command, the -v option enables verbose output.

FILES
Supporting programs.

List of default destination systems.

Destination files for the
-F option.

Spool directory.

Spool subdirectories.

Log file.

SEE ALSO
mkdist(1)

BUGS
-v should provide more verbose output.
Logging needs improvement.

118

DOCGEN (1) General Commands Manual DOCGEN (1)

NAME
docgen - generate a document from a script

SYNOPSIS
docgen [option ...] [ofile]

DESCRIPTION
Docgen guides interactive preparation of standard documents according to canned scripts and places the
output in ofile. The output typically takes the form of troff(1) input. These options invoke standard
scripts:

-mcs (default) Bell Labs cover sheet; output (by default) may be typeset thus:

-ms documents using the macro package ms(6); output by default) may be typeset thus:

-mm similarly for the MM macro package of System V

Other options are:

-f file take script from file

-v (verbose) print document as it is generated

-d (debug) print information about the script as it is read

The reference tells how to construct scripts.

FILES
scripts

SEE ALSO
troff(1), ms(6), mcs(6)

BUGS
Not all document types are implemented.

119

DOCSUBMIT (1) General Commands Manual DOCSUBMIT (1)

NAME
docsubmit - send document to library

SYNOPSIS
docsubmit [-c cover-file] [-C] [-r ref-file] [-t] [-f copyf] [-d] file ...

DESCRIPTION
Docsubmit sends the full text of a TM, including cover sheet, to the Bell Laboratories library network, for
inclusion in the libraries’ Linus database. The files are those that would be mentioned in a troff com-
mand to print the paper; files included by .so macros or by preprocessors such as pic(1) should not be
mentioned. The options are

-c coverfile
Cover sheet is in a file by itself.

-C Cover sheet is in the document. One of -c or -C must be specified.

-r ref-file
Specify a separate reference file for refer(1) or prefer(1).

-t The single file is tex(1) source; only the base name, without .tex, should be specified.

-fcopyf
Include a copy of copyf in the cpio file. This flag should only be necessary for things like awk
scripts executed inside the paper with .sy commands.

-d Don’t consided include files that can’t be found as fatal errors.

Electronic submission is not a substitute for the official paper submission. For more information contact
your local library or call (201)582-4840.

EXAMPLES
docgen cover-file
eqn cover-file file.1 file.2 | troff | lp
docsubmit -c cover-file file.1 file.2

FILES
SEE ALSO

troff(1), docgen(1)

BUGS
Only documents that may be viewed by any AT&T employee can have their full text made available under
Linus.
Documents with a complicated construction process, such as a shell script or makefile, cannot be handled
directly.

120

DOCTYPE(1) General Commands Manual DOCTYPE(1)

NAME
doctype - guess command line for formatting a document

SYNOPSIS
doctype [option ...] [file]

DESCRIPTION
Doctype guesses and prints on the standard output the command line for printing a document that uses
troff(1), related preprocessors like eqn(1), and the ms(6) and mm macro packages.

Option -n invokes nroff instead of troff. Other options are passed to troff.

EXAMPLES
eval ‘doctype chapter.?‘ | apsend

Typeset files named chapter.0, chapter.1, ...

SEE ALSO
troff(1), eqn(1), tbl(1), refer(1), prefer(1), pic(1), ideal(1), grap(1), ped(9) mcs(6), ms(6), man(6)

BUGS
It’s pretty dumb about guessing the proper macro package.

121

DOUBLE(1) General Commands Manual DOUBLE(1)

NAME
double - double word finder

SYNOPSIS
double [-flags][-ver] [file ...]

DESCRIPTION
Double searches text for consecutive occurrences of words. It skips text contained in tables formatted
with tbl(1) and ignores consecutive occurrences of any single character except a. When double finds two
words in a row, it prints them with the line number of the first one.

Double is one of the programs run under the proofr(1) and wwb(1) commands.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

SEE ALSO
proofr(1), wwb(1), tbl(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

122

DU(1) General Commands Manual DU(1)

NAME
du, df - disk usage

SYNOPSIS
du [-s] [-a] [file ...]

df [-i] [special ...] [file ...]

DESCRIPTION
Du gives the number of Kbytes allocated to data blocks of named files and, recursively, of files in named
directories. If name is missing, is used. The count for a directory includes the counts of the contained
files and directories. The options are

-s Print only the grand total.

-a Print a count for every file in a directory. Normally counts are printed only for contained directo-
ries.

A file which has two (hard) links to it is counted only once. Symbolic links are neither counted nor fol-
lowed.

Df printsthe amount of free space on the file system contained in special, or on the file system in which
the specified file is contained. If no file system is specified, the free space on all of the currently mounted
file systems is printed.

The reported numbers are in Kbytes, independently of the blocksize actually used on the file system. The
option is

-i Report also on free and used inodes.

EXAMPLES
df .

How much space is there where I’m working?

FILES
only for the root device

list of currently mounted file systems

SEE ALSO
quot(8), fstab(5), icheck(8)

BUGS
In the absence of option -a non-directories given as arguments to du are not listed.
If there are too many distinct linked files, du counts the excess files multiply.
Unwritten holes in files count as if real data were present, and indirect blocks are not counted.

123

ECHO(1) General Commands Manual ECHO(1)

NAME
echo, printf - print arguments

SYNOPSIS
echo [-n] [-e] [arg ...]

printf [format [arg...]]

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a newline on the standard output. Op-
tion -n suppresses the newline.

Option -e enables the interpretation of C-style escape codes, \ddd, where d is an octal digit, plus the spe-
cial code which terminates the output.

Echo is useful for producing diagnostics in shell programs and for writing constant data on pipes.

Printf behaves like the library function of the same name; each arg is printed on the standard output ac-
cording to the corresponding %-introduced specification in the format string. The standard C escape se-
quences \n, \r, \t, \b, and \digits are recognized in format. The arg will be treated as a string if the corre-
sponding format is s; otherwise it is evaluated as a C constant, with the following extensions:

A leading plus or minus is allowed.

If the leading character is a single or double quote, the value is the ASCII code of the next charac-
ter.

Otherwise, if the leading character is not a digit, the value is its ASCII code.

The format string is reused as often as necessary to satisfy the arg’s. Any extra format specifications are
evaluated with zero or the null string.

EXAMPLES
echo "can’t open file" $1 1>&2

Send a message to the standard error file.

SEE ALSO
printf(3)

BUGS
Printf has no diagnostics for illegal syntax.

124

ED(1) General Commands Manual ED(1)

NAME
ed, e - text editor

SYNOPSIS
ed [-] [-o] [file]

DESCRIPTION
Ed is the standard text editor; e is another name for it.

If a file argument is given, ed simulates an command (see below) on that file: it is read into ed’s buffer so
that it can be edited. The options are

- Suppress the printing of character counts by and commands and of the confirming by commands.

-o (for output piping) Place on the standard error file all output except writing by commands. If no
file is given, make the remembered file; see the command below.

Ed operates on a ‘buffer’, a copy of the file it is editing; changes made in the buffer have no effect on the
file until a (write) command is given. The copy of the text being edited resides in a temporary file called
the buffer.

Commands to ed have a simple and regular structure: zero or more addresses followed by a single charac-
ter command, possibly followed by parameters to the command. These addresses specify one or more
lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of text to the
buffer. While ed is accepting text, it is said to be in input mode. In this mode, no commands are recog-
nized; all input is merely collected. Input mode is left by typing a period alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular expression specifies a set of strings
of characters. A member of this set of strings is said to be matched by the regular expression. In the fol-
lowing specification for regular expressions the word ‘character’ means any character but newline.

1. Any character except a special character matches itself. Special characters are the regular ex-
pression delimiter plus and sometimes

2. A . matches any character.

3. A followed by any character except a digit, or matches that character.

4. A nonempty string s bracketed [s] (or [ˆs]) matches any character in (or not in) s. In s, has no
special meaning, and may only appear as the first letter. A substring a-b, with a and b in ascend-
ing ASCII order, stands for the inclusive range of ASCII characters.

5. A regular expression of form 1-4 followed by matches a sequence of 0 or more matches of the
regular expression.

6. A regular expression, x, of form 1-8, bracketed \(x \) matches what x matches.

7. A followed by a digit n matches a copy of the string that the bracketed regular expression begin-
ning with the nth matched.

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y matches a
match for x followed by a match for y, with the x match being as long as possible while still per-
mitting a y match.

9. A regular expression of form 1-8, or a null string, preceded by (and/or followed by is constrained
to matches that begin at the left (and/or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in a line.

11. An empty regular expression stands for a copy of the last regular expression encountered.

Regular expressions are used in addresses to specify lines and in one command (see s below) to specify a
portion of a line which is to be replaced. If it is desired to use one of the regular expression metacharac-
ters as an ordinary character, that character may be preceded by ‘\’. This also applies to the character
bounding the regular expression (often and to itself.

To understand addressing in ed it is necessary to know that at any time there is a current line. Generally
speaking, the current line is the last line affected by a command; however, the exact effect on the current

125

ED(1) General Commands Manual ED(1)

line is discussed under the description of the command. Addresses are constructed as follows.

1. The character customarily called ‘dot’, addresses the current line.

2. The character addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ´x addresses the line marked with the name x, which must be a lower-case letter. Lines are
marked with the command described below.

5. A regular expression enclosed in slashes addresses the line found by searching forward from the
current line and stopping at the first line containing a string that matches the regular expression.
If necessary the search wraps around to the beginning of the buffer.

6. A regular expression enclosed in queries addresses the line found by searching backward from
the current line and stopping at the first line containing a string that matches the regular expres-
sion. If necessary the search wraps around to the end of the buffer.

7. An address followed by a plus sign or a minus sign followed by a decimal number specifies that
address plus (resp. minus) the indicated number of lines. The plus sign may be omitted.

8. An address followed by (or followed by a regular expression enclosed in slashes specifies the
first matching line following (or preceding) that address. The search wraps around if necessary.
The may be omitted, so addresses the first line in the buffer with an Enclosing the regular ex-
pression in reverses the search direction.

9. If an address begins with or the addition or subtraction is taken with respect to the current line;
e.g. is understood to mean

10. If an address ends with or then 1 is added (resp. subtracted). As a consequence of this rule and
rule 9, the address refers to the line before the current line. Moreover, trailing and characters
have cumulative effect, so refers to the current line less 2.

11. To maintain compatibility with earlier versions of the editor, the character in addresses is equiva-
lent to

Commands may require zero, one, or two addresses. Commands which require no addresses regard the
presence of an address as an error. Commands which accept one or two addresses assume default ad-
dresses when insufficient are given. If more addresses are given than such a command requires, the last
one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma They may also be separated by a semi-
colon In this case the current line is set to the previous address before the next address is interpreted. If no
address precedes a comma or semicolon, line 1 is assumed; if no address follows, the last line of the buffer
is assumed. The second address of any two-address sequence must correspond to a line following the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The parentheses are
not part of the address, but are used to show that the given addresses are the default. ‘Dot’ means the cur-
rent line.

(.) a
<text>
. Read the given text and append it after the addressed line. Dot is left on the last line input, if

there were any, otherwise at the addressed line. Address is legal for this command; text is placed
at the beginning of the buffer.

(.,.) b[+-][pagesize][pln]
Browse. Print a ‘page’, normally 20 lines. The optional (default) or specifies whether the next or
previous page is to be printed. The optional pagesize is the number of lines in a page. The op-
tional or causes printing in the specified format, initially Pagesize and format are remembered
between commands. Dot is left at the last line displayed.

(.,.) c

126

ED(1) General Commands Manual ED(1)

<text>
.

Change. Delete the addressed lines, then accept input text to replace these lines. Dot is left at
the last line input; if there were none, it is left at the line preceding the deleted lines.

(.,.) d Delete the addressed lines from the buffer. Dot is set to the line following the last line deleted, or
to the last line of the buffer if the deleted lines had no successor.

e filename
Edit. Delete the entire contents of the buffer; then read the named file into the buffer. Dot is set
to the last line of the buffer. The number of characters read is typed. The file name is remem-
bered for possible use in later or commands. If filename is missing, the remembered name is
used.

E filename
Unconditional see ‘DIAGNOSTICS’ below.

f filename
Print the currently remembered file name. If filename is given, the currently remembered file
name is first changed to filename.

(1,$) g/regular expression/command list
(1,$) g/regular expression/
(1,$) g/regular expression

Global. First mark every line which matches the given regular expression. Then for every such
line, execute the command list with dot initially set to that line. A single command or the first of
multiple commands appears on the same line with the global command. All lines of a multi-line
list except the last line must end with The ‘.’ terminating input mode for an command may be
omitted if it would be on the last line of the command list. The commands and are not permitted
in the command list. Any character other than space or newline may be used instead of to de-
limit the regular expression. The second and third forms mean g/regular expression/p.

(.) i
<text>
. Insert the given text before the addressed line. Dot is left at the last line input, or, if there were

none, at the line before the addressed line. This command differs from the a command only in
the placement of the text.

(.,.+1) j
Join the addressed lines into a single line; intermediate newlines are deleted. Dot is left at the re-
sulting line.

(.) kx Mark the addressed line with name x, which must be a lower-case letter. The address form ´x
then addresses this line.

(.,.) l List. Print the addressed lines in an unambiguous way: a tab is printed as a backspace as back-
slashes as and non-printing characters are printed as a backslash followed by three octal digits.
Long lines are folded, with the second and subsequent sub-lines indented one tab stop. If the last
character in the line is a blank, it is followed by An may be appended, like to any non-I/O com-
mand.

(.,.) ma
Move. Reposition the addressed lines after the line addressed by a. Dot is left at the last moved
line.

(.,.) n Number. Perform prefixing each line with its line number and a tab. An may be appended, like
to any non-I/O command.

(.,.) p Print the addressed lines. Dot is left at the last line printed. A appended to any non-I/O com-
mand causes the then current line to be printed after the command is executed.

(.,.) P This command is a synonym for

127

ED(1) General Commands Manual ED(1)

q Quit the editor. No automatic write of a file is done.

Q Quit unconditionally; see ‘DIAGNOSTICS’ below.

($) r filename
Read in the given file after the addressed line. If no filename is given, the remembered file name
is used. The file name is remembered if there were no remembered file name already. If the read
is successful, the number of characters read is typed. Dot is left at the last line read in from the
file.

(.,.) sn/regular expression/replacement/
(.,.) sn/regular expression/replacement/g
(.,.) sn/regular expression/replacement

Substitute. Search each addressed line for an occurrence of the specified regular expression. On
each line in which n matches are found (n defaults to 1 if missing), the nth matched string is re-
placed by the replacement specified. If the global replacement indicator appears after the com-
mand, all subsequent matches on the line are also replaced. It is an error for the substitution to
fail on all addressed lines. Any character other than space or newline may be used instead of to
delimit the regular expression and the replacement. Dot is left at the last line substituted. The
third form means sn/regular expression/replacement/p. The second may be omitted if the re-
placement is empty.

An ampersand appearing in the replacement is replaced by the string matching the regular ex-
pression. The characters \n, where n is a digit, are replaced by the text matched by the n-th regu-
lar subexpression enclosed between and When nested, parenthesized subexpressions are present,
n is determined by counting occurrences of starting from the left.

A literal or newline may be included in a replacement by prefixing it with

(.,.) t a
Transfer. Copy the addressed lines after the line addressed by a. Dot is left at the last line of the
copy.

(.,.) u Undo. Restore the preceding contents of the current line, which must be the last line in which a
substitution was made.

(1,$) v/regular expression/command list
(1,$) v/regular expression/
(1,$) v/regular expression

This command is the same as the global command except that the command list is executed with
dot initially set to every line except those matching the regular expression.

(1,$) w filename
Write the addressed lines onto the given file. If the file does not exist, it is created with mode
666 (readable and writable by everyone). If no filename is given, the remembered file name, if
any, is used. The file name is remembered if there were no remembered file name already. Dot
is unchanged. If the write is successful, the number of characters written is printed.

(1,$) W filename
Perform but append to, instead of overwriting, any existing file contents.

($) = Print the line number of the addressed line. Dot is unchanged.

!shell command
Send the remainder of the line after the to sh(1) to be interpreted as a command. Dot is un-
changed.

(.+1) <newline>
An address without a command is taken as a command. A terminal may be omitted from the ad-
dress. A blank line alone is equivalent to it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent, ed prints a and returns to its command level.

When reading a file, ed discards ASCII NUL characters and all characters after the last newline. It refuses
to read files containing non-ASCII characters.

128

ED(1) General Commands Manual ED(1)

FILES
work is saved here if terminal hangs up

SEE ALSO
sam(9) sed(1), vi(1)

DIAGNOSTICS
?name for inaccessible file; for temporary file overflow; for errors in commands or other overflows.

To protect against throwing away valuable work, a or command is considered to be in error if the buffer
has been modified since the last or command.

129

EFL(1) General Commands Manual EFL(1)

NAME
efl - extended Fortran language preprocessor

SYNOPSIS
efl [option ...] [filename ...]

DESCRIPTION
Efl compiles a program written in the EFL language into clean Fortran. Efl provides the same control
flow constructs as does Ratfor (1), which are essentially identical to those in C:

statement grouping with braces;
decision-making with if, if-else, and switch-case; while, for, Fortran do, repeat, and repeat...until
loops; multi-level break and next. In addition, EFL has C-like data structures, and more uniform
and convenient input/output syntax, generic functions. EFL also provides some syntactic sugar
to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation statement label names (not just numbers),

comments:
this is a comment

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return (expression)
returns expression to caller from function

define:
define name replacement

include:
include filename

The Efl command option -w suppresses warning messages. The option -C causes comments to be copied
through to the Fortran output (default); -# prevents comments from being copied through. If a command
argument contains an embedded equal sign, that argument is treated as if it had appeared in an option
statement at the beginning of the program. Efl is best used with f77(1).

SEE ALSO
f77(1), ratfor(1).
S. I. Feldman, The Programming Language EFL, Bell Labs Computing Science Technical Report #78.

130

=(1) General Commands Manual =(1)

NAME
=, ==, =p, ==p - redo previous shell command

SYNOPSIS
= [pattern] [substitution ...]
== [pattern] [substitution ...]
=p [pattern] [substitution ...]
==p [pattern] [substitution ...]

DESCRIPTION
The = command provides a simple history mechanism for the shell, sh(1). The environment variable
HISTORY, if set, names a file to which the shell appends the text of each command before execution. =
searches the history file for the most recent command that matches the pattern, performs the substitutions,
and executes it. The pattern must agree with an initial substring of the original command except for vari-
ations in spacing. If no pattern is specified, the most recent command is selected. If no substitution is
specified, the command is executed without modification.

Substitutions have the form

old=new

specifying that the string old in the command is to be replaced by new. Substitutions are made in order
and operate on the first match.

The == command is identical to =, but allows the substituted command to be edited before running. The
command is printed, and a modification request is read from the terminal. Generally each character in the
request specifies how to modify the character immediately above it:

Delete the character.
% Replace the character with a space.
ˆ Insert the rest of the request line before the character.
$ Replace the characters in the command from this position on with the rest of the request line.
space or tab

Leave the character(s) unchanged.
= Must be the first and only edit character. Back up to the next most recent match in the history file

and try again.
any other

This character replaces the one above it.

If the request line is longer than the command, the overhang is appended to the command.

=p and ==p behave like = and ==, except that they print the command on their standard output instead of
executing it.

131

EQN (1) General Commands Manual EQN (1)

NAME
eqn, neqn, checkeq - typeset mathematics

SYNOPSIS
eqn [option ...] [file ...]

neqn [option ...] [file ...]

checkeq [file ...]

DESCRIPTION
Eqn is a troff(1) preprocessor for typesetting mathematics on a phototypesetter, neqn on terminals. Usage
is almost always

eqn file ... | troff
neqn file ... | nroff

If no files are specified, these programs read from the standard input. Eqn prepares output for the typeset-
ter named in the -Tdest option (Mergenthaler Linotron 202 default, see troff(1)). When run with other
preprocessor filters, eqn usually comes last.

A line beginning with .EQ marks the start of an equation; the end of an equation is marked by a line be-
ginning with .EN. Neither of these lines is altered, so they may be defined in macro packages to get cen-
tering, numbering, etc. It is also possible to set two characters as ‘delimiters’; text between delimiters is
also eqn input. Delimiters may be set to characters x and y with the option -dxy or (more commonly)
with delim xy between .EQ and .EN. Left and right delimiters may be identical. (They are customarily
taken to be). Delimiters are turned off by All text that is neither between delimiters nor between .EQ
and .EN is passed through untouched.

Checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines, braces, double quotes, tildes or circumflexes.
Braces {} are used for grouping; generally speaking, anywhere a single character like could appear, a
complicated construction enclosed in braces may be used instead. Tilde represents a full space in the out-
put, circumflex half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus makes xi , produces a2
i ,

and gives ex2+y2
.

Fractions are made with over: yields
a

b
.

sqrt makes square roots: results in
1

√ax2 + bx + c
.

The keywords from and to introduce lower and upper limits on arbitrary things:
n→∞
lim

n

0
Σ xi is made with

Left and right brackets, braces, etc., of the right height are made with left and right: produces

x2 +

y2

α

= 1. The right clause is optional. Legal characters after left and right are braces, brackets,

bars, c and f for ceiling and floor, and "" for nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, lpile, cpile, and rpile: produces

a

b

c

. There can be an arbitrary

number of elements in a pile. lpile left-justifies, pile and cpile center, with different vertical spacing, and
rpile right justifies.

Matrices are made with matrix: produces
xi

y2

1

2
. In addition, there is rcol for a right-justified column.

Diacritical marks are made with prime, dot, dotdot, hat, tilde, bar, under, vec, dyad, and under: is
x ′

0 = f (t) + g(t), and is →x = ↔y .

Sizes and font can be changed with prefix operators size n, size ±n, fat, roman, italic, bold, or font n.
Size and fonts can be changed globally in a document by gsize n and gfont n, or by the command-line ar-
guments -sn and -fn.

132

EQN (1) General Commands Manual EQN (1)

Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this may be
changed by the command-line argument -pn.

Successive display arguments can be lined up. Place mark before the desired lineup point in the first
equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define: thing replacement defines a new
token called thing which will be replaced by replacement whenever it appears thereafter. The may be any
character that does not occur in

Keywords like (Σ) (∫) (∞) and shorthands like (≥) (− >), and (≠) are recognized. Greek letters are spelled

out in the desired case, as in or Mathematical words like are made Roman automatically. Troff (1) four-
character escapes like (☞) can be used anywhere. Strings enclosed in double quotes " " are passed
through untouched; this permits keywords to be entered as text, and can be used to communicate with
troff when all else fails.

SEE ALSO
troff(1), tbl(1), ms(6), eqnchar(6), doctype(1)
B. W. Kernighan and L. L. Cherry, ‘Typesetting Mathematics—User’s Guide’, this manual, Volume 2
J. F. Ossanna and B. W. Kernighan, ‘NROFF/TROFF User’s Manual’, ibid.

BUGS
To embolden digits, parens, etc., it is necessary to quote them, as in

133

esterel(1) Esterel esterel(1)

NAME
esterel - Esterel compiler

SYNTAX
esterel [options] [file] ...

DESCRIPTION
The esterel command invokes the various utilities constituting the Esterel language development tools:

strlic The Esterel front-end: receives files containing Esterel source (.strl suffix) producing intermedi-
ate code (.ic);

iclc The Esterel binder, performing the expansion of the copymodule statements; it receives several
.ic (or .lc) files and builds an unique linked code file (.lc);

lcoc The Esterel compiler, which produces from an unique .lc file, Esterel automata in portable format
(.oc);

ocl A generic name for Esterel code generators, translating portable automata (.oc) into a program
written in one of the supported target languages (see the -L option below).

If no files are given to the esterel command, the standard input is used. Any suffix in the list .strl, .ic, .lc,
or .oc is recognized in the files names: the esterel command will arrange for only the appropriate utilities
to be called.

OPTIONS
The following option is for the esterel command itself:

-n Tell what is to be done, but don’t do it.

The option

-version display the version number of the esterel command, as well as the ones of the various utilities in-
cluding all known code generators.

The following options are passed to all four utilities:

-v Verbose mode: the esterel command and the various utilities tell what they are doing;

-w Suppresse all warning messages;

-W Display all warning messages (the default is to display only "selected" warnings);

-stat Display various time statistics;

-memstat
Display statistics on dynamically allocated memory.

The three following options enable to stop the compilation process at some intermediate stage:

-ic Just use strlic to convert .strl files into .ic files (with the same base name), ignoring all other files;

-lc Stop after running the binder (iclc);

-oc Stop after running the compiler (lcoc).

For the -lc and -oc options, one can specify the output file name(s) with the -B and -D options.

-B name name denotes the output files default base name. The appropriate suffix is added automatically
(and possibly a working directory name --see the following option). If this option is omitted and
if the esterel command is invoked with only one file name, name defaults to the base name of this
unique file with the appropriate suffix; otherwise it defaults to the base name esterel, still fol-
lowed by the appropriate suffix.

-D directory
Specify a directory where the files produced by the command will be placed. The default is the
current directory. The -B and -D options and the corresponding default rules apply to the files
produced by the -K (except -Kic) and -L options below.

The esterel command removes all the intermediate files it has created, unless one of the following options
is given:

INRIA-CMA local 134

esterel(1) Esterel esterel(1)

-Kic Keep all the .ic files (their names being the original ones, with the suffix .strl replaced by .ic);

-Klc Keep the (unique) .lc file;

-Koc Keep the (unique) .oc file;

-K Keep all the intermediate files.

The binder iclc recognizes some specific options:

-Rs Trace signal captures and renaming;

-Rc Trace constant captures and renaming;

-R Trace both signal and constant captures and renaming.

The compiler lcoc recognizes also some specific options:

-size Display the final size (states and bytes) of the generated automata;

-show Display dynamically the number of states generated so far.

The code generators (ocl) recognize an unique option:

-L[language][:specific_options]
Set the target language: at this time only c, lelisp, tex, plm, auto, and debug are known; it is
likely that other languages be added. The code generators have a name of the form oclanguage.
If the -L option or the language are omitted, the default is c. The string specific_options allows
to transmit language dependent options to a given code generator (see ocl(1)).

There can be as many -L options as needed.

Finally, there is a particular option to do as much as specified (by the stop options) but producing nothing.

-s Perform all the compilation process, as specified by the other options, but produce nothing.

EXAMPLES
The simple command

esterel foo.strl

performs a full Esterel compilation, leaving the produced automaton, in C language form, in the file foo.c.

To produce debug format while keeping the generated automaton in portable format, try

esterel -Koc -Ldebug foo.strl

A little more complex, the following command

esterel -Kic -Koc -Bautom -Llisp f1.strl f2.ic f3.lc

will pass f1.strl through strlic and keep the f1.ic file; then it will pass f1.ic, f2.ic, and f3.lc through iclc
and lcoc, producing the file autom.oc (the intermediate files are discarded); finally, this last file will be
converted into the LeLisp file autom.ll by oclelisp.

The command

esterel -K -Bfoo -D/a/b f1.strl f2.strl f3.ic f4.oc

produces the following files: /a/b/f1.ic, /a/b/f2.ic, /a/b/foo.lc, /a/b/foo.oc, and /a/b/foo.c.

To illustrate the -s option, note that

esterel -s foo.strl

performs a full compilation upto C code generation, but the C file is not produced; similarly,

esterel -ic -s foo.strl

INRIA-CMA local 135

esterel(1) Esterel esterel(1)

will only execute the front-end strlic without producing any .ic file.

Finally,

esterel -Lc -Lauto:"-signal EV1,EV2" foo.strl

performs a full compilation of the Esterel source file foo.strl to auto format (foo.auto), passing the argu-
ments -signal EV1,EV2 untouched to the corresponding code generator (here ocauto).

DIAGNOSTICS
The command returns with exit code 0 if (and only if) no error was detected by the various utilities.

Various error or warning messages indicate incompatible or redundant options, or error conditions related
to file handling.

BUGS
The command checks whether it generates a file which is already present in its argument list, and if so,
stops with an error, to avoid clobbering the file.

The corresponding test is based on the name of files as given by the user and is rather rustic. For instance,
the following erroneous condition (or any similar one) is not detected

esterel -K -Bfoo -D.. foo.strl .././foo.lc

and will certainly result in loosing the original content of ../foo.lc (use the -n option to see what will oc-
cur).

FILES
In the following, $lib designates the default library directory for Esterel utilities (usually /usr/local/lib/es-
terel). This default path can be modified by the installer of the Esterel system, or by any user setting the
environment variable ESTERELLIB.

$lib/strlic Esterel front-end
$lib/iclc Esterel binder
$lib/lcoc Esterel compiler (automaton generator)
$lib/oc∗ Esterel code generators
∗ .strl Esterel source files
∗ .ic Intermediate code files
∗ .lc Linked intermediate code file
∗ .oc Portable automata file
esterel.∗ Default names for keeping intermediate files

SEE ALSO
strlic(l), iclc(l), lcoc(l), ocl(l)
Esterel V3 Reference Manual
Esterel V3 System Manuals

IDENTIFICATION
Author: Jean-Paul Rigault, Ecole des Mines de Paris, CMA
$Revision: 1.1 $
$Date: 88/04/07 13:39:34 $

INRIA-CMA local 136

EXPR(1) General Commands Manual EXPR(1)

NAME
expr - integer and string-match expression evaluator for shell scripts

SYNOPSIS
expr arg ...

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the standard output.
Each token of the expression is a separate argument.

The operators and keywords are listed below in order of increasing precedence, with equal precedence op-
erators grouped.

expr1 | expr2
Value is the value of expr1 if that is neither empty nor 0, otherwise the value of expr2.

expr1 & expr2
Value is the value of expr1 if neither expr1 nor expr2 is empty or 0, otherwise 0.

expr1 relop expr2
Relop is one of Value is 1 if the indicated comparison is true, 0 if false. The comparison is nu-
meric if both expr are integers, otherwise lexicographic.

expr1 + expr2
expr1 - expr2

Value is the sum or difference of the (integer) values of expr1 and expr2.

expr1 ∗ expr2
expr1 / expr2
expr1 % expr2

Value is the product, quotient, or remainder of the (integer) values of expr1 and expr2.

expr : regexp
Match the string value of expr with the regular expression regexp; regular expression syntax is the
same as in ed(1), but matches are anchored at the left. On success a subexpression \(... \), if
present in regexp, picks out a return value from the matched string. Otherwise, the matching oper-
ator yields the number of characters matched (0 on failure).

(expr)
Parentheses for grouping.

arg Value is the string arg.

EXAMPLES
a=‘expr $a + 1‘

Add 1 to shell variable a.

expr $a : ’.∗/\(.∗ \)’ ’|’ $a
Same as

SEE ALSO
sh(1), test(1)

DIAGNOSTICS
Expr returns exit code 0 if the expression is neither null nor 0, 1 if the expression is null or 0, 2 for invalid
expressions.

137

F2C(1) General Commands Manual F2C(1)

NAME
f2c − Convert Fortran 77 to C or C++

SYNOPSIS
f2c [option ...] file ...

DESCRIPTION
F2c converts Fortran 77 source code in files with names ending in .f or .F to C (or C++) source files in
the current directory, with .c substituted for the final .f or .F. If no Fortran files are named, f2c reads
Fortran from standard input and writes C on standard output. File names that end with .p or .P are taken
to be prototype files, as produced by option -P, and are read first.

The following options have the same meaning as in f77(1).

-C Compile code to check that subscripts are within declared array bounds.

-I2 Render INTEGER and LOGICAL as short, INTEGER∗ 4 as long int. Assume the default libF77
and libI77: allow only INTEGER∗ 4 (and no LOGICAL) variables in INQUIREs. Option -I4
confirms the default rendering of INTEGER as long int.

-onetrip
Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops are not per-
formed at all if the upper limit is smaller than the lower limit.)

-U Honor the case of variable and external names. Fortran keywords must be in lower case.

-u Make the default type of a variable ‘undefined’ rather than using the default Fortran rules.

-w Suppress all warning messages. If the option is -w66, only Fortran 66 compatibility warnings
are suppressed.

The following options are peculiar to f2c.

-A Produce ANSI C. Default is old-style C.

-a Make local variables automatic rather than static unless they appear in a DATA, EQUIVALENCE,
NAMELIST, or SAVE statement.

-C++ Output C++ code.

-c Include original Fortran source as comments.

-E Declare uninitialized COMMON to be Extern (overridably defined in f2c.h as extern).

-ec Place uninitialized COMMON blocks in separate files: COMMON /ABC/ appears in file
abc_com.c. Option -e1c bundles the separate files into the output file, with comments that give
an unbundling sed(1) script.

-ext Complain about f77(1) extensions.

-g Include original Fortran line numbers as comments.

-h Try to align character strings on word (or, if the option is -hd, on double-word) boundaries.

-i2 Similar to -I2, but assume a modified libF77 and libI77 (compiled with -Df2c_i2), so INTEGER
and LOGICAL variables may be assigned by INQUIRE and array lengths are stored in short ints.

-kr Use temporary values to enforce Fortran expression evaluation where K&R (first edition) paren-
thesization rules allow rearrangement. If the option is -krd, use double precision temporaries
even for single-precision operands.

-P Write a file.P of ANSI (or C++) prototypes for procedures defined in each input file.f or file.F.
When reading Fortran from standard input, write prototypes at the beginning of standard output.
Implies -A unless option -C++ is present. Option -Ps implies -P , and gives exit status 4 if
rerunning f2c may change prototypes or declarations.

-p Supply preprocessor definitions to make common-block members look like local variables.

-R Do not promote REAL functions and operations to DOUBLE PRECISION. Option -!R confirms
the default, which imitates f77 .

138

F2C(1) General Commands Manual F2C(1)

-r Cast values of REAL functions (including intrinsics) to REAL.

-r8 Promote REAL to DOUBLE PRECISION, COMPLEX to DOUBLE COMPLEX.

-Tdir Put temporary files in directory dir.

-w8 Suppress warnings when COMMON or EQUIVALENCE forces odd-word alignment of doubles.

-Wn Assume n characters/word (default 4) when initializing numeric variables with character data.

-z Do not implicitly recognize DOUBLE COMPLEX.

-!bs Do not recognize backslash escapes (\", \’, \0, \\, \b, \f, \n, \r, \t, \v) in character strings.

-!c Inhibit C output, but produce -P output.

-!I Reject include statements.

-!it Don’t infer types of untyped EXTERNAL procedures from use as parameters to previously
defined or prototyped procedures.

-!P Do not attempt to infer ANSI or C++ prototypes from usage.

The resulting C invokes the support routines of f77 ; object code should be loaded by f77 or with ld(1) or
cc(1) options -lF77 -lI77 -lm. Calling conventions are those of f77 : see the reference below.

FILES
file.[fF]

input file

∗.c output file

/usr/include/f2c.h
header file

/usr/lib/libF77.a
intrinsic function library

/usr/lib/libI77.a
Fortran I/O library

/lib/libc.a
C library, see section 3

SEE ALSO
S. I. Feldman and P. J. Weinberger, ‘A Portable Fortran 77 Compiler’, UNIX Time Sharing System Pro-
grammer’s Manual, Tenth Edition, Volume 2, AT&T Bell Laboratories, 1990.

DIAGNOSTICS
The diagnostics produced by f2c are intended to be self-explanatory.

BUGS
Floating-point constant expressions are simplified in the floating-point arithmetic of the machine running
f2c, so they are typically accurate to at most 16 or 17 decimal places.
Untypable EXTERNAL functions are declared int.

139

F77(1) General Commands Manual F77(1)

NAME
f77 − Fortran 77 compiler

SYNOPSIS
f77 [option ...] file ...

DESCRIPTION
F77 is a Fortran 77 compiler. It accepts several types of arguments:

Arguments whose names end with .f are taken to be Fortran 77 source programs; they are compiled, and
each object program is left on the file in the current directory whose name is that of the source with .o
substituted for .f.

Arguments whose names end with .r or .e are taken to be Ratfor or EFL source programs, respectively;
these are first transformed by the appropriate preprocessor, then compiled by f77.

In the same way, arguments whose names end with .c or .s are taken to be C or assembly source pro-
grams and are compiled or assembled, producing a .o file.

The following options have the same meaning as in cc(1). See ld(1) for load-time options.

-c Suppress loading and produce .o files for each source file.

-g Have the compiler produce additional symbol table information for sdb(A) or pi(9)

-w Suppress all warning messages. If the option is -w66, only Fortran 66 compatibility warnings
are suppressed.

-p Prepare object files for profiling, see prof(1).

-O Invoke an object-code optimizer.

-S Compile the named programs, and leave the assembler-language output on corresponding files
suffixed .s. (No .o is created.).

-o output
Name the final output file output instead of a.out.

The following options are peculiar to f77 .

-onetrip
Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops are not per-
formed at all if the upper limit is smaller than the lower limit.)

-u Make the default type of a variable ‘undefined’ rather than using the default Fortran rules.

-C Compile code to check that subscripts are within declared array bounds.

-I2 Render INTEGER and LOGICAL as short, INTEGER∗ 4 as long. Allow only INTEGER∗ 4 (and no
LOGICAL) variables in INQUIREs.

-U Honor the case of variable and external names. Fortran keywords must be in lower case.

-F Apply EFL and Ratfor preprocessors to relevant files, put the results in the files with the suffix
changed to .f, but do not compile.

-m Apply the M4 preprocessor to each .r or .e file before transforming it with the Ratfor or EFL
preprocessor.

-Ex Use the string x as an EFL option in processing .e files.

-Rx Use the string x as a Ratfor option in processing .r files.

Other arguments are taken to be either loader option arguments, or F77-compatible object programs, typi-
cally produced by an earlier run, or perhaps libraries of F77-compatible routines. These programs,
together with the results of any compilations specified, are loaded (in the order given) to produce an exe-
cutable program with name a.out.

FILES
file.[fresc]

input file

140

F77(1) General Commands Manual F77(1)

∗.o object file

a.out
loaded output

./fort∗
temporary

/usr/lib/f77pass1
compiler

/lib/f1
pass 2

/lib/c2
optional optimizer

/usr/lib/libF77.a
intrinsic function library

/usr/lib/libI77.a
Fortran I/O library

/lib/libc.a
C library, see section 3

SEE ALSO
prof(1), cc(1), ld(1), efl(A), ratfor(A)
S. I. Feldman and P. J. Weinberger, ‘A Portable Fortran 77 Compiler’, this manual, Volume 2

DIAGNOSTICS
The diagnostics produced by f77 itself are intended to be self-explanatory. Occasional messages may be
produced by the loader.

141

FACTOR(1) General Commands Manual FACTOR(1)

NAME
factor, qfactor, primes − factor a number, generate large primes

SYNOPSIS
factor [number]

qfactor

primes [start [finish]]

DESCRIPTION
Factor prints number and its prime factors, each repeated the proper number of times. The number must
be positive and less than 256 (about 7.2×1016).

If no number is given, factor reads a stream of numbers from the standard input and factors them. It exits
on any input not a positive integer. Maximum running time is proportional to √n.

Qfactor reads one number from the standard input and factors it. It will factor numbers up to about 40
digits. For large numbers it is much faster than factor.

Primes prints the prime numbers ranging from start to finish, where start and finish are positive numbers
less than 256. If finish is missing, primes prints without end; if start is missing, it reads the starting num-
ber from the standard input.

142

FILE(1) General Commands Manual FILE(1)

NAME
file − determine file type

SYNOPSIS
file file ...

file -f names

DESCRIPTION
File performs a series of tests on a set of files in an attempt to classify their contents by language or pur-
pose. The names may be enumerated or contained in the file specified by the -f option.

BUGS
It can make mistakes, for example classifying a file of decimal data, .01, .02, etc. as troff(1) input.

143

FIND(1) General Commands Manual FIND(1)

NAME
find - find files

SYNOPSIS
find pathname ... expression

DESCRIPTION
Find recursively descends the directory hierarchy for each pathname, seeking files that match a boolean
expression, which consists of one or more arguments. It does not follow symbolic links. In the following
descriptions of primary expressions, n is a decimal integer; +n may be written to specify more than n and
-n to specify less.

-name filename
True if the filename argument matches the current file name. Normal shell filename
metacharacters may be used if quoted.

-perm onum
True if the file permission flags exactly match the octal number onum (see chmod(1)). If
onum is prefixed by a minus sign, more mode bits (017777, see stat(2)) become significant
and the modes are compared: (mode&onum)==onum.

-type c True if the type of the file is c, where c is b, c, d, f, or L for block special file, character spe-
cial file, directory, plain file or symbolic link.

-links n True if the file has n links.

-user uname
True if the file belongs to the user uname (login name or numeric userid).

-group gname
True if the file belongs to group gname (group name or numeric groupid).

-size n True if the file is n blocks long (512 bytes per block).

-inum n True if the file has inode number n.

-atime n True if the file has been accessed in n days.

-mtime n True if the file has been modified in n days.

-ctime n True if the inode has been changed in n days.

-exec command
True if the executed command returns a zero value as exit status. The end of the command
must be punctuated by an escaped semicolon. A command argument {} is replaced by the
current pathname.

-ok command
Like -exec except that the generated command is written on the standard output, then the
standard input is read and the command executed only upon response y.

-print Always true; causes the current pathname to be printed.

-newer file
True if the file has been modified more recently than the argument file.

-status n True if lstat (see stat(2)) applied to the file yields error number n; see intro(2). Testing
-status turns off diagnostics that errors normally produce. On ordinary systems a nonzero
error number occurs when a file disappears underfoot or a file system is in trouble.

The following operators, listed in order of decreasing precedence, may be used to combine primary
expressions.

(expression)
Group with parentheses.

! expression
Negation. True if and only if expression is not true.

144

FIND(1) General Commands Manual FIND(1)

expression expression
Conjunction. True if both expressions are true.

expression -o expression
Disjunction. True if either expression is true.

EXAMPLES
find / \(-name a.out -o -name ’∗ .o’ \) -atime +7 -exec rm ’{}’ \;

Remove all files named a.out or ∗.o that have not been accessed for a week.

FILES
/etc/passwd
/etc/group

SEE ALSO
sh(1), test(1), filsys(5)

145

FMT (1) General Commands Manual FMT (1)

NAME
fmt − ultra-simple text formatter

SYNOPSIS
fmt [option ...] [file ...]

DESCRIPTION
Fmt copies the given files (standard input by default) to its standard output, filling and indenting lines.
The options are

-l n Output line length is n, including indent, (default 70).

-i n Indent n spaces (default 0).

Empty lines and initial white space in input lines are preserved. Empty lines are inserted between input
files.

Fmt is idempotent: it leaves already formatted text unchanged.

BUGS
Words longer than 256 characters are split.

146

FTP(1) General Commands Manual FTP(1)

NAME
ftp - internet file transfer program

SYNOPSIS
ftp [option ...] [host]

pftp [option ...] [host]

DESCRIPTION
Ftp transfers files to and from a remote network host computer via the Internet file transfer protocol. To
reach outside Internet sites from v10 machines, prefix the Internet host name with inet!; from System V
machines, use pftp. After attempting to connect to the remote host, if any, ftp enters its command inter-
preter and prompts for instructions. The following commands are recognized:

! [command [args]]
Invoke an interactive shell on the local machine. If there are arguments, the first is taken to be a
command to execute directly, with the rest of the arguments as its arguments.

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef command. Arguments are
passed to the macro unglobbed.

account [passwd]
Supply a supplemental password required by a remote system for access to resources once a
login has been successfully completed. If no argument is included, the user will be prompted for
an account password in a non-echoing input mode.

append local-file [remote-file]
Append a local file to a file on the remote machine. If a remote-file is not specified, the local file
name is used subject to altering ntrans or nmap . File transfer uses the current settings for type,
format, mode, and structure.

ascii Set the file transfer type to network ASCII. This is the default type.

bell Arrange that a bell be sounded after each file transfer command is completed.

binary
Set the file transfer type to support binary image transfer.

bye Terminate the session. An end of file will also terminate the session.

case Toggle remote computer file name case mapping during mget commands. When case is on
(default is off), remote computer file names with all letters in upper case are written in the local
directory with the letters mapped to lower case.

cd remote-directory
Change the working directory on the remote machine to remote-directory.

cdup Change the remote machine working directory to the parent of the current remote machine work-
ing directory.

close Terminate the session. Any defined macros are erased.

cr Toggle carriage return stripping during ascii type file retrieval. Records are denoted by a carriage
return/linefeed sequence during ascii type file transfer. When cr is on (the default), carriage
returns are stripped from this sequence to conform with the UNIX single linefeed record delim-
iter. Records on non-UNIX remote systems may contain single linefeeds; when an ascii type
transfer is made, these linefeeds may be distinguished from a record delimiter only when cr is
off.

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-level]
Toggle debugging or set the debugging level. When debugging is on, ftp prints each command
sent to the remote machine, preceded by the string -->.

4.2 Berkeley Distribution February 23, 1989 147

FTP(1) General Commands Manual FTP(1)

dir [remote-directory] [local-file]
Place in local-file a listing of the contents of remote-directory. If local-file is - or absent send
output to the terminal. If prompt is on, ftp asks for local-file to be confirmed. If no remote-
directory is specified, the current working directory on the remote machine is used.

disconnect
A synonym for close.

form format
Set the file transfer form to format. The default format is file.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local file name is not specified, it
is given the same name it has on the remote machine, subject to altering by case, ntrans, and
nmap settings. The current settings for type, form, mode, and structure are used while transfer-
ring the file.

glob Toggle filename expansion for mdelete, mget, and mput. If globbing is turned off with glob, the
file name arguments are taken literally and not expanded. Globbing for mput is done as in
csh(1). For mdelete and mget, ach remote file name is expanded separately on the remote
machine and the lists are not merged. Expansion of a directory may be different from expansion
of the name of an ordinary file, depending on the foreign operating system and FTP server. It
may be previewed by doing ‘mls remote-files -’. Note: mget and mput are not meant to transfer
entire directory subtrees of files. That can be done by transferring a tar(1) archive of the subtree
(in binary mode).

hash Toggle hash-sign (#) printing for each data block transferred. The size of a data block is 1024
bytes.

help [command]
Print an informative message about the meaning of command . If no argument is given, ftp prints
a list of the known commands.

lcd [directory]
Change the working directory on the local machine. If no directory is specified, the user’s home
directory is used.

ls [remote-directory] [local-file]
List in local-file the contents of a directory on the remote machine. If local-file is - or absent,
the output is sent to the terminal. The form of the list depends on the remote server; most UNIX
systems will produce output from the command ls -l. (See also nlist.) If remote-directory is
not specified, the current working directory is used.

macdef macro-name
Define a macro. Subsequent lines are stored under macro-name; a null line (consecutive newline
characters in a file or carriage returns from the terminal) terminates macro input mode. There is
a limit of 16 macros and 4096 total characters in all defined macros. Macros remain defined until
a close command is executed. The macro processor interprets $ and \ as special characters. A $
followed by a number (or numbers) is replaced by the corresponding argument on the macro
invocation command line. A $ followed by an i signals that macro processor that the executing
macro is to be looped. On the first pass $i is replaced by the first argument on the macro invoca-
tion command line, on the second pass it is replaced by the second argument, and so on. A \ fol-
lowed by any character is replaced by that character. Use \ to prevent special treatment of $.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interactive prompting is on, ftp will
prompt the user to verify that the last argument is indeed the target local file for receiving mdir
output.

4.2 Berkeley Distribution February 23, 1989 148

FTP(1) General Commands Manual FTP(1)

mget remote-files
Expand remote-files on the remote machine and do a get for each file name thus produced. See
glob for details on the filename expansion. Resulting file names will then be processed accord-
ing to case, ntrans, and nmap settings. Files are transferred into the local working directory.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Like nlist, except multiple remote files may be specified, and a local-file must be specified. If
prompt is on, ftp asks to confirm the local-file.

mode [mode-name]
Set the file transfer mode to mode-name. The default mode is stream.

modtime file-name
Show the last modification time of the file on the remote machine.

mput local-files
Expand wild cards in the list of local files given as arguments and do a put for each file in the
resulting list. See glob for details of filename expansion. Resulting file names will then be
processed according to ntrans and nmap settings.

nlist [remote-directory] [local-file]
Like ls, giving only file names.

nmap [inpattern outpattern]
Set or unset the filename mapping mechanism. If no arguments are specified, the filename map-
ping mechanism is unset. If arguments are specified, remote filenames are mapped during mput
commands and put commands issued without a specified remote target filename. If arguments
are specified, local filenames are mapped during mget commands and get commands issued
without a specified local target filename. This command is useful when connecting to a non-
UNIX remote computer with different file naming conventions or practices. The mapping fol-
lows the pattern set by inpattern and outpattern. Inpattern is a template for incoming filenames
(which may have already been processed according to the ntrans and case settings). Variable
templating is accomplished by including the sequences $1, $2, ..., $9 in inpattern. Use \ to
prevent special treatment of $. For example, given inpattern $1.$2 and the remote file name
mydata.data, $1 would have the value mydata, and $2 would have the value data. The
outpattern determines the resulting mapped filename. The sequences $1, $2,, $9 are replaced
by any value resulting from the inpattern template. The sequence $0 is replace by the original
filename. Additionally, the sequence ’[seq1,seq2P]’ is replaced by seq1 if seq1 is not a null
string; otherwise it is replaced by seq2. For example, the command nmap $1.$2.$3
[$1,$2].[$2,file] would yield the output filename myfile.data for input filenames
myfile.data and myfile.data.old, myfile.file or the input filename myfile, and
myfile.myfile for the input filename .myfile. Spaces may be included in outpattern, for
example: nmap $1 "|sed ’s/ ∗ $//’ > $1" .

ntrans [inchars [outchars]]
Set or unset the filename character translation mechanism. If no arguments are specified, the file-
name character translation mechanism is unset. If arguments are specified, characters in remote
filenames are translated during mput commands and put commands issued without a specified
remote target filename. If arguments are specified, characters in local filenames are translated
during mget commands and get commands issued without a specified local target filename. This
command is useful when connecting to a non-UNIX remote computer with different file naming
conventions or practices. Characters in a filename matching a character in inchars are replaced
with the corresponding character in outchars. If the character’s position in inchars is longer than
the length of outchars, the character is deleted from the file name.

open host [port]
Establish a connection to the specified host FTP server. An optional port number may be sup-
plied, in which case, ftp will attempt to contact an FTP server at that port. If the auto-login
option is on (default), ftp will also attempt to automatically log the user in to the FTP server (see

4.2 Berkeley Distribution February 23, 1989 149

FTP(1) General Commands Manual FTP(1)

below).

prompt
Toggle file-by-file prompting fo mget, mput, and mdelete (on by default).

proxy ftp-command
Execute an ftp command on a secondary control connection. This command allows simultaneous
connection to two remote ftp servers for transferring files between the two servers. The first
proxy command should be an open, to establish the secondary control connection. Enter the
command proxy ? to see other commands executable on the secondary connection. The fol-
lowing commands behave differently when prefaced by proxy: open will not define new macros
during the auto-login process, close will not erase existing macro definitions, get and mget trans-
fer files from the host on the primary control connection to the host on the secondary control con-
nection, and put, mput, and append transfer files from the host on the secondary control con-
nection to the host on the primary control connection.

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is not specified, the local file name is used
after processing according to any ntrans or nmap settings. File transfer uses the current settings
for type, format, mode, and structure.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote arg1 arg2 ...
The arguments specified are sent, verbatim, to the remote FTP server.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. If a command-name is specified it is supplied to the
server as well.

remotestatus [file-name]
With no arguments, show status of remote machine. If file-name is specified, show status of file-
name on the remote machine.

rename [from] [to]
Rename the file from on the remote machine, to the file to.

reset Clear reply queue. This command re-synchronizes command/reply sequencing with the remote
ftp server. Resynchronization may be necessary following a violation of the ftp protocol by the
remote server.

rmdir directory-name
Delete a directory on the remote machine.

runique
Toggle storing of files on the local system with unique filenames. If the target of a get or mget
command already exists locally, a .1 is appended to the name. If that name, too, matches
another existing file, a .2 is appended and so on until .99, when the transfer is aborted. Note
that runique will not affect local files generated from a shell command (see below). The default
value is off.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, ftp will attempt to use a PORT command when
establishing a connection for each data transfer. The use of PORT commands can prevent delays
when performing multiple file transfers. If the PORT command fails, ftp will use the default data
port. When the use of PORT commands is disabled, no attempt will be made to use PORT com-
mands for each data transfer. This is useful for certain FTP implementations which ignore PORT
commands but incorrectly indicate they’ve been accepted.

4.2 Berkeley Distribution February 23, 1989 150

FTP(1) General Commands Manual FTP(1)

size file-name
Return size of file-name on the remote machine.

status Show the current status of ftp.

struct [struct-name]
Set the file transfer structure to struct-name. By default stream structure is used.

sunique
Toggle storing of files on remote machine under unique file names. Default value is off.

system
Show the type of operating system running on the remote machine.

tenex Set the file transfer type to that needed to talk to TENEX machines.

trace Toggle packet tracing.

type [type-name]
Set the file transfer type to type-name. If no type is specified, the current type is printed. The
default type is network ASCII.

user user-name [password] [account]
Identify yourself to the remote FTP server. If the password is not specified and the server
requires it, ftp will prompt the user for it (after disabling local echo). If an account field is not
specified, and the FTP server requires it, the user will be prompted for it. If an account field is
specified, an account command will be relayed to the remote server after the login sequence is
completed if the remote server did not require it for logging in. Unless ftp is invoked with
auto-login disabled, this process is done automatically on initial connection to the FTP
server.

verbose
Toggle verbose mode. In verbose mode, all responses from the FTP server are displayed to the
user. In addition, if verbose is on, when a file transfer completes, statistics regarding the effi-
ciency of the transfer are reported. By default, verbose is on.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote " marks.

Aborting a file transfer
The signal processing in the research version of ftp has been stripped out. Aborts will generally close the
connection.

File naming conventions
Files specified as arguments to ftp commands are processed according to the following rules.

1) If the file name - is specified, stdin (for reading) or stdout (for writing) is used.

2) If the first character of the file name is |, the remainder of the argument is interpreted as a shell
command. Ftp reads the standard output of the command, or writes the standard input. If the
shell command includes spaces, it must be quoted with double quotes. A useful example of this
mechanism is: |more.

3) Failing the above checks, if glob is enabled, local file names are expanded according to the rules
used in csh(1); c.f. the glob command. If the ftp command expects a single local file (e.g. put),
only the first filename generated by the globbing operation is used.

4) For mget commands and get commands with unspecified local file names, the local filename is
the remote filename, subject to altering by case, ntrans, or nmap setting. The resulting filename
may then be altered if runique is on.

5) For mput commands and put commands with unspecified remote file names, the remote file-
name is the local filename, subject to altering by ntrans or nmap setting. The resulting filename
may then be altered by the remote server if sunique is on.

4.2 Berkeley Distribution February 23, 1989 151

FTP(1) General Commands Manual FTP(1)

File transfer parameters
The FTP specification specifies many parameters which may affect a file transfer. The type may be one of
ascii, image (binary), ebcdic, and local (for PDP-10’s and PDP-20’s mostly). Ftp supports the
ascii and image types of file transfer, plus local byte size 8 for tenex mode transfers.

Ftp supports only the default values for the remaining file transfer parameters: mode, form, and struct.

Options
Options may be specified at the command line, or to the command interpreter.

-v Verbose. Show all responses from the remote server, as well as report on data transfer statistics.

-n Do not attempt auto-login upon initial connection. If auto-login is enabled, ftp will check
the .netrc (see below) file in the user’s home directory for an entry describing an account on
the remote machine. If no entry exists, ftp will prompt for the remote machine login name
(default is the user identity on the local machine), and, if necessary, prompt for a password and
an account with which to login.

-i Do not prompt during multiple file transfers.

-d Enable debugging.

-g Disables file name globbing.

The .netrc file
The .netrc file contains login and initialization information used by the auto-login process. It resides in
the user’s home directory. The following tokens are recognized; they may be separated by spaces, tabs, or
new-lines:

machine name
Identify a remote machine name. The auto-login process searches .netrc for a machine token
that matches the remote machine specified on the ftp command line or as an open command
argument. Once a match is made, subsequent tokens are processed, until end of file is reached or
another machine or a default token is encountered.

default
This is the same as machine name except that default matches any name. There can be only one
default token, and it must be after all machine tokens. This is normally used as:

default login anonymous password user site

thereby giving the user automatic anonymous ftp login to machines not specified in .netrc.

login name
Identify a user on the remote machine. If this token is present, the auto-login process will initiate
a login using the specified name.

password string
Supply a password. If this token is present, the auto-login process will supply the specified
string if the remote server requires a password as part of the login process. If this token is
present in .netrc for any user other than anonymous, and .netrc is readable by nonown-
ers, ftp will abort auto-login.

account string
Supply an additional account password. If this token is present, auto-login supplies the string
when the remote server demands an additional account password; otherwise auto-login initiates
an ACCT command.

macdef name
Define a macro in the style of macdef. If a macro named init is defined, it is automatically exe-
cuted as the last step in auto-login.

SEE ALSO
ftpd(8)

BUGS
Remote servers may not support all features documented here.
Interrupts cause ftp to exit.

4.2 Berkeley Distribution February 23, 1989 152

GAMES(1) General Commands Manual GAMES(1)

NAME
games, demo - some playthings

SYNOPSIS
/usr/jerq/bin/demo [game]

Labyrinth games
adventure
zork
rogue
wump

Card games
fish
canfield
bridge [arg ...]
mille

Board games
back

Word games
hangman [-a]
word_clout
ana [n]
festoon length percent

System games
imp
tso

War games
mars [-dfhmp] [-cqsvalue] file ...
ogre [type]
warp

Games of speed
atc
snake
worm

Educational games
quiz [-i file] [-t] [question answer]
arithmetic [+-x/] [range]

Creative games
/usr/jerq/bin/twid
banner

Sayings
fortune [file]
doctor
say [N]

Coding games
bcd text
ppt
morse
/usr/bin/number

Out-of-layer games
/usr/jerq/bin/pen
/usr/jerq/bin/crabs [-i] \

[-s gracetime] [-v speed] [n]

153

GAMES(1) General Commands Manual GAMES(1)

DESCRIPTION
Game programs exist sporadically on various machines. Manuals for many of them may be obtained by
using man(1). For example, to see manual pages for atc and twid, type man atc twid. Unless shown oth-
erwise, games live in which may be put in your shell PATH to reach them more conveniently. Some need
a cursor-addressed terminal; see the appropriate manual pages and term(9)

Demo and other games found in need a Teletype 5620 terminal running under mux(9) Demo comprises
many games, which are listed when it is invoked without an argument. Experiment with the mouse to find
out they work. Some unobvious interactions are these:

Swar is for two players, one using asdwx on the keyboard, the other 12350 on the keypad.
Pacman is controlled by hjkl keys as in vi(1).

Here is a list of some demo games.

Watch the time
clock

War games
swar

Games of speed
gebam
pengo
centipede
asteroids
pacman

Educational games
maxwell

Out-of-layer games
tracks
pogo
magnet

Animation
EWD
road
juggle
ball
fence

Movies
horse
dodec
explode
arno

Patterns
bounce
moire
fireworks
rose
disc
lunch

154

GCC(1) General Commands Manual GCC(1)

NAME
gcc - GNU project C Compiler

SYNOPSIS
gcc [option] ... file ...

DESCRIPTION
The GNU C compiler uses a command syntax much like the Unix C compiler. The gcc program accepts
options and file names as operands. Multiple single-letter options may not be grouped: ‘-dr’ is very dif-
ferent from ‘-d -r’. When you invoke GNU CC it normally does preprocessing, compilation, assembly
and linking. File names which end in ‘.c’ are taken as C source to be preprocessed and compiled; compiler
output files plus any input files with names ending in ‘.s’ are assembled; then the resulting object files,
plus any other input files, are linked together to produce an executable. Command options allow you to
stop this process at an intermediate stage. For example, the ‘-c’ option says not to run the linker. Then
the output consists of object files output by the assembler. Other command options are passed on to one
stage. Some options control the preprocessor and others the compiler itself.

OPTIONS
Here are the options to control the overall compilation process, including those that say whether to link,
whether to assemble, and so on.

-o file
Place linker output in file file. This applies regardless to whatever sort of output is being pro-
duced, whether it be an executable file, an object file, an assembler file or preprocessed C code.
If ‘-o’ is not specified, the default is to put an executable file in ‘a.out’, the object file ‘source.c’
in ‘source.o’, an assembler file in ‘source.s’, and preprocessed C on standard output.

-c Compile or assemble the source files, but do not link. Produce object files with names made by
replacing ‘.c’ or ‘.s’ with ‘.o’ at the end of the input file names. Do nothing at all for object files
specified as input.

-S Compile into assembler code but do not assemble. The assembler output file name is made by
replacing ‘.c’ with ‘.s’ at the end of the input file name. Do nothing at all for assembler source
files or object files specified as input.

-E Run only the C preprocessor. Preprocess all the C source files specified and output the results to
standard output.

-v Compiler driver program prints the commands it executes as it runs the preprocessor, compiler
proper, assembler and linker. Some of these are directed to print their own version numbers.

-Bprefix
Compiler driver program tries prefix as a prefix for each program it tries to run. These programs
are ‘cpp’, ‘cc1’, ‘as’ and ‘ld’. For each subprogram to be run, the compiler driver first tries the
‘-B’ prefix, if any. If that name is not found, or if ‘-B’ was not specified, the driver tries two
standard prefixes, which are ‘/usr/lib/gcc-’ and ‘/usr/local/lib/gcc-’. If neither of those results in
a file name that is found, the unmodified program name is searched for using the directories spec-
ified in your ‘PATH’ environment variable. The run-time support file ‘gnulib’ is also searched
for using the ‘-B’ prefix, if needed. If it is not found there, the two standard prefixes above are
tried, and that is all. The file is left out of the link if it is not found by those means. Most of the
time, on most machines, you can do without it.

These options control the C preprocessor, which is run on each C source file before actual compilation. If
you use the ‘-E’ option, nothing is done except C preprocessing. Some of these options make sense only
together with ‘-E’ because they request preprocessor output that is not suitable for actual compilation.

-C Tell the preprocessor not to discard comments. Used with the ‘-E’ option.

-Idir Search directory dir for include files.

-I- Any directories specified with ‘-I’ options before the ‘-I- ’ option are searched only for the case
of ‘#include "file"’; they are not searched for ‘#include <file>’. If additional directories are
specified with ‘-I’ options after the ‘-I- ’, these directories are searched for all ’#include’ direc-
tives. (Ordinally all ’-I’ directories are used this way.) In addition, the ‘-I- ’ option inhibits the
use of the current directory as the first search directory for ‘#include "file"’. Therefore, the

Version 1.22 17 May 1988 155

GCC(1) General Commands Manual GCC(1)

current directory is searched only if it is requested explicitly with ‘-I.’. Specifying both ‘-I-’
and ‘-I.’ allows you to control precisely which directories are searched before the current one
and which are searched after.

-nostdinc
Do not search the standard system directories for header files. Only the directories you have
specified with ‘-I’ options (and the current directory, if appropriate) are searched. Between
‘-nostdinc’ and ‘-I-’, you can eliminate all directories from the search path except those you
specify.

-M Tell the preprocessor to output a rule suitable for make describing the dependencies of each
source file. For each source file, the preprocessor outputs one make-rule whose target is the ob-
ject file name for that source file and whose dependencies are all the files ‘#include’d in it. This
rule may be a single line or may be continued ‘\’-newline if it is long.‘-M’ implies ‘-E’.

-MM Like ‘-M’ but the output mentions only the user-header files included with ‘#include "file"’.
System header files included with ‘#include <file>’ are omitted.‘-MM’ implies ‘-E’.

-Dmacro
Define macro macro with the empty string as its definition.

-Dmacro=defn
Define macro macro as defn.

-Umacro
Undefine macro macro.

-T Support ANSI C trigraphs. You don’t want to know about this brain-damage. The ‘-ansi’ op-
tion also has this effect.

These options control the details of C compilation itself.

-ansi Support all ANSI standard C programs. This turns off certain features of GNU C that are incom-
patible with ANSI C, such as the asm, inline and typeof keywords, and predefined macros such
as unix and vax that identify the type of system you are using. It also enables the undesirable
and rarely used ANSI trigraph feature. The ‘-ansi’ option does not cause non-ANSI programs to
be rejected gratuitously. For that, ‘-pedantic’ is required in addition to ‘-ansi’. The macro
__STRICT_ANSI__ is predefined when the ‘-ansi’ option is used. Some header files may no-
tice this macro and refrain from declaring certain functions or defining certain macros that the
ANSI standard doesn’t call for; this is to avoid interfering with any programs that might use
these names for other things.

-traditional
Attempt to support some aspects of traditional C compilers. Specifically:
∗ All extern declarations take effect globally even if they are written inside of a function defini-
tion. This includes implicit declarations of functions.
∗ The keywords typeof, inline, signed, const and volatile are not recognized.
∗ Comparisons between pointers and integers are always allowed.
∗ Integer types unsigned short and unsigned char promote to unsigned int.
∗ In the preprocessor, comments convert to nothing at all, rather than to a space. This allows tra-
ditional token concatenation.
∗ In the preprocessor, single and double quote characters are ignored when scanning macro defi-
nitions, so that macro arguments can be replaced even within a string or character constant.
Quote characters are also ignored when skipping text inside a failing conditional directive.

-pedantic
Issue all the warnings demanded by strict ANSI standard C; reject all programs that use forbid-
den extensions. Valid ANSI standard C programs should compile properly with or without this
option (though a rare few will require ‘-ansi’. However, without this option, certain GNU exten-
sions and traditional C features are supported as well. With this option, they are rejected. There
is no reason to use this option; it exists only to satisfy pedants.

Version 1.22 17 May 1988 156

GCC(1) General Commands Manual GCC(1)

-O Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a
large function. Without ‘-O’, the compiler’s goal is to reduce the cost of compilation and to
make debugging produce the expected results. Statements are independent: if you stop the pro-
gram with a breakpoint between statements, you can then assign a new value to any variable or
change the program counter to any other statement in the function and get exactly the results you
would expect from the source code. Without ‘-O’, only variables declared register are allocated
in registers. The resulting compiled code is a little worse than produced by PCC without ‘-O’.
With ‘-O’, the compiler tries to reduce code size and execution time. Some of the ‘-f’ options
described below turn specific kinds of optimization on or off.

-g Produce debugging information in DBX format. Unlike most other C compilers, GNU CC al-
lows you to use ‘-g’ with ‘-O’. The shortcuts taken by optimized code may occasionally pro-
duce surprising results: some variables you declared may not exist at all; flow of control may
briefly move where you did not expect it; some statements may not be executed because they
compute constant results or their values were already at hand; some statements may execute in
different places because they were moved out of loops. Nevertheless it proves possible to debug
optimized output. This makes it reasonable to use the optimizer for programs that might have
bugs.

-gg Produce debugging information in GDB(GNU Debugger)’s own format. This requires the GNU
assembler and linker in order to work.

-w Inhibit all warning messages.

-W Print extra warning messages for these events:
∗ An automatic variable is used without first being initialized. These warnings are possible only
in optimizing compilation, because they require data flow information that is computed only
when optimizing. They occur only for variables that are candidates for register allocation. There-
fore, they do not occur for a variable that is declared volatile, or whose address is taken, or
whose size is other than 1,2,4 or 8 bytes. Also, they do not occur for structures, unions or arrays,
even when they are in registers. Note that there may be no warning about a variable that is used
only to compute a value that itself is never used, because such computations may be deleted by
the flow analysis pass before the warnings are printed. These warnings are made optional be-
cause GNU CC is not smart enough to see all the reasons why the code might be correct despite
appearing to have an error.
∗ A nonvolantile automatic variable might be changed by a call to longjmp. These warnings as
well are possible only in optimizing compilation. The compiler sees only the calls to setjmp. It
cannot know where longjmp will be called; in fact, a signal handler could call it at any point in
the code. As a result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place which would cause a problem.
∗ A function can return either with or without a value. (Falling off the end of the function body
is considered returning without a value.) Spurious warning can occur because GNU CC does not
realize that certain functions (including abort and longjmp) will never return.

-Wimplicit
Warn whenever a function is implicitly declared.

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int. Also warn about any
return statement with no return-value in a function whose return-type is not void.

-Wcomment
Warn whenever a comment-start sequence ‘/∗ ’ appears in a comment.

-p Generate extra code to write profile information suitable for the analysis program prof.

-pg Generate extra code to write profile information suitable for the analysis program gprof.

-llibrary
Search a standard list of directories for a library named library, which is actually a file named ‘li-
blibrary.a’. The linker uses this file as if it had been specified precisely by name. The directo-
ries searched include several standard system directories plus any that you specify with ‘-L’.
Normally the files found this way are library files - archive files whose members are object files.

Version 1.22 17 May 1988 157

GCC(1) General Commands Manual GCC(1)

The linker handles an archive file by through it for members which define symbols that have so
far been referenced but not defined. But if the file that is found is an ordinary object file, it is
linked in the usual fashion. The only difference between an ‘-l’ option and the full file name of
the file that is found is syntactic and the fact that several directories are searched.

-Ldir Add directory dir to the list of directories to be searched for ‘-l’.

-nostdlib
Don’t use the standard system libraries and startup files when linking. Only the files you specify
(plus ‘gnulib’) will be passed to the linker.

-mmachinespec
Machine-dependent option specifying something about the type of target machine. These op-
tions are defined by the macro TARGET_SWITCHES in the machine description. The default
for the options is also defined by that macro, which enables you to change the defaults.

These are the ‘-m’ options defined in the 68000 machine description:

-m68020
Generate output for a 68020 (rather than a 68000). This is the default if you use the unmodi-
fied sources.

-m68000
Generate output for a 68000 (rather than a 68020).

-m68881
Generate output containing 68881 instructions for floating point. This is the default if you
use the unmodified sources.

-msoft-float
Generate output containing library calls for floating point.

-mshort
Consider type int to be 16 bits wide, like short int.

-mnobitfield
Do not use the bit-field instructions. ’-m68000’ implies ’-mnobitfield’.

-mbitfield
Do use the bit-field instructions. ’-m68020’ implies ’-mbitfield’. This is the default if you
use the unmodified sources.

-mrtd
Use a different function-calling convention, in which functions that take a fixed number of ar-
guments return with the rtd instruction, which pops their arguments while returning. This
saves one instruction in the caller since there is no need to pop the arguments there. This
calling convention is incompatible with the one normally used on Unix, so you cannot use it
if you need to call libraries compiled with the Unix compiler. Also, you must provide func-
tion prototypes for all functions that take variable numbers of arguments (including printf);
otherwise incorrect code will be generated for calls to those functions. In addition, seriously
incorrect code will result if you call a function with too many arguments. (Normally, extra
arguments are harmlessly ignored.) The rtd instruction is supported by the 68010 and 68020
processors, but not by the 68000.

These are the ‘-m’ options defined in the VAX machine description:

-munix
Do not output certain jump instructions (aobleq and so on) that the Unix assembler for the
VAX cannot handle across long ranges.

-mgnu
Do output those jump instructions, on the assumption that you will assemble with the GNU
assembler.

-f flag
Specify machine-independent flags. These are the flags:

Version 1.22 17 May 1988 158

GCC(1) General Commands Manual GCC(1)

-ffloat-store
Do not store floating-point variables in registers. This prevents undesirable excess precision
on machines such as the 68000 where the floating registers (of the 68881) keep more preci-
sion than a double is supposed to have. For most programs, the excess precision does only
good, but a few programs rely on the precise definition of IEEE floating point. Use ‘ -ffloat-
store’ for such programs.

-frno-asm
Do not recognize asm, inline or typeof as a keyword. These words may then be used as iden-
tifiers.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns. Normally
the compiler (when optimizing) lets arguments accumulate on the stack for several function
calls and pops them all at once.

-fcombine-regs
Allow the combine pass to combine an instruction that copies one register into another. This
might or might not produce better code when used in addition to ‘ -O’.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on them. This
may produce better code by making all memory references potential common subexpressions.
When they are not common subexpressions, instruction combination should eliminate the
separate register-load.

-fforce-addr
Force memory address constants to be copied into registers before doing arithmetic on them.
This may produce better code just as ‘ -fforce-mem’ may.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one. This avoids the
instructions to save, set up and restore frame pointers; it also makes an extra register available
in many functions. It also makes debugging impossible. On some machines, such as the
VAX, this flag has no effect, because the standard calling sequence automatically handles the
frame pointer and nothing is saved by pretending it doesn’t exist. The machine-description
macro FRAME_POINTER_REQUIRED controls whether a target machine supports this
flag.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically decides which
functions are simple enough to be worth integrating in this way. If all calls to a given func-
tion are integrated, and the function is declared static, then the function is normally not out-
put as assembler code in its own right.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the function is declared static, never-
theless output a separate run-time callable version of the function.

-fwritable-strings
Store string constants in the writable data segment and don’t uniquize them. This is for com-
patibility with old programs which assume they can write into string constants. Writing into
string constants is a very bad idea; ‘‘constants’’ should be constant.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a constant function
contain the function’s address explicitly. This option results in less efficient code, but some
strange hacks that alter the assembler output may be confused by the optimizations performed
when this option is not used.

-fvolatile
Consider all memory references through pointers to be volatile.

Version 1.22 17 May 1988 159

GCC(1) General Commands Manual GCC(1)

-funsigned-char
Let the type charbe the unsigned, like unsigned char. Each kind of machine has a default
for what char should be. It is either like unsigned char by default of like signed char by de-
fault. (Actually, at present, the default is always signed.) The type char is always a distinct
type from either signed char or unsigned char, even though its behavior is always just like
one of those two.

-fsigned-char
Let the type char be the same as signed char.

-ffixed-reg
Treat the register named reg as a fixed register; generated code should never refer to it (except
perhaps as a stack pointer, frame pointer or in some other fixed role). reg must be the name of
a register. The register names accepted are machine-specific and are defined in the REGIS-
TER_NAMES macro in the machine description macro file.

-fcall-used-reg
Treat the register named reg as an allocatable register that is clobberred by function calls. It
may be allocated for temporaries or variables that do not live across a call. Functions com-
piled this way will not save and restore the register reg. Use of this flag for a register that has
a fixed pervasive role in the machine’s execution model, such as the stack pointer or frame
pointer, will produce disastrous results.

-fcall-saved-reg
Treat the register named reg as an allocatable register saved by functions. It may be allocated
even for temporaries or variables that live across a call. Functions compiled this way will
save and restore the register reg if they use it. Use of this flag for a register that has a fixed
pervasive role in the machine’s execution model, such as the stack pointer or frame pointer,
will produce disastrous results. A different sort of disaster will result from the use of this flag
for a register in which function values are may be returned.

-dletters Says to make debugging dumps at times specified by letters. Here are the possible letters:

r Dump after RTL generation.

j Dump after first jump optimization.

J Dump after last jump optimization.

s Dump after CSE (including the jump optimization that sometimes follows CSE).

L Dump after loop optimization.

f Dump after flow analysis.

c Dump after instruction combination.

l Dump after local register allocation.

g Dump after global register allocation.

m Print statistics on memory usage, at the end of the run.

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/cc? temporary
/usr/local/lib/gcc-cpp preprocessor
/usr/local/lib/gcc-cc1 compiler
/usr/local/lib/gcc-gnulib library need by GCC on some machines
/lib/crt0.o runtime startoff
/lib/libc.a standard library, see intro(3)
/usr/include standard directory for ‘#include’ files

Version 1.22 17 May 1988 160

GCC(1) General Commands Manual GCC(1)

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kernighan, Programming in C
D. M. Ritchie, C Reference Manual
adb(1), ld(1), dbx(1), as(1)

BUGS
Bugs should be reported to bug-gcc prep.ai.mit.edu. Bugs tend actually to be fixed if they can be isolated,
so it is in your interest to report them in such a way that they can be easily reproduced according to get
newer version.

COPYING
Copyright (C) 1988 Richard M. Stallman.
Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for ver-
batim copying, provided also that the section entitled "GNU CC General Public License" is included ex-
actly as in the original, and provided that the entire resulting derived work is distributed under the terms of
a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that the section entitled "GNU CC General Public License"
may be included in a translation approved by the author instead of in the original English.

AUTHORS
Richard M. Stallman

Version 1.22 17 May 1988 161

GETOPT (1) General Commands Manual GETOPT (1)

NAME
getopt - parse command options

SYNOPSIS
set -- `getopt optstring $∗`

DESCRIPTION
Getopt is used to break up options in command lines for easy parsing by shell procedures, and to check
for legal options. Optstring is a string of recognized option letters (see getopt(3C)); if a letter is followed
by a colon, the option is expected to have an argument which may or may not be separated from it by
white space. The special option -- is used to delimit the end of the options. Getopt will place -- in the
arguments at the end of the options, or recognize it if used explicitly. The shell arguments ($1 $2 . . .) are
reset so that each option is preceded by a - and in its own shell argument; each option argument is also in
its own shell argument.

DIAGNOSTICS
Getopt prints an error message on the standard error when it encounters an option letter not included in
optstring.

EXAMPLES
The following code fragment shows how one might process the arguments for a command that can take
the options a and b, and the option o, which requires an argument.

set -- `getopt abo: $∗`
if [$? != 0]
then

echo $USAGE
exit 2

fi
for i in $∗
do

case $i in
-a -b) FLAG=$i; shift;;
-o) OARG=$2; shift; shift;;
--) shift; break;;
esac

done

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -o arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO
sh(1), getopt(3C)

162

GETS(1) General Commands Manual GETS(1)

NAME
gets - get a string from standard input

SYNOPSIS
gets [default]

DESCRIPTION
N.B.: This command was introduced for use in .login scripts when the facilities of the tset(1) command
were not totally adequate in setting the terminal type. This is no longer true, and gets should no longer be
needed. To boot, a construct ‘‘$<’’ is available in csh(1) now which has the functionality of gets:

set a=$<
if ($a == ’’) set a=default

replaces

set a=‘gets default‘

Users of sh(1) should use its read command rather than gets.

Gets can be used with csh(1) to read a string from the standard input. If a default is given it is used if just
return is typed, or if an error occurs. The resultant string (either the default or as read from the standard
input is written to the standard output. If no default is given and an error occurs, gets exits with exit sta-
tus 1.

SEE ALSO
csh (1)

BUGS
Gets is obsolete.

4th Berkeley Distribution deprecated 163

GETUID(1) General Commands Manual GETUID(1)

NAME
getuid, id − get user identity

SYNOPSIS
getuid [-] [arguments]

id

DESCRIPTION
Getuid prints on its standard output information about its invoker, based on the effective user id, as pre-
sented in the password file. With no arguments, getuid prints the login id of its invoker. Arguments select
which information to print:

user login id

group group id

passwd
encrypted password

uid numerical user id

gid numerical group id

acct comp center account number

bin comp center output bin

home home directory

shell default shell

If the optional - or more than one argument is present, the information is displayed in the form

user=name

as suitable for setting environment variables in the shell.

Id prints the effective userid and groupid and the login name. The userid and groupid are printed numeri-
cally and, if possible, textually.

FILES
/etc/passwd

/etc/group

SEE ALSO
who(1), getuid(2), passwd(5), newgrp(1)

BUGS
Getuid reports the default group for the user, not the current effective group id.
The login id reported is the first one in the password file with the correct numerical user id, not necessarily
the login for the current session.

164

GRAM((1)) GRAM((1))

NAME
gram - find split infinitives and incorrect indefinite articles
splitrules - print information about split infinitives

SYNOPSIS
gram [-flags][-ver] [file ...]

splitrules [-flags][-ver]

DESCRIPTION
Gram uses the parts(1) (part of speech assignment) program to look for infinitives that are split by one or
more adverbs. It also checks for incorrect indefinite articles.

Grammatical information about split infinitives can be obtained by typing: splitrules.

Two options, which apply to both programs, give information about the programs:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

Gram is one of the programs run under the proofr(1) and wwb(1) commands.

FILES
/tmp/$$ temporary files

SEE ALSO
proofr(1), wwb(1), deroff(1), parts(1).

BUGS
Because parts is not always correct in its assignments, gram also makes errors.

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

165

GRAP(1) General Commands Manual GRAP(1)

NAME
grap − pic preprocessor for drawing graphs

SYNOPSIS
grap [file ...]

DESCRIPTION
Grap is a pic(1) preprocessor for drawing graphs on a typesetter. Graphs are surrounded by the troff
‘commands’ .G1 and .G2. Data are scaled and plotted, with tick marks supplied automatically. Com-
mands exist to modify the frame, add labels, override the default ticks, change the plotting style, define
coordinate ranges and transformations, and include data from files. In addition, grap provides the same
loops, conditionals and macro processing that pic does.

frame ht e wid e top dotted ...: Set the frame around the graph to specified ht and wid; default is 2 by 3
(inches). The line styles (dotted, dashed, invis, solid (default)) of the sides (top, bot, left, right) of the
frame can be set independently.

label side "a label" "as a set of strings" adjust: Place label on specified side; default side is bottom.
adjust is up (or down left right) expr to shift default position; width expr sets the width explicitly.

ticks side in at optname expr, expr, ...: Put ticks on side at expr, ..., and label with "expr". If any expr is
followed by "...", label tick with "...", and turn off all automatic labels. If "..." contains %f’s, they will be
interpreted as printf formatting instructions for the tick value. Ticks point in or out (default out). Tick it-
erator: instead of at ..., use from expr to expr by op expr where op is optionally +-∗/ for additive or mul-
tiplicative steps. by can be omitted, to give steps of size 1. If no ticks are requested, they are supplied au-
tomatically; suppress this with ticks off. Automatic ticks normally leave a margin of 7% on each side; set
this to anything by margin = expr.

grid side linedesc at optname expr, expr, ...: Draw grids perpendicular to side in style linedesc at expr,
Iterators and labels work as with ticks.

coord optname x min, max y min, max log x log y: Set range of coords and optional log scaling on either
or both. This overrides computation of data range. Default value of optname is current coordinate system
(each coord defines a new coordinate system).

plot "str" at point; "str" at point: Put str at point. Text position can be qualified with rjust, ljust,
above, below after "...".

line from point to point linedesc: Draw line from here to there. arrow works in place of line.

next optname at point linedesc: Continue plot of data in optname to point; default is current.

draw optname linedesc ...: Set mode for next: use this style from now on, and plot "..." at each point (if
given).

new optname linedesc ...: Set mode for next, but disconnect from previous.

A list of numbers x y1 y2 y3 ... is treated as plot bullet at x,y1; plot bullet at x,y2; etc., or as next at x,y1
etc., if draw is specified. Abscissae of 1,2,3,... are provided if there is only one input number per line.

A point optname expr, expr maps the point to the named coordinate system. A linedesc is one of dot
dash invis solid optionally followed by an expression.

define name {whatever}: Define a macro. There are macros already defined for standard plotting symbols
like bullet, circle, star, plus, etc., in which is included if it exists.

var = expr: Evaluate an expression. Operators are + - ∗ and / . Functions are log and exp (both base 10),
sin, cos, sqrt; rand returns random number on [0,1); max(e,e), min(e,e), int(e).

print expr; print "...": As a debugging aid, print expr or string on the standard error.

copy "filename": Include this file right here.

copy thru macro: Pass rest of input (until .G2) through macro, treating each field (non-blank, or "...") as
an argument. macro can be the name of a macro previously defined, or the body of one in place, like /plot
$1 at $2,$3/.

copy thru macro until "string"": Stop copy when input is string (left-justified).

pic remainder of line: Copy to output with leading blanks removed.

166

GRAP(1) General Commands Manual GRAP(1)

graph Name pic-position: Start a new frame, place it at specified position, e.g., graph Thing2 with .sw
at Thing1.se + (0.1,0). Name must be capitalized to keep pic happy.

.anything at beginning of line: Copied verbatim.

sh %anything %: Pass everything between the %’s to the shell; as with macros, % may be any character
and anything may include newlines.

anything: A comment, which is discarded.

Order is mostly irrelevant; no category is mandatory. Any arguments on the .G1 line are placed on the
generated .PS line for pic.

EXAMPLES
.G1
frame ht 1 top invis right invis
coord x 0, 10 y 1, 3 log y
ticks left in at 1 "bottommost tick", 2,3 "top tick"
ticks bot in from 0 to 10 by 2
label bot "silly graph"
label left "left side label" "here"
grid left dashed at 2.5
copy thru / circle at $1,$2 /
1 1
2 1.5
3 2
4 1.5
10 3
.G2
frame ht 1 top invis right invis
coord x 0, 10 y 1, 3 log y
ticks left in at 1 "bottommost tick", 2,3 "top tick"
ticks bot in from 0 to 10 by 2
label bot "silly graph"
label left "left side label" "here"
grid left dashed at 2.5
copy thru / circle at $1,$2 /
1 1
2 1.5
3 2
4 1.5
10 3

FILES
/usr/lib/grap.defines

definitions of standard plotting characters, e.g., bullet

SEE ALSO
graph(1), pic(1), troff(1), plot(3)
J. L. Bentley and B. W. Kernighan, ‘GRAP—A Language for Typesetting Graphs’, this manual, Volume 2

167

GRAPH(1) General Commands Manual GRAPH(1)

NAME
graph - draw a graph

SYNOPSIS
graph [option ...]

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as abscissas (x-values) and ordi-
nates (y-values) of a graph. Successive points are connected by straight lines. The graph is encoded on
the standard output for display by plot(1) filters.

If the ordinate of a point is followed by a nonnumeric string, that string is printed as a label beginning on
the point. Labels may be surrounded with quotes " " in which case they may be empty or contain blanks
and numbers; labels never contain newlines.

The following options are recognized, each as a separate argument.

-a Supply abscissas automatically; no x-values appear in the input. Spacing is given by the next
argument (default 1). A second optional argument is the starting point for automatic abscissas
(default 0, or 1 with a log scale in x, or the lower limit given by -x).

-b Break (disconnect) the graph after each label in the input.

-c Character string given by next argument is default label for each point.

-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).

-l Next argument is a legend to title the graph. Grid ranges are automatically printed as part of the
title unless a -s option is present.

-m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected. Some devices
give distinguishable line styles for other small integers. Mode -1 (default) begins with style 1
and rotates styles for successive curves under option -o.

-o (Overlay.) The ordinates for n superposed curves appear in the input with each abscissa value.
The next argument is n.

-s Save screen; no new page for this graph.

-x l If l is present, x-axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x limits.
Third argument, if present, is grid spacing on x axis. Normally these quantities are determined
automatically.

-y l Similarly for y.

-e Make automatically determined x and y scales equal.

-h Next argument is fraction of space for height.

-w Similarly for width.

-r Next argument is fraction of space to move right before plotting.

-u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes. (Option -a now applies to the vertical axis.)

If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO
plot(1), grap(1), spline(A)

BUGS
In graph segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.
Option -e actually makes automatic limits, rather than automatic scaling, equal.

168

GRE(1) General Commands Manual GRE(1)

NAME
gre, grep, egrep, fgrep − search a file for a pattern

SYNOPSIS
gre [option ...] pattern [file ...]

grep [option ...] pattern [file ...]

egrep [option ...] pattern [file ...]

fgrep [option ...] strings [file ...]

DESCRIPTION
Gre searches the input files (standard input default) for lines (with newlines excluded) that match the pat-
tern, a regular expression as defined in re(3). A file name of - is interpreted as standard input. Normally,
each line matching the pattern is ‘selected’, and each selected line is copied to the standard output. The
options are

-1 Print only the first selected line of each file argument.
-b Mark each printed line with its byte position in its file. This is sometimes useful in locating pat-

terns in non-text files.
-c Print only a count of matching lines.
-e pattern

Same as a simple pattern argument, but useful when pattern begins with a -.
-E Simulate egrep.
-f file Read the pattern from file; there is no pattern argument
-F Simulate fgrep.
-G Simulate grep.
-h Do not print filename tags (headers) with output lines.
-i Ignore alphabetic case distinctions.
-l Print the names of files with selected lines; don’t print the lines.
-L Print the names of files with no selected lines; the converse of -l.
-n Mark each printed line with its line number counted in its file.
-s Produce no output, but return status.
-v Reverse: print lines that do not match the pattern.
-x Exact match: The pattern is ˆ(pattern)$. The implicit parentheses count in back references.

Output lines are tagged by filename when there is more than one input file. (To force this tagging, include
/dev/null as a filename argument.) If the output line exceeds some internal limit, a warning is given and a
small block of text surrounding the match is printed.

Care should be taken when using the shell metacharacters $∗[ˆ|()\ and newline in pattern; it is safest to
enclose the entire expression in single quotes ′ . . . ′.

Gre supplants three classic programs, which are still available:

Grep handles only ed(1)-like regular expressions. It uses \(\) instead of ().

Egrep handles the same patterns as gre except for back-referencing with \1, \2, ...

Fgrep handles no operators except newline (alternation).

SEE ALSO
re(3), awk(1), sed(1), sam(9) strings(1)

DIAGNOSTICS
Exit status is 0 if any lines are selected, 1 if none, 2 for syntax errors, inaccessible files (even if matches
were found). Warnings will be given for input lines that exceed a (generous) internal limit.

BUGS
Grep, egrep, and fgrep do not support some options and print (approximate) block numbers rather than
byte numbers for option -b.
Egrep may fail on input containing characters greater than 0176.

169

GREP(1) General Commands Manual GREP(1)

NAME
grep, egrep, fgrep − search a file for a pattern

SYNOPSIS
grep [option ...] expression [file ...]

egrep [option ...] expression [file ...]

fgrep [option ...] strings [file ...]

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines matching a pattern.
Normally, each line found is copied to the standard output. Grep patterns are limited regular expressions
in the style of ed(1); it uses a compact non-deterministic algorithm. Egrep patterns are full regular
expressions; it uses a fast deterministic algorithm. Fgrep patterns are fixed strings; it is fast and compact.
The following options are recognized:

-f file Read the pattern from file; there is no pattern argument (egrep and fgrep).
-v Reverse: print lines that do not match.
-i Ignore alphabetic case distinctions.
-n Mark each printed line with its line number counted in its file.
-x Exact: print only lines matched in their entirety (fgrep only).
-c Print only a count of matching lines.
-l Print only the names of files with matching lines (once).
-b Mark each printed line with its block number counted in its file. This is sometimes useful in lo-

cating disk block numbers by context. A block is 1024 bytes.
-h Do not print filename headers with output lines.
-s Produce no output, but return status.
-e expression

Same as a simple expression argument; useful when the expression begins with a -.

Output lines are tagged by filename when there is more than one input file. Care should be taken when
using the shell metacharacters $∗[ˆ|()\ in expression; it is safest to enclose the entire expression in single
quotes ′ . . . ′.

Fgrep searches for lines that contain any of the strings, which appear as a single argument with embedded
newlines.

Egrep accepts regular expressions as in ed(1), with the following changes:

1. There is no backreferencing (\(\)\1\2...).
2. The characters ˆ, $, and ∗ are always metacharacters unless quoted or contained in brackets [].
3. A regular expression followed by + matches one or more occurrences of the expression.
4. A regular expression followed by ? matches 0 or 1 occurrence.
5. Two regular expressions separated by or newline match occurrences of either.
6. Parentheses () specify grouping.

The order of precedence of operators is [], then ∗ ? +, then concatenation, then and new-line.

SEE ALSO
ed(1), sed(1), sh(1).

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files (even if
matches were found).

BUGS
Ideally there should be only one grep, but we do not know a single algorithm that spans a wide enough
range of space-time tradeoffs.
Lines are truncated at BUFSIZ characters; see setbuf(3). Null characters behave as end-of-line in
matches.

170

HANG(1) General Commands Manual HANG(1)

NAME
hang − start a process in stopped state

SYNOPSIS
hang command

DESCRIPTION
The given command is executed, but stopped before main() is called so that the process can be picked up
by a debugger. To ensure that breakpoints may be set, the process does not share its text.

SEE ALSO
pi(9) kill(1)

171

HOC(1) General Commands Manual HOC(1)

NAME
hoc − interactive floating point language

SYNOPSIS
hoc [file ...]

DESCRIPTION
Hoc interprets a simple language for floating point arithmetic, at about the level of Basic, with C-like syn-
tax and functions.

The named files are read and interpreted in order. If no file is given or if file is - hoc interprets the stan-
dard input.

Hoc input consists of expressions and statements. Expressions are evaluated and their results printed.
Statements, typically assignments and function or procedure definitions, produce no output unless they
explicitly call print.

Variable names have the usual syntax, including _; the name _ by itself contains the value of the last
expression evaluated. Certain variables are already initialized:

E base of natural logs
PI
PHI golden ratio
GAMMA

Euler’s constant
DEG 180/PI, degrees per radian
PREC

maximum number of significant digits in output, initially 15; PREC=0 gives shortest ‘exact’ val-
ues.

Expressions are formed with these C-like operators, listed by decreasing precedence.

ˆ exponentiation

! - ++ --

∗ / %

+ -

> >= < <= == !=

&&

||

= += -= ∗ = /= %=

Built in functions include abs, acos, atan (one argument), cos, cosh, erf, erfc, exp, gamma, int, log,
log10, sin, sinh, sqrt, tan, and tanh. The function read(x) reads a value into the variable x; the statement
print prints a list of expressions that may include string constants such as "hello\n".

Control flow statements are if-else, while, and for, with braces for grouping. Newline ends a statement.
Backslash-newline is equivalent to a space.

Functions and procedures are introduced by the words func and proc; return is used to return with a
value from a function. Within a function or procedure, arguments are referred to as $1, $2, etc.; all other
variables are global.

EXAMPLES
func gcd() {

temp = abs($1) % abs($2)
if(temp == 0) return abs($2)
return gcd($2, temp)

}
for(i=1; i<12; i++) print gcd(i,12)

172

HOC(1) General Commands Manual HOC(1)

SEE ALSO
bc(1), dc(1)
B. W. Kernighan and R. Pike, The Unix Programming Environment, Prentice-Hall, 1984

BUGS
Error recovery is imperfect within function and procedure definitions.
The treatment of newlines is not exactly user-friendly.

173

HOSTNAME(1) General Commands Manual HOSTNAME(1)

NAME
hostname, whoami - computer name

SYNOPSIS
hostname

DESCRIPTION
Hostname prints the computer name as used by mail(1) or uucp(1).

FILES
/etc/whoami

file containing the computer name

174

UL(1) General Commands Manual UL(1)

NAME
ul, hp - print underlines on screen terminals

SYNOPSIS
ul [-i] [-t terminal] [file ...]

hp [-e] [-m]

DESCRIPTION
Ul replaces backspaced, overstruck underscores by control sequences suitable for the terminal given by
the environment variable TERM or by option -t. It reads from the standard input or the named files and
writes on the standard output. Option -i represents underlining by a separate line of - characters.

Hp is a filter that presents most nroff output sensibly on HP 2600 series terminals. Option -s stops and
waits for a newline at the beginning of each page. Option -e uses ‘display enhancement’ features to dis-
tinguish underlines, superscripts, and subscripts, which are normally all shown in inverse video. Option
-m squeezes multiple newlines out of the output.

SEE ALSO
column(1)

BUGS
Hp does not reliably handle reverse line feeds as produced by tbl(1); pipe the input through col to get rid
of them; see column(1).

175

ICAN (1) General Commands Manual ICAN (1)

NAME
ican, ibcan, idcan, itcan - interface to Imagen laser-printer spooler

SYNOPSIS
ican [option ...] [file ...]

ibcan [option ...] [file ...]

idcan [option ...] [file ...]

itcan [option ...] [file ...]

DESCRIPTION
These commands print files (standard input by default) on Imagen laser printers. The four commands
handle particular kinds of data files:

ican ASCII text

ibcan bitmap images created by blitblt(9)

idcan output from troff(1)

itcan output for a Tektronix 4014 terminal, as produced by plot(1)

The destination printer is determined in the following ways, listed in order of decreasing precedence.

option -d dest
environment variable ICANDEST
printer named in file /etc/icandest

Printers at the mother site are:

1 1st floor, stair 8 (sid)
3 3rd floor, stair 8 (shannon)
5 5th floor, 2C-5 (hunny)
j 5th floor, 2D-5 (jones)
/name printer attached to machine with Datakit destination name

Options:

-c n Number of copies to be printed.

-d dest
Select the destination printer.

-f font Set the font (default CW.11) for can; see font(7)

-L (landscape) Rotate ibcan pages 90 degrees.

-l n Set number of lines per page for can (default 66).

-m n Set ibcan magnification to a power of 2, where n = 0, 1, or 2 (default 1).

-o list Print only pages whose page numbers appear in the comma-separated list of numbers and ranges.
A range n-m means pages n through m; a range -b means from the beginning to page n; a range
n- means from page n to the end. -o implies -r.

-r print pages in reverse order (default for ican and idcan).

-u user
set the name which appears on the banner page; default is login name.

-x n set the horizontal offset of the print image, measured in dots (default 60). There are 300 dots to
the inch.

-y n set the vertical offset of the print image (default 0), except in itcan, where this option specifies n
extra tekpoints vertically.

FILES
/etc/icandest

default destination

176

ICAN (1) General Commands Manual ICAN (1)

/usr/lib/font/devi300
font directory

/usr/spool/lp
spool directory

SEE ALSO
pr(1), blitblt(9) plot(1), font(7)

BUGS
The ‘landscape’ option is supported only by ibcan; -o is supported only by ican and idcan.
There ought to be a way to determine the service class from the input data.

177

ICLC(1) General Commands Manual ICLC(1)

NAME
iclc - Esterel binder

SYNOPSIS
iclc [option] ... [file]...

DESCRIPTION
iclc is the Esterel v3 binder. It produces an lc format output (or ic if some copymodule instruction could
not be expanded) from one or more ic format inputs. If there is no input file, the standard input is used. ic
format input describes Esterel modules to be processed, and lc format output describes Esterel modules
with no copymodule instruction. Typical use is:
iclc < game1.ic > game.lc
or
iclc game1.ic game2.ic > game.lc

The following options are interpreted by iclc:

-v Verbose mode. Tells what’s going on.

-version Prints the version number and exits.

-stat Prints times and memory sizes for the main phases.

-memstat Gives the memory allocator state at the end of processing.

-Rs Signal renaming trace mode.

-Rc Constant renaming trace mode.

-cascade "Cascade" mode. Creates a file FOO.casc using the -o, -B and -D options to find the name
(esterel.casc as a last resort).

-B name Basename for the auxiliary output file.

-D name The name of the directory where the auxiliary output file will go. For instance,
iclc -D /users/john/wd -B game -cascade game∗.ic
will write in the file "/users/john/wd/game.casc".

-d[level] Debug mode. Barely for you.

-o name Names the final output file name (deleting the existing text). Obsolete.

- Specifies the standard input as input stream. Works only once. Obsolete.

FILES
The caller of the command must have read/write permission for the directories containing the working
files, and execute permission for the iclc file itself.

DIAGNOSTICS
The diagnostics produced by iclc compiler are intended (as usual) to be self-explanatory. They have one
of the following forms:

"file",line n: iclc error (or warning) : message

∗∗∗ iclc: message

>>>iclc s_trace (or c_trace) : message

The first two forms are described in the Error Messages Manual. The last one is generated by the -Rs or
-Rc option. The possible messages with -Rc are:

root module FOO:
the binder begins to treat the root module FOO.

submodule /FOO/BAR:
the binder begins to treat the module BAR, "called" by module FOO.

CONSTANT added as 33 <<:

CONSTANT is added to the list of final constants with number 33. The "<<" is here to help you
find later the name of constant number 33. Just look upward for 33 followed by "<<".

CONSTANT captured by 33 in module /FOO/BAR:

1 July 1988 178

ICLC(1) General Commands Manual ICLC(1)

CONSTANT is implicitly captured by final constant number 33 which was defined in module
/FOO/BAR.

CONSTANT replaced by 33 in module /FOO/BAR:

CONSTANT is explicitly renamed to final constant number 33 by a copymodule instruction de-
fined in module /FOO/BAR.

Messages generated by -Rs are alike, except that no module name is given (all signals must be defined in
the parent module).

IDENTIFICATION
Author: J-M. Tanzi, CMA, Ecole des Mines de Paris,
Sophia-Antipolis, 06600 Valbonne, FRANCE
Revision Number: $Revision: 1.3 $; Release Date: $Date: 88/07/04 10:32:28 $.

SEE ALSO
Esterel v3 Programming Language Manual
Esterel v3 System Manuals.
strlic (1), lcoc(1), ocl (1).

BUGS
- error messages should point to the Esterel source code and not to an intermediate code input file.

- there is no error message if the same signal or constant appears more than once in a renaming
list. Only one renaming is applied, however.

- the "cascade" mode in not fully implemented.

1 July 1988 179

ICONT (1) General Commands Manual ICONT (1)

NAME
icont, iconc - Icon language translator and compiler

SYNOPSIS
icont [option ...] file ... [-x arg ...]

iconc [option ...] file ...

DESCRIPTION
Icont translates Version 5 of the Icon programming language to an intermediate form, and link edits inter-
mediate files to interpretable files. Iconc does the same, but finally compiles to machine code. Unless the
-o option is specified, the name of the linked file is formed by deleting the suffix of the first input file
named on the command line. Option -x invokes the interpreter and passes the args to the Icon program.

Files whose names end in ‘.icn’ are assumed to be Icon source programs; files whose names end in ‘.u1’
or ‘.u2’ are assumed to be intermediate files from a previous translation (only one should be named — the
other is assumed). Unnamed .u1 and .u2 files are deleted. The argument - signifies the use of standard
input as a source file.

The following options are recognized by icont.

-c Suppress linking and loading; preserve intermediate files.

-m Preprocess each ‘.icn’ source file with the m4(1) macro processor before translation.

-o output
Name the interpretable file output.

-s Suppress informative messages.

-t Arrange for trace to have an initial value of -1 instead of 0 when the program is executed.

-u Issue warning messages for undeclared identifiers.

To run either and interpreatable or an executable file, simply execute it as a command. The following en-
vironment variables - all numeric - affect execution:

TRACE
Initialize the value of trace, overriding the translation option -t.

NBUFS
The number of i/o buffers to use for files, normally 3. input and output are buffered unless they
are terminals. errout is never buffered.

STRSIZE
The initial size of the string space, in bytes, normally 51200.

HEAPSIZE
The initial size of the heap, in bytes, normally 51200.

NSTACKS
The number of stacks initially available for co-expressions, normally 4.

STKSIZE
The size of each co-expression stack, in words, normally, 2000.

PROFILE
Turn on execution profiling of the runtime system. The value of this variable specifies the sam-
pling resolution, in words. If the value is zero, profiling is not done. The profiling results are left
in a file ‘mon.out’ for interpretation by prof(1).

FILES
v5v/int/bin/utran icon translator
v5v/int/bin/ulink icon linker
v5v/cmp/bin/libi.a icon runtime library
v5v/int/bin/iconx icon interpreter
mon.out results of profiling
∗.u1, ∗ .u2 intermediate files

alice 180

ICONT (1) General Commands Manual ICONT (1)

SEE ALSO
Reference Manual for the Icon Programming Language, Version 5, Technical Report TR 81-4a, Depart-
ment of Computer Science, The University of Arizona, Tucson, Arizona, December 1981.
Co-Expressions in Icon, Technical Report TR 82-4, Department of Computer Science, The University of
Arizona.
iconc(1), m4(1), prof(1), exec(2), monitor(3)

BUGS
If the -m option is used, line numbers reported in error messages or tracing messages are from the file af-
ter, not before, preprocessing.
Integer overflow on multiplication is not detected.
An interpretable file produced on one system will not work on another system unless the Icon interpreter
is in the same place on both systems.
Because of the way that co-expressions are implemented, there is a possibility that programs in which
they are used may malfunction mysteriously.

alice 181

IDEAL(1) General Commands Manual IDEAL(1)

NAME
ideal − troff preprocessor for drawing pictures

SYNOPSIS
ideal [option ...] [file ...]

DESCRIPTION
Ideal is a constraint-based troff(1) preprocessor for typesetting figures in the complex plane. A line be-
ginning .IS marks the start of an ideal program, .IE or .IF marks the end. .IE leaves the typesetting
baseline below the bottom of the picture; .IF (flyback) leaves it at the top. The options are

-Tdev Produce instructions for troff(1) device dev. -a is a synonym for -Taps; -t for -T202.

-tex Produce output for tex(1).

-p Produce plot(1) instructions. Erases come unbidden at every .IS.

-4 Produce instructions for a Tektronix 4014 and wait at each .IE for an input character before eras-
ing and starting the next picture.

-n Produce raw ideal output, which passes unharmed through nroff.

-v Print calculated values of variables on standard error.

Ideal programs are built of ‘boxes’; boxes look like C functions, in that they are named and delimited by
braces. They may include the following kinds of statements, each terminated by a semicolon:

var declares one or more complex variables local to the box. Variable names are made up of letters
and digits, and start with a letter; do not use any of the following keywords as variable names:
at, bdlist, boundary, box, conn, construct, draw, exterior, interior, left,
opaque, put, right, spline, text, to, using, var

equation
declares relative positions of significant points of the box

conn asks for a straight-line path through named points

pen asks for a box to be replicated along a line between two points

left left-justifies text with respect to a point

text centers text with respect to a point

right right-justifies text with respect to a point

spline draws a spline guided by the named points

put asks for an instance of a box to be drawn

opaque
asks for a box to erase lines already in the picture that are covered by its bounding polygon

boundary
specifies the bounding polygon for an opaque box

construct
builds a partial picture on a separate ‘sheet of paper’

draw adds the contents of the named constructed box to the current picture

Ideal expects all components of a picture to be specified as boxes; instructions to draw the entire picture
should comprise a box called main. Boxes are remembered across .IS/.IE boundaries; if you won’t need
a box again, you can reclaim the space it requires by including the command ...forget boxname on a line
between any .IS/.IE pair after the last use of boxname. Box main is an exception to this rule: it is always
forgotten at .IE.

During its first pass, ideal solves all the equations to determine the locations of all points it needs to know.
These equations must be linear equations in complex variables, although they may include non-linear
operators: ideal plugs in for as many variables, and does as much function evaluation, as it can before
solving the linear equation. It waits until it has absolutely no hope of reducing an equation to a linear
equation before complaining. Ideal knows about the following functions:

182

IDEAL(1) General Commands Manual IDEAL(1)

f [z,w]
== z+(w-z)f, fraction f of the way from z to w

re(z) real part of complex number

im(z) imaginary part of complex number

conj(z)
complex conjugate of complex number

abs(z) absolute value (modulus) of complex number

cis(z) the unit vector $cosˆx˜+˜iˆsinˆx$, (.).if t .ig cos(x) + i∗ sin(x) (.)where x = re(z) and x is mea-
sured in degrees (radians if the line ...radians appeared more recently in the file than the line
...degrees)

E(x) == cis(360 x) if x is measured in degrees

angle(z)
angle of complex number, arctan(im(z)/re(z))

During the second pass, ideal draws the picture.

To draw a circle, include the line ...libfile circle between the .IS and .IE lines, and put the box named
circle, giving enough information that the circle can be determined; for instance, give the center and
the radius, or give three points through which the circle passes, or give the center and a point on the circle.
The circle has center center, radius radius, and passes through z1, z2, and z3.

To draw an arc, include the line ...libfile arc between the .IS and .IE lines, and put the box named arc,
again giving enough information to determine the arc; for instance, give the center, radius, and starting
and ending angles, or give three points on the arc--where to start, where to end, and somewhere in
between. The arc has center center, radius radius, starts at point start, passes through point
midway at angle midang, and ends at point end at angle endang. If no midway is specified, the arc
is drawn counterclockwise from start to end.

The picture will be scaled to a default width of four inches and centered in a column of six inches. The
default width can be changed by a ...width command, which includes a number in inches. The default
column width can be changed by a ...colwid command. To defeat ideal’s notion of the size of the picture,
you can include lines of the form ...minx, ...miny, ...maxx, or ...maxy; these give the various coordinates
of the bounding box of the picture in the coordinate system used by the picture.

Ideal supports both C-style comments (between /∗ and ∗/ brackets — which nest), and shell-style com-
ments (between # and newline).

EXAMPLES
...libfile circle
triangle {

var z1, z2, z3;
conn z1 to z2 to z3 to z1;

}
main {

put T: triangle {
z1 = 0; z2 = 1; z3 = (2,2);

}
put circle {

z1 = T.z1; z2 = T.z2; z3 = T.z3;
}

}

triangle { var z1, z2, z3; conn z1 to z2 to z3 to z1; } main { put T: triangle {
z1 = 0; z2 = 1; z3 = (2,2); } put circle { z1 = T.z1;

z2 = T.z2; z3 = T.z3; } }

SEE ALSO
troff(1), pic(1), ped(9) doctype(1)
C. J. Van Wyk, ‘IDEAL User’s Manual’, this manual, Volume 2

BUGS
Ideal is relatively unforgiving about syntax errors.
Bounding box computation is naive for arcs and text strings.

183

IDIFF(1) General Commands Manual IDIFF(1)

NAME
idiff − interactive file comparison

SYNOPSIS
idiff [option] file1 file2

DESCRIPTION
Idiff compares file1 with file2 using diff , then presents each set of changed lines for selection or process-
ing. File2 may be a directory; in that case, the basename of file1 is appended.

For each group, legal responses are

< to retain the ‘from’ lines

> to retain the ‘to’ lines

e to edit both sets of lines

d to delete both sets

1 to retain the rest of the ‘from’ file

2 to retain the rest of the ‘to’ file

! to invoke a shell command

Lines that compare equal are copied verbatim from file1. Lines produced by this process, including the
lines written from within the editor, are written to file idiff.out. Comparison may be affected by the diff(1)
options

-b Ignore trailing blanks (spaces and tabs) and treat other strings of blanks as if they were a single
space.

-B Ignore all blanks.

FILES
idiff.out

idiff.∗

/tmp/idiff.∗

SEE ALSO
diff(1)

BUGS
There is no way to revisit a choice.

184

IMSCAN (1) General Commands Manual IMSCAN (1)

NAME
imscan − scan greyscale images

SYNOPSIS
imscan [-sN] [-lN] file

DESCRIPTION
Imscan digitizes an image with an Imagitex grey-scale scanner and places the result in the named file in
the form of picfile(5). The options are

-sN Set a scale factor 1≤N≤ 9, default 4. With scale factor N the image is subsampled: only 1 out of
every N×N pixels is stored. A larger scale factor, therefore, produces a smaller image.

-lN Use lens focal length N, where N is either 5 or 8 (default). The 8-inch lens scans images at 480
dots per inch. The 5-inch lens scans at 754 dots per inch.

SEE ALSO
cscan(1), pico(1), qsnap(1), mugs in face(9) picfile(5)

BUGS
It is hard to get more than 2000 pixels per scanline reliably. For large originals, higher scale factors work
better than smaller ones.

arend 185

JOIN (1) General Commands Manual JOIN (1)

NAME
join − relational database operator

SYNOPSIS
join [options] file1 file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines of file1 and file2. If
one of the file names is -, the standard input is used.

File1 and file2 must be sorted in increasing ASCII collating sequence on the fields on which they are to be
joined, normally the first in each line.

There is one line in the output for each pair of lines in file1 and file2 that have identical join fields. The
output line normally consists of the common field, then the rest of the line from file1, then the rest of the
line from file2.

Input fields are normally separated spaces or tabs; output fields by space. In this case, multiple separators
count as one, and leading separators are discarded.

The following options are recognized, with Posix syntax.

-a n In addition to the normal output, produce a line for each unpairable line in file n, where n is 1 or
2.

-v n Like -a, omitting output for paired lines.

-e s Replace empty output fields by string s.

-1 m
-2 m Join on the mth field of file1 or file2.

-jn m Archaic equivalent for -n m.

-o fields
Each output line comprises the designated fields. The comma-separated field designators are
either 0, meaning the join field, or have the form n.m, where n is a file number and m is a field
number. Archaic usage allows separate arguments for field designators.

-tc Use character c as the only separator (tab character) on input and output. Every appearance of c
in a line is significant.

EXAMPLES
sort /etc/password | join -t: -a 1 -e "" - bdays Add birthdays to password information, leaving
unknown birthdays empty. The layout of /etc/passwd is given in passwd(5); bdays contains
sorted lines like ken:Feb 4.

tr : ’ ’ </etc/passwd | sort -k 3 3 >temp
join -1 3 -2 3 -o 1.1,2.1 temp temp | awk ’$1 < $2’ Print all pairs of users with identical userids.

SEE ALSO
sort(1), comm(1), awk(1)

BUGS
With default field separation, the collating sequence is that of sort -b -ky,y, with -t, the sequence is that of
sort -tx -ky,y.
One of the files must be randomly accessible.

186

KILL(1) General Commands Manual KILL(1)

NAME
kill − terminate a process with extreme prejudice

SYNOPSIS
kill [-sig] processid ...
kill -l

DESCRIPTION
Kill sends the SIGTERM signal to the specified processes. If a signal name or number preceded by - is
given as first argument, that signal is sent instead; see signal(2). The signal names are listed by kill
-l, and are as given in <signal.h>.

The terminate signal will kill processes that do not catch the signal. The SIGKILL signal is a sure kill,
since it cannot be caught. By convention, if process number 0 is specified, all members in the process
group (usually processes of the current login or current mux(9) layer) are signaled. Killed processes must
belong to the current user unless that is super-user.

To shut the system down and bring it up single user the super-user may send the initialization process a
terminate signal by kill 1; see init(8). To force init to close and open terminals according to what is
currently in /etc/ttys use kill -SIGHUP 1.

The process number of an asynchronous process started with & is reported by the shell and by ps(1).

EXAMPLES
kill 7151 Kill process 7151 gently; the process can catch the signal.

kill -SIGKILL 7151 Kill peremptorily; this signal cannot be caught.

kill 0 Kill all the background processes in this process group.

SEE ALSO
ps(1), signal(2), signal(2), init(8)

187

KSH(1) General Commands Manual KSH(1)

NAME
ksh - Korn shell, the not standard command programming language

SYNOPSIS
ksh [-acefhikmnorstuvx] [-o option] . . . [arg . . .]

DESCRIPTION
Ksh is a command programming language that executes commands read from a terminal or a file. Rsh is
a restricted version of the standard command interpreter sh; it is used to set up login names and execution
environments whose capabilities are more controlled than those of the standard shell. See Invocation be-
low for the meaning of arguments to the shell.

Definitions.
A metacharacter is one of the following characters:

; & () < > new-line space tab

A blank is a tab or a space. An identifier is a sequence of letters, digits, or underscores starting with a
letter or underscore. Identifiers are used as names for aliases, functions, and named parameters. A word
is a sequence of characters separated by one or more non-quoted metacharacters.

Commands.
A simple-command is a sequence of blank separated words which may be preceded by a parameter as-
signment list. (See Environment below). The first word specifies the name of the command to be exe-
cuted. Except as specified below, the remaining words are passed as arguments to the invoked command.
The command name is passed as argument 0 (see exec(2)). The value of a simple-command is its exit sta-
tus if it terminates normally, or (octal) 200+status if it terminates abnormally (see signal(2) for a list of
status values).

A pipeline is a sequence of one or more commands separated by . The standard output of each com-
mand but the last is connected by a pipe(2) to the standard input of the next command. Each command is
run as a separate process; the shell waits for the last command to terminate. The exit status of a pipeline
is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or , and optionally terminated by
;, &, or &. Of these five symbols, ;, &, and & have equal precedence, which is lower than that of &&
and . The symbols && and also have equal precedence. A semicolon (;) causes sequential execu-
tion of the preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding pipeline
(i.e., the shell does not wait for that pipeline to finish). The symbol & causes asynchronous execution of
the preceding command or pipeline with a two-way pipe established to the parent shell. The standard in-
put and output of the spawned command can be written to and read from by the parent Shell using the -p
option of the special commands read and print described later. Only one such command can be active at
any given time. The symbol && () causes the list following it to be executed only if the preceding
pipeline returns a zero (non-zero) value. An arbitrary number of new-lines may appear in a list, instead of
semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise stated, the value re-
turned by a command is that of the last simple-command executed in the command.

for identifier [in word . . .] do list done
Each time a for command is executed, identifier is set to the next word taken from the in word
list. If in word . . . is omitted, then the for command executes the do list once for each posi-
tional parameter that is set (see Parameter Substitution below). Execution ends when there are
no more words in the list.

select identifier [in word . . .] do list done
A select command prints on standard error (file descriptor 2), the set of words, each preceded by
a number. If in word . . . is omitted, then the positional parameters are used instead (see Para-
meter Substitution below). The PS3 prompt is printed and a line is read from the standard input.
If this line consists of the number of one of the listed words, then the value of the parameter
identifier is set to the word corresponding to this number. If this line is empty the selection list is
printed again. Otherwise the value of the parameter identifier is set to null. The contents of the
line read from standard input is saved in the parameter REPLY. The list is executed for each se-
lection until a break or end-of-file is encountered.

188

KSH(1) General Commands Manual KSH(1)

case word in [pattern [pattern] . . .) list ;;] . . . esac
A case command executes the list associated with the first pattern that matches word . The form
of the patterns is the same as that used for file-name generation (see File Name Generation be-
low).

if list then list [elif list then list] . . . [else list] fi
The list following if is executed and, if it returns a zero exit status, the list following the first
then is executed. Otherwise, the list following elif is executed and, if its value is zero, the list
following the next then is executed. Failing that, the else list is executed. If no else list or then
list is executed, then the if command returns a zero exit status.

while list do list done
until list do list done

A while command repeatedly executes the while list and, if the exit status of the last command
in the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do
list are executed, then the while command returns a zero exit status; until may be used in place
of while to negate the loop termination test.

(list)
Execute list in a separate environment. Note, that if two adjacent open parentheses are needed
for nesting, a space must be inserted to avoid arithmetic evaluation as described below.

{ list;}
list is simply executed. Note that { is a keyword and requires a blank in order to be recognized.

function identifier { list ;}
identifier () { list ;}

Define a function which is referenced by identifier. The body of the function is the list of com-
mands between { and }. (See Functions below).

time pipeline
The pipeline is executed and the elapsed time as well as the user and system time are printed on
standard error.

The following keywords are only recognized as the first word of a command and when not quoted:

if then else elif fi case esac for while until do done { } function select time

Comments.
A word beginning with # causes that word and all the following characters up to a new-line to be ignored.

Aliasing.
The first word of each command is replaced by the text of an alias if an alias for this word has been de-
fined. The first character of an alias name can be any printable character, but the rest of the characters
must be the same as for a valid identifier. The replacement string can contain any valid Shell script in-
cluding the metacharacters listed above. The first word of each command of the replaced text will not be
tested for additional aliases. If the last character of the alias value is a blank then the word following the
alias will also be checked for alias substitution. Aliases can be used to redefine special builtin commands
but cannot be used to redefine the keywords listed above. Aliases can be created, listed, and exported with
the alias command and can be removed with the unalias command. Exported aliases remain in effect for
sub-shells but must be reinitialized for separate invocations of the Shell (See Invocation below).

Aliasing is performed when scripts are read, not while they are executed. Therefore, for an alias to take
effect the alias command has to be executed before the command which references the alias is read.

Aliases are frequently used as a short hand for full path names. An option to the aliasing facility allows
the value of the alias to be automatically set to the full pathname of the corresponding command. These
aliases are called tracked aliases. The value of a tracked alias is defined the first time the identifier is read
and becomes undefined each time the PATH variable is reset. These aliases remain tracked so that the
next subsequent reference will redefine the value. Several tracked aliases are compiled into the shell. The
-h option of the set command makes each command name which is an identifier into a tracked alias.

The following exported aliases are compiled into the shell but can be unset or redefined:

189

KSH(1) General Commands Manual KSH(1)

echo=′print -′
false=′let 0′
functions=′typeset -f′
history=′fc -l′
integer=′typeset -i′
nohup=′nohup ′
pwd=′print - $PWD′
r=′fc -e -′
true=′:′
type=′whence -v′
hash=′alias -t′

Tilde Substitution.
After alias substitution is performed, each word is checked to see if it begins with an unquoted ∼. If it
does, then the word up to a / is checked to see if it matches a user name in the /etc/passwd file. If a match
is found, the ∼ and the matched login name is replaced by the login directory of the matched user. This is
called a tilde substitution. If no match is found, the original text is left unchanged. A ∼ by itself, or in
front of a /, is replaced by the value of the HOME parameter. A ∼ followed by a + or - is replaced by the
value of the parameter PWD and OLDPWD respectively.

In addition, the value of each keyword parameter is checked to see if it begins with a ∼ or if a ∼ appears
after a :. In either of these cases a tilde substitution is attempted.

Command Substitution.
The standard output from a command enclosed in a pair of grave accents (``) may be used as part or all
of a word; trailing new-lines are removed. The command substitution `cat file` can be replaced by the
equivalent but faster `<file` . Command substitution of most special commands that do not perform in-
put/output redirection are carried out without creating a separate process.

Parameter Substitution.
A parameter is an identifier, a digit, or any of the characters ∗, , #, ?, -, $, and ! . A named parameter (a
parameter denoted by an identifier) has a value and zero or more attributes. Named parameters can be
assigned values and attributes by using the typeset special command. The attributes supported by the
Shell are described later with the typeset special command. Exported parameters pass values and attrib-
utes to sub-shells but only values to the environment.

The shell supports a limited one-dimensional array facility. An element of an array parameter is refer-
enced by a subscript. A subscript is denoted by a [, followed by an arithmetic expression (see Arithmetic
evaluation below) followed by a]. The value of all subscripts must be in the range of 0 through 511. Ar-
rays need not be declared. Any reference to a named parameter with a valid subscript is legal and an array
will be created if necessary. Referencing an array without a subscript is equivalent to referencing the first
element.

The value of a named parameter may also be assigned by writing:

name=value [name=value] . . .

If the integer attribute, -i, is set for name the value is subject to arithmetic evaluation as described below.
Positional parameters, parameters denoted by a number, may be assigned values with the set special com-
mand. Parameter $0 is set from argument zero when the shell is invoked.
The character $ is used to introduce substitutable parameters.
${parameter}

The value, if any, of the parameter is substituted. The braces are required when parameter is fol-
lowed by a letter, digit, or underscore that is not to be interpreted as part of its name or when a
named parameter is subscripted. If parameter is a digit then it is a positional parameter. If pa-
rameter is ∗ or , then all the positional parameters, starting with $1, are substituted (separated by
spaces). If an array identifier with subscript ∗ or is used, then the value for each of the elements
is substituted (separated by spaces).

${#parameter}
If parameter is not ∗ , the length of the value of the parameter is substituted. Otherwise, the
number of positional parameters is substituted.

190

KSH(1) General Commands Manual KSH(1)

${#identifier[∗]}
The number of elements in the array identifier is substituted.

${parameter:-word}
If parameter is set and is non-null then substitute its value; otherwise substitute word .

${parameter:=word}
If parameter is not set or is null then set it to word; the value of the parameter is then substi-
tuted. Positional parameters may not be assigned to in this way.

${parameter:?word}
If parameter is set and is non-null then substitute its value; otherwise, print word and exit from
the shell. If word is omitted then a standard message is printed.

${parameter:+word}
If parameter is set and is non-null then substitute word; otherwise substitute nothing.

${parameter#pattern}
${parameter##pattern}

If the Shell pattern matches the beginning of the value of parameter, then the value of this sub-
stitution is the value of the parameter with the matched portion deleted; otherwise the value of
this parameter is substituted. In the first form the smallest matching pattern is deleted and in the
latter form the largest matching pattern is deleted.

${parameter%pattern}
${parameter%%pattern}

If the Shell pattern matches the end of the value of parameter, then the value of parameter with
the matched part deleted; otherwise substitute the value of parameter. In the first form the
smallest matching pattern is deleted and in the latter form the largest matching pattern is deleted.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the following
example, pwd is executed only if d is not set or is null:

echo ${d:-`pwd`}

If the colon (:) is omitted from the above expressions, then the shell only checks whether parameter is
set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
- Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last executed command.
$ The process number of this shell.
_ The last argument of the previous command. This parameter is not set for commands

which are asynchronous.
! The process number of the last background command invoked.
PPID The process number of the parent of the shell.
PWD The present working directory set by the cd command.
OLDPWD

The previous working directory set by the cd command.
RANDOM

Each time this parameter is referenced, a random integer is generated. The sequence of
random numbers can be initialized by assigning a numeric value to RANDOM.

REPLY
This parameter is set by the select statement and by the read special command when no
arguments are supplied.

The following parameters are used by the shell:
CDPATH

The search path for the cd command.
COLUMNS

If this variable is set, the value is used to define the width of the edit window for the
shell edit modes and for printing select lists.

EDITOR
If the value of this variable ends in emacs, gmacs, or vi and the VISUAL variable is not
set, then the corresponding option (see Special Command set below) will be turned on.

191

KSH(1) General Commands Manual KSH(1)

ENV If this parameter is set, then parameter substitution is performed on the value to generate
the pathname of the script that will be executed when the shell is invoked. (See Invo-
cation below.) This file is typically used for alias and function definitions.

FCEDIT
The default editor name for the fc command.

IFS Internal field separators, normally space, tab, and new-line that is used to separate
command words which result from command or parameter substitution and for separat-
ing words with the special command read.

HISTFILE
If this parameter is set when the shell is invoked, then the value is the pathname of the
file that will be used to store the command history. (See Command re-entry below.)

HISTSIZE
If this parameter is set when the shell is invoked, then the number of previously entered
commands that are accessible by this shell will be greater than or equal to this number.
The default is 128.

HOME
The default argument (home directory) for the cd command.

MAIL If this parameter is set to the name of a mail file and the MAILPATH parameter is not
set, then the shell informs the user of arrival of mail in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will check for changes in the
modification time of any of the files specified by the MAILPATH or MAIL parameters.
The default value is 600 seconds. If set to 0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set then the shell informs
the user of any modifications to the specified files that have occurred within the last
MAILCHECK seconds. Each file name can be followed by a ? and a message that will
be printed. The message will undergo parameter and command substitution with the pa-
rameter, $_ defined as the name of the file that has changed. The default message is you
have mail in $_.

PATH The search path for commands (see Execution below). The user may not change PATH
if executing under rsh (except in .profile).

PS1 The value of this parameter is expanded for paramter substitution to define the primary
prompt string which by default is ‘‘$ ’’. The character ! in the primary prompt string is
replaced by the command number (see Command Re-entry below).

PS2 Secondary prompt string, by default ‘‘> ’’.
PS3 Selection prompt string used within a select loop, by default ‘‘#? ’’.
SHELL

The pathname of the shell is kept in the environment. At invocation, if the value of this
variable contains an r in the basename, then the shell becomes restricted.

TMOUT
If set to a value greater than zero, the shell will terminate if a command is not entered
within the prescribed number of seconds. (Note that the shell can be compiled with a
maximum bound for this value which cannot be exceeded.)

VISUAL
If the value of this variable ends in emacs, gmacs, or vi then the corresponding option
(see Special Command set below) will be turned on.

The shell gives default values to PATH, PS1, PS2, MAILCHECK, TMOUT and IFS, while HOME, SHELL
ENV and MAIL are not set at all by the shell (although HOME is set by login(1)). On some systems
MAIL and SHELL are also set by login(1)).

Blank Interpretation.
After parameter and command substitution, the results of substitutions are scanned for the field separator
characters (those found in IFS) and split into distinct arguments where such characters are found. Ex-
plicit null arguments ("" or (fm(fm) are retained. Implicit null arguments (those resulting from parame-
ters that have no values) are removed.

192

KSH(1) General Commands Manual KSH(1)

File Name Generation.
Following substitution, each command word is scanned for the characters ∗, ?, and [unless the -f option
has been set. If one of these characters appears then the word is regarded as a pattern. The word is re-
placed with alphabetically sorted file names that match the pattern. If no file name is found that matches
the pattern, then the word is left unchanged. When a pattern is used for file name generation, the charac-
ter . at the start of a file name or immediately following a /, as well as the character / itself, must be
matched explicitly. In other instances of pattern matching the / and . are not treated specially.

∗ Matches any string, including the null string.
? Matches any single character.
[. . .] Matches any one of the enclosed characters. A pair of characters separated by -

matches any character lexically between the pair, inclusive. If the first character follow-
ing the opening "[" is a "! " then any character not enclosed is matched. A - can be in-
cluded in the character set by putting it as the first or last character.

Quoting.
Each of the metacharacters listed above (See Definitions above). has a special meaning to the shell and
cause termination of a word unless quoted. A character may be quoted (i.e., made to stand for itself) by
preceding it with a \. The pair \new-line is ignored. All characters enclosed between a pair of single
quote marks (′ ′), except a single quote, are quoted. Inside double quote marks (""), parameter and com-
mand substitution occurs and \ quotes the characters \, ′, ", and $. "$∗" is equivalent to "$1 $2 . . .",
whereas "$ " is equivalent to "$1" "$2"

The special meaning of keywords can be removed by quoting any character of the keyword. The recogni-
tion of special command names listed below cannot be altered by quoting them.

Arithmetic Evaluation.
An ability to perform integer arithmetic is provided with the special command let. Evaluations are per-
formed using long arithmetic. Constants are of the form [base#]n where base is a decimal number be-
tween two and thirty-six representing the arithmetic base and n is a number in that base. If base is omit-
ted then base 10 is used.

An internal integer representation of a named parameter can be specified with the -i option of the typeset
special command. When this attribute is selected the first assignment to the parameter determines the
arithmetic base to be used when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative form of the let command is pro-
vided. For any command which begins with a ((, all the characters until a matching)) are treated as a
quoted expression. More precisely, ((. . .)) is equivalent to let " . . .".

Prompting.
When used interactively, the shell prompts with the value of PS1 before reading a command. If at any
time a new-line is typed and further input is needed to complete a command, then the secondary prompt
(i.e., the value of PS2) is issued.

Input/Output.
Before a command is executed, its input and output may be redirected using a special notation interpreted
by the shell. The following may appear anywhere in a simple-command or may precede or follow a com-
mand and are not passed on to the invoked command. Command and parameter substitution occurs be-
fore word or digit is used except as noted below. File name generation occurs only if the pattern matches
a single file and blank interpretation is not performed.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does not exist then it is
created; otherwise, it is truncated to zero length.

>>word Use file word as standard output. If the file exists then output is appended to it (by first
seeking to the end-of-file); otherwise, the file is created.

<<[-]word The shell input is read up to a line that is the same as word , or to an end-of-file. No pa-
rameter substitution, command substitution or file name generation is performed on
word . The resulting document, called a here-document, becomes the standard input. If
any character of word is quoted, then no interpretation is placed upon the characters of

193

KSH(1) General Commands Manual KSH(1)

the document; otherwise, parameter and command substitution occurs, \new-line is ig-
nored, and \ must be used to quote the characters \, $, `, and the first character of word .
If - is appended to <<, then all leading tabs are stripped from word and from the docu-
ment.

<&digit The standard input is duplicated from file descriptor digit (see dup(2)). Similarly for the
standard output using >& digit.

<&- The standard input is closed. Similarly for the standard output using >&-.

If one of the above is preceded by a digit, then the file descriptor number referred to is that specified by
the digit (instead of the default 0 or 1). For example:

. . . 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates each redirection in terms
of the (file descriptor, file) association at the time of evaluation. For example:

. . . 1>fname 2>&1

first associates file descriptor 1 with file fname . It then associates file descriptor 2 with the file associated
with file descriptor 1 (i.e. fname). If the order of redirections were reversed, file descriptor 2 would be
associated with the terminal (assuming file descriptor 1 had been) and then file descriptor 1 would be as-
sociated with file fname .

If a command is followed by & and job control is not active, then the default standard input for the com-
mand is the empty file /dev/null. Otherwise, the environment for the execution of a command contains
the file descriptors of the invoking shell as modified by input/output specifications.

Environment.
The environment (see environ(7)) is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list. The names must be identifiers and the values are character strings.
The shell interacts with the environment in several ways. On invocation, the shell scans the environment
and creates a parameter for each name found, giving it the corresponding value and marking it export .
Executed commands inherit the environment. If the user modifies the values of these parameters or cre-
ates new ones, using the export or typeset -x commands they become part of the environment. The envi-
ronment seen by any executed command is thus composed of any name-value pairs originally inherited by
the shell, whose values may be modified by the current shell, plus any additions which must be noted in
export or typeset -x commands.

The environment for any simple-command or function may be augmented by prefixing it with one or more
parameter assignments. A parameter assignment argument is a word of the form identifier=value. Thus:

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all parameter assignment arguments are placed in the environment, even if they occur
after the command name. The following first prints a=b c and then c:

echo a=b c
set -k
echo a=b c

Functions.
The function keyword, described in the Commands section above, is used to define shell functions. Shell
functions are read in and stored internally. Alias names are resolved when the function is read. Functions
are executed like commands with the arguments passed as positional parameters. (See Execution below).

Functions execute in the same process as the caller and share all files, traps (other than EXIT and ERR)
and present working directory with the caller. A trap set on EXIT inside a function is executed after the
function completes. Ordinarily, variables are shared between the calling program and the function. How-
ever, the typeset special command used within a function defines local variables whose scope includes the
current function and all functions it calls.

194

KSH(1) General Commands Manual KSH(1)

The special command return is used to return from function calls. Errors within functions return control
to the caller.

Function identifiers can be listed with the -f option of the typeset special command. The text of func-
tions will also be listed. Function can be undefined with the -f option of the unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf option of the typeset com-
mand allows a function to be exported to scripts that are executed without a separate invocation of the
shell. Functions that need to be defined across separate invocations of the shell should be placed in the
ENV file.

Jobs.
If the monitor option of the set command is turned on, an interactive shell associates a job with each
pipeline. It keeps a table of current jobs, printed by the jobs command, and assigns them small integer
numbers. When a job is started asynchronously with &, the shell prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job number 1 and had one (top-level)
process, whose process id was 1234.

This paragraph and the next require features that are not in all versions of UNIX and may not apply. If
you are running a job and wish to do something else you may hit the key ˆZ (control-Z) which sends a
STOP signal to the current job. The shell will then normally indicate that the job has been ‘Stopped’, and
print another prompt. You can then manipulate the state of this job, putting it in the background with the
bg command, or run some other commands and then eventually bring the job back into the foreground
with the foreground command fg. A ˆZ takes effect immediately and is like an interrupt in that pending
output and unread input are discarded when it is typed.

A job being run in the background will stop if it tries to read from the terminal. Background jobs are nor-
mally allowed to produce output, but this can be disabled by giving the command ‘‘stty tostop’’. If you
set this tty option, then background jobs will stop when they try to produce output like they do when they
try to read input.

There are several ways to refer to jobs in the shell. The character % introduces a job name. If you wish
to refer to job number 1, you can name it as %1 . Jobs can also be named by prefixes of the string typed
in to kill or restart them. Thus, on systems that support job control, ‘fg %ed’ would normally restart a
suspended ed(1) job, if there were a suspended job whose name began with the string ‘ed’.

The shell maintains a notion of the current and previous jobs. In output pertaining to jobs, the current job
is marked with a + and the previous job with a -. The abbreviation %+ refers to the current job and %-
refers to the previous job. %% is also a synonym for the current job.

This shell learns immediately whenever a process changes state. It normally informs you whenever a job
becomes blocked so that no further progress is possible, but only just before it prints a prompt. This is
done so that it does not otherwise disturb your work.

When you try to leave the shell while jobs are running or stopped, you will be warned that ‘You have
stopped(running) jobs.’ You may use the jobs command to see what they are. If you do this or immedi-
ately try to exit again, the shell will not warn you a second time, and the stopped jobs will be terminated.

Signals.
The INT and QUIT signals for an invoked command are ignored if the command is followed by & and job
monitor option is not active. Otherwise, signals have the values inherited by the shell from its parent,
with the exception of signal 11 (but see also the trap command below).

Execution.
Each time a command is executed, the above substitutions are carried out. If the command name matches
one of the Special Commands listed below, it is executed within the current shell process. Next, the com-
mand name is checked to see if it matches one of the user defined functions. If it does, the positional pa-
rameters are saved and then reset to the arguments of the function call. When the function completes or
issues a return, the positional parameter list is restored and any trap set on EXIT within the function is ex-
ecuted. The value of a function is the value of the last command executed. A function is also executed in
the current shell process. If a command name is not a special command or a user defined function, a
process is created and an attempt is made to execute the command via exec(2).

195

KSH(1) General Commands Manual KSH(1)

The shell parameter PATH defines the search path for the directory containing the command. Alternative
directory names are separated by a colon (:). The default path is :/bin:/usr/bin (specifying the current di-
rectory, /bin, and /usr/bin, in that order). Note that the current directory is specified by a null path name,
which can appear immediately after the equal sign, between colon delimiters, or at the end of the path list.
If the command name contains a / then the search path is not used. Otherwise, each directory in the path
is searched for an executable file. If the file has execute permission but is not a directory or an a.out file,
it is assumed to be a file containing shell commands. A sub-shell is spawned to read it. All non-exported
aliases, functions, and named parameters are removed in this case. A parenthesized command is also exe-
cuted in a sub-shell.

Command Re-entry.
The text of the last HISTSIZE (default 128) commands entered from a terminal device is saved in a his-
tory file. The file $HOME/.history is used if the HISTFILE variable is not set or is not writable. A shell
can access the commands of all interactive shells which use the same named HISTFILE. The special
command fc is used to list or edit a portion this file. The portion of the file to be edited or listed can be
selected by number or by giving the first character or characters of the command. A single command or
range of commands can be specified. If you do not specify an editor program as an argument to fc then
the value of the parameter FCEDIT is used. If FCEDIT is not defined then /bin/ed is used. The edited
command(s) is printed and re-executed upon leaving the editor. The editor name - is used to skip the edit-
ing phase and to re-execute the command. In this case a substitution parameter of the form old=new can
be used to modify the command before execution. For example, if r is aliased to ′fc -e -′ then typing ‘r
bad=good c’ will re-execute the most recent command which starts with the letter c, replacing the string
bad with the string good.

In-line Editing Options
Normally, each command line entered from a terminal device is simply typed followed by a new-line
(‘RETURN’ or ‘LINE FEED’). If either the emacs, gmacs, or vi option is active, the user can edit the
command line. To be in either of these edit modes set the corresponding option. An editing option is au-
tomatically selected each time the VISUAL or EDITOR variable is assigned a value ending in either of
these option names.

The editing features require that the user’s terminal accept ‘RETURN’ as carriage return without line feed
and that a space (‘ ’ must overwrite the current character on the screen. ADM terminal users should set
the "space - advance" switch to ‘space’. Hewlett-Packard series 2621 terminal users should set the straps
to ‘bcGHxZ etX’.

The editing modes implement a concept where the user is looking through a window at the current line.
The window width is the value of COLUMNS if it is defined, otherwise 80. If the line is longer than the
window width minus two, a mark is displayed at the end of the window to notify the user. As the cursor
moves and reaches the window boundaries the window will be centered about the cursor. The mark is a >
(<, ∗) if the line extends on the right (left, both) side(s) of the window.

Emacs Editing Mode
This mode is entered by enabling either the emacs or gmacs option. The only difference between these
two modes is the way they handle ˆT. To edit, the user moves the cursor to the point needing correction
and then inserts or deletes characters or words as needed. All the editing commands are control characters
or escape sequences. The notation for control characters is caret (ˆ) followed by the character. For ex-
ample, ˆF is the notation for control F. This is entered by depressing ‘f’ while holding down the ‘CTRL’
(control) key. The ‘SHIFT’ key is not depressed. (The notation ˆ? indicates the DEL (delete) key.)

The notation for escape sequences is M- followed by a character. For example, M-f (pronounced Meta f)
is entered by depressing ESC (ascii 033) followed by ‘f’. (M-F would be the notation for ESC followed
by ‘SHIFT’ (capital) ‘F’.)

All edit commands operate from any place on the line (not just at the beginning). Neither the "RETURN"
nor the "LINE FEED" key is entered after edit commands except when noted.

ˆF Move cursor forward (right) one character.
M-f Move cursor forward one word. (The editor’s idea of a word is a string of characters consist-

ing of only letters, digits and underscores.)

196

KSH(1) General Commands Manual KSH(1)

ˆB Move cursor backward (left) one character.
M-b Move cursor backward one word.
ˆA Move cursor to start of line.
ˆE Move cursor to end of line.
ˆ]char Move cursor to character char on current line.
ˆXˆX Interchange the cursor and mark.
erase (User defined erase character as defined by the stty command, usually ˆH or #.) Delete previ-

ous character.
ˆD Delete current character.
M-d Delete current word.
M-ˆH (Meta-backspace) Delete previous word.
M-h Delete previous word.
M-ˆ? (Meta-DEL) Delete previous word (if your interrupt character is ˆ? (DEL, the default) then

this command will not work).
ˆT Transpose current character with next character in emacs mode. Transpose two previous

characters in gmacs mode.
ˆC Capitalize current character.
M-C Capitalize current word.
ˆK Kill from the cursor to the end of the line. If given a parameter of zero then kill from the start

of line to the cursor.
ˆW Kill from the cursor to the mark.
M-p Push the region from the cursor to the mark on the stack.
kill (User defined kill character as defined by the stty command, usually ˆG or .) Kill the entire

current line. If two kill characters are entered in succession, all kill characters from then on
cause a line feed (useful when using paper terminals).

ˆY Restore last item removed from line. (Yank item back to the line.)
ˆL Line feed and print current line.
ˆ (Null character) Set mark.
M- (Meta space) Set mark.
ˆJ (New line) Execute the current line.
ˆM (Return) Execute the current line.
eof End-of-file character, normally ˆD, will terminate the shell if the current line is null.
ˆP Fetch previous command. Each time ˆP is entered the previous command back in time is ac-

cessed.
M-< Fetch the least recent (oldest) history line.
M-> Fetch the most recent (youngest) history line.
ˆN Fetch next command. Each time ˆN is entered the next command forward in time is accessed.
ˆRstring Reverse search history for a previous command line containing string. If a parameter of zero

is given the search is forward. String is terminated by a "RETURN" or "NEW LINE".
ˆO Operate - Execute the current line and fetch the next line relative to current line from the his-

tory file.
M-digits (Escape) Define numeric parameter, the digits are taken as a parameter to the next command.

The commands that accept a parameter are ˆF, ˆB, erase, ˆD, ˆK, ˆR, ˆP and ˆN.
M-letter Soft-key - Your alias list is searched for an alias by the name _letter and if an alias of this

name is defined, its value will be inserted on the line. The letter must not be one of the above
meta-functions.

M-_ The last parameter of the previous command is inserted on the line.
M-. The last parameter of the previous command is inserted on the line.
M-∗ Attempt file name generation on the current word.
ˆU Multiply parameter of next command by 4.
\ Escape next character. Editing characters, the user’s erase, kill and interrupt (normally ˆ?)

characters may be entered in a command line or in a search string if preceded by a \. The \ re-
moves the next character’s editing features (if any).

ˆV Display version of the shell.

Vi Editing Mode
There are two typing modes. Initially, when you enter a command you are in the input mode. To edit, the
user enters control mode by typing ESC (033) and moves the cursor to the point needing correction and

197

KSH(1) General Commands Manual KSH(1)

then inserts or deletes characters or words as needed. Most control commands accept an optional repeat
count prior to the command.

When in vi mode on most systems, canonical processing is initially enabled and the command will be
echoed again if the speed is 1200 baud or greater and it contains any control characters or less than one
second has elapsed since the prompt was printed. The ESC character terminates canonical processing for
the remainder of the command and the user can than modify the command line. This scheme has the ad-
vantages of canonical processing with the type-ahead echoing of raw mode.

If the option viraw is also set, the terminal will always have canonical processing disabled. This mode is
implicit for systems that do not support two alternate end of line delimiters, and may be helpful for certain
terminals.

Input Edit Commands
By default the editor is in input mode.
erase (User defined erase character as defined by the stty command, usually ˆH or #.)

Delete previous character.
ˆW Delete the previous blank separated word.
ˆD Terminate the shell.
ˆV Escape next character. Editing characters, the user’s erase or kill characters may be

entered in a command line or in a search string if preceded by a ˆV. The ˆV removes
the next character’s editing features (if any).

\ Escape the next erase or kill character.
Motion Edit Commands

These commands will move the cursor.
[count]l Cursor forward (right) one character.
[count]w Cursor forward one alpha-numeric word.
[count]W Cursor to the beginning of the next word that follows a blank.
[count]e Cursor to end of word.
[count]E Cursor to end of the current blank delimited word.
[count]h Cursor backward (left) one character.
[count]b Cursor backward one word.
[count]B Cursor to preceding blank separated word.
[count]fc Find the next character c in the current line.
[count]Fc Find the previous character c in the current line.
[count]tc Equivalent to f followed by h.
[count]Tc Equivalent to F followed by l.
; Repeats the last single character find command, f, F, t, or T.
, Reverses the last single character find command.
0 Cursor to start of line.
ˆ Cursor to first non-blank character in line.
$ Cursor to end of line.

Search Edit Commands
These commands access your command history.
[count]k Fetch previous command. Each time k is entered the previous command back in

time is accessed.
[count]- Equivalent to k.
[count]j Fetch next command. Each time j is entered the next command forward in time is

accessed.
[count]+ Equivalent to j.
[count]G The command number count is fetched. The default is the least recent history com-

mand.
/string Search backward through history for a previous command containing string. String

is terminated by a "RETURN" or "NEW LINE". If string is null the previous string
will be used.

?string Same as / except that search will be in the forward direction.
n Search for next match of the last pattern to / or ? commands.

198

KSH(1) General Commands Manual KSH(1)

N Search for next match of the last pattern to / or ?, but in reverse direction. Search
history for the string entered by the previous / command.

Text Modification Edit Commands
These commands will modify the line.
a Enter input mode and enter text after the current character.
A Append text to the end of the line. Equivalent to $a.
[count]cmotion
c[count]motion

Delete current character through the character motion moves the cursor to and enter
input mode. If motion is c, the entire line will be deleted and input mode entered.

C Delete the current character through the end of line and enter input mode. Equiva-
lent to c$.

S Equivalent to cc.
D Delete the current character through the end of line.
[count]dmotion
d[count]motion

Delete current character through the character motion moves the cursor to. Equiva-
lent to d$. If motion is d , the entire line will be deleted.

i Enter input mode and insert text before the current character.
I Insert text before the beginning of the line. Equivalent to the two character sequence

ˆi.
[count]P Place the previous text modification before the cursor.
[count]p Place the previous text modification after the cursor.
R Enter input mode and replace characters on the screen with characters you type over-

lay fashion.
rc Replace the current character with c.
[count]x Delete current character.
[count]X Delete preceding character.
[count]. Repeat the previous text modification command.
∼ Invert the case of the current character and advance the cursor.
[count]_ Causes the count word of the previous command to be appended and input mode en-

tered. The last word is used if count is omitted.
∗ Causes an ∗ to be appended to the current word and file name generation attempted.

If no match is found, it rings the bell. Otherwise, the word is replaced by the match-
ing pattern and input mode is entered.

Other Edit Commands
Miscellaneous commands.
u Undo the last text modifying command.
U Undo all the text modifying commands performed on the line.
[count]v Returns the command fc -e ${VISUAL:-${EDITOR:-vi}} count in the input buffer.

If count is omitted, then the current line is used.
ˆL Line feed and print current line. Has effect only in control mode.
ˆJ (New line) Execute the current line, regardless of mode.
ˆM (Return) Execute the current line, regardless of mode.
Equivalent to

I#<cr>. Useful for causing the current line to be inserted in the history without be-
ing executed.

Special Commands.
The following simple-commands are executed in the shell process. Input/Output redirection is permitted.
File descriptor 1 is the default output location. Parameter assignment lists preceding the command do not
remain in effect when the command completes unless noted.

: [arg . . .]
Parameter assignments remain in effect after the command completes. The command only ex-
pands parameters. A zero exit code is returned.

199

KSH(1) General Commands Manual KSH(1)

. file [arg . . .]
Parameter assignments remain in effect after the command completes. Read and execute com-
mands from file and return. The commands are executed in the current Shell environment. The
search path specified by PATH is used to find the directory containing file. If any arguments arg
are given, they become the positional parameters. Otherwise the positional parameters are un-
changed.

alias [-tx] [name[=value] . . .]
Alias with no arguments prints the list of aliases in the form name=value on standard output.
An alias is defined for each name whose value is given. A trailing space in value causes the
next word to be checked for alias substitution. The -t flag is used to set and list tracked aliases.
The value of a tracked alias is the full pathname corresponding to the given name. The value be-
comes undefined when the value of PATH is reset but the aliases remained tracked. Without the
-t flag, for each name in the argument list for which no value is given, the name and value of the
alias is printed. The -x flag is used to set or print exported aliases. An exported alias is defined
across sub-shell environments. Alias returns true unless a name is given for which no alias has
been defined.

bg [%job]
This command is only built-in on systems that support job control. Puts the specified job into
the background. The current job is put in the background if job is not specified.

break [n]
Exit from the enclosing for while until or select loop, if any. If n is specified then break n lev-
els.

continue [n]
Resume the next iteration of the enclosing for while until or select loop. If n is specified then
resume at the n-th enclosing loop.

cd [arg]
cd old new

This command can be in either of two forms. In the first form it changes the current directory to
arg. If arg is - the directory is changed to the previous directory. The shell parameter HOME is
the default arg. The parameter PWD is set to the current directory. The shell parameter CDPATH
defines the search path for the directory containing arg. Alternative directory names are sepa-
rated by a colon (:). The default path is <null> (specifying the current directory). Note that the
current directory is specified by a null path name, which can appear immediately after the equal
sign or between the colon delimiters anywhere else in the path list. If arg begins with a / then the
search path is not used. Otherwise, each directory in the path is searched for arg.

The second form of cd substitutes the string new for the string old in the current directory name, PWD
and tries to change to this new directory.

The cd command may not be executed by rsh.

eval [arg . . .]
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg . . .]
Parameter assignments remain in effect after the command completes. If arg is given, the com-
mand specified by the arguments is executed in place of this shell without creating a new process.
Input/output arguments may appear and affect the current process. If no arguments are given the
effect of this command is to modify file descriptors as prescribed by the input/output redirection
list. In this case, any file descriptor numbers greater than 2 that are opened with this mechanism
are closed when invoking another program.

exit [n]
Causes the shell to exit with the exit status specified by n. If n is omitted then the exit status is
that of the last command executed. An end-of-file will also cause the shell to exit except for a
shell which has the ignoreeof option (See set below) turned on.

200

KSH(1) General Commands Manual KSH(1)

export [name . . .]
The given names are marked for automatic export to the environment of subsequently-executed
commands.

fc [-e ename] [-nlr] [first] [last]
fc -e - [old=new] [command]

In the first form, a range of commands from first to last is selected from the last HISTSIZE com-
mands that were typed at the terminal. The arguments first and last may be specified as a num-
ber or as a string. A string is used to locate the most recent command starting with the given
string. A negative number is used as an offset to the current command number. If the flag -l, is
selected, the commands are listed on standard output. Otherwise, the editor program ename is
invoked on a file containing these keyboard commands. If ename is not supplied, then the value
of the parameter FCEDIT (default /bin/ed) is used as the editor. When editing is complete, the
edited command(s) is executed. last is not specified then it will be set to first. If first is not
specified the default is the previous command for editing and -16 for listing. The flag -r re-
verses the order of the commands and the flag -n suppresses command numbers when listing. In
the second form the command is re-executed after the substitution old=new is performed.

fg [%job]
This command is only built-in on systems that support job control. If job is specified it brings it
to the foreground. Otherwise, the current job is brought into the foreground.

jobs [-l]
Lists the active jobs; given the -l options lists process id’s in addition to the normal information.

kill [-sig] process . . .
Sends either the TERM (terminate) signal or the specified signal to the specified jobs or
processes. Signals are either given by number or by names (as given in /usr/include/signal.h,
stripped of the prefix ‘‘SIG’’). The signal names are listed by kill -l’. There is no default, saying
just ‘kill’ does not send a signal to the current job. If the signal being sent is TERM (terminate)
or HUP (hangup), then the job or process will be sent a CONT (continue) signal if it is stopped.
The argument process can be either a process id or a job.

let arg . . .
Each arg is an arithmetic expression to be evaluated. All calculations are done as long integers
and no check for overflow is performed. Expressions consist of constants, named parameters,
and operators. The following set of operators, listed in order of decreasing precedence, have
been implemented:
- unary minus
! logical negation
∗ / %

multiplication, division, remainder
+ - addition, subtraction
<= >= < >

comparison
== !=

equality inequality
= arithmetic replacement

Sub-expressions in parentheses () are evaluated first and can be used to override the above prece-
dence rules. The evaluation within a precedence group is from right to left for the = operator and
from left to right for the others.

A parameter name must be a valid identifier. When a parameter is encountered, the value associ-
ated with the parameter name is substituted and expression evaluation resumes. Up to nine levels
of recursion are permitted.

The return code is 0 if the value of the last expression is non-zero, and 1 otherwise.

newgrp [arg . . .]
Equivalent to exec newgrp arg

201

KSH(1) General Commands Manual KSH(1)

print [-Rnprsu[n]] [arg . . .]
The shell output mechanism. With no flags or with flag -, the arguments are printed on standard
output as described by echo(1). In raw mode, -R or -r, the escape conventions of echo are ig-
nored. The -R option will print all subsequent arguments and options other than -n. The -p op-
tion causes the arguments to be written onto the pipe of the process spawned with & instead of
standard output. The -s option causes the arguments to be written onto the history file instead of
standard output. The -u flag can be used to specify a one digit file descriptor unit number n on
which the output will be placed. The default is 1. If the flag -n is used, no new-line is added to
the output.

read [-prsu[n]] [name?prompt] [name . . .]
The shell input mechanism. One line is read and is broken up into words using the characters in
IFS as separators. In raw mode, -r, a \ at the end of a line does not signify line continuation.
The first word is assigned to the first name, the second word to the second name, etc., with left-
over words assigned to the last name. The -p option causes the input line to be taken from the
input pipe of a process spawned by the shell using &. If the -s fag is present, the input will be
saved as a command in the history file. The flag -u can be used to specify a one digit file de-
scriptor unit to read from. The file descriptor can be opened with the exec special command.
The default value of n is 0. If name is omitted then REPLY is used as the default name. The re-
turn code is 0 unless an end-of-file is encountered. An end-of-file with the -p option causes
cleanup for this process so that another can be spawned. If the first argument contains a ?, the re-
mainder of this word is used as a prompt when the shell is interactive. If the given file descriptor
is open for writing and is a terminal device then the prompt is placed on this unit. Otherwise the
prompt is issued on file descriptor 2. The return code is 0 unless an end-of-file is encountered.

readonly [name . . .]
The given names are marked readonly and these names cannot be changed by subsequent assign-
ment.

return [n]
Causes a shell function to return to the invoking script with the return status specified by n. If n
is omitted then the return status is that of the last command executed. If return is invoked while
not in a function then it is the same as an exit.

set [-aefhkmnostuvx] [-o option . . .] [arg . . .]
The flags for this command have meaning as follows:
-a All subsequent parameters that are defined are automatically exported.
-e If the shell is non-interactive and if a command fails, execute the ERR trap, if set, and

exit immediately. This mode is disabled while reading profiles.
-f Disables file name generation.
-h Each command whose name is an identifier becomes a tracked alias when first encoun-

tered.
-k All parameter assignment arguments are placed in the environment for a command, not

just those that precede the command name.
-m Background jobs will run in a separate process group and a line will print upon com-

pletion. The exit status of background jobs is reported in a completion message. On
systems with job control, this flag is turned on automatically for interactive shells.

-n Read commands but do not execute them.
-o The following argument can be one of the following option names:

allexport
Same as -a.

errexit Same as -e.
emacs Puts you in an emacs style in-line editor for command entry.
gmacs Puts you in a gmacs style in-line editor for command entry.
ignoreeof

The shell will not exit on end-of-file. The command exit must be used.
keyword

Same as -k.

202

KSH(1) General Commands Manual KSH(1)

markdirs
All directory names resulting from file name generation have a trailing / ap-
pended.

monitor
Same as -m.

noexec Same as -n.
noglob Same as -f.
nounset

Same as -u.
verbose

Same as -v.
trackall

Same as -h.
vi Puts you in insert mode of a vi style in-line editor until you hit escape char-

acter 033. This puts you in move mode. A return sends the line.
viraw Each character is processed as it is typed in vi mode.
xtrace Same as -x.
If no option name is supplied then the current option settings are printed.

-s Sort the positional parameters.
-t Exit after reading and executing one command.
-u Treat unset parameters as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.
- Turns off -x and -v flags and stops examining arguments for flags.
-- Do not change any of the flags; useful in setting $1 to a value beginning with -. If no

arguments follow this flag then the positional parameters are unset.

Using + rather than - causes these flags to be turned off. These flags can also be used upon invo-
cation of the shell. The current set of flags may be found in $-. The remaining arguments are
positional parameters and are assigned, in order, to
$1, $2, If no arguments are given then the values of all names are printed on the standard
output.

shift [n]
The positional parameters from $n+1 . . . are renamed $1 . . . , default n is 1. The parameter n
can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

test [expr]
Evaluate conditional expression expr. See test(1) for usage and description. The arithmetic
comparison operators are not restricted to integers. They allow any arithmetic expression. Four
additional primitive expressions are allowed:
-L file

True if file is a symbolic link.
file1 -nt file2

True if file1 is newer than file2.
file1 -ot file2

True if file1 is older than file2.
file1 -ef file2

True if file1 has the same device and i-node number as file2.

times
Print the accumulated user and system times for the shell and for processes run from the shell.

trap [arg] [sig] . . .
arg is a command to be read and executed when the shell receives signal(s) sig. (Note that arg is
scanned once when the trap is set and once when the trap is taken.) Each sig can be given as a
number or as the name of the signal. Trap commands are executed in order of signal number.
Any attempt to set a trap on a signal that was ignored on entry to the current shell is ineffective.
An attempt to trap on signal 11 (memory fault) produces an error. If arg is omitted or is -, then
all trap(s) sig are reset to their original values. If arg is the null string then this signal is ignored

203

KSH(1) General Commands Manual KSH(1)

by the shell and by the commands it invokes. If sig is ERR then arg will be executed whenever a
command has a non-zero exit code. This trap is not inherited by functions. If sig is 0 or EXIT
and the trap statement is executed inside the body of a function, then the command arg is exe-
cuted after the function completes. If sig is 0 or EXIT for a trap set outside any function then
the command arg is executed on exit from the shell. The trap command with no arguments
prints a list of commands associated with each signal number.

typeset [-FLRZefilprtux[n] [name[=value]] . . .]
Parameter assignments remain in effect after the command completes. When invoked inside a
function, a new instance of the parameter name is created. The parameter value and type are re-
stored when the function completes. The following list of attributes may be specified:
-F This flag provides UNIX to host-name file mapping on non-UNIX machines.
-L Left justify and remove leading blanks from value. If n is non-zero it defines the width

of the field, otherwise it is determined by the width of the value of first assignment.
When the parameter is assigned to, it is filled on the right with blanks or truncated, if
necessary, to fit into the field. Leading zeros are removed if the -Z flag is also set. The
-R flag is turned off.

-R Right justify and fill with leading blanks. If n is non-zero it defines the width of the
field, otherwise it is determined by the width of the value of first assignment. The field
is left filled with blanks or truncated from the end if the parameter is reassigned. The L
flag is turned off.

-Z Right justify and fill with leading zeros if the first non-blank character is a digit and the
-L flag has not been set. If n is non-zero it defines the width of the field, otherwise it is
determined by the width of the value of first assignment.

-e Tag the parameter as having an error. This tag is currently unused by the shell and can
be set or cleared by the user.

-f The names refer to function names rather than parameter names. No assignments can
be made and the only other valid flag is -x.

-i Parameter is an integer. This makes arithmetic faster. If n is non-zero it defines the out-
put arithmetic base, otherwise the first assignment determines the output base.

-l All upper-case characters converted to lower-case. The upper-case flag, -u is turned
off.

-p The output of this command, if any, is written onto the two-way pipe
-r The given names are marked readonly and these names cannot be changed by subse-

quent assignment.
-t Tags the named parameters. Tags are user definable and have no special meaning to the

shell.
-u All lower-case characters are converted to upper-case characters. The lower-case flag,

-l is turned off.
-x The given names are marked for automatic export to the environment of subsequently-

executed commands.

Using + rather than - causes these flags to be turned off. If no name arguments are given but
flags are specified, a list of names (and optionally the values) of the parameters which have
these flags set is printed. (Using + rather than - keeps the values to be printed.) If no names and
flags are given, the names and attributes of all parameters are printed.

ulimit [-cdfmpt] [n]
-c imposes a size limit of n blocks on the size of core dumps (BSD only).
-d imposes a size limit of n blocks on the size of the data area (BSD only).
-f imposes a size limit of n blocks on files written by child processes (files of any size may

be read).
-m imposes a soft limit of n blocks on the size of physical memory (BSD only).
-p changes the pipe size to n (UNIX/RT only).
-t imposes a time limit of n seconds to be used by each process (BSD only).

If no option is given, -f is assumed. If n is not given the current limit is printed.

204

KSH(1) General Commands Manual KSH(1)

umask [nnn]
The user file-creation mask is set to nnn (see umask(2)). If nnn is omitted, the current value of
the mask is printed.

unalias name . . .
The parameters given by the list of names are removed from the alias list.

unset [-f] name . . .
The parameters given by the list of names are unassigned, i. e., their values and attributes are
erased. Readonly variables cannot be unset. If the flag, -f, is set, then the names refer to func-
tion names.

wait [n]
Wait for the specified process and report its termination status. If n is not given then all currently
active child processes are waited for. The return code from this command is that of the process
waited for.

whence [-v] name . . .
For each name, indicate how it would be interpreted if used as a command name.

The flag, -v, produces a more verbose report.

Invocation.
If the shell is invoked by exec(2), and the first character of argument zero ($0) is -, then the shell is as-
sumed to be a login shell and commands are read from /etc/profile and then from either .profile in the
current directory or $HOME/.profile, if either file exists. Next, commands are read from the file named by
performing parameter substitution on the value of the environment parameter ENV if the file exists. Com-
mands are then read as described below; the following flags are interpreted by the shell when it is invoked:

-c string If the -c flag is present then commands are read from string.
-s If the -s flag is present or if no arguments remain then commands are read from the standard

input. Shell output, except for the output of some of the Special commands listed above, is
written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal (as told by
gtty(2)) then this shell is interactive. In this case TERMINATE is ignored (so that kill 0 does
not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is interrupt-
ible). In all cases, QUIT is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

Rsh Only.
Rsh is used to set up login names and execution environments whose capabilities are more controlled than
those of the standard shell. The actions of rsh are identical to those of sh, except that the following are
disallowed:

changing directory (see cd(1)),
setting the value of SHELL or PATH,
specifying path or command names containing /,
redirecting output (> and >>).

The restrictions above are enforced after .profile and the ENV files are interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes sh to execute it. Thus, it is
possible to provide to the end-user shell procedures that have access to the full power of the standard
shell, while imposing a limited menu of commands; this scheme assumes that the end-user does not have
write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control over user actions, by per-
forming guaranteed setup actions and leaving the user in an appropriate directory (probably not the login
directory).

The system administrator often sets up a directory of commands (i.e., /usr/rbin) that can be safely in-
voked by rsh. Some systems also provide a restricted editor red .

205

KSH(1) General Commands Manual KSH(1)

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. If the
shell is being used non-interactively then execution of the shell file is abandoned. Otherwise, the shell re-
turns the exit status of the last command executed (see also the exit command above).

FILES
/etc/passwd
/etc/profile
$HOME/.profile
/tmp/sh∗
/dev/null

SEE ALSO
cat(1), cd(1), echo(1), emacs(1), env(1), gmacs(1), newgrp(1), test(1), umask(1), vi(1), dup(2), exec(2),
fork(2), gtty(2), pipe(2), signal(2), umask(2), ulimit(2), wait(2), rand(3), a.out(5), profile(5), environ(7).

CAVEATS
If a command which is a tracked alias is executed, and then a command with the same name is installed in
a directory in the search path before the directory where the original command was found, the shell will
continue to exec the original command. Use the -t option of the alias command to correct this situation

If you move the current directory or one above it, pwd may not give the correct response. Use the cd
command with a full path name to correct this situation.

Some very old shell scripts contain a ˆ as a synonym for the pipe character .

206

LAB(1) General Commands Manual LAB(1)

NAME
lab − label maker

SYNOPSIS
lab [-m] [file ...]

DESCRIPTION
Lab causes the files to be queued for printing as mailing labels. If no files are named, the standard input
is read. The option -m causes notification via mail(1) to be sent when the job completes.

The last line of each label is identified by ending it with one or more spaces and a hyphen. The hyphen
must be the last character in the line; no white space may follow it.

FILES
/usr/spool/lab/∗

spool area

/usr/lib/lab
printer daemon

SEE ALSO
pr(1)

BUGS
Queued jobs print in directory (seemingly random) order.

alice 207

LANGS(1) General Commands Manual LANGS(1)

NAME
altran, cospan, esterel, icon, lisp, macsyma, maple, ops5, pascal, ratfor, S, smp, sno, spitbol, struct, twig -
languages

SYNOPSIS
altran [option ...] file ...
cospan [option ...] file
esterel
iconc
icont
lisp
/usr/lbin/macsyma
maple
/usr/lbin/ops5
ratfor [option ...] file ...
S
smp
sno [file ...]
spitbol [option ...] file ...
struct [option ...] file ...
twig [-wxx] file

DESCRIPTION
Altran, a language for rational algebra, is described in W. S. Brown, ALTRAN User’s Manual. For more
information execute man altran.

Cospan, a system which analyzes concurrent programs written in the data-flow language S/R for proper-
ties defined by automata, is described in Z. Har’El and R. P. Kurshan, COSPAN User’s Guide,
1121-871009-21TM, AT&T Bell Laboratories, 1987. For more information, execute man cospan.

Esterel compiles single-process implementations of programs expressed in terms of asynchronously coop-
erating automata. For more information, execute man esterel.

Icon, a general-purpose language with stream-based coroutines is described in R. E. Griswold, The Icon
Programming Language, Prentice-Hall, 1983. For more information, execute man icont.

Lisp, the symbol manipulation language, is described in J. K. Foderara, ‘The Franz Lisp Manual’, in Unix
Programmer’s Manual, Seventh Edition, Virtual VAX-11 Version, 1980, Volume 2C (Berkeley)

Macsyma, another symbolic algebra language, is described in Macsyma Reference Manual, Laboratory
for Computer Science, MIT, 1977. It breaks if the environment contains shell functions.

Maple, a third symbolic algebra language, is described in K. O. Geddes, G. H. Gonnet, and B. W. Char,
MAPLE User’s Manual, Third Edition, Research Report CS-83-41 Dept. of Computer Science, University
of Waterloo, 1983. For more information execute man maple.

Ops5 is a production-system interpreter described in C. L. Forgy OPS5 User’s Manual, Department of
Computer Science, Carnegie-Mellon University, July, 1981. For more information execute man ops5.

Pascal is an interpreter and pc is a compiler for the well known language. For more information, type
man pascal pc pxp.

Ratfor accepts Fortran extended with C-like control constructs and compiles into Fortran. For more infor-
mation execute man ratfor. For a full description see B. W. Kernighan and P. J. Plauger, Software
Tools, Addison-Wesley, 1976.

S, a system for data analysis and graphics, is described in R. A. Becker, J. M. Chambers, and A. R. Wilks,
The New S Language, Wadsworth, 1988.

Smp, a fourth symbolic algebra language, is described in C. Cole and S. Wolfram, SMP Handbook, Cali-
fornia Institute of Technology, 1981.

Sno is a dialect of Snobol 3. For more information execute man sno.

Spitbol is a dialect of Snobol 4. For more information execute man spitbol. The full story is in R. B.
K. Dewar, A. P. McCann, R. E. Goldberg, and S. G. Duff, Macro SPITBOL Program Reference Manual,

208

LANGS(1) General Commands Manual LANGS(1)

and R. E. Griswold, J. F. Poage, and I. P. Polonsky, The SNOBOL4 Programming Language Academic
Press, 1968.

Struct, an inverse of ratfor, deduces rational control structure from pure Fortran. For more information
execute man struct.

Twig is a language for tree manipulation, useful for code generation and other applications. For more
information execute man twig. See also S. W. K. Tjiang, Twig Reference Manual, AT&T Bell Labora-
tories Computing Science Technical Report 120.

BUGS
These language processors are available on a haphazard collection of machines. Many are maintained in
the same spirit.

209

LCOC(1) General Commands Manual LCOC(1)

NAME
lcoc - Esterel compiler

SYNOPSIS
lcoc [option] ... [file]...

DESCRIPTION
lcoc is the Esterel v3 compiler. It produce an oc format output from one or more lc format inputs (or ic if
no Esterel copymodule instruction is used). If there is no input files, the standard input is used. ic format
inputs describes Esterel modules to be processed, and oc format output describes the computed automata.
Typical use is:
lcoc < game1.ic > game1.oc
or
lcoc game1.ic > game1.oc

The following options are interpreted by lcoc.

-version Gives the version name and terminates ignoring all others arguments.

-v Verbose option: gives names of the modules compiled.

-stat Prints statistic informations into the standard error stream: parsing and compiling times and
size of the process.

-size Prints size informations into the standard error stream: how many states, actions and action
calls are produced.

-memstat Memory state after compiling.

-W Give warnings about .ic unused actions and .ic dead code.

-show During the compiling process, gives two informations into the standard error stream: how
many states are already created and how many states are already analysed.

FILES
The caller of the command must have read/write permission for the directories containing the working
files, and execute permission for the lcoc file itself.

DIAGNOSTICS
The diagnostics produced by lcoc compiler are intended to be self-explanatory.

IDENTIFICATION
Author: F. Boussinot, CMA, Ecole des Mines de Paris,
Sophia-Antipolis, 06600 Valbonne, FRANCE
Revision Number: $Revision: 1.3 $; Release Date: $Date: 88/06/30 12:08:10 $.

SEE ALSO
Esterel v3 Programming Language Manual
Esterel v3 System Manuals.
strlic (1), iclc(1), ocl (1).

BUGS

30 June 1988 210

LCOMP(1) General Commands Manual LCOMP(1)

NAME
lcomp, lprint − line-by-line profiler

SYNOPSIS
lcomp [option ...] file ...

lprint [option] [file ...]

DESCRIPTION
Lcomp is used in place of cc(1) or f77(1) to insert instruction-counting code into programs. It shares with
those commands options whose initial letters are taken from the string cwpDUIRdlNnz, and accepts files
whose names end in .c, .f, .s, or .o. From each source file it derives a .o file and a .sL file which lprint
uses to correlate source lines with basic blocks.

Option -C declares that .c files (and .o files, if no source files are named) are C++ files. If the -c option is
not present lcomp creates Each time a.out is run statistics are added to a profiling file

Lprint produces on the standard output a listing (in the style of pr(1)) of the programs compiled by lcomp.
Without arguments or files, each line of the listing is preceded by the number of times it was executed, as
determined from the data in Lprint interprets the following options.

-a Detailed listing of every machine instruction and how often it was executed.

-b How often each basic block was executed.

-c Compress the prof.out file, which otherwise grows with every execution of a.out.

-f Print summary information by function: instruction executions, number of invocations, source
instructions, and number of instructions never executed.

-i Before each line of source print the number of machine instructions executed.

-p Before each line of source print the number of times the first basic block in that line was exe-
cuted.

-s Summarize the counts by source file: instruction executions, source instructions, instructions
never executed, basic block executions, total number of source basic blocks, and how many were
never executed.

If any file names are given, the options abip apply only to them. If no options are given, -p is assumed.
Any combination of options is allowed.

FILES
prof.out

counts

∗.sL for correlating with source

/usr/lib/bb
for finding basic blocks and inserting counting code

/usr/lib/nexit.o
for printing counts when a.out exits

SEE ALSO
cc(1), f77(1), prof(1)

BUGS
A line in the source file may be in zero, one, or more basic blocks; the count given in the listing corre-
sponds to some particular choice of the basic block to associate with the line.
Processing the output of yacc(1) without removing #line directives will produce unsatisfactory results.
Option -C masks an option of cc(1).

211

LD(1) General Commands Manual LD(1)

NAME
ld − link editor or loader

SYNOPSIS
ld [option ...] file ...

DESCRIPTION
Ld combines several object programs into one, resolves external references, and searches libraries. In the
simplest case several object files are given, and ld combines them, producing an object module which can
be either executed or become the input for a further ld run. (In the latter case, the -r option must be given
to preserve the relocation bits.) The output of ld is left on This file is made executable only if no errors
occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is the begin-
ning of the first routine (unless the -e option is specified).

If any argument is a library, it is searched exactly once at the point it is encountered in the argument list.
Only those routines defining an unresolved external reference are loaded. If a routine from a library refer-
ences another routine in the library, and the library has not been processed by ranlib (see ar(1)), the refer-
enced routine must appear after the referencing routine in the library. Thus the order of programs within
libraries may be important; see lorder(1). The first member of a library should be a file named
__.SYMDEF, which is understood to be a dictionary for the library as produced by ranlib; the dictionary
is searched iteratively to satisfy as many references as possible.

The symbols etext, edata, and end edata, and end in C) are reserved, and if referred to, are set
to the first location above the program, the first location above initialized data, and the first location above
all data, respectively. It is erroneous to define these symbols.

Ld understands several options. Except for -l and -o, they should appear before the file names.

-A Load incrementally, so that the resulting object code may be read into an already executing pro-
gram. The next argument names an object file whose symbol table will be added to. Only newly
linked material will be entered into the text and data portions of but the new symbol table will
reflect every symbol defined before and after the incremental load. -A must not follow any
object file names.

-D Take the next argument as a hexadecimal number and pad the data segment with zeros to the
indicated length.

-d Force definition of common storage even if the -r flag is present.

-e The following argument is taken to be the name of the entry point of the loaded program; loca-
tion 0 is the default.

-lx This option is an abbreviation for the library name /lib/libx.a, where x is a string. If that does
not exist, ld tries /usr/lib/libx.a A library is searched when its name is encountered, so the place-
ment of the option is significant.

-M produce a primitive load map, listing the names of the files which will be loaded.

-N Do not make the text portion read-only or sharable. (Use ‘magic number’ 0407.)

-n Arrange that when the output file is executed, the text portion will be read-only and shared
among all users executing the file. (Use magic number 0410 and move the data segment to a
1024 byte boundary.)

-o The name argument after -o is used as the name of the ld output file, instead of

-r Generate relocation bits in the output file so that it can be the subject of another ld run. This flag
also prevents final fixing of ‘common’ symbols (uninitialized C variables or Fortran common
variables), and suppresses ‘undefined symbol’ diagnostics.

-s Strip the output, that is, remove the symbol table and relocation bits to save space (but impair the
usefulness of the debuggers). This information can also be removed by strip(1).

-S Partially strip; remove all symbols that were not in the source.

212

LD(1) General Commands Manual LD(1)

-T The next argument is a hexadecimal number which sets the text segment origin. With option -A
this origin must be a multiple of 1024. The default is 0, or _end with -A.

-t (trace) Print the name of each file as it is processed.

-u Take the following argument as a symbol and enter it as undefined in the symbol table. This is
useful for loading wholly from a library, since initially the symbol table is empty and an unre-
solved reference is needed to force the loading of the first routine.

-X Save local symbols except for those whose names begin with L. This option is used by cc(1) to
discard internally-generated labels while retaining symbols local to routines.

-x Do not preserve local symbols in the output symbol table; only enter external symbols. This
option saves some space in the output file.

-ysym Indicate each file in which sym appears, its type and whether the file defines or references it.
Many such options may be given to trace many symbols. (It is usually necessary to begin sym
with an underscore _, as external C, Fortran, and Pascal variables begin with underscores.)

-z Arrange for the process to be loaded on demand from the resulting executable file (magic number
413) rather than preloaded. This (default) output format has a 1024-byte header followed by a
text and data segment each of which have size a multiple of 1024 bytes (being padded out with
zeros if necessary). The first few BSS segment symbols may appear in the data segment to avoid
wasting space at the end of that segment.

FILES
/lib/lib∗.a

libraries

/usr/lib/lib∗.a
more libraries

a.out
output file

SEE ALSO
as(1), ar(1), cc(1), f77(1), size(1), nm(1), lorder(1), a.out(5)

BUGS
There is no way to force data to be page aligned.

213

ld80(1) General Commands Manual ld80(1)

NAME
"ld80" link editor for the 8080/Z80 load moduals.

SYNOPSIS
ld80 [ultdb] name ...

DESCRIPTION
ld80 combines several object programs into one; resolves external references; and searches libraries. In
the simplest case the names of several object programs are given, and ld80 combines them, producing an
object module which can be either executed or become the input for a further ld80 run. The output of
ld80 is left on 80.out . This file is made executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is the begin-
ning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encountered in the argument list.
Only those routines defining an unresolved external reference are loaded. If a routine from a library refer-
ences another routine in the library, the referenced routine must appear after the referencing routine in the
library. Thus the order of programs within libraries is important.

ld80 understands several flag arguments which are written preceded by a ‘’. Except for l, they should ap-
pear before the file names.

b This option is used to provide an absolute origin for the bss segment of the resultant "80.out".
The supplied origin must be the next argument on the command line and must be a positive or negative
octal (leading 0) or decimal number. The defualt is for the bss segment to immediately follow the data
segment. Use of this option will cause the relocation information to be suppressed from the output.

d This option is used to provide an absolute origin for the data segment of the resultant "80.out".
The supplied origin must be the next argument on the command line and must be a positive or negative
octal (leading 0) or decimal number. The default is to have the data placed directly after the text. Use of
this option will cause the relocation information to be suppressed from the output.

u take the following argument as a symbol and enter it as undefined in the symbol table. This is
useful for loading wholly from a library, since initially the symbol table is empty and an unresolved refer-
ence is needed to force the loading of the first routine.

t This option is used to provide an absolute origin for the text segment of the resultant "80.out".
The supplied origin must be the next argument on the command line and must be a positive or negative
octal (leading 0) or decimal number. The default origin is 0. Use of this option will cause the relocation
information to be suppressed from the output.

l This option is an abbreviation for a library name. l alone stands for ‘/usr/z8080/lib/z80’, which is
the standard library for assembly language programs. lx stands for ‘/usr/z8080/lib/z80x.a’ where x is any
character. A library is searched when its name is encountered, so the placement of a l is significant.

FILES
/usr/z8080/lib/z80 libraries
"80.out" output file

SEE ALSO
"as80" (I), ar (I)

BUGS
Most diagnostics are self explanatory. The strangest is ’origin - conflict’ and occurs whenever an origin
supplied by the user via the -t -d or -b options causes segments to overlap. The numbers printed out corre-
spond origins and sizes(both in octal) of each resultant segment. 80.out is produced.

1/2/78 214

LEARN (1) General Commands Manual LEARN (1)

NAME
learn − computer aided instruction about UNIX

SYNOPSIS
learn [-directory] [subject [lesson [speed]]]

DESCRIPTION
Learn gives CAI courses and practice in the use of UNIX. To get started simply type ‘learn’. The pro-
gram will ask questions to find out what you want to do. The questions may be bypassed by naming a
subject, and the last lesson number that learn told you in the previous session. You may also include a
speed number that was given with the lesson number (but without the parentheses that learn places
around the speed number). If lesson is -, learn prompts for each lesson; this is useful for debugging.

The subjects presently handled are
editor
eqn
files
macros
morefiles
C

The special command bye terminates a learn session.

The -directory option allows one to exercise a script in a nonstandard place.

FILES
/usr/learn/∗

BUGS
The main strength of learn, that it asks the student to use the real UNIX, also makes possible baffling mis-
takes. It is helpful, especially for nonprogrammers, to have a UNIX initiate near at hand during the first
sessions.

Occasionally lessons are incorrect, sometimes because the local version of a command operates in a non-
standard way. Such lessons may be skipped, but it takes some sophistication to recognize the situation.

panther 215

LEX(1) General Commands Manual LEX(1)

NAME
lex − generator of lexical analysis programs

SYNOPSIS
lex [-tvfn] [file ...]

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text. The input files (standard input de-
fault) contain regular expressions to be searched for, and actions written in C to be executed when expres-
sions are found.

A C source program, lex.yy.c is generated, to be compiled thus:

cc lex.yy.c -ll

This program, when run, copies unrecognized portions of the input to the output, and executes the associ-
ated C action for each regular expression that is recognized.

The options have the following meanings.

-t Place the result on the standard output instead of in file

-v Print a one-line summary of statistics of the generated analyzer.

-n Opposite of -v; -n is default.

-f ‘Faster’ compilation: don’t bother to pack the resulting tables; limited to small programs.

EXAMPLES
This program converts upper case to lower, removes blanks at the end of lines, and replaces multiple
blanks by single blanks.

%%
[A-Z] putchar(yytext[0]+´a´-´A´);
[]+$
[]+ putchar(´ ´);

FILES
lex.yy.c

SEE ALSO
yacc(1), sed(1)
M. E. Lesk and E. Schmidt, ‘LEX—Lexical Analyzer Generator’, this manual, Volume 2

216

LIBRARY (1) General Commands Manual LIBRARY (1)

NAME
library - send information requests to appropriate organization

SYNOPSIS
library [-1234567] [request string]

DESCRIPTION
library sends document/information requests to the appropriate organization within the Library Network.
It also handles a variety of requests for other AT&T organizations (e.g., Engineering Information Ser-
vices). It requires the user to discriminate between seven classes of requests as indicated by the menu it
displays:

1) Order by number - this includes nearly everything announced
by the AT&T Library Network (e.g. TMs, bulletin items) or handled
by the Engineering Information Services (e.g. J docs, CPSs).

2) Order item not announced by the AT&T Library Network. Available:
Buy a copy of a book; Address labels; Technical Reports;
Internal document by date (id unknown); Photocopies;
Subscribe to a journal; foreign language services.

3) Subscribe or unsubscribe to a bulletin (e.g. Mercury, CTP)
4) Submit a database search. Examples of available databases:

book catalog, internal documents, AT&T personnel, released papers
5) Request human assistance / interaction. Type(s) available:

General AT&T Library Network assistance; Reference question.
6) Request AT&T Library Network information/services. Examples:

LINUS info, products/services descriptions, loan/reserve status
7) Read AT&T Library Network email transmissions
Note that the first class includes anything announced by the Library Network operated by AT&T Bell
Laboratories.

The main menu level of library can be skipped by giving the number of the desired option (1 - 7) as the
first parameter to the library.

The secondary menu levels in library (presently in options 2, 4, 5 and 6) can be bypassed by selecting the
desired option as the second parameter. For example, to do order a photocopy, use the command

library -2 -p

Similarly, if you want to do a search of the personnel database, you can do the command line
library -4 -p waldstein, r k

Requests for objects that can be meaningfully described with one line can be entered on the command
line. This includes the things orderable by options 1, 3, 4, and 6. Note that library tries in this case to
function with a minimum of interaction. For example, if you request a TM this way, you will not be given
a chance to enter remarks connected with the request.

When permitted, the command line requests can include more than one item (presently only options 1 and
3 support this). An example command line is

library -1 123456-851234-56tm 5d123 ad-123456

In options 2, 5, and 6, library will prompt for a variety of information of varying complexity. A period (.)
at any point in this session will delete the request being entered. Blank lines (just hit return) will cause
optional information to be left out of the request. A line consisting of tilde e (e) will, when a long re-
sponse is permitted, put you into an editor. This editor defaults to ed(1). However, if the environment
variable EDITOR is set, the specified editor is used. A line consisting of tilde r (r) will, when a long re-
sponse is permitted, read in the indicated file.

Option 7 is a misfit, in that it is primarily a reader, not a request transmitter; although it does allow re-
questing items. This option is intended for reading electronic transmissions from the library network: pri-
marily responses to option 4 search requests and ASAP (specialized searches like electronic Mercury). A
convenient way to use option 7 is to invoke it via a pipe from mail(1), mailx(1) or post(1).

| 3 "library -7"
This assumes that mail message 3 consists of a search result. The quote marks are required due to post(1)

217

LIBRARY (1) General Commands Manual LIBRARY (1)

and mailx(1) syntax.

Break causes library to exit without sending any requests.

In general for more information about what the library command can do, go into each option and enter a
question mark. This will cause a description of how the option works and what it can request.

Several other pieces of information can be passed to library to ease and improve its usage. This informa-
tion is looked up in a file called .lib (or the file indicated by the LIBFILE shell variable). It expects this
file to contain lines of the form:

ID: individual’s PAN or Social Security Number
libname: individual’s last name
liblog: name of log file
libcntl: control information
reader: reader control information
liblocal: control information

If this file is not found or lines of this form are not found, then library prompts for name and ID (PAN or
SS#).

This information can also be passed to library as the shell parameters: LIBID, LIBNAME, LIBLOG,
LIBCNTL, and LIBLOCAL.

library keeps a log of requests sent via library if a line in the .lib file exists giving a log file name, i.e., if
you have in your .lib file a line of the form

liblog: name of log file

library keeps a log of requests in that file. This file is created in a form that can be read and manipulated
by the mail command. To read or modify the log file, type

mail -f name of log file

library creates the log file in your HOME directory unless the file name given starts with a slash (/). li-
brary will automatically check option 1 requests for duplicates in the log file.

The libcntl information is sent with the request to the program that receives the requests for the library
networks. Control information containing the letter ‘‘a’’ will cause an acknowledgement to be mailed
back to you that your request has been received. Control information of the form ‘‘mnumber’’will deter-
mine the maximum number of items retrieved by a search request. For example, a control line of the form

libcntl: am100

will cause requests to be acknowledged and a maximum of 100 retrieved search items to be mailed back
to you.

The reader control information is intended to let you personalize the way library option 7 works for you.
Each letter after the colon indicates a different option turned on or off. Presently available are the follow-
ing:

b causes library -7 to leave a blank line between records when more than one is displayed on
the screen.

c causes library to confirm that you want the entered requests transmitted. It does this at the
end of the session, before finishing.

n is an interesting features causing no introductory menu of available announcements to be
displayed. The reader then goes straight into the first announcement to be read, and moves
directly from one announcement to the next, without displaying the menu of those avail-
able at each stage.

The liblocal information is used to control the execution of library. Presently the only meaningful control
is x. This causes library(1) to assume you are an expert and the prompts are generally much shorter.

library also uses your .lib file to save various repetitious responses for its own use. These will prevent
you from having to duplicate responses.

218

LIBRARY (1) General Commands Manual LIBRARY (1)

BUGS
library checks upon input whether the request is reasonable. New styles of request numbers require pro-
gram modification before they are valid.

FILES
$HOME/.lib This optional file contains a PAN and name for library to use.
/usr/lib/library/library.help

The help message displayed by library.

SEE ALSO
mail(1), post(1), mailx(1)

219

LIM(1) General Commands Manual LIM(1)

NAME
lim - change shares for users

SYNOPSIS
lim limit{+|-|=}string[,string...][;...] -|name|uid-uid|uid.. ...

DESCRIPTION
Lim changes shares file records for several users, a range of uids or a list from standard input. The
changeable limits are designated by their names as defined in the files <sys/lnode.h>, and <shares.h> as
follows:

charge Long term account charge.

flags The only specifiable flag is:- notshared . Only the first few letters needed to ensure a
unique match are required.

lastused Date account last used.

sgroup Scheduling group for the account.

shares Allocated shares.

usage Usage for scheduling.

The next character designates that the limit is to be incremented (+), decremented (-), or set (=).

The third group of characters is interpreted as a number, a date (if the string contains a ‘/’), or as a string
(or as a comma-separated list) depending on the type of limit being changed. However, if the first charac-
ter is ’?’, then an explanation of the options available with the given limit will be listed.

Additional limits are specified by a semi-colon separated list.

If any following argument is just a ‘- ’, then the standard input is read for a list of user names, one per
line. If any following argument contains a ‘- ’ then it is interpreted as a range of uids, otherwise if it ends
in trailing dots (eg: 100..) it is interpreted as a range running from the first uid up to the maximum num-
ber of registered users. Otherwise the argument is interpreted as a name.

A list of valid limits is printed out if lim is invoked with invalid arguments (or no arguments).

FILES
/etc/shares for share details.
/etc/passwd for user names and IDs.

SEE ALSO
pl(1), lnode(5), shares(5).

DIAGNOSTICS
... could not change kernel lnode ...

The limits system call failed for a logged in user, usually because you are attempting to change a
scheduling group to one that isn’t currently active.

BUGS
Lim does not use getshput(3), so be careful something else is not updating the same entry simultaneously.

SHARE 220

LINT (1) General Commands Manual LINT (1)

NAME
lint, cyntax, cem - C program verifiers

SYNOPSIS
lint [-abchnpuvx] [option ...] file ...

cyntax [option ...] file ...

/usr/lib/cyntax/cem [option ...] file ...

DESCRIPTION
Lint checks, more thoroughly than cc(1), the syntactic validity and semantic consistency of one or more C
program files. It is assumed that all the files are to be loaded together; they are checked for mutual com-
patibility. Function definitions for certain libraries are available to lint; these libraries are referred to by a
conventional name, such as -lm, in the style of ld(1).

Any number of the option letters in the following list may be used. The -D, -U, and -I options of cc(1) are
also recognized as separate arguments.

p Attempt to check portability to some other dialects of C.
h Apply heuristics to intuit bugs, improve style, and reduce waste.
b Report break statements that cannot be reached.
v Suppress complaints about unused arguments in functions.
x Report variables referred to by extern declarations, but never used.
a Report assignments of long values to int variables.
c Complain about casts which have questionable portability.
u Do not complain about functions and variables used and not defined, or defined and not used

(this is suitable for running lint on a subset of files out of a larger program).
n Do not check compatibility against the standard library.

Certain conventional comments in the C source will change the behavior of lint:

/∗NOTREACHED∗/
at appropriate points. Stop comments about unreachable code.

/∗VARARGSn∗/
Suppress the usual checking for variable numbers of arguments in the following function declara-
tion. The data types of the first n arguments are checked; a missing n is taken to be 0.

/∗PRINTFLIKEn∗/
The data types of the first n arguments are checked as usual. The remaining arguments are
checked against the nth argument, which is interpreted as a printf(3) format string.

/∗SCANFLIKEn∗/
Similarly for scanf(3).

/∗NOSTRICT∗/
Shut off strict type checking in the next expression.

/∗ARGSUSED∗/
Turn on the -v option for the next function.

/∗LINTLIBRARY∗/
at the beginning of a file. Shut off complaints about unused functions in this file.

Cyntax makes checks similar to those of lint, more stringent about syntax, less observant of portability
issues. It keeps type information gleaned from source files, whose names end with .c, in ‘object files’
with corresponding names ending in .O. If all goes well it will cross check among all the .c and .O
input files.

Options -D, -I, -U, -o, -l are as in cc(1). Options -O, -P, -g, -p, and -s are ignored. Other options are:

-c Suppress cross checking.
-d Passed to cem.
-h Base object files on the basename of the source file rather than the full pathname.
-n Do not check compatibility against the standard library.
-G Change default directory of include files to pass -lg to cem instead of -lc.
-j Change default directory of include files to pass -lj to cem instead of -lc.

221

LINT (1) General Commands Manual LINT (1)

-k Change default directory of include files to pass -lk to cem instead of -lc.
-w Enable pedantic warning diagnostics.
-m equivalent to -j -DMUX.
-v Report what cyntax is actually doing.
-V func:n

Declare function func to have a variable number of arguments, the first n of which are to be type
checked.

Cem (cemantics), the cross-checker, is normally invoked only by cyntax. It also has options, some of
which cyntax can’t be coerced into providing. Besides -o and -l, they are:

-m Don’t believe file modification times. These are normally used to avert redundant type checking.
-d Debug: print ascii version of .O files on standard output.
-p Be pedantic about type checking.
-t Unconditionally include file modification times in diagnostics.
-v Use a verbose format for type names.

FILES
/usr/lib/lint/lint[12]

programs

/usr/lib/lint/llib-lc
declarations for standard functions

/usr/lib/lint/llib-lport
declarations for portable functions

/usr/include/∗

/usr/lib/cyntax/ccom
cyntax proper

/usr/lib/cyntax/libc
type library

/usr/lib/cyntax/libj

SEE ALSO
cc(1), cin(1)

BUGS
Lint’s understanding of the type system of C is outmoded: its handling of void and ®is simply wrong.
The unnatural default setting of lint option -b is intended to hide the ugliness of C code produced by
yacc(1) and lex(1).

222

LISP(1) General Commands Manual LISP(1)

NAME
lisp, liszt, lxref - lisp interpreter and compiler

SYNOPSIS
lisp

liszt [option ...] [source]

lxref [-n] file ...

DESCRIPTION
Lisp interprets Franz Lisp, which closely resembles MIT’s Maclisp. Interpreted functions may be mixed
with code compiled by liszt, and both may be debugged using the ‘Joseph Lister’ trace package.

There are too many functions to list here; one should refer to the manuals listed below.

Liszt compiles the lisp source file, whose name ends in .l, into an object file, whose name ends in .o. The
following options are available.

-w suppress warning diagnostics

-q suppress compilation statistics

-o object
put object code in specified file

-m source is Maclisp

-u source is UCI Lisp

-S leave assembler input in file suffixed .s; do not finish compilation

-x place cross-reference list in file suffixed .x to be used by lxref.

Liszt with no arguments is the same as lisp. The compiler may be invoked from the interpreter:

(liszt [options] foo)

compiles file ‘foo.l’.

Lxref writes to the standard output a readable form of the named cross-reference files. Not more than n
(default 50) references to any function will be printed.

FILES
/usr/lib/lisp/auxfns0.l common functions
/usr/lib/lisp/auxfns1.l less common functions
/usr/lib/lisp/trace.l Joseph Lister trace package
/usr/lib/lisp/toplevel.l top level read-eval-print loop
/usr/lib/lisp/machacks.l Maclisp compatibility package
/usr/lib/list/ucifnc.l UCI Lisp compatibility package

SEE ALSO
‘FRANZ LISP Manual, Version 1’ by John K. Foderaro
MACLISP Manual

BUGS
The error system is in a state of flux and not all error messages are as informative as they could be.

alice sola 223

LOAD(1) General Commands Manual LOAD(1)

NAME
load − load statistics

SYNOPSIS
load [interval [count [sysfile [corefile]]]]

DESCRIPTION
Load reports the number of processes ready to run averaged over the preceding 1, 5, and 15 minutes.

The optional interval argument causes a report once each interval seconds. The first report is for all time
since a reboot and each subsequent report is for the last interval only.

The optional count argument restricts the number of reports.

The optional arguments sysfile and corefile cause the named files to be consulted instead of the defaults,
/unix and

FILES
/dev/kmem
/unix

SEE ALSO
vismon(9) ps(1), vmstat(8)

224

LOOK (1) General Commands Manual LOOK (1)

NAME
look − find lines in a sorted list

SYNOPSIS
look [-dfnixtc] [string] [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses binary search.

The following options are recognized. Options dfntc affect comparisons as in sort(1).

-i Interactive. There is no string argument; instead look takes lines from the standard input as
strings to be looked up.

-x Exact. Print only lines of the file whose key matches string exactly.

-d ‘Directory’ order: only letters, digits, tabs and blanks participate in comparisons.

-f Fold. Upper case letters compare equal to lower case.

-n Numeric comparison with initial string of digits, optional minus sign, and optional decimal point.

-tc ‘Tab character’ c terminates the sort key in the file.

If no file is specified, /usr/dict/words is assumed, with collating sequence df.

FILES
/usr/dict/words

SEE ALSO
sort(1), gre(1), dict(7)

DIAGNOSTICS
Look returns exit status 0 if string is found, 1 if not found, 2 for error.

225

LORDER(1) General Commands Manual LORDER(1)

NAME
lorder − find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION
The input is one or more object or library archive (see ar(1)) files. The standard output is a list of pairs of
object file names, meaning that the first file of the pair refers to external identifiers defined in the second.
The output may be processed by tsort(1) to find an ordering of a library suitable for one-pass sequential
access by ld(1).

EXAMPLES
ar cr libnew.a `lorder ∗ .o | tsort` Build a new library from existing .o files.

FILES
/tmp/∗symref
/tmp/∗symdef

SEE ALSO
ar(1), tsort(1), ld(1)

BUGS
The names of object files, in and out of libraries, must end with .o; nonsense results otherwise.

226

LP(1) General Commands Manual LP(1)

NAME
lp - printer output

SYNOPSIS
lp [option ...] [file ...]

DESCRIPTION
Lp is a generalized output printing service. It can be used to queue files for printing, check a queue, or
kill jobs in a queue. The options are:

-d dest
Select the destination printer. If dest is ?, list the currently available printers. In the absence of
-d, the destination is taken from the environment variable LPDEST, or finally from the file Des-
tination stdout is the standard output.

-p proc
The given preprocessor is invoked. The default preprocessor is generic, which tries to do the
right thing for regular text, troff(1) output, or bitfile(9) bitmaps. If no preprocessing is desired
(e.g. an ImPress file from dviimp is to be printed) noproc may be specified.

-q Print the queue for the given destination. For some devices, include printer status.

-k Kill the job(s) given as subsequent arguments instead of file names for the given destination.

The remaining options may be used to affect the output at a given device. These options may not be
applicable to all devices.

-c n Print n copies.

-f font Set the font (default CW.11).

-H Suppress printing of header page.

-i n Select paper input tray options n. The value n may be a comma separated list.

-l n Set the number of lines per page to n.

-L Print pages in landscape mode (i.e. turned 90 degrees).

-m n Set magnification to n.

-n n Print n logical pages per physical page.

-o list Print only pages whose page numbers appear in the comma-separated list of numbers and ranges.
A range n-m means pages n through m; a range -n means from the beginning to page n; a range
n- means from page n to the end.

-r Reverse the order of page printing (currently not functional).

-x n Set the horizontal offset of the print image, measured in inches.

-y n Set the vertical offset of the print image, measured in inches.

EXAMPLES

eqn paper | troff -ms | lp Typeset and print a paper that contains equations.

pr -l100 file | lp -l100 -fCW.8 Print a file in a small font at 100 lines per page.

lp -dstdout -H <bitfile >postfile Convert a bitmap to postscript form. Use mpictures(6) macros to insert
the output into a troff document.

lp -du -H -i2,simplex viewgraphs.dvi will take input from the second paper tray and print single sided,
even if the printer defaults to double sided (duplex) output. Do not print a header page.

FILES

227

LP(1) General Commands Manual LP(1)

/usr/spool/lp/defdevice
default printer name

/usr/spool/lp/devices
printer list with interface specification

/usr/spool/lp/process
directory of preprocessors

/usr/spool/lp/prob/∗
where printer jobs go when things go awry

SEE ALSO
pr(1), blitblt(9) plot(1), font(6), postio(8), postscript(8)

BUGS
Not all options work with all output devices.
Any user can kill any job.

228

LPR(1) General Commands Manual LPR(1)

NAME
lpr − line printer spooler

SYNOPSIS
lpr [-m] [name ...]

lp0 [name ...]

lp1 [name ...]

DESCRIPTION
Lpr causes the named files to be queued and then printed off line. If no files are named, the standard input
is read. The option -m causes notification via mail(1) to be sent when the job completes.

Lp0 and lp1 direct output to particular printers.

FILES
/usr/spool/lpd/∗

spool area

/usr/lib/lpd
printer daemon

/usr/lib/lpfx
filter to handle banners and underlining

SEE ALSO
pr(1), thinkblt(9)

BUGS
Queued jobs print in directory (seemingly random) order.

alice 229

LS(1) General Commands Manual LS(1)

NAME
ls, lc − list contents of directory

SYNOPSIS
ls [-acdfilrstuFLR] name ...

lc [options] name ...

DESCRIPTION
For each directory argument, ls lists the contents of the directory; for each file argument, ls repeats its
name and any other information requested. The output is sorted alphabetically by default. When no argu-
ment is given, the current directory is listed. When several arguments are given, the arguments are first
sorted, but file arguments appear before directories and their contents.

Lc is the same as ls, but prints the list in multiple columns.

There are an unbelievable number of options:

-l List in long format, giving mode (see below), number of links, owner, group, size in bytes, and
time of last modification for each file. Symbolic links are identified by a link count marked L;
the link count is that of the ultimate file. If the file is a special file the size field will instead con-
tain the major and minor device numbers.

-d If argument is a directory, list its name, not its contents.

-t Sort by time modified (latest first) instead of by name, as is normal.

-L Under -l for each symbolic link give the immediate, not the ultimate, link count and append the
name pointed to.

-a List all entries; usually . and .. are suppressed.

-c Under -t sort by time of inode change; under -l print time of inode change.

-f Force each argument to be interpreted as a directory and list the name found in each slot. This
option turns off -l, -t, -s, and -r, and turns on -a; the order is the order in which entries appear in
the directory.

-F Mark directories with a trailing / and executable files with a trailing ∗

-i Print i-number in first column of the report for each file listed.

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

-R recursively list subdirectories encountered.

-s Give size in Kbytes for each entry.

-u Under -t sort by time of last access; under -l print time of last access.

The mode printed under the -l option contains 11 characters which are interpreted as follows: the first
character is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
l if the entry is a symbolic link and option -L is in effect;
- if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner permis-
sions; the next to permissions to others in the same user-group; and the last to all others. Within each set
the three characters indicate permission respectively to read, to write, or to execute the file as a program.
For a directory, ‘execute’ permission is interpreted to mean permission to search the directory for a speci-
fied file. The permissions are indicated as follows:

r if the file is readable;
w

if the file is writable;

230

LS(1) General Commands Manual LS(1)

x if the file is executable;
- if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-group-ID mode; likewise the user-
execute permission character is given as s if the file has set-user-ID mode.

The last character of the mode (normally a blank) indicates the type of concurrency control:

e if the file is set for exclusive access (1 writer or n readers);
y if the file is set for synchronized access (1 writer and n readers);

FILES
SEE ALSO

stat(2)

BUGS
Option -s counts unwritten holes as if they were real data.

231

M4(1) General Commands Manual M4(1)

NAME
m4 − macro processor

SYNOPSIS
m4 [option ...] [file ...]

DESCRIPTION
M4 is a macro processor intended as a front end for C and other languages. Each of the argument files is
processed in order; if there are no files, or if a file name is -, the standard input is read. The processed text
is written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is unbuffered. Using this mode re-
quires a special state of mind.

-s Enable line sync output for the C preprocessor, (#line . . .)

-Bint Change the size of the push-back and argument collection buffers from the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of 199. The size should be
prime.

-Sint Change the size of the call stack from the default of 100 slots. Macros take three slots, and non-
macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

The preceding options must appear before any file names or -D or -U options.

-Dname[=val]
Defines name to val or to null if val is missing.

-Uname
undefines name.

Macro calls have the form:

name(arg1,arg2,

The (must immediately follow the name of the macro. If a defined macro name is not followed by a (, it
is deemed to have no arguments. Leading unquoted blanks, tabs, and new-lines are ignored while collect-
ing arguments. Potential macro names consist of alphabetic letters, digits, and underscore _, where the
first character is not a digit.

Left and right single quotes are used to quote strings. The value of a quoted string is the string stripped of
the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right parenthe-
sis. Macro evaluation proceeds normally during the collection of the arguments, and any commas or right
parentheses which happen to turn up within the value of a nested call are as effective as those in the origi-
nal input text. After argument collection, the value of the macro is pushed back onto the input stream and
rescanned.

The value of a macro is obtained by replacing each occurrence of $n in the replacement text, where n is a
digit, with the n-th argument. Argument 0 is the name of the macro; missing arguments are replaced by
the null string; $# is replaced by the number of arguments; $∗ is replaced by a list of all the arguments
separated by commas; $ is like $∗ , but each argument is quoted (with the current quotes).

M4 makes available the following built-in macros. They may be redefined, but once this is done the origi-
nal meaning is lost. Their values are null unless otherwise stated.

define the second argument is installed as the replacement text of the macro whose name is the
first argument.

undefine Remove the definition of the macro named in the argument.

defn Return the quoted definition of the argument(s); useful for renaming macros, especially
built-ins.

232

M4(1) General Commands Manual M4(1)

pushdef Like define, but save any previous definition.

popdef Remove current definition of the argument(s), exposing the previous one if any.

ifdef If the first argument is defined, the value is the second argument, otherwise the third. If
there is no third argument, the value is null. The word unix is predefined on UNIX ver-
sions of m4.

shift Return all but the first argument. The other arguments pushed back with commas in
between and quoted to nullify the effect of the extra scan.

changequote
Change quote symbols to the first and second arguments. The symbols may be up to five
characters long. Changequote without arguments restores the original values (i.e., ‘ ’).

changecom Change left and right comment markers from the default # and new-line. With no argu-
ments, the comment mechanism is effectively disabled. With one argument, the left
marker becomes the argument and the right marker becomes new-line. With two argu-
ments, both markers are affected. Comment markers may be up to five characters long.

divert m4 Switch output to one of 10 streams, numbered 0-9 designated by the argument. The
final output is the concatenation of the streams in numerical order; stream 0 is the current
initially. Output to a stream other than 0 through 9 is discarded.

undivert Cause immediate output of text from diversions named as arguments, or all diversions if no
argument. Text may be undiverted into another diversion. Once undiverted, the diverted
text is no longer contained in that diversion.

divnum Return the name of the current output stream.

dnl reads and discards characters up to and including the next new-line.

ifelse If the first argument is the same string as the second, then the value is the third argument.
If not, and if there are more than four arguments, the process is repeated with arguments 4,
5, 6 and 7. Otherwise, the value is either the fourth string, or, if that is not present, null.

incr Return the value of the argument incremented by 1. The value of the argument is calcu-
lated by interpreting an initial digit-string as a decimal number.

decr Return the value of the argument decremented by 1.

eval Evaluate the argument as an arithmetic expression, using 32-bit arithmetic. C-like opera-
tors include +-∗/%, bitwise &|ˆ˜; relationals; parentheses. Octal and hex numbers may be
specified as in C. The second argument specifies the radix for the result; the default is 10.
The third argument may be used to specify the minimum number of digits in the result.

len Returns the number of characters in the argument.

index Return the position in the first argument where the second argument begins (zero origin),
or -1 if the second argument does not occur.

substr Return a substring of the first argument. The second argument is a zero origin number
selecting the first character; the third argument indicates the length of the substring. A
missing third argument is taken to be large enough to extend to the end of the first string.

translit Transliterate the characters in the first argument from the set given by the second argument
to the set given by the third, deleting characters that lack a correspondent in the third set.
There is no character-range notation.

include Return the contents of the file named in the argument.

sinclude Same, but give no diagnostic if the file is inaccessible.

syscmd Execute the UNIX command given in the first argument. No value is returned.

sysval The return code from the last call to syscmd .

maketemp Fill in a string of X characters in the argument with the current process id.

233

M4(1) General Commands Manual M4(1)

m4exit Exit immediately from m4. Argument 1, if given, is the exit code; the default is 0.

m4wrap Push the argument back at the end of the input. Example: m4wrap(‘cleanup()’)

errprint Prints the argument on the standard error file.

dumpdef Print current names and definitions, for the named items, or for all if no arguments are
given.

traceon If there are no arguments, turn on tracing for all macros (including built-ins). Otherwise,
turn on tracing for named macros.

traceoff Turn off trace globally and for any macros specified. Macros specifically traced by
traceon can be untraced only by specific calls to traceoff.

EXAMPLES
define(fib,‘ifelse(define(‘n’,eval($1))n,0,1,n,1,1,dnl()
‘eval(fib(n-1)+fib($1-2))’)’)dnl()
fib(2∗3)

Recursively evaluate a Fibonacci number. The inner define avoids some reevaluations.

234

Mail(1) General Commands Manual Mail(1)

NAME
Mail - send and receive mail

SYNOPSIS
Mail [option] (.,.)[person] (.,.).SH DESCRIPTION Mail with persons named reads a letter from the
standard input and sends it to them.

Mail otherwise presents your mail. It responds to commands, each typed on a line by itself, possibly with
arguments. A command need not be typed in its entirety - the first command that matches the typed pre-
fix is used. A missing message list is interpreted as a singleton: whichever of the current message, the
nearest message ahead, or the nearest message back satisfies the command’s requirements.

The following table describes the commands:

! "Single commandescape
- "Back upto
Reply "Compose areply
alias "Define analias
alternates "List othernames
chdir "Change workingdirectory,
copy "Copy amessage
delete "Delete alist
dt "Delete message,type
endif "End ofif
edit "Edit alist
else "Part ofif
exit "Leave mailwithout
file "Interrogate/changecurrentmail
folder "Same asfile"
folders "List yourfolder
from "List headersof
headers "List currentwindow
help "Print briefsummary
hold "Same aspreserve"
if "Conditionalexecutionof
ignore "Do notprint
mail "Send mailto
mbox "Arrange tosave
next "Go tonext
preserve "Arrange toleave
quit "Leave Mail;update
reply "Reply toauthor
save "Append messages,with
set "Set binaryor
shell "Invoke aninteractive
top "Print firstso
type "Print messages"
undelete "Undelete listof
unset "Undo theoperation
visual "Invoke visualeditor
write "Append messages,without
z "Scroll tonext/previous

The following table describes the options for set. Each option is shown as being either a binary or valued
option.

EDITOR valued "Pathnameofeditor
SHELL valued "Pathnameofshell
VISUAL valued "Pathnameofscreen
append binary "Alwaysappendmessages
ask binary "Promptuserfor

235

Mail(1) General Commands Manual Mail(1)

askcc binary "Promptuserfor
autoprint binary "Printnextmessage
crt valued "Minimumnumberof
dot binary "Accept.alone
escape valued "Escapecharacterto
folder valued "Directorytostore
hold binary "Holdmessagesin
ignore binary "IgnoreRUBOUTwhile
ignoreeof binary "Don’tterminateletters/command
keep binary "Don’tunlinkmbox
keepsave binary "Don’tdeletesaved
metoo binary "Includesendinguser
nosave binary "Don’tsavepartial
quiet binary "Suppressprintingof
record valued "Filetosave
screen valued "Sizeofwindow
sendmail valued "Choosealternatemail
toplines valued "Numberoflines

The following table summarizes tilde escapes available while entering a letter.

Escape Arguments Description
˜! command "Executeshellcommand"
˜c name ..."Addnames
˜d "Readdead.letterinto
˜e "Invoketexteditor
˜f messages "Readnamedmessages"
˜h "Edittheheader
˜m messages "Readnamedmessages,
˜p "Printmessageentered
˜q "Abortentryof
˜r filename "Readfileinto
˜s string "SetSubject:field
˜t name ..."Addnames
˜v "Invokescreeneditor
˜w filename "Writemessageon
˜| command "Pipemessagethrough
˜˜ string "Quotea˜

The following table shows the command line flags.

-N "Suppresstheinitial
-T file"Article-id’sofread/deleted
-d "Turnondebugging"
-f file"Showmessagesin
-h number"Passonhop
-i "Ignorettyinterrupt
-n "Inhibitreadingof
-r name"Passonname
-s string"Usestringas
-u name"Readname’smail

Notes: -T , -d , -h , and -r are not intended for human consumption.

FILES
/usr/spool/mail/∗

post office

$HOME/mbox
your old mail

236

Mail(1) General Commands Manual Mail(1)

$HOME/.mailrc
file giving initial mail commands

/tmp/R#
temporary for editor escape

/usr/lib/Mail.help∗
help files

/usr/lib/Mail.rc
system initialization file

/bin/mail
to do actual mailing

SEE ALSO
mail(1)
‘The Mail Reference Manual,’ Berkeley BSD 4.1 UNIX User’s Manual

237

MAIL(1) General Commands Manual MAIL(1)

NAME
mail − send or receive mail

SYNOPSIS
mail [-mpren] [-f file]

mail [-#] person ...

mail

/usr/lib/upas/gone.fishing [mesg]

DESCRIPTION
Printing Mail

When persons are not named, mail displays your incoming computer mail. The options are:

-r Print mail in first-in, first-out order.
-p Print all the mail messages without prompting for commands.
-m Use a manual style of interface, i.e., print no messages unless directed to.
-f file Use file, e.g. mbox, as if it were the mailbox.
-e Check silently if there is anything in the mailbox; return zero (true) if so, non-zero otherwise.
-n Announce mail to the control terminal when it arrives. Do not print mail now.

Mail prints a user’s mail, message by message, prompting between messages. After printing a prompt
mail reads a line from the standard input to direct disposition of the message. Commands, as in ed(1), are
of the form ‘[range] command [arguments]’. The command is applied to each message in the (optional)
range addressed by message number and/or regular expressions in the style of regexp(3). A regular
expression in slashes searches among header (postmark) lines; an expression in backslashes searches on
message content.

address to indicate a single message header
address,address to indicate a range of contiguous message headers
g/expression/ to indicate all message headers matching the regular expression.

The commands are:
b Print the headers for the next ten messages.
d Mark message for deletion on exiting mail.
h Print the disposition, size in characters, and header line of the message.
m person ... Mail the message to the named persons.
M person ... Same as m except that lines typed on the terminal (terminated by EOT or .) are

prepended to the message.
p Print message. An interrupt stops the printing.
r Reply to the sender of the message.
R Like r but with the message appended to the reply.
s file (Save) Append the message to the named file default, in HOME directory if known,

see environ(5)).
q Put undeleted mail back in the mailbox and stop.
EOT (control-D) Same as q.
w file Same as s with the mail header line(s) stripped.
u Remove mark for deletion.
x Exit, without changing the mailbox file.
? Print a command summary.
|command Run the command with the message as standard input.
!command Escape to the shell to do command.
= Print the number of the current message.

Sending Mail
When persons are named, mail takes the standard input up to an end-of-file, or (if input is from a termi-
nal) to a line consisting of a single . and adds it to each person’s mailbox. The message is automatically
postmarked with the sender’s name and date. Lines that look like postmarks are prefixed with >.

Person is a login name on the local system or a network name for a remote system; see mail(6).

Option -# does not send mail, but reports instead how the mail would be sent: the sender, the next machine

238

MAIL(1) General Commands Manual MAIL(1)

to handle the mail, and the recipient’s address relative to that machine. The report reflects address transla-
tion; see mail(6) and upas(8).

Sh(1) and vismon(9) have mechanisms for timely notification of incoming mail.

Mailboxes
Each user owns a mailbox for incoming mail, normally /usr/spool/mail/person. Mail creates mailboxes
as necessary, and never removes them. Mailboxes are created readable but not writable by others. For
more privacy, a mailbox’s owner may make it unreadable; see chmod(2).

If a mailbox contains the sole line

Forward to name,

mail for that mailbox is sent instead to name. Name may be a list of names. If the mailbox contains

Pipe to command

the mail is sent to the standard input of command instead of being appended to the mailbox. The com-
mand is run with the userid and groupid of the mailbox’s owner. The command is sent (see signal(2))
after two minutes. (On System V machines, the set userid bit must be set.)

Mail checks centralized forwarding lists before looking in mailboxes. If you have accounts on many
machines, but wish to receive mail on only one, it is usually easier to register in forwarding lists than to
install Forward in many mailboxes; see upas(8).

To use mail as an answering machine while you are away, replace the contents of your mailbox with a sin-
gle line like

Pipe to /usr/lib/upas/gone.fishing /usr/you/mesg

The mesg file will be sent (just once) to everyone who sends you mail; arriving messages will be collected
in gone.mail in your home directory. If you do not name a mesg file, will be used by default.

FILES
/usr/spool/mail/mail.log

mail log file

/usr/spool/mail/∗
mailboxes

/etc/passwd
to identify sender and locate persons

$HOME/mbox
saved mail

$HOME/dead.letter
unmailable text

/usr/lib/upas/edmail
the program for editing mail

/usr/lib/upas/send
the program for sending mail

/bin/rmail
a link to used to receive remote mail

/usr/lib/upas/gone.msg

$HOME/gone.mail

$HOME/gone.addrs
list of senders answered by gone.fishing

SEE ALSO
write(1), vismon(9) uucp(1), verify(1), mail(6), upas(8), smtp(8)

239

MAIL(1) General Commands Manual MAIL(1)

BUGS
Long headers are truncated for header search.
Backslash quoting is impossible in content regular expressions.

240

MAILX(1) General Commands Manual MAILX(1)

NAME
mailx - interactive message processing system

SYNOPSIS
mailx [options] [address ...]

DESCRIPTION
The command mailx provides a comfortable, flexible environment for sending and receiving messages
electronically. When reading mail, mailx provides commands to facilitate saving, deleting, and respond-
ing to messages. When sending mail, mailx allows editing, reviewing and other modification of the mes-
sage as it is entered.

Incoming mail is stored in a standard file for each user, called the mailbox for that user. When mailx is
called to read messages, the mailbox is the default place to find them. As messages are read, they may be
marked to be moved to a secondary file for storage (see ‘‘hold’’), unless specific action is taken, so that the
messages need not be seen again. This secondary file is called the mbox and is normally located in the
user’s HOME directory (see ‘‘MBOX’’). Messages can be saved in other secondary files named by the
user. Messages remain in a secondary file until forcibly removed.

The user can access a secondary file by using the -f option of the mailx command. Messages in the sec-
ondary file can then be read or otherwise processed using the same COMMANDS as in the primary mail-
box. This gives rise within these pages to the notion of a current mailbox.

On the command line, options start with a dash (-) and any other arguments are taken to be addresses. If
no recipients are specified, mailx will attempt to read messages from the mailbox. Command line options
are:

-e Test for presence of mail. mailx prints nothing and exits with a successful return code if
there is mail to read.

-f [filename] Read messages from filename instead of mailbox. If no filename is specified, the mbox
is used.

-F Record the message in a file named after the first recipient. Overrides the ‘‘record’’ vari-
able, if set.

-H Print header summary only.
-i Ignore interrupts. See ‘‘ignore’’.
-n Do not initialize from the system default mailx.rc file.
-N Do not print initial header summary.
-s subject Set the Subject header field to subject.
-u user Read user’s mailbox. This is only effective if user’s mailbox is not read protected.

When reading mail, mailx is in command mode. A header summary of the first several messages is dis-
played, followed by a prompt indicating mailx can accept regular commands (see COMMANDS below).
When sending mail, mailx is in input mode. If no subject is specified on the command line, a prompt for
the subject is printed. As the message is typed, mailx will read the message and store it in a temporary
file. Commands may be entered by beginning a line with the tilde (˜) escape character followed by a sin-
gle command letter and optional arguments. See TILDE ESCAPES for a summary of these commands.
Outgoing mail may be saved in a local file (see ‘‘record’’).

At any time, the behavior of mailx is governed by a set of environment variables. These are flags and val-
ued parameters which are set and cleared via the ‘‘set’’ and ‘‘unset’’ commands. See ENVIRONMENT
VARIABLES below for a summary of these parameters.

mailx accepts post addressing. Login names may be any network address, including mixed network ad-
dressing. If mail is found to to undeliverable, an attempt is made to return it to the sender’s mailbox. If
the recipient name begins with a plus (+), the rest of the name is a file to append the mail to. If the file is a
relative path name, it is prepended with the value of the ‘‘folder’’ variable. If the recipient name begins
with a pipe symbol (|), the rest of the name is taken to be a shell command to pipe the message through.
This provides an automatic interface with any program that reads the standard input, such as lp(1) for
recording outgoing mail on paper. Alias groups are set by the ‘‘alias’’ command and are lists of recipients
of any type.

Regular commands are of the form
[command] [msglist] [arguments]

Post 4.0 241

MAILX(1) General Commands Manual MAILX(1)

If no command is specified in command mode, print is assumed. In input mode, commands are recog-
nized by the escape character, and lines not treated as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the notion of a current message,
marked by a right angle bracket (>) in the header summary. Many commands take an optional list of mes-
sages (msglist) to operate on. The default for msglist is the current message. A msglist is a list of mes-
sage identifiers separated by spaces, which may include:

n Message number n.
. The current message.
ˆ The first message.
$ The last message.
∗ All messages.
n-m An inclusive range of message numbers.
user All messages from user, where user is the network address of the sender.
/string All messages with string in the subject line (case ignored).
:c All messages of type c, where c is one of:

d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this type of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command involved. File
names, where expected, are expanded via the normal shell conventions (see sh(1)). Special characters are
recognized by certain commands and are documented with the commands below.

At start-up time, mailx tries to execute commands from the optional system-wide file (/usr/lib/mailx.rc)
to initialize certain parameters, then from a private start-up file ($HOME/.mailrc) for personalized vari-
ables. With the exceptions noted below, regular commands are legal inside start-up files. The most com-
mon use of a start-up file is to set up initial display options and alias lists. The following commands are
not legal in the start-up file: ‘‘!’’, ‘‘Copy’’, ‘‘edit’’, ‘‘followup’’, ‘‘Followup’’, ‘‘hold’’, ‘‘mail’’, ‘‘reply’’,
‘‘Reply’’, ‘‘shell’’, and ‘‘visual’’. An error in the start-up file causes the remaining lines in the file to be
ignored. The .mailrc file is optional, and must be constructed locally.

COMMANDS
The following is a complete list of mailx commands:

!shell-command
Escape to the shell. See ‘‘SHELL’’.

comment
Null command (comment). This may be useful in .mailrc files.

=
Print the current message number.

?
Prints a summary of commands.

alias alias address ...
Declare an alias for the given addresses. The addresses will be substituted when alias is used as
a recipient. Useful in the .mailrc file.

alternates address ...
Declares a list of alternate addresses for your login. When responding to a message, these ad-
dresses are removed from the list of recipients for the response. With no arguments, alternates
prints the current list of alternate addresses. See also ‘‘allnet’’.

cd [directory]
Change directory. If directory is not specified, $HOME is used.

copy [filename]
copy [msglist] filename

Copy messages to the file without marking the messages as saved. Otherwise equivalent to the

Post 4.0 242

MAILX(1) General Commands Manual MAILX(1)

‘‘save’’ command.
Copy [msglist]

Save the specified messages in a file whose name is derived from the author of the message to be
saved, without marking the messages as saved. Otherwise equivalent to the ‘‘Save’’ command.

delete [msglist]
Delete messages from the mailbox. If ‘‘autoprint’’ is set, the next message after the last one
deleted is printed.

discard [header-field ...]
Suppresses printing of the specified header fields when displaying messages on the screen. Ex-
amples of header fields to ignore are ‘‘status’’ and ‘‘cc’’. The fields are included when the mes-
sage is saved. The ‘‘Print’’ command overrides this command.

dp [msglist]
Delete the specified messages from the mailbox and print the next message after the last one
deleted. Roughly equivalent to a ‘‘delete’’ command followed by a ‘‘print’’ command.

echo string ...
Echo the given strings (like echo(1)).

edit [msglist]
Edit the given messages. The messages are placed in a temporary file and the ‘‘EDITOR’’ vari-
able is used to get the name of the editor. Default editor is ed(1).

exit
xit

Exit from mailx, without changing the mailbox. No messages are saved in the mbox (see also
quit).

fi le [filename]
Quit from the current file of messages and read in the specified file. Several special characters
are recognized when used as file names, with the following substitutions:

% current mailbox.
%user mailbox for user.
previous file.
& current mbox.

Default file is the current mailbox.
folders

Print the names of the files in the directory set by the ‘‘folder’’ variable.
followup [msglist]

Reply to the first message in the msglist, sending the message to the author of each message in
the msglist. The subject line is taken from the first message and the response is recorded in a file
whose name is derived from the author of the first message. See also the ‘‘Followup’’, ‘‘Save’’,
and ‘‘Copy’’ commands, and ‘‘outfolder’’ and ‘‘flipf’’.

Followup [message]
Reply to the specified message, recording the response in a file whose name is derived from the
author of the message. Overrides the ‘‘record’’ variable, if set. See also the ‘‘followup’’,
‘‘Save’’, and ‘‘Copy’’ commands, and ‘‘outfolder’’ and ‘‘flipf’’.

from [msglist]
Prints the header summary for the specified messages.

headers [message]
Prints the page of headers which includes the message specified. The ‘‘screen’’ variable sets the
number of headers per page. See also the ‘‘z’’ command.

help
Prints a summary of commands.

hold [msglist]
Holds the specified messages in the mailbox.

if s | r
mail-commands
else
mail-commands

Post 4.0 243

MAILX(1) General Commands Manual MAILX(1)

endif
Conditional execution, where s will execute following mail-commands, up to an else or endif, if
the program is in send mode, and r causes the mail-commands to be executed only in receive
mode. Useful in the .mailrc file.

list
Prints all commands available. No explanation is given.

mail address ...
Mail a message to the specified address(es). If ‘‘record’’ is set to a file name, the reply is saved
at the end of that file.

Mail address
Mail a message to the specified address and record a copy of it in a file named after that address.

mbox [msglist]
Arrange for the given messages to end up in the standard mbox save file when mailx terminates
normally. See ‘‘MBOX’’ for a description of this file. See also the ‘‘exit’’ and ‘‘quit’’ com-
mands.

next [message]
Go to next message matching message. A msglist may be specified, but in this case the first valid
message in the list is the only one used. This is useful for jumping to the next message from a
specific user, since the name would be taken as a command in the absence of a real command.
See the discussion of msglists above for a description of possible message specifications.

pipe [msglist] [shell-command]
Pipe the message through the given shell-command. The message is treated as if it were read. If
no arguments are given, the current message is piped through the command specified by the
value of the ‘‘cmd’’ variable. If the ‘‘page’’ variable is set, a form feed character is inserted after
each message.

print [msglist]
Print the specified messages. If ‘‘crt’’ is set, the messages longer than the number of lines speci-
fied by the ‘‘crt’’ variable are paged through the command specified by the ‘‘PAGER’’ variable.
The default command is pg(1)

Print [msglist]
Print the specified messages on the screen, including all header fields. Overrides suppression of
fields by the ‘‘ignore’’ command.

quit
Exit from mailx, storing messages that were read in mbox and unread messages in the mailbox.
Messages that have been explicitly saved in a file are deleted.

reply [msglist]
Send a response to the author of each message in the msglist. The subject line is taken from the
first message. If ‘‘record’’ is set to a file name, the response is saved at the end of that file. See
‘‘flipr’’.

Reply [message]
Reply to the specified message, including all other recipients of the message. If ‘‘record’’ is set
to a file name, the response is saved at the end of that file. See ‘‘flipr’’.

save [filename]
save [msglist] filename

Save the specified messages in the given file. The file is created if it does not exist. The message
is deleted from the mailbox when mailx terminates unless ‘‘keepsave’’ is set (see the ‘‘exit’’ and
‘‘quit’’ commands).

Save [msglist]
Save the specified messages in a file whose name is derived from the author of the first message.
The name of the file is taken to be the author’s name with all network addressing stripped off.
See also the ‘‘Copy’’, ‘‘followup’’, and ‘‘Followup’’ commands and ‘‘outfolder’’.

set
set variable
set variable=string
set variable=number

Define a variable called variable. The variable may be given a null, string, or numeric value.
‘‘Set’’ by itself prints all defined variables and their values. See ENVIRONMENT VARIABLES for

Post 4.0 244

MAILX(1) General Commands Manual MAILX(1)

detailed descriptions of the mailx variables.
shell

Invoke an interactive shell (see ‘‘SHELL’’).
size [msglist]

Print the size in characters of the specified messages.
source filename

Read commands from the given file and return to command mode.
top [msglist]

Print the top few lines of the specified messages. If the ‘‘toplines’’ variable is set, it is taken as
the number of lines to print. The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not specifically saved in a file, it will
be placed in the mbox, or the file specified in the MBOX environment variable, upon normal ter-
mination. See ‘‘exit’’ and ‘‘quit’’.

undelete [msglist]
Restore the specified deleted messages. Will only restore messages deleted in the current mail
session. If ‘‘autoprint’’ is set, the last message of those restored is printed.

undiscard [header-field ...]
Restore printing of the specified header fields when displaying messages on the screen.

unset variable ...
Causes the specified variables to be erased. If the variable was imported from the execution envi-
ronment (i.e., a shell variable) then it cannot be erased.

version
Prints the current version and release date.

visual [msglist]
Edit the given messages with a screen editor. The messages are placed in a temporary file and
the ‘‘VISUAL’’ variable is used to get the name of the editor.

write [msglist] filename
Write the given messages on the specified file, minus the header and trailing blank line. Other-
wise equivalent to the ‘‘save’’ command.

z[+|-]
Scroll the header display forward or backward one screen-full. The number of headers dis-
played is set by the ‘‘screen’’ variable.

TILDE ESCAPES
The following commands may be entered only from input mode, by beginning a line with the tilde escape
character (˜). See ‘‘escape’’ for changing this special character.

˜! shell-command
Escape to the shell.

˜: mail-command
Perform the command-level request.

˜?
Print a summary of tilde escapes.

˜A
Insert the autograph string ‘‘Sign’’ into the message.

˜a
Insert the autograph string ‘‘sign’’ into the message.

˜b address ...
Add the addresses to the blind carbon copy (Bcc) list. See ‘‘askcc’’.

˜c address ...
Add the addresses to the carbon copy (Cc) list. See ‘‘askbcc’’.

˜d
Read in the dead.letter file. See ‘‘DEAD’’.

˜e
Invoke the editor on the partial message. See ‘‘EDITOR’’.

Post 4.0 245

MAILX(1) General Commands Manual MAILX(1)

˜f [msglist]
Forward the specified messages. The messages are inserted into the message without alteration.

˜h
Prompt for Subject, To, Cc, and Bcc lists. If the field is displayed with an initial value, it may be
edited as if you had just typed it.

˜i string
Insert the value of the named variable into the text of the message. For example, ‘‘˜A’’is equiva-
lent to ‘‘˜i Sign’’. Environment variables set and exported in the shell are also accessible by
‘‘˜i’’.

˜m [msglist]
Insert the specified messages into the letter, shifting the new text to the right one tab stop (see
‘‘mprefix’’). Valid only when sending a message while reading mail.

˜p
Print the message being entered.

˜q
Quit from input mode by simulating an interrupt. If the body of the message is not null, the par-
tial message is saved in dead.letter. See ‘‘DEAD’’ for a description of this file.

˜r filename
˜r !shell-command

Read in the specified file. If the argument begins with an exclamation point, the rest of the string
is taken as a shell command and is executed, with the standard output inserted into the message.

˜R
Request a return-receipt when the recipient reads the mailbox. The return-receipt is generated if
the recipient reads the mail using post(1), AT&T Mail, or OTS.

˜s string ...
Set the subject line to string.

˜t address ...
Add the given addresses to the To list.

˜v
Invoke a preferred screen editor on the partial message. See ‘‘VISUAL’’.

˜w filename
˜w !shell-command

Write the message without the headers onto the given file. If the argument begins with an excla-
mation point, the rest of the string is taken as a shell command and is executed, with the standard
input being the message without the headers.

˜x
Exit as with ˜q except the message is not saved in dead.letter.

˜ | shell-command
Pipe the body of the message through the given shell-command. If the shell-command returns a
successful exit status, the output of the command replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution environment and are not alterable
within mailx.
HOME=directory

The user’s base of operations.
MAILRC=filename

The name of the start-up file. Default is $HOME/.mailrc.

The following variables are internal mailx variables. They may be imported from the execution environ-
ment or set via the ‘‘set’’ command at any time. The ‘‘unset’’ command may be used to erase variables.
allnet
allnet=uucp
allnet=any
allnet=header

All network names whose last component (login name) match are treated as identical. If uucp is
the argument, all network names whose two last components (system and login name) that match
are treated as identical. This causes the msglist message specifications to behave similarly. If

Post 4.0 246

MAILX(1) General Commands Manual MAILX(1)

any is the argument, user is treated as a pattern to be matched anywhere in the first line of a mes-
sage (similar to /bin/mail). header is the argument, user is treated as a pattern to be used in a
case-independent match of either the network address in the first line of a message or the full
name, as printed by the ‘‘headers’’ command. Default is ‘‘allnet=any’’. See also the ‘‘alter-
nates’’ command and the ‘‘metoo’’ variable.

append
Upon termination, append messages to the end of the mbox file instead of prepending them. En-
abled by default.

askbcc
Prompt for the Bcc list after message is entered. Default is ‘‘noaskbcc’’.

askcc
Prompt for the Cc list after message is entered. Default is ‘‘noaskcc’’.

asksub
Prompt for subject if it is not specified on the command line with the -s option. Enabled by de-
fault.

autoprint
Enable automatic printing of messages after ‘‘delete’’ and ‘‘undelete’’ commands. Default is
‘‘noautoprint’’.

bang
Enable the special-casing of exclamation points (!) in shell escape command lines as in vi(1).
Default is ‘‘nobang’’.

cmd=shell-command
Set the default command for the ‘‘pipe’’ command. No default value.

crt
crt=number

Pipe messages having more than number lines through the command specified by the value of the
‘‘PAGER’’ variable. Enabled by default.

DEAD=filename
The name of the file in which to save partial letters in case of untimely interrupt. Default is
$HOME/dead.letter.

debug
Enable verbose diagnostics for debugging. Messages are not delivered. Default is ‘‘nodebug’’.

dot
Take a period on a line by itself during input from a terminal as end-of-file. Enabled by default.

EDITOR=shell-command
The command to run when the ‘‘edit’’ or ‘‘˜e’’ command is used. Default is ‘‘ed’’.

escape=c
Substitute c for the ˜ escape character.

flipf
Reverse the meanings of the ‘‘followup’’ and ‘‘Followup’’ commands in composition mode. En-
abled by default.

flipr
Reverse the meanings of the ‘‘reply’’ and ‘‘Reply’’ commands in composition mode. Enabled by
default.

folder=directory
The directory for saving standard mail files. User-specified relative file names beginning with a
plus (+) are expanded by preceding the file name with this directory name to obtain the real file
name. If directory does not start with a slash (/), $HOME is prepended to it. Default is
$HOME. See also ‘‘outfolder’’ below.

header
Enable printing of the header summary when entering mailx. Enabled by default.

hold
Hold all messages that are read in the mailbox instead of putting them in the standard mbox file.
Enabled by default.

ignore

Post 4.0 247

MAILX(1) General Commands Manual MAILX(1)

Ignore interrupts while entering messages. Handy for noisy dial-up lines. Default is noignore.
ignoreeof

Ignore end-of-file during message input. Input must be terminated by a period (.) on a line by it-
self or by the ‘‘˜.’’ command (see ‘‘dot’’). Default is ‘‘noignoreeof’’.

iprompt=string
Set the composition mode prompt to string. Default is no prompt.

keepsave
Keep messages that have been saved in other files in the mailbox instead of deleting them. De-
fault is ‘‘nokeepsave’’.

LISTER=shell-command
The command (and options) to use when listing the contents of the ‘‘folder’’ directory. The de-
fault is ls.

MBOX=filename
The name of the file to save messages which have been read. The ‘‘xit’’ command overrides this
function, as does saving the message explicitly in another file. Default is $HOME/mbox.

metoo
If your login appears as a recipient, do not delete it from the list. Default is ‘‘nometoo’’.

mprefix=string
Set the leading string to be used with the ‘‘˜m’’ command. Default is a tab character.

onehop
When responding to a message that was originally sent to several recipients, the other recipient
addresses are normally forced to be relative to the originating author’s machine for the response.
This flag disables alteration of the recipients’ addresses, improving efficiency in a network where
all machines can send directly to all other machines (i.e., one hop away). Disabled by default.

outfolder
Causes the files used to record outgoing messages to be located in the directory specified by the
‘‘folder’’ variable unless the path name is absolute. Default is ‘‘nooutfolder’’. See ‘‘folder’’ and
the ‘‘Save’’, ‘‘Copy’’, ‘‘followup’’, and ‘‘Followup’’ commands.

page
Used with the ‘‘pipe’’ command to insert a form feed after each message sent through the pipe.
Default is ‘‘nopage’’.

PAGER=shell-command
The command to use as a filter for paginating output. This can also be used to specify the op-
tions to be used. Default is ‘‘pg -e’’ .

prompt=string
Set the command mode prompt to string. Default is ‘‘? ’’.

quiet
Don’t print the opening message and version when entering mailx. Default is ‘‘quiet’’.

record=filename
Record all outgoing mail in filename. Disabled by default. See also ‘‘outfolder’’ above.

save
Enable saving of messages in dead.letter on interrupt or delivery error. See ‘‘DEAD’’ for a de-
scription of this file. Enabled by default.

screen=number
Sets the number of lines in a screen-full of headers for the ‘‘headers’’ command. Default de-
pends on baud rate.

sendmail=shell-command
Alternate command for delivering messages. Default is /bin/mail.

sendwait
Wait for background mailer to finish before returning. Enabled by default.

SHELL=shell-command
The name of a preferred command interpreter. Default is /bin/sh.

showto
When displaying the header summary and the message is from you, print the recipient’s address
instead of the author’s address. Enabled by default.

Post 4.0 248

MAILX(1) General Commands Manual MAILX(1)

sign=string
The variable inserted into the text of a message when the ‘‘˜a’’ command is given. No default
(see also ˜i).

Sign=string
The variable inserted into the text of a message when the ‘‘˜A’’ command is given. No default
(see also ˜i).

toplines=number
The number of lines of header to print with the ‘‘top’’ command. Default is 5.

translate=command
Run the given address(es) through command for resolution. Disabled by default.

VISUAL=shell-command
The name of a preferred screen editor. Default is ‘‘vi’’.

FILES
$HOME/.mailrc personal start-up file
$HOME/mbox secondary storage file
/usr/mail/∗ mailboxes
/usr/lib/mailx.help∗ help message files
/usr/lib/mailx.rc optional global start-up file
/tmp/R[emqsx]∗ temporary files

SEE ALSO
ls(1), mail(1), post(1), pg(1).

Post 4.0 249

MAKE(1) General Commands Manual MAKE(1)

NAME
make − maintain collections of programs

SYNOPSIS
make [-f makefile] [option ...] [name ...]

DESCRIPTION
Make executes recipes in makefile to update the target names (usually programs). If no target is specified,
the targets of the first rule in makefile are updated. If no -f option is present, makefile and Makefile
are tried in order. If makefile is -, the standard input is taken. More than one -f option may appear.

Make updates a target if it depends on prerequisite files that have been modified since the target was last
modified, or if the target does not exist. The prerequisites are updated before the target.

The makefile comprises a sequence of rules and macro definitions. The first line of a rule is a blank-sepa-
rated list of targets, then a single or double colon, then a list of prerequisite files terminated by semicolon
or newline. Text following a semicolon, and all following lines that begin with a tab, are shell commands:
the recipe for updating the target.

If a name appears as target in more than one single-colon rule, it depends on all of the prerequisites of
those rules, but only one recipe may be specified among the rules. A target in a double-colon rule is
updated by the following recipe only if it is out of date with respect to the prerequisites of that rule.

Two special forms of name are recognized. A name like a(b) means the file named b stored in the archive
named a. A name like a((b)) means the file stored in archive a and containing the entry point b.

Sharp and newline surround comments.

In this makefile pgm depends on two files a.o and b.o, and they in turn depend on .c files and a com-
mon file ab.h:

pgm: a.o b.o
cc a.o b.o -lplot -o pgm

a.o: ab.h a.c
cc -c a.c

b.o: ab.h b.c
cc -c b.c

Makefile lines of the form

string1 = string2

are macro definitions. Subsequent appearances of $(string1) are replaced by string2. If string1 is a single
character, the parentheses are optional; $$ is replaced by $. Each entry in the environment (see sh(1)) of
the make command is taken as a macro definition, as are command arguments with embedded equal signs.

Lines of the form string1 := string2 occurring in a recipe are assignments: macro definitions that are made
in the course of executing the recipe.

A target containing a single % introduces a pattern rule, which controls the making of names that do not
occur explicitly as targets. The % matches an arbitrary string called the stem: A%B matches any string
that begins with A and ends with B. A % in a prerequisite name stands for the stem; and the special
macro $% stands for the stem in the recipe. A name that has no explicit recipe is matched against the tar-
get of each pattern rule. The first pattern rule for which the prerequisites exist specifies further dependen-
cies.

The following pattern rule maintains an object library where all the C source files share a common include
file defs.h.

arch.a(%.o) : %.c defs.h
cc -c $%.c
ar r arch.a $%.o
rm $%.o

A set of default pattern rules is built in, and effectively follows the user’s list of rules. Assuming these
rules, which tell, among other things, how to make .o files from .c files, the first example becomes:

250

MAKE(1) General Commands Manual MAKE(1)

pgm: a.o b.o
cc a.o b.o -lplot -o pgm

a.o b.o: ab.h

Here, greatly simplified, is a sample of the built-in rules:

CC = cc
%.o: %.c

$(CC) $(CFLAGS) -c $%.c
%.o: %.f

f77 $(FFLAGS) -c $%.f
% : %.c

$(CC) $(CFLAGS) -o $% $%.c

The first rule says that a name ending in .o could be made if a matching name ending in .c were present.
The second states a similar rule for files ending in .f. The third says that an arbitrary name can be made
by compiling a file with that name suffixed by .c.

Macros make the builtin pattern rules flexible: CC names the particular C compiler, CFLAGS gives cc(1)
options, FFLAGS for f77(1), LFLAGS for lex(1), YFLAGS for yacc(1), and PFLAGS for pascal(A)

An older, now disparaged, means of specifying default rules is based only on suffixes. Prerequisites are
inferred according to selected suffixes listed as the ‘prerequisites’ for the special name .SUFFIXES; mul-
tiple lists accumulate; an empty list clears what came before.

The rule to create a file with suffix s2 that depends on a similarly named file with suffix s1 is specified as
an entry for the ‘target’ s1s2. Order is significant; the first possible name for which both a file and a rule
exist is inferred. An old style rule for making optimized .o files from .c files is

.SUFFIXES: .c .o

.c.o: ; cc -c -O -o $ $∗.c

The following two macros are defined for use in any rule:

$($) full name of target
$($/) target name beginning at the last slash, if any

A number of other special macros are defined automatically in rules invoked by one of the implicit mecha-
nisms:

$∗ target name with suffix deleted
$ full target name
$< list of prerequisites in an implicit rule
$? list of prerequisites that are out of date
$ˆ list of all prerequisites

The following are included for consistency with System V:

$(D) directory part of $ (up to last slash)
$(F) file name part of $ (after last slash)
$(∗D) directory part of $∗ (up to last slash)
$(∗F) file name part of $∗ (after last slash)
$(<D) directory part of $< (up to last slash)
$(<F) file name part of $< (after last slash)

Recipe lines are executed one at a time, each by its own shell. A line is printed when it is executed unless
the special target .SILENT is in the makefile, or the first character of the command is .

Commands that return nonzero status cause make to terminate unless the special target .IGNORE is in the
makefile or the command begins with <tab><hyphen>.

Interrupt and quit cause the target to be deleted unless the target depends on the special name .PRE-
CIOUS.

Make includes a rudimentary parallel processing ability. If the separation string is :& or ::& , make can
run the command sequences to create the prerequisites simultaneously. If two names are separated by an
ampersand on the right side of a colon, those two may be created in parallel.

251

MAKE(1) General Commands Manual MAKE(1)

Other options:

-i Equivalent to the special entry .IGNORE:

-k When a command returns nonzero status, abandon work on the current entry, but continue on
branches that do not depend on the current entry.

-n Trace and print, but do not execute the commands needed to update the targets.

-t Touch, i.e. update the modified date of targets, without executing any commands.

-r Turn off built-in rules.

-s Equivalent to the special entry .SILENT:.

-e Environment definitions override conflicting definitions in arguments or in makefiles. Ordinary
precedence is argument over makefile over environment.

-o Assume old style default suffix list: .SUFFIXES: .out .o .c .e .r .f .y .l .s .p

-Pn Permit n command sequences to be done in parallel with &.

-z Run commands by passing them to the shell; normally simple commands are run directly by
exec(2).

FILES
makefile
Makefile

SEE ALSO
sh(1), touch in chdate(1), ar(1), mk(1)

BUGS
Comments can’t appear on recipe lines.
Archive entries are not handled reliably.

252

MAN (1) General Commands Manual MAN (1)

NAME
man − print pages of this manual

SYNOPSIS
man [option ...] [chapter] title ...

man -k pattern

DESCRIPTION
Man locates and prints pages of this manual named title in the specified chapter. Title is given in lower
case. The chapter number is a single digit, 1-9; pages marked (3S) or (9.1), for example, belong to chap-
ters 3 and 9 respectively. If no chapter is specified, pages in all chapters, including the unprinted appen-
dix, are printed.

On some machines a cache of preformatted pages is available. If so, and if neither option -t or -n is
present, option -q, for quick printing, is assumed.

The options are:

-q Copy cached pages to the standard output or, if they are out of date or unavailable, act as -n. Any
name from the NAME list at the top of the page will serve as a title in the cache. If the standard
output is directed to a terminal, filter it through ul(1).

-t Use troff(1) to place on the standard output intermediate code to drive the typesetting devices of
lp(1), apsend(1), or proof(9)

-n Print the pages on the standard output using nroff.

-f The titles are actual names of manual source files. Assume option -t unless -n is present.

-k Report the NAME lines of all manual pages that matches the pattern. The pattern is as in egrep;
see gre(1).

Under -t and -n further options, e.g. to specify the kind of terminal you have, are passed on to troff or
nroff .

From time to time a daemon updates cached pages that are out of date and supplies links for subsidiary
entries.

EXAMPLES
man man

Reproduce this page and man(6).

man -t eqn eqnchar | lp
Format the eqn and eqnchar pages and send them to the laser printer.

man -k ’copy.∗file|file.∗copy’
Look for file-copying utilities.

FILES
/usr/man/man?/∗.?

troff source for manual; this page is /usr/man/man1/man.1

/usr/spool/man/man?/∗.?
manual cache

/usr/man/man0/cache
cache daemon; invoked by cron(8)

SEE ALSO
troff(1), man(6), apsend(1), lp(1), proof(9)

BUGS
The manual was intended to be typeset; some detail is sacrificed on terminals.
You can’t ask for manual pages named 1 through 9.
Pages not available in the cache can be located by their proper titles only.
Cache entries by subsidiary names are always deemed up to date.

253

MAPLE(1) General Commands Manual MAPLE(1)

NAME
maple - interactive symbolic algebraic program

SYNOPSIS
maple [-b libname] [-q] [-s]

DESCRIPTION
Initiate a session with the maple symbolic algebraic program. Expressions are read from standard input
and the results are produced in the standard output file as soon as each input expression has been read.
Maple has the ability to algebraically manipulate unbounded integers, exact rational numbers, real num-
bers with arbitrary precision, symbolic formulae, polynomials, sets, lists, and equations. It can solve sys-
tems of equations, differentiate formulae, and integrate formulae. In the following example from a Maple
session, Maple’s output is shown to the right of the input expressions.

p:=xˆ2-x-2;
2

p := x - x - 2
q:=(x+1) ˆ2 ;

2
q := (x + 1)

s :=p/q ;
2

x - x - 2
s := ------------

2
(x + 1)

d i f f (s , x) ; # d i f fe ren t i a t e wi th respec t to x
2

2 x - 1 x - x - 2
---------- - 2 ------------

2 3
(x + 1) (x + 1)

norma l (s) ;
x - 2

x + 1

Digi t s := 47 ;
Dig i t s := 47

x := 3ˆ50;
x := 717897987691852588770249

s ;
717897987691852588770247

717897987691852588770250

eva l f (s) ;
. 99999999999999999999999582113329270438496099068

qui t ;
If there is a system-wide maple initialization file with the name init under the src subdirectory of the
Maple library, then this file is read before the session starts. In addition, if there is a maple initialization
file named .mapleinit in the user’s home directory, this file is read next. If the -s (suppress initialization)
option is specified, Maple will forego reading any initialization file when initiating a session. If the -b
(library) option is used, then pathname should be the pathname of a directory which contains the Maple
library. This is used to initialize the value of the Maple variable ‘libname’. By default, ‘libname’ is ini-
tialized with the pathname /u/maple/lib. Some sites may install a maple shell script which uses the -b op-
tion to redefine the library pathname to be whatever is appropriate for those sites, e.g.,

maple -b /usr/public/waterloo/maple/lib $∗
The -q (quiet) option will suppress the printing of Maple’s startup logo, various informational messages
(words used messages and garbage collection messages), and the signoff message. Maple is better suited
for use as a filter when these messages are suppressed.

University of Waterloo 02 June 1987 254

MAPLE(1) General Commands Manual MAPLE(1)

SEE ALSO
Maple: A Sample Interactive Session issued by the Symbolic Computation Group as Research Report
CS-85-01 available from the Department of Computer Science, University of Waterloo,
Maple User’s Guide by B.W. Char et al, Watcom Publications Limited, Waterloo, Ontario (1985).
mint(1)

FILES
.mapleinit
/usr/maple/lib - Maple library (Pathname subject to change at each installation.)

AUTHOR
Symbolic Computation Group, University of Waterloo

FOR HELP
At Waterloo, there is the newsgroup uw.maple which contains broadcasts and discussions which would be
of interest to general Maple users. You should subscribe to this newsgroup if you intend to use Maple in
more than just a casual manner. Users are encouraged to post their questions regarding Maple to this
newsgroup if they feel that their enquiries are of a general nature. Replies will be posted to the newsgroup
for all to see. If you have a question that you think is of a very specific nature and not of interest to others,
you may send a mail message to maple_help watmum.

University of Waterloo 02 June 1987 255

MATCH(1) General Commands Manual MATCH(1)

NAME
match - compare style tables from two or more texts

SYNOPSIS
match [-flags][-ver] [style-file1 [style-file2 ...]

DESCRIPTION
Match collates selected variables from tables produced by the style(1) command and prints values from
the different files one below the other for easy comparison. The style-files must contain tables produced
by style.

Match can also run on one file to produce an abbreviated version of the style table.

When comparing texts, it is advisable to use texts of similar length.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

USES
This program is useful for visually inspecting similarities and differences among stylistic features of dif-
ferent documents or drafts and their revisions.

SEE ALSO
style(1), prose(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

256

MATLAB(1) General Commands Manual MATLAB(1)

NAME
matlab − interactive matrix desk calculator

SYNOPSIS
/usr/lbin/matlab

DESCRIPTION
Matlab manipulates complex matrices interactively. Special cases include real matrices and scalars. Op-
erations include pseudoinversion (which is inversion for square nonsingular matrices), eigendecomposi-
tion, various other factorizations, solution of linear equations, matrix products (including inner and outer
products), Kronecker products, log, exponential and trigonometric functions of matrices, and rank and
condition estimation.

Variables are alphanumeric strings of at most 4 characters. Case is ignored. Expressions and assignment
statements are written as in Fortran. Multiple statements can be put on one line, separated by either
comma or semicolon; the result of a statement is written on the standard output unless a semicolon fol-
lows the statement. Extensions to Fortran notation include:

Matrix construction from elements. Elements in a row are separated by commas; columns are separated
by semicolons; matrices are surrounded by < brackets.

Transpose is indicated by postfix prime ’.

Consecutive integers are denoted by colons in the style 1:4 or 1:2:8 (meaning 1,3,5,7). A(2:5) is a sub-
array; A(:,j) is a column.

Identity matrix is denoted eye; its dimensions are dictated by context.

Reverse division is denoted by \ . For example, x is roughly the same as x = inv(A) ∗ b, except that
Gaussian elimination, if applicable, is used to compute x.

Some matlab commands:

help
help word

List commands and functions, or specific information about a word:
ABS ANS ATAN BASE CHAR CHOL CHOP CLEA COND CONJ COS
DET DIAG DIAR DISP EDIT EIG ELSE END EPS EXEC EXIT
EXP EYE FILE FLOP FLPS FOR FUN HESS HILB IF IMAG
INV KRON LINE LOAD LOG LONG LU MACR MAGI NORM ONES
ORTH PINV PLOT POLY PRIN PROD QR RAND RANK RCON RAT
REAL RETU RREF ROOT ROUN SAVE SCHU SHOR SEMI SIN SIZE
SQRT STOP SUM SVD TRIL TRIU USER WHAT WHIL WHO WHY

save(’ file’)
save(’ file[,var]...’)

Save all current variables, or just the designated variables in file.
load(’ file’)

Restore saved variables.
exec(’ file’)

Execute the commands in file before reading more commands from the standard input.

Matlab can be called as a subroutine. For details, see the reference or type help user.

FILES
/usr/lib/mathelp.dac
/usr/lib/mathelp.idx

SEE ALSO
Cleve Moler, MATLAB User’s Guide, Technical Report CS81-1 (Revised), Dept. of Computer Science,
University of New Mexico, 1982. (Available in troff form with the Matlab source.)

257

MEMO(1) General Commands Manual MEMO(1)

NAME
memo - produce macros for MM interactively

SYNOPSIS
memo filename [argument]

DESCRIPTION
Memo is designed as a computer aid to help new or infrequent users of the PWB/MM Memorandum
Macros. It asks questions interactively to produce a file which contains the necessary introductory and
concluding macros for PWB/MM. In order to enter the text of the memo, you must enter the editor. For
help to any question enter a A detailed explanation of the proper answer will be printed.

The following are optional arguments to be used when filename already exists to avoid lengthy printout:

a Enter editor to add/modify text.

b Be prompted for concluding macros.

! Overwrite filename and begin introductory macros.

SEE ALSO
nroff (1)

local 258

MINT (1) General Commands Manual MINT (1)

NAME
mint - produce usage report from a maple program

SYNOPSIS
mint [-i info_level] [-l] [-d library_database] [-a database_file] [-q] [file]

DESCRIPTION
Mint produces a report about possible errors in a Maple source file and also reports about how variables
are used in the file. If file is not given, then the standard input file is used to read Maple source state-
ments. Unlike maple, mint is not terminated when it reads a quit statement. It is terminated when it
reaches the end of file. When started, mint normally produces a mint leaf logo. This can be suppressed
by the use of the -q (quiet) option. The amount of information to be produced by mint is specified by the
info_level argument. The values allowed for this argument are:

0 - Display no information.
1 - Display only severe errors
2 - Display severe and serious errors
3 - Display warnings as well as severe and serious errors
4 - Give a full report on variable usage as well as

displaying errors and warnings
A report for each procedure in the file is displayed separately followed by a global report for statements
not contained within any procedure. If the severity of errors found within a procedure is less than what
info_level specifies, then no report is produced for that procedure. In all cases, the most severe error
found in the file will be used to set the exit status for mint. Thus, by using an info_level of 0, mint can be
used to determine the severity of errors in a file without actually producing any output at all. If no value is
given for info_level on the command line, a default value of 2 (severe and serious errors) is used. The
types of errors and warnings found are classified as severe, serious, and warning. A severe error is an
undisputable error. A serious error is almost certainly an error. However, persons defining procedures for
addition to the Maple library may choose to ignore these ‘‘errors’’. Warnings are possible errors. They
point to constructs that may be correct in some contexts, but probable errors in other contexts. The types
of errors and warnings produced are:
SEVERE

Syntax errors
A caret symbol will point to the token that is being read when the error occurred.

Duplicated parameter
A name appears more than once in a parameter list for a procedure.

Duplicated local
A name is declared more than once in the list of local variables for a procedure.

Local variable and parameter conflict
A name is used both as a parameter and a local variable within a procedure. In further
analysis, the name is treated as a parameter.

Local variable and system-defined name conflict
The name of a local variable is also used by Maple as a system-defined name.

Parameter and system-defined name conflict
The name of a parameter is also used by Maple as a system-defined name.

Duplicated loop name
A loop nested within another loop uses as its loop control variable the same name that the
outer loop uses.

Break or next statement outside of a loop
A break or a next statement occurs outside of any loop. (Break or next may still be used as
names within an expression outside of a loop.)

RETURN or ERROR function call outside of a procedure
A function call to RETURN or ERROR occurs outside of a procedure body. (RETURN or
ERROR may still be used as names if they are not invoked as functions.)

Unreachable code
There are statements which follow directly after a goto type of statement. These statements
are unreachable and will never be executed. A goto statement is a next statement, a break
statement, a quit, stop, or done statement, a RETURN() call, an ERROR() call. An if state-
ment all branches of which end in a goto statement is also considered a goto statement.

University of Waterloo 02 June 1987 259

MINT (1) General Commands Manual MINT (1)

SERIOUS
Overly long name

A name whose length is too long is used. The length of the name is truncated to the maxi-
mum allowed.

Unused local variable
A local variable is declared for a procedure but never used within the procedure body.

Local variable assigned a value but not used otherwise
A local variable is assigned a value within a procedure but is not otherwise used.

Local variable never assigned a value but used as a value
A local variable was never assigned a value in a procedure but within the procedure its
value is used in an expression. Such an expression would contain a pointer to a non-exis-
tent local variable if the expression were returned or assigned to a global variable.

System-defined name is overwritten
A name which is treated as a system-defined name by Maple is assigned a value. The class
of system-defined names includes names which are special names for the Maple kernel,
e.g., true and Digits, names of built-in functions, e.g., anames and lprint, names of functions
which are automatically readlib-defined, e.g., cat or help. Also included are names that are
special to routines for evalf, diff, expand, etc. Examples of these are Pi and sinh. These
special names generally should not be assigned a value in order for some library routines to
work properly. Included in the report is an indication of which parts of Maple use the sys-
tem-defined names.

Dubious global name in a procedure
A global name is used within a procedure. A global name is a name which is not a parame-
ter, a local name, a system-defined name, or a catenated name. A quoted name used as an
argument to the routines lprint, print, and ERROR is probably used just for output and is
not considered a name. Global names used as procedure names in a function call are not
considered errors. Also excluded are names of files in the Maple library, e.g., ‘convert/rat-
poly‘. All remaining names are considered as global names. By convention, global names
used in a package of routines should begin with the ‘_‘ (underscore) character. Those that
do not are considered dubious and are reported here.

Library file name overwritten
The name of a library file, e.g., ‘convert/ratpoly‘, is assigned a value. It is usual for the
name of a library file to also be the name of a library function. Hence, the library function
‘convert/ratpoly‘ is no longer accessible. (The -l (library file) option will downgrade these
messages from a serious error to a report.)

Unused parameter in a procedure
A name specified in the parameter list of a procedure is never used in the procedure. This is
considered a serious error if ‘args’ is never used in the procedure either. If args is used in
the procedure, then it’s possible that the parameter may be accessed through a construct us-
ing ‘arg’ and this error is downgraded to a warning.

Wrong argument count in a procedure call
The number of arguments passed in a procedure call doesn’t match the number of formal
arguments in the definition of a procedure of the same name recorded in the library data-
base file. A library database file (cf. DATABASE FILES) contains information about the
minimum number of arguments expected for a procedure, the maximum number of argu-
ments, whether ‘nargs’ is used in the procedure body, and the name of the file in which the
procedure is defined. If the number of actual arguments passed is either less than the mini-
mum arguments expected or more than the maximum number expected and ‘nargs’ is not
used in the procedure body, then a warning is generated. This warning is suppressed if one
of the arguments passed is ‘args’. It is a common practice for a procedure to take its argu-
ment list, contained in the expression sequence ‘args’, and pass that on to other procedures.
What appears to mint as one argument is in reality a sequence of arguments.

WARNING
Equation used as a statement

This may be intentional. On the other hand, it’s common for many Fortran and C program-
mers to mistype ’=’ for the assignment operator which is ’:=’ in Maple.

Unused parameter in a procedure

University of Waterloo 02 June 1987 260

MINT (1) General Commands Manual MINT (1)

See similar entry under serious errors.
Global name used

A global name which may or may not start with ’_’ is used within this procedure.
Catenated name used

A name is formed through the catenation operator.
OTHER REPORTS

If info_level is 4, then a usage report is given for each procedure as well as global statements within the
file. Each usage report shows how parameters, local variables, global variables, system-defined names
and catenated names are used. As well can easily be done, the following information about how a vari-
able is used may be provided:

1. Used as a value
2. Used as a table or list element
3. Used as a call-by-value parameter
4. Used as a call-by-name parameter (a quoted parameter)
5. Called as a function
6. Assigned a procedure
7. Assigned a list
8. Assigned a set
9. Assigned a range
10. Assigned a value as a table or list element
11. Assigned a function value

(assigned a value to remember as a function value)
In addition, a list of all the error messages generated is given.

COMMAND OPTIONS
The -i (info level) and -q (quiet) options are explained above. The -l (library file) option will suppress
the catenated name warning and the global name warning if only one of each is used outside of any proce-
dure. Typically, a Maple library source file will contain one of each for use in loading the library file.
This option will also suppress error messages about library file names being overwritten since one of the
purposes of a library file is to assign a procedure to a library file name. Moreover, warnings about the as-
signment of values to the system-defined names Digits and printlevel are suppressed since this often hap-
pens in a library file.

INITIALIZATION FILE
If there is a file named .mintrc in your home directory, mint will read this file for command line options.
This file may contain several lines containing command line options or arguments as you would type them
on a command line. Since mint reads this file and then scans the actual command line, arguments on the
actual command line can override arguments in the initialization file. A good use of the initialization file
may be to enter the name of the Maple library procedure database file when using the -d option, obviating
the need to type this each time mint is used.

PROCEDURE DATABASE FILES
A procedure database file contains information about the definition of procedures which is useful in ensur-
ing that these procedures are used correctly. Each line in a database file contains the following:

<name> <min args> <max args> <nargs used> <file name>
where <name> is a legal Maple name without any embedded blanks, <min args> is the minimum number
of arguments expected for <name>, <max args> is the maximum number of arguments, <nargs used> is 1
if ‘nargs’ is used in the procedure body for <name> and 0 otherwise, <file name> is the name of the file in
which <name> is defined. The entries on each line are in free format but must be separated from one an-
other by at least one space character. The values for <min args> and <max args> should be numbers in
the range 0 to 999. If <max args> is 999 for an entry, that denotes that the procedure has no upper limit
on the number of arguments. There may be multiple entries for a particular procedure. Later entries su-
percede earlier ones. A procedure database file for the entire Maple library is generated or updated peri-
odically. This file is /usr/maple/data/mint.db and contains close to 1200 entries and it takes mint about 7
seconds to read this file. A private database file can be generated through the use of the -a command line
option for mint. A file name must follow -a on the command line and is taken to be a procedure database
file. As mint scans procedure definitions in the input file, it will append procedure database entries into
the database file. For information gathered automatically by mint about a procedure, <min args> and

University of Waterloo 02 June 1987 261

MINT (1) General Commands Manual MINT (1)

<max args> will both be the number of formal arguments used in the procedure definition. You can edit
the database file to adjust these values. Remember that use of ‘nargs’ in a procedure body sets the <nargs
seen> field to 1 in the database entry and that this will turn off argument count checking for that proce-
dure.

EXAMPLES
mint -d /usr/maple/data/mint.db -a my.db -i 4 rat_poisson
mint -d /usr/maple/data/mint.db -d my.db rat_trap
mint -i 1 -q warfarin
The first example gives a full report (info_level = 4) for the Maple source file rat_poisson. It reads the
Maple library database file and uses this to check that procedures defined in the Maple library are called
with the correct number of arguments. Information about procedures defined in rat_poisson is appended
to my.db. In the second example, both the Maple library database file and the private database file my.db
are used to check number of arguments used in procedure calls in the file rat_trap. Entries in my.db su-
percede entries in the library database file if the name of a library procedure has been redefined in my.db.
In the third example, no argument count checking is done. Since the info_level is set to 1, only severe er-
rors are reported. Since the -q (quiet) option is used, the printing of the mint leaf logo is suppressed in
the output.

FILES USED
.mintrc - Mint initialization file /usr/maple/data/mint.db - Maple library procedure database

(The location of the database may be different for each site)

SEE ALSO
maple

STATUS
Mint will return an exit status of 1, 2, or 3 if the worst error it detects is a warning, serious error, or severe
error, respectively. An exit status of 0 is returned if no errors or warnings are found.

University of Waterloo 02 June 1987 262

MK (1) General Commands Manual MK (1)

NAME
mk, mkconv, membername - maintain (make) related files

SYNOPSIS
mk [-f mkfile] ... [option ...] [name ...]

mkconv makefile

membername aggregate ...

DESCRIPTION
Mk is most often used to keep object files current with the source they depend on.

Mk reads mkfile and builds and executes dependency dags (directed acyclic graphs) for the target names.
If no target is specified, the targets of the first non-metarule in the first mkfile are used. If no -f option is
present, mkfile is tried. Other options are:

-a Assume all targets to be out of date. Thus, everything gets made.
-d[egp] Produce debugging output (p is for parsing, g for graph building, e for execution).
-e Explain why each target is made.
-i Force any missing intermediate targets to be made.
-k Do as much work as possible in the face of errors.
-m Generate an equivalent makefile on standard output. Recipes are not handled well.
-n Print, but do not execute, the commands needed to update the targets.
-t Touch (update the modified date of) non-virtual targets, without executing any recipes.
-u Produce a table of clock seconds spent with n recipes running.
-wname1,name2,...

Set the initial date stamp for each name to the current time. The names may also be sepa-
rated by blanks or newlines. (Use with -n to find what else would need to change if the
named files were modified.)

Mkconv attempts to convert a make(1) makefile to a mkfile on standard output. The conversion is not
likely to be faithful.

The shell script membername extracts member names (see ‘Aggregates’ below) from its arguments.

Definitions
A mkfile consists of assignments (described under ‘Environment’) and rules. A rule contains targets and
a tail. A target is a literal string, or label, and is normally a file name. The tail contains zero or more pre-
requisites and an optional recipe, which is a shell script.

A metarule has a target of the form A%B where A and B are (possibly empty) strings. A metarule
applies to any label that matches the target with % replaced by an arbitrary string, called the stem. In
interpreting a metarule, the stem is substituted for all occurrences of % in the prerequisite names. A
metarule may be marked as using regular expressions (described under ‘Syntax’). In this case, % has no
special meaning; the target is interpreted according to regexp(3). The dependencies may refer to subex-
pressions in the normal way, using \n. The dependency dag for a target consists of nodes connected by
directed arcs. A node consists of a label and a set of arcs leading to prerequisite nodes. The root node is
labeled with an original target name.

Building the Dependency Dag
Read the mkfiles in command line order and distribute rule tails over targets to get single-target rules.

For a node n, for every rule r that matches n’s label generate an arc to a prerequisite node. The node n is
then marked as done. The process is then repeated for each of the prerequisite nodes. The process stops
if n is already done, or if n has no prerequisites, or if any rule would be used more than $NREP times on
the current path in the dag. A probable node is one where the label exists as a file or is a target of a non-
metarule.

After the graph is built, it is checked for cycles, and subdags containing no probable nodes are deleted.
Also, for any node with arcs generated by a non-metarule with a recipe, arcs generated by a metarule with
a recipe are deleted. Disconnected subdags are deleted.

263

MK (1) General Commands Manual MK (1)

Execution
Labels have an associated date stamp. A label is ready if it has no prerequisites, or all its prerequisites are
made. A ready label is trivially uptodate if it is not a target and has a nonzero date stamp, or it has a
nonzero date stamp, and all its prerequisites are made and predate the ready label. A ready label is
marked made (and given a date stamp) if it is trivially uptodate or by executing the recipe associated with
the arcs leading from the node associated with the ready label. The P attribute can be used to generalize
mk’s notion of determining if prerequisites predate a label. Rather than comparing date stamps, it exe-
cutes a specified program and uses the exit status.

Date stamps are calculated differently for virtual labels, for labels that correspond to extant files, and for
other labels. If a label is virtual (target of a rule with the V attribute), its date stamp is initially zero and
upon being made is set to the most recent date stamp of its prerequisites. Otherwise, if a label is nonexis-
tent (does not exist as a file), its date stamp is set to the most recent date stamp of its prerequisites, or zero
if it has no prerequisites. Otherwise, the label is the name of a file and the label’s date stamp is always
that file’s modification date.

Nonexistent labels which have prerequisites and are prerequisite to other label(s) are treated specially
unless the -i flag is used. Such a label l is given the date stamp of its most recent prerequisite and if this
causes all the labels which have l as a prerequisite to be trivially uptodate, l is considered to be trivially
uptodate. Otherwise, l is made in the normal fashion.

Two recipes are called identical if they arose by distribution from a single rule as described above. Identi-
cal recipes may be executed only when all their prerequisite nodes are ready, and then just one instance of
the identical recipes is executed to make all their target nodes.

Files may be made in any order that respects the preceding restrictions.

A recipe is executed by supplying the recipe as standard input to the command
/bin/sh -e

The environment is augmented by the following variables:

$alltarget all the targets of this rule.

$newprereq the prerequisites that caused this rule to execute.

$nproc the process slot for this recipe. It satisfies 0≤$nproc<$NPROC, where $NPROC is the
maximum number of recipes that may be executing simultaneously.

$pid the process id for the mk forking the recipe.

$prereq all the prerequisites for this rule.

$stem if this is a metarule, $stem is the string that matched %. Otherwise, it is empty. For
regular expression metarules, the variables stem0, ..., stem9 are set to the correspond-
ing subexpressions.

$target the targets for this rule that need to be remade.

Unless the rule has the Q attribute, the recipe is printed prior to execution with recognizable shell vari-
ables expanded. To see the commands print as they execute, include a set in your rule. Commands
returning nonzero status (see intro(1)) cause mk to terminate.

Aggregates
Names of the form a(b) refer to member b of the aggregate a. Currently, the only aggregates supported
are ar(1) archives.

Environment
Rules may make use of shell (or environment) variables. A legal shell variable reference of the form
$OBJ or ${name} is expanded as in sh(1). A reference of the form ${name:A%B=C%D}, where A, B,
C, D are (possibly empty) strings, has the value formed by expanding $name and substituting C for A and
D for B in each word in $name that matches pattern A%B.

Variables can be set by assignments of the form
var=[attr=]tokens

where tokens and the optional attributes are defined under ‘Syntax’ below. The environment is exported
to recipe executions. Variable values are taken from (in increasing order of precedence) the default values
below, the environment, the mkfiles, and any command line assignment. A variable assignment argument

264

MK (1) General Commands Manual MK (1)

overrides the first (but not any subsequent) assignment to that variable.
AS=as FFLAGS= NPROC=1
CC=cc LEX=lex NREP=1
CFLAGS= LFLAGS= YACC=yacc
FC=f77 LDFLAGS= YFLAGS=
BUILTINS=’
%.o: %.c

$CC $CFLAGS -c $stem.c
%.o: %.s

$AS -o $stem.o $stem.s
%.o: %.f

$FC $FFLAGS -c $stem.f
%.o: %.y

$YACC $YFLAGS $stem.y &&
$CC $CFLAGS -c y.tab.c && mv y.tab.o $stem.o; rm y.tab.c

%.o: %.l
$LEX $LFLAGS -t $stem.l > $stem.c &&
$CC $CFLAGS -c $stem.c && rm $stem.c’

ENVIRON=

The builtin rules are obtained from the variable BUILTINS after all input has been processed. The ENV-
IRON variable is split into parts at control-A characters, the control-A characters are deleted, and the
parts are placed in the environment. The variable MKFLAGS contains all the option arguments (argu-
ments starting with - or containing =) and MKARGS contains all the targets in the call to mk.

Syntax
Leading white space (blank or tab) is ignored. Input after an unquoted # (a comment) is ignored as are
blank lines. Lines can be spread over several physical lines by placing a \ before newlines to be elided.
Non-recipe lines are processed by substituting for ‘cmd‘ and then substituting for variable references.
Finally, the filename metacharacters []∗? are expanded. Quoting by ’’, "", and \ is supported. The
semantics for substitution and quoting are given in sh(1).

The contents of files may be included by lines beginning with < followed by a filename.

Assignments and rule header lines are distinguished by the first unquoted occurrence of : (rule header) or
= (assignment).

A rule definition consists of a header line followed by a recipe. The recipe consists of all lines following
the header line that start with white space. The recipe may be empty. The first character on every line of
the recipe is elided. The header line consists of at least one target followed by the rule separator and a
possibly empty list of prerequisites. The rule separator is either a single : or is a : immediately followed
by attributes and another :. If any prerequisite is more recent than any of the targets, the recipe is exe-
cuted. This meaning is modified by the following attributes

< The standard output of the recipe is read by mk as an additional mkfile. Assignments take effect
immediately. Rule definitions are used when a new dependency dag is constructed.

D If the recipe exits with an error status, the target is deleted.
N If there is no recipe, the target has its time updated.
P The characters after the P until the terminating : are taken as a program name. It will be invoked

as sh -c prog ’arg1’ ’arg2’ and should return 0 exit status if and only if arg1 is not out of date
with respect to arg2. Date stamps are still propagated in the normal way.

Q The recipe is not printed prior to execution.
R The rule is a metarule using regular expressions.
U The targets are considered to have been updated even if the recipe did not do so.
V The targets of this rule are marked as virtual. They are distinct from files of the same name.

Similarly, assignments may have attributes terminated by =. The only assignment attribute is

U
Do not export this variable to recipe executions.

265

MK (1) General Commands Manual MK (1)

EXAMPLES
A simple mkfile to compile a program.

prog: a.o b.o c.o
$CC $CFLAGS -o $target $prereq

Override flag settings in the mkfile.

$ mk target CFLAGS=’-O -s’

To get the prerequisites for an aggregate.

$ membername ’libc.a(read.o)’ ’libc.a(write.o)’
read.o write.o

Maintain a library.

libc.a(%.o):N:%.o
libc.a:libc.a(abs.o) libc.a(access.o) libc.a(alarm.o) ...

names=‘membername $newprereq‘
ar r libc.a $names && rm $names

Backquotes used to derive a list from a master list.

NAMES=alloc arc bquote builtins expand main match mk var word
OBJ=‘echo $NAMES|sed -e ’s/[ˆ][ˆ]∗/&.o/g’‘

Regular expression metarules. The single quotes are needed to protect the \s.

’([ˆ/]∗)/(.∗)\.o’:R: ’\1/\2.c’
cd $stem1; $CC $CFLAGS -c $stem2.c

A correct way to deal with yacc(1) grammars. The file lex.c includes the file x.tab.h rather than y.tab.h in
order to reflect changes in content, not just modification time.

YFLAGS=-d
lex.o: x.tab.h
x.tab.h:y.tab.h

cmp -s x.tab.h y.tab.h || cp y.tab.h x.tab.h
y.tab.c y.tab.h:gram.y

$YACC $YFLAGS gram.y

The above example could also use the P attribute for the x.tab.h rule:

x.tab.h:Pcmp -s:y.tab.h
cp y.tab.h x.tab.h

SEE ALSO
make(1), chdate(1), sh(1), regexp(3)
A. Hume, ‘Mk: a Successor to Make’, this manual, Volume 2

BUGS
Identical recipes for regular expression metarules only have one target.
Seemingly appropriate input like CFLAGS=-DHZ=60 is parsed as an erroneous attribute; correct it by
inserting a space after the first =.

266

MKDIR(1) General Commands Manual MKDIR(1)

NAME
mkdir − make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777, subject to masking by umask(2). Standard entries, ‘.’,
for the directory itself, and ‘..’ for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rm(1) cd in sh(1)

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made. Otherwise it prints a diagnostic and
returns nonzero.

267

MKDIST (1) General Commands Manual MKDIST (1)

NAME
mkdist, insdist — make and install distribution packages

SYNOPSIS
/usr/lib/dist/mkdist [-v] [-D old=new] [-[Xx] command] files ...

/usr/lib/dist/insdist [-v] [-D old=new] [-R rootdir]

DESCRIPTION
Mkdist packages the named files into a distribution package on the standard output. A distribution pack-
age is an ordinary tar(1) file, containing the files of the package as well as installation information for use
by insdist.

The -D option to both mkdist and insdist allows prefix substitution to be performed on pathnames going
into the distribution. (Mkdist arranges for all file names in the distribution to be absolute path names, by
prepending the current directory to any relative pathname arguments.) At most one -D option will be ap-
plied to any name in the distribution, so there are no substitution loops. If multiple -D options might
match a given file name, the leftmost one from the command line is chosen. The -R option (insdist only)
additionally specifies that all files are to be unpacked relative to the given root directory.

The -X and -x options to mkdist allow a command to be given that will be executed when the distribution
is unpacked by insdist . These options are identical, except that pathname prefix substitution from -D op-
tions will be applied to a command specified in a -X option.

The -v option turns on verbose output describing what’s going on.

SEE ALSO
tar(1)

BUGS
The -v option should show more.

268

MKSTAND(1) General Commands Manual MKSTAND(1)

NAME
mkstand - compile style standards for prose program

SYNOPSIS
mkstand [-flags][-ver][-mm | -ms][-li | +li][-o outfile] file1 file2 ...

DESCRIPTION
Mkstand enables users to compile their own set of style(1) standards for use by prose(1). Prose describes
stylistic features of a text and compares them to specified standards. If a user or group, for example a
writing group, has many documents of a certain type that they consider good, those documents can be
used as the basis for their own standards. Mkstand creates the standards, which reflect the stylistic fea-
tures of the input documents. Then the user can use prose to evaluate documents according to those stan-
dards.

Mkstand runs style on a set of documents and computes the means and standard deviations of certain style
statistics. Then it puts these into outfile (stand.out is the default) in a format that prose can read. Then if
prose is run with the command:

prose -x outfile textfile

it compares textfile with the standards in outfile. The command:

wwbstand -x outfile

will display the standards in a comprehensible form.

Mkstand tries to produce valid standards by enforcing these requirements:

1. Input files must be at least 90 sentences or 1900 words long.

2. If an input file has style scores that are more than 2 standard deviations from the mean,
scores for that file are excluded from the computation of the standards.

Although mkstand will compile standards for any number of documents (up to 75), standards will be most
reliable if at least 20 documents are used.

Because mkstand runs deroff(1) on input files before computing scores, formatting header files should be
included as part of the input.

Four options affect deroff :

-mm eliminate mm(1) macros, and associated text that is not part of sentences (e.g. headings),
from the analysis. This is the default.

-ms eliminate ms(1) macros, and associated text that is not part of sentences, from the analysis.
The -ms flag overrides the default, -mm.

-li eliminate list items, as defined by mm macros, from the analysis. This is the default.

+li Include list items in the input text, in the analysis. This flag should be used if the texts
contain lists of sentences, but not if the texts contain many lists of non-sentences.

Other options are:

-o outfile put standards in outfile instead of the default stand.out.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

Mkstand saves the style scores it used in computing the standards in a file named styl.scores. Users
should examine the scores in this file for any scores that seem unusual or invalid. If any are found, mk-
stand should be rerun without the unusual document.

FILES

269

MKSTAND(1) General Commands Manual MKSTAND(1)

/tmp/$$stat.out temporary file containing style tables of input files

stand.out default output file containing standards

styl.scores output file containing style scores used in compiling standards

SEE ALSO
prose(1), style(1), deroff(1), wwbstand(1), wwb(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

270

MKSTR(1) General Commands Manual MKSTR(1)

NAME
mkstr - create an error message file by massaging C source

SYNOPSIS
mkstr [-] messagefile prefix file ...

DESCRIPTION
Mkstr is used to create files of error messages. Its use can make programs with large numbers of error di-
agnostics much smaller, and reduce system overhead in running the program as the error messages do not
have to be constantly swapped in and out.

Mkstr will process each of the specified files, placing a massaged version of the input file in a file whose
name consists of the specified prefix and the original name. A typical usage of mkstr would be

mkstr pistrings xx ∗.c

This command would cause all the error messages from the C source files in the current directory to be
placed in the file pistrings and processed copies of the source for these files to be placed in files whose
names are prefixed with xx.

To process the error messages in the source to the message file mkstr keys on the string ‘error("’ in the in-
put stream. Each time it occurs, the C string starting at the ‘"’ is placed in the message file followed by a
null character and a new-line character; the null character terminates the message so it can be easily used
when retrieved, the new-line character makes it possible to sensibly cat the error message file to see its
contents. The massaged copy of the input file then contains a lseek pointer into the file which can be used
to retrieve the message, i.e.:

char efilname[] = "/usr/lib/pi_strings";
int efil = -1;

error(a1, a2, a3, a4)
{

char buf[256];
if (efil < 0) {

efil = open(efilname, 0);
if (efil < 0) {

oops:
perror(efilname);
exit(1);

}
}
if (lseek(efil, (long) a1, 0) | | read(efil, buf, 256) <= 0)

goto oops;
printf(buf, a2, a3, a4);

}

The optional - causes the error messages to be placed at the end of the specified message file for recom-
piling part of a large mkstr ed program.

SEE ALSO
lseek(2), xstr(1)

AUTHORS
William Joy and Charles Haley

3rd Berkeley Distribution 2/24/79 271

MM(1) General Commands Manual MM(1)

NAME
mm - print out documents formatted with the MM macros

SYNOPSIS
mm [options] [files]

DESCRIPTION
Mm can be used to type out documents using nroff (1) and the MM text-formatting macro package. It has
options to specify preprocessing by tbl(1) and/or neqn(1) and postprocessing by various terminal-oriented
output filters. The proper pipelines and the required arguments and flags for nroff (1) and MM are gener-
ated, depending on the options selected.

Options for mm are given below. Any other arguments or flags (e.g., -rC3) are passed to nroff (1) or to
MM, as appropriate. Such options can occur in any order, but they must appear before the files argu-
ments. If no arguments are given, mm prints a list of its options.

-Tterm Specifies the type of output terminal; for a list of recognized values for term, type help term2.
If this option is not used, mm will use the value of the shell variable $TERM from the environ-
ment (see profile(5) and environ(7)) as the value of term, if $TERM is set; otherwise, mm will
use 450 as the value of term. If several terminal types are specified, the last one takes prece-
dence.

-12 Indicates that the document is to be produced in 12-pitch. May be used when $TERM is set to
one of 300, 300s, 450, and 1620. (The pitch switch on the DASI 300 and 300s terminals must
be manually set to 12 if this option is used.)

-c Causes mm to invoke col(1); note that col(1) is invoked automatically by mm unless term is
one of 300, 300s, 450, 37, 4000A, 382, 4014, tek, 1620, and X.

-e Causes mm to invoke neqn(1); also causes neqn to read the /usr/pub/eqnchar file (see eqn-
char(7)).

-t Causes mm to invoke tbl(1).
-E Invokes the -e option of nroff (1)
-y Causes mm to use the non-compacted version of the macros (see mm(7)).

As an example (assuming that the shell variable $TERM is set in the environment to 450), the two com-
mand lines below are equivalent:

mm -t -rC3 -12 ghh∗
tbl ghh∗ nroff -cm -T450-12 -h -rC3

Mm reads the standard input when - is specified instead of any file names. (Mentioning other files to-
gether with - leads to disaster.) This option allows mm to be used as a filter, e.g.:

cat dws mm -

HINTS
1. Mm invokes nroff (1) with the -h flag. With this flag, nroff (1) assumes that the terminal has tabs

set every 8 character positions.
2. Use the -olist option of nroff (1) to specify ranges of pages to be output. Note, however, that

mm, if invoked with one or more of the -e, -t, and - options, together with the -olist option of
nroff (1) may cause a harmless ‘‘broken pipe’’ diagnostic if the last page of the document is not
specified in list.

3. If you use the -s option of nroff (1) (to stop between pages of output), use line-feed (rather than
return or new-line) to restart the output. The -s option of nroff (1) does not work with the -c op-
tion of mm, or if mm automatically invokes col(1) (see -c option above).

4. If you lie to mm about the kind of terminal its output will be printed on, you’ll get (often subtle)
garbage; however, if you are redirecting output into a file, use the -T37 option, and then use the
appropriate terminal filter when you actually print that file.

SEE ALSO
col(1), env(1), eqn(1), greek(1), mmt(1), nroff(1), tbl(1), profile(5), mm(7), term(7).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.

272

MM(1) General Commands Manual MM(1)

DIAGNOSTICS
‘‘mm: no input file’’ if none of the arguments is a readable file and mm is not used as a filter.

273

MMT (1) General Commands Manual MMT (1)

NAME
mmt, mvt - typeset documents, view graphs, and slides

SYNOPSIS
mmt [options] [files]

mvt [options] [files]

DESCRIPTION
These two commands are very similar to mm(1), except that they both typeset their input via troff(1), as
opposed to formatting it via nroff (1); mmt uses the MM macro package, while mvt uses the Macro Pack-
age for View Graphs and Slides. These two commands have options to specify preprocessing by tbl(1)
and/or eqn(1). The proper pipelines and the required arguments and flags for troff(1) and for the macro
packages are generated, depending on the options selected.

Options are given below. Any other arguments or flags (e.g., -rC3) are passed to troff(1) or to the macro
package, as appropriate. Such options can occur in any order, but they must appear before the files argu-
ments. If no arguments are given, these commands print a list of their options.

-e Causes these commands to invoke eqn(1); also causes eqn to read the /usr/pub/eqnchar file
(see eqnchar(7)).

-t Causes these commands to invoke tbl(1).
-Tst Directs the output to the MH STARE facility.
-Tvp Directs the output to a Versatec printer via the vpr(1) spooler; this option is not available at

all UNIX sites.
-T4014 Directs the output to a Tektronix 4014 terminal via the tc(1) filter.
-Ttek Same as -T4014.
-a Invokes the -a option of troff(1).
-y Causes mmt to use the non-compacted version of the macros (see mm(7)). No effect for mvt.

These commands read the standard input when - is specified instead of any file names.

Mvt is just a link to mmt.

HINT
Use the -olist option of troff(1) to specify ranges of pages to be output. Note, however, that these com-
mands, if invoked with one or more of the -e, -t, and - options, together with the -olist option of troff(1)
may cause a harmless ‘‘broken pipe’’ diagnostic if the last page of the document is not specified in list.

SEE ALSO
env(1), eqn(1), mm(1), tbl(1), tc(1), troff(1), profile(5), environ(7), mm(7), mv(7).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.
A Macro Package for View Graphs and Slides by T. A. Dolotta and D. W. Smith (in preparation).

DIAGNOSTICS
‘‘m[mv]t: no input file’’ if none of the arguments is a readable file and the command is not used as a fil-
ter.

274

MONK (1) General Commands Manual MONK (1)

NAME
monk, monksample, monkspell, monkmerge - typeset documents and letters

SYNOPSIS
monk [options | files]

monksample [sample]

monkspell [options] (.,.)[files] (.,.).PP monkmerge [files]

DESCRIPTION
Monk formats the text in the named files for phototypesetting, using other troff(1) preprocessors as neces-
sary. Options are given below. Any other arguments or flags (e.g., -o1-2) are passed to troff. Options can
occur in any order and can be intermixed with files.

-Acommands
Invoke the commands after all preprocessors and before troff .

-Bcommands
Invoke the commands after monk and before any other preprocessor.

-E Invoke the -e option of troff .

-N Use the uncompressed monk databases. This facilitates debugging monk database entries.

-R file Use file as the index file for prefer(1).

-Sdest
Send output to device dest. Supported forms are:

-Sapsend
Linotronic L200P; see apsend(1).

-Sd202
Mergenthaler Linotron 202; see d202(A)

-Slp Postscript line printer; see lp(1) (default).

-Sproof
Teletype 5620 or 630 terminal; see proof(9)

-Sthink
HP ThinkJet; see thinkblt(9)

-S- Standard output.

-Tdevice
Prepare output for device specified as in -T option of troff(1).

-x
Shows the preprocessors that are being invoked.

The following options are not normally needed because monk automatically determines which preproces-
sors are required. However, if the commands in -A or -B options require a preprocessor, their use can be
forced by the following options.

-c col postprocessor; see column(1). (Automatically invoked for many printing terminals.)
-cn cite(A)
-e eqn(1)
-g grap(1)
-i ideal(1)
-ipa ipa(A)
-p pic(1)
-r prefer(1)
-t tbl(1)
-tp tped; see ped(9)

Monksample produces on the standard output a skeleton document that you can redirect into a file and
edit. If no argument is given, monksample prints a list of the available samples. They are:

275

MONK (1) General Commands Manual MONK (1)

acm Association for Computing Machinery galley sheets.

centerpb
Center Phone Book.

cspress
Computer Science Press galley sheets.

form1 AT&T Bell Laboratories merit review form 1.

im AT&T Bell Laboratories internal memorandum.

kluwer
Kluwer Academic Publishers book format.

letter Letters with optional AT&T letterhead.

memo
Internal AT&T correspondence.

model
IEEE/ACM model sheets.

research
AT&T Bell Laboratories bi-annual research report.

rp AT&T Bell Laboratories release paper.

song Song sheets for singing at nursing homes.

tc AT&T Bell Laboratories technical correspondence.

tm AT&T Bell Laboratories technical memorandum.

Monkspell looks up words from the named files (standard input default) in a public spelling list and in a
private list. Possible misspellings—words that occur in neither and are not plausibly derivable from the
former—are placed on the standard output. It ignores constructs of monk(1), troff(1) and its standard pre-
processors. It runs demonk(1) with all specified options and passes its output to spell(1). The following
options, in addition to all options for deroff(1), are available:

-ddir Use non-standard monk database directory dir.

-i Ignore monk |insert and |source commands as well as troff .so and .nx requests.

Monkmerge reads each file and copies it to standard output, replacing monk insert commands with the file
contents. It ignores monk source commands, which include a file without processing the monk com-
mands within. If no input file is given, monkmerge reads from standard input.

EXAMPLES
monk paper Format the file using the default typesetter fonts and output device.

monk -Sproof paper Format a file and proof it on a 5620 terminal.

FILES
$MHOME/cite

forward and backward reference preprocessor

$MHOME/db
monk databases

$MHOME/monk
monk compiler

$MHOME/tmac.p
macros for pic(1) preprocessor

$MHOME/sample
directory for existing samples

SEE ALSO
prefer(1), troff(1), deroff(1), tex(1), lp(1), apsend(1), d202(A), thinkblt(9) proof(9)
Murrel, S. L., Kowalski, T. J., ‘Typing Documents on the UNIX System: Using Monk 0.6’, this manual,

276

MONK (1) General Commands Manual MONK (1)

Volume 2

277

MP(1) General Commands Manual MP(1)

NAME
mp, MetaPost - system for drawing pictures

SYNOPSIS
mp [-I] [-T] [first-line]

DESCRIPTION
Mp interprets the MetaPost language and produces PostScript pictures. The MetaPost language is similar
to Knuth’s Metafont with additional features for including tex(1) or troff(1) commands and accessing fea-
tures of PostScript not found in Metafont. The -T flag selects troff instead of tex.

An argument given on the command line behaves as the first input line. That can be either a (possibly
truncated) file name or a sequence MetaPost commands starting with \ and including an input com-
mand. Thus mp processes the file figs.mp. The basename of figs becomes the jobname, and is used
in forming output file names. If no file is named, the jobname becomes mpout. The default .mp exten-
sion can be overridden by specifying an extension explicitly.

There is normally one output file for each picture generated, and the output files are named jobname.nnn,
where nnn is a number passed to the beginfig macro. The output file name is jobname.ps if this num-
ber is negative.

The output files can be used as figures in a TeX document by including

\special{psfile= jobname.nnn}

in the TeX document. Alternatively, one can \input and then use the macro \epsfbox{ jobname.nnn} to
produce a box of the appropriate size containing the figure.

btex TeX commands etex
This causes mp to generate a MetaPost picture expression that corresponds to the TeX com-
mands. If the TeX commands generate more than one line of text, it must be in a \vbox or a
minipage environment.

verbatimtex TeX commands etex
This is ignored by mp except that the TeX commands are passed on to TeX. When using LaTeX
instead of TeX the input file must start with a verbatimtex block that gives the
\documentstyle and \begin{document} commands.

Since most TeX fonts have to be downloaded as bitmaps, the btex feature works best when the output of
mp is to be included in a TeX document so that dvips(1) can download the fonts. For self-contained Post-
Script output that can be used directly or included in a troff document, start your MetaPost input file with
the command prologues:=1 and stick to standard PostScript fonts. TeX and MetaPost use the names
in the third column of the file /usr/lib/mp/trfonts.map.

MetaPost output can be included in a troff document via the mpictures(6) macro package. In this case mp
should be invoked with the -T flag so that the commands between btex and etex or between
verbatimtex and etex are interpreted as troff instead of TeX. (This automatically sets
prologues:=1).

Here is a list of the environment variables affect the behavior of mp:

MPINPUTS
Search path for \input files. It should be colon-separated, and start with dot. Default:
.:/usr/lib/mp

MFINPUTS
Auxiliary search path for \input files with .mf extensions. Default: .:/usr/lib/mf

TEXFONTS
Search path for font metric files. Default: .:/usr/lib/tex/fonts/tfm

MPXCOMMAND
The name of a shell script that converts embedded typesetting commands to a form that mp
understands. Defaults: /usr/lib/mp/bin/makempx for tex and
/usr/lib/mp/bin/troffmpx for troff

278

MP(1) General Commands Manual MP(1)

TEX The version of TeX to use when processing btex and verbatimtex commands. Default:
tex

TROFF
The troff pipeline for btex and verbatimtex commands. Default: eqn -d\$\$ | troff -Tpost

MPMEMS
Search path for .mem files. Default: .:/usr/lib/mp

MPPOOL
Search path for strings. Default: .:/usr/lib/mp

MPEDITOR
A command for invoking an editor with %s in place of the file name and %d in place of the line
number. Default: /bin/ed

TEXVFONTS
Search path for virtual fonts. Default: /usr/lib/tex/fonts/psvf

A .mem file is a binary file that permits fast loading of fonts and macro packages. Mp reads the default
plain.mem unless another .mem file is specified at the start of the first line with an & just before it.
There is also an mfplain.mem that simulates plain Metafont so that mp can read .mf fonts. (Plain
Metafont is described in The METAFONTbook).

Experts can create .mem files be invoking mp with the -I switch and giving macro definitions followed by
a dump command.

The MetaPost language is similar to Metafont, but the manual A User’s Manual for MetaPost assumes no
knowledge of Metafont. MetaPost does not have bitmap output commands or Metafont’s online display
mechanism. Use dvips(1) and psi(9) to see the results before printing.

FILES
/usr/lib/mp/∗

macros, .mem files, and tables for handling included tex and troff

/usr/lib/mp/bin
Directory for programs that handle included tex and troff . /usr/lib/mp/trfonts.map
table of corresponding font names for troff , PostScript, and TeX

/usr/lib/tex/macros/epsf.tex
The TeX input file where the \epsfbox macro is defined

/usr/lib/tex/macros/doc/mpintro.tex
TeX input for a document that describes the MetaPost language

/usr/lib/mp/examples.mp
The source file for the figures used in mpintro.tex

/n/bowell/usr/src/cmd/tex/mp/doc/∗
More information on using MetaPost with troff .

SEE ALSO
tex(1), lp(1), psi(9)
Donald E. Knuth, The METAFONTbook, Addison Wesley, 1986,
John D. Hobby, A User’s Manual for MetaPost AT&T Bell Labs Computing Science Technical Report
162, 1991.

279

NEWCSH(1) General Commands Manual NEWCSH(1)

NAME
newcsh - description of new csh features (over oldcsh)

SYNOPSIS
csh csh-options

SUMMARY
This is a summary of features new in csh(1) in this version of the system; an older version of csh is avail-
able as oldcsh. This newer csh has some new process control primitives and a few other new features.
Users of csh must (and automatically) use the new terminal driver (summarized in newtty(4) and com-
pletely described with the old in tty(4)) which allows generation of some new interrupt signals from the
keyboard which tell jobs to stop, and arbitrates access to the terminal; on CRT’s the command ‘‘stty crt’’
is normally placed in the .login file to be executed at login, to set other useful modes of this terminal dri-
ver.

Jobs.

The most important new feature in this shell is the control of jobs. A job is associated with each pipeline,
where a pipeline is either a simple command like ‘‘date’’, or a pipeline like ‘‘who | wc’’. The shell keeps a
table of current jobs, and assigns them small integer numbers. When you start a job in the background,
the shell prints a line which looks like:

[1] 1234

this indicating that the job which was started asynchronously with ‘‘&’’ is job number 1 and has one (top-
level) process, whose process id is 1234. The set of current jobs is listed by the jobs command.

If you are running a job and wish to do something else you may hit the key ˆZ (control-Z) which sends a
stop signal to the current job. The shell will then normally indicate that the job has been ‘‘Stopped’’, and
print another prompt. You can then put the job in the background with the command ‘‘bg’’, or run some
other commands and then return the job to the foreground with ‘‘fg’’. A ˆZ takes effect immediately and
is like an interrupt in that pending output and unread input are discarded when it is typed. There is an-
other special key ˆY which does not generate a stop signal until a program attempts to read(2) it. This can
usefully be typed ahead when you have prepared some commands for a job which you wish to stop after it
has read them.

A job being run in the background will stop if it tries to read from the terminal. Background jobs are nor-
mally allowed to produce output, but this can be disabled by doing ‘‘stty tostop’’. If you set this tty op-
tion, then background jobs will stop when they try to produce output like they do when they try to read in-
put.

There are several ways to refer to jobs in the shell. The character ‘‘%’’ introduces a job name. If you
wish to refer to job number 1, you can name it as ‘‘%1’’. Just naming a job brings it to the foreground;
thus ‘‘%1’’ is a synonym for ‘‘fg %1’’, bringing job 1 back into the foreground. Similarly saying ‘‘%1 &’’
resumes job 1 in the background. Jobs can also be named by prefixes of the string typed in to start them,
if these prefixes are unambiguous, thus ‘‘%ex’’ would normally restart a suspended ex(1) job, if there
were only one suspended job whose name began with the string ‘‘ex’’. It is also possible to say
‘‘%?string’’ which specifies a job whose text contains string, if there is only one such job.

The shell also maintains a notion of the current and previous jobs. In output pertaining to jobs, the current
job is marked with a ‘‘+’’ and the previous job with a ‘‘-’’. The abbreviation ‘‘%+’’ refers to the current
job and ‘‘%-’’ refers to the previous job. For close analogy with the history mechanism, ‘‘%%’’ is also a
synonym for the current job.

Status reporting.

This shell learns immediately whenever a process changes state. It normally informs you whenever a job
becomes blocked so that no further progress is possible, but only just before it prints a prompt. This is
done so that it does not otherwise disturb your work. If, however, you set the shell variable notify, the
shell will notify you immediately of changes of status in background jobs. There is also a shell command
notify which marks a single process so that its status changes will be immediately reported. By default
notify marks the current process; simply say ‘‘notify’’ after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that ‘‘You have stopped jobs.’’
You may use the ‘‘jobs’’ command to see what they are. If you do this or immediately try to exit again,

4th Berkeley Distribution 280

NEWCSH(1) General Commands Manual NEWCSH(1)

the shell will not warn you a second time, and the suspended jobs will be unmercifully terminated.

New builtin commands.

bg
bg %job ...

Puts the current or specified jobs into the background, continuing them if they were stopped.

fg
fg %job ...

Brings the current or specified jobs into the foreground, continuing them if they were stopped.

jobs
jobs -l

Lists the active jobs; given the -l options lists process id’s in addition to the normal information.

kill %job
kill -sig %job ...
kill pid
kill -sig pid ...
kill -l

Sends either the TERM (terminate) signal or the specified signal to the specified jobs or processes.
Signals are either given by number or by names (as given in /usr/include/signal.h, stripped of the
prefix ‘‘SIG’’). The signal names are listed by ‘‘kill -l’’. There is no default, saying just ‘kill’ does
not send a signal to the current job. If the signal being sent is TERM (terminate) or HUP (hangup),
then the job or process will be sent a CONT (continue) signal as well.

notify
notify %job ...

Causes the shell to notify the user asynchronously when the status of the current or specified jobs
changes; normally notification is presented before a prompt. All jobs are marked ‘‘notify’’ if the
shell variable ‘‘notify’’ is set.

stop %job ...
Stops the specified job which is executing in the background.

%job
Brings the specified job into the foreground.

%job &
Continues the specified job in the background.

Process limitations.

The shell provides access to an experimental facility for limiting the consumption by a single process of
system resources. The following commands control this facility:

limit resource maximum-use

limit resource
limit

Limits the consumption by the current process and each process it creates to not individually exceed
maximum-use on the specified resource. If no maximum-use is given, then the current limit is
printed; if no resource is given, then all limitations are given.

Resources controllable currently include cputime (the maximum number of cpu-seconds to be used
by each process), filesize (the largest single file which can be created), datasize (the maximum
growth of the data+stack region via sbrk(2) beyond the end of the program text), stacksize (the
maximum size of the automatically-extended stack region), and coredumpsize (the size of the
largest core dump that will be created).

The maximum-use may be given as a (floating point or integer) number followed by a scale factor.
For all limits other than cputime the default scale is ‘‘k’’ or ‘‘kilobytes’’ (1024 bytes); a scale factor
of ‘‘m’’ or ‘‘megabytes’’ may also be used. For cputime the default scaling is ‘‘seconds’’, while
‘‘m’’ for minutes or ‘‘h’’ for hours, or a time of the form ‘‘mm:ss’’ giving minutes and seconds may
be used.

4th Berkeley Distribution 281

NEWCSH(1) General Commands Manual NEWCSH(1)

For both resource names and scale factors, unambiguous prefixes of the names suffice.

unlimit resource
unlimit

Removes the limitation on resource. If no resource is specified, then all resource limitations are re-
moved.

Directory stack.

This shell now keeps track of the current directory (which is kept in the variable cwd) and also maintains a
stack of directories, which is printed by the command dirs. You can change to a new directory and push
down the old directory stack by using the command pushd which is otherwise like the chdir command,
changing to its argument. You can pop the directory stack by saying popd. Saying pushd with no argu-
ments exchanges the top two elements of the directory stack. The elements of the directory stack are
numbered from 1 starting at the top. Saying pushd with a argument ‘‘+n’’ rotates the directory stack to
make that entry in the stack be at the top and changes to it. Giving popd a ‘‘+n’’ argument eliminates that
argument from the directory stack.

Miscellaneous.

This shell imports the environment variable USER into the variable user, TERM into term, and HOME
into home, and exports these back into the environment whenever the normal shell variables are reset.
The environment variable PATH is likewise handled; it is not necessary to worry about its setting other
than in the file .cshrc as inferior csh processes will import the definition of path from the environment,
and re-export it if you then change it. (It could be set once in the .login except that commands over the
Berknet would not see the definition.)

There are new commands eval, which is like the eval of the Bourne shell sh(1), and useful with tset(1),
and suspend which stops a shell (as though a ˆZ had stopped it; since shells normally ignore ˆZ signals,
this command is necessary.)

There is a new variable cdpath; if set, then each directory in cdpath will be searched for a directory
named in a chdir command if there is no such subdirectory of the current directory.

An unsetenv command removing environment variables has been added.

There is a new ‘‘:’’ modifier ‘‘:e’’, which yields the extension portion of a filename. Thus if ‘‘$a’’ is
‘‘file.c’’, ‘‘$a:e’’ is ‘‘c’’.

There are two new operators in shell expressions ‘‘!˜’’ and ‘‘=˜’’ which are like the string operations ‘‘!=’’
and ‘‘==’’ except that the right hand side is a pattern (containing, e.g. ‘‘∗ ’’s, ‘‘?’’s and instances of ‘‘[...]’’)
against which the left hand operand is matched. This reduces the need for use of the switch statement in
shell scripts when all that is really needed is pattern matching.

The form ‘‘$<’’ is new, and is replaced by a line from the standard input, with no further interpretation
thereafter. It may therefore be used to read from the keyboard in a shell script.

SEE ALSO
csh(1), killpg(2), sigsys(2), signal(2), jobs(3), sigset(3), tty(4)

BUGS
Command sequences of the form ‘‘a ; b ; c’’ are not handled gracefully when stopping is attempted. If
you suspend ‘‘b’’, the shell will then immediately execute ‘‘c’’. This is especially noticeable if this expan-
sion results from an alias. It suffices to place the sequence of commands in ()’s to force it to a subshell,
i.e. ‘‘(a ; b ; c)’’, but see the next bug.

Shell builtin functions are not stoppable/restartable.

Control over output is primitive; perhaps this will inspire someone to work on a good virtual terminal in-
terface. In a virtual terminal interface much more interesting things could be done with output control.

4th Berkeley Distribution 282

NEWGRP(1) General Commands Manual NEWGRP(1)

NAME
newgrp − change to a new group

SYNOPSIS
newgrp group [command [arg ...]]

DESCRIPTION
Newgrp runs a command with the (real and effective) groupid temporarily set to group. If no command is
given, the user’s shell (see passwd(5)) is executed.

A password is demanded if the group has a password and the user does not.

EXAMPLES
exec newgrp bin Restart the shell with a different groupid.

FILES
/etc/group
/etc/passwd

SEE ALSO
login(8), getuid(2)

BUGS
On other systems, newgrp is built into the shell. Here it will spawn a new shell unless invoked with exec.

283

NEWSCHECK (1) General Commands Manual NEWSCHECK (1)

NAME
newscheck - check to see if user has news

SYNOPSIS
newscheck [yne] [readnews options]

DESCRIPTION
newscheck reports to the user whether or not he has news.

y Reports "There is news" if the user has news to read.

n Reports "No news" if their isn’t any news to read.

e Executes readnews(1) if there is news.

If there are no options, y is the default.

FILES
/usr/lib/news/active Active newsgroups
˜/.newsrc Options and list of previously read articles

SEE ALSO
readnews(1), inews(1)

284

NICE(1) General Commands Manual NICE(1)

NAME
nice, renice, nohup − run commands at low priority or immune to hangup

SYNOPSIS
nice [-number] command [argument ...]

/etc/renice [-number] pid ...

nohup command [argument ...]

DESCRIPTION
Nice executes command with low scheduling priority. If the number argument is present, the priority is
incremented (higher numbers mean lower priorities) by that amount up to a limit of 19. The default num-
ber is 10.

The super-user may run commands with priority higher than normal by using a negative number, e.g.
--10.

Renice increments the scheduling priority of the processes with the named process-ids by number. The
default number is 19, making the process least likely to run.

Only the owner of the process or the super-user may change the priority. Only the super-user may use
negative increments.

Nohup executes command immune to hangup and terminate signals from the controlling terminal. The
priority is incremented by 5.

Any output not explicitly redirected is appended to the file nohup.out in the current directory.

FILES
default destination for standard output and standard error

SEE ALSO
nice(2)

FILES
/proc (renice)

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
Quoted arguments don’t work right in all cases. The difficulty may be avoided by quoting the command,
with arguments in inner quotes.

285

NM(1) General Commands Manual NM(1)

NAME
nm − name list (symbol table)

SYNOPSIS
nm [-agnopru] [file ...]

DESCRIPTION
Nm prints the name list of each object file in the argument list. If an argument is a library archive, a list-
ing for each object file in the archive will be produced. If no file is given, the symbols in a.out are
listed.

Each symbol name is preceded by its hexadecimal value (blanks if undefined) and one of the letters

U undefined
A absolute
T text segment symbol
D data segment symbol
B bss segment symbol
C common symbol
f source file name
- extra symbols for debuggers; see -a below

If the symbol is local (non-external) the type letter is in lower case. The output is sorted alphabetically.

Options are:

-a Print all symbols; normally extra debugger symbols are excluded.

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-o Prepend file or archive element name to each output line rather than printing it once separately.

-p Don’t sort; print in symbol-table order.

-r Sort in reverse order.

-u Print only undefined symbols.

SEE ALSO
ar(1), ar(5), a.out(5), stab(5), adb(1), pi(9)

286

NM80(1) General Commands Manual NM80(1)

NAME
nm80 print name list

SYNOPSIS
nm80 [-cnrupgfabdth] [name]

DESCRIPTION
prints the symbol table from the output file of an assembler or loader run. Each symbol name is preceded
by its value (blanks if undefined) and one of the letters:

U (undefined)
A (absolute)
T (text segment symbol)
D (data segment symbol)
B (bss segment symbol)
F (file name)
C (common symbol)

If the symbol is local (non-external) the type letter is in lower case. The output is sorted alphabetically.

If no file is given, the symbols in 80.out are listed. Absolute symbols have their values printed in octal.
Non-absolute symbols are assumed to be addresses and are printed in a "low byte:high byte" format.

Options are:

-a list only absolute symbols

-b list only bss symbols

-c list only C-style external symbols, that is those beginning with underscore ‘’.

-d list only data symbols those beginning with underscore ‘’.

-f print only the file names.

-g print only global (external) symbols

-n sort by value instead of by name

-p don’t sort; print in symbol-table order

-r sort in reverse order

-t list only text symbols those beginning with underscore ‘’.

-u print only undefined symbols.

-h print output in hex.

FILES
80.out

BUGS

03/01/77 287

OCC(1) General Commands Manual OCC(1)

NAME
occ - Esterel and Lustre C code producer

SYNOPSIS
occ [option] ... [file]...

DESCRIPTION
The occ code producer takes as input one or more oc files and produces standard executable C code. If
there is no input files, the standard input is used. Typical use is: occ < game1.oc or occ game1.oc

The following options are interpreted by occ.

-version Gives the version name and terminates ignoring all others arguments.

-array Arrays of automata are available using the -array option.

-nopack With this option, there is no packaging of input, output and sensor interface procedures. This
option is available for compatibility with old occ versions.

-s Silent mode. No output file is generated.

-v Verbose option: gives names of the input module.

-stat Prints statistic informations into the standard error stream: global time and size of the
process.

-size Prints size informations into the standard error stream: how many actions and how many
bytes are produced.

-memstat Memory state after compiling.

-B name name denotes the output file default base name. The suffix .c is added automatically (and
possibly a working directory name --see the following option). If this option is omitted the
output code is printed in file: occ_out.c. For instance, occ -B game1 game1.oc

-D directory
Specify a directory where the output file will be placed. The default is the current directory.

FILES
The caller of the command must have read/write permission for the directories containing the working
files, and execute permission for the occ file.

IDENTIFICATION
Author: A Ressouche, INRIA,
Sophia-Antipolis, 06600 Valbonne, FRANCE
Revision Number: $Revision: 1.5 $.

SEE ALSO
Esterel v3 Programming Language Manual
Esterel v3 System Manuals.
strlic (1), iclc(1), lcoc (1).

BUGS

8 Juillet 88 288

OCDEBUG(1) General Commands Manual OCDEBUG(1)

NAME
ocdebug - Esterel and Lustre Debug code producer

SYNOPSIS
ocdebug [option] ... [file]...

DESCRIPTION
The ocdebug code producer takes as input one or more oc files and produces a human-readable file. If
there is no input files, the standard input is used. Typical use is: ocdebug < game1.oc or ocdebug
game1.oc

The following options are interpreted by ocdebug.

-version Gives the version name and terminates ignoring all others arguments.

-names With this option, ocdebug prints the signal name between brackets for each present signal test
and between braces for each output action performed in the automaton.

-halts With this option, ocdebug prints the haltset of each state after the keyword: haltset

-emitted With this option, the list of output or local signals emitted in each transition is printed out af-
ter the keyword: emitted.

-s Silent mode. No output file is generated.

-v Verbose option: gives names of the input module.

-stat Prints statistic informations into the standard error stream: global time and size of the
process.

-memstat Memory state after compiling.

-B name name denotes the output file default base name. The suffix .debug is added automatically
(and possibly a working directory name --see the following option). If this option is omitted
the output code is printed in file: ocdebug_out.debug. For instance, ocdebug -B game1
game1.oc

-D directory
Specify a directory where the output file will be placed. The default is the current directory.

FILES
The caller of the command must have read/write permission for the directories containing the working
files, and execute permission for the occ file.

IDENTIFICATION
Author: A Ressouche, INRIA,
Sophia-Antipolis, 06600 Valbonne, FRANCE
Revision Number: $Revision: 1.4 $.

SEE ALSO
Esterel v3 Programming Language Manual
Esterel v3 System Manuals.
strlic (1), iclc(1), lcoc (1).

BUGS

8 Juillet 88 289

OCR(1) General Commands Manual OCR(1)

NAME
ocr - optical character recognition

SYNOPSIS
ocr [option ...] [file]

DESCRIPTION
Ocr reads a black-and-white image of a page from file, and writes ASCII to the standard output. If no
file is specified, it reads from the standard input.

The input is a picfile(5) image of one column of machine-printed text, normally scanned in by cscan(1).
Fonts, sizes, and line-spacings may vary within the column, but each line should have a constant text size
and baseline. Lines should be parallel and roughly horizontal.

In the output, white space approximates the original page layout. Words that spell(1) are preferred, and
hyphenations across lines are recombined.

The options are:

-as The alphabet is the union of symbol sets selected by characters in string s, from among:

A ABCDEFGHIJKLMNOPQRSTUVWXYZ
a abcdefghijklmnopqrstuvwxyz
0 0123456789
. . , -:; ∗’ " ?! / & $()[] # % (basic punctuation)
ˆ ˆ ˜‘ \ | { } _ (extended punct’n)
+ +-∗ / <>=.E e [] (numerical punct’n)
s §†‡¢ • © ® ° ′– − — (selected non-ASCII)
l fi fl ff ffi ffl r s i j (ligatures and digraphs)
g αβγδεζηθικλµνξοπρστυφχψω (Greek lower case)
G ABΓ∆EZHΘIKΛMNΞOΠPΣTYΦXΨΩ (Greek upper case)

The default is -aAa0.+ˆ, the full printable-ASCII set, which may be abbreviated as -ap. Thus,
-apslgG selects all of the above.

-c Find columns in complex nested layouts using greedy white covers algorithm.

-ml[,r] Trim the left and right margins of the image by l and r inches, respectively, before looking for
columns. If r is omitted, it is assumed to equal l.

-nn Find the n largest columns by analysis of a single vertical projection. Each column should be
compactly-printed and separated from the others by at least 2 ems of horizontal white space.

-pn,m Point sizes lie in the range [n, m]; other sizes are discarded. The default is -p6,24.

-s Defeat spelling check (but continue to favor numeric strings and good punctuation).

-t Write troff(1) format. Each column is shown on a separate page, lines at their original height,
words at their original horizontal location, and characters roughly original size in Times ro-
man. Hyphenated words are not recombined.

-u Unspellable words are prefixed with ‘?’ or, if -t is specified, printed boldface.

-ww Find the largest column of width w inches, within a single vertical projection.

Fonts
Trained on over 100 Latin-alphabet book fonts in various italic, bold, etc styles. Only one font of Greek,
without diacriticals. Also Swedish and Tibetan, on request.

SEE ALSO
bcp(1), cscan(1), font(6), picfile(5), spell(1), troff(1)

BUGS
For best results, use images of high-contrast, cleanly-printed original documents digitized at a resolution
of 400 pixels/inch or higher. It may help to restrict the alphabet and sizes to what’s there.

cetus,hydra,coma 290

LINT (1) General Commands Manual LINT (1)

NAME
lint - a C program verifier

SYNOPSIS
lint [-abchnpuvx] file ...

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be bugs, or non-portable, or
wasteful. It also checks the type usage of the program more strictly than the compilers. Among the things
which are currently found are unreachable statements, loops not entered at the top, automatic variables de-
clared and not used, and logical expressions whose value is constant. Moreover, the usage of functions is
checked to find functions which return values in some places and not in others, functions called with vary-
ing numbers of arguments, and functions whose values are not used.

By default, it is assumed that all the files are to be loaded together; they are checked for mutual compati-
bility. Function definitions for certain libraries are available to lint; these libraries are referred to by a
conventional name, such as ‘-lm’, in the style of ld(1).

Any number of the options in the following list may be used. The -D, -U, and -I options of cc(1) are also
recognized as separate arguments.

p Attempt to check portability to the IBM and GCOS dialects of C.

h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce waste.

b Report break statements that cannot be reached. (This is not the default because, unfortunately,
most lex and many yacc outputs produce dozens of such comments.)

v Suppress complaints about unused arguments in functions.

x Report variables referred to by extern declarations, but never used.

a Report assignments of long values to int variables.

c Complain about casts which have questionable portability.

u Do not complain about functions and variables used and not defined, or defined and not used
(this is suitable for running lint on a subset of files out of a larger program).

n Do not check compatibility against the standard library.

Exit(2) and other functions which do not return are not understood; this causes various lies.

Certain conventional comments in the C source will change the behavior of lint:

/∗NOTREACHED∗/
at appropriate points stops comments about unreachable code.

/∗VARARGSn∗/
suppresses the usual checking for variable numbers of arguments in the following function decla-
ration. The data types of the first n arguments are checked; a missing n is taken to be 0.

/∗NOSTRICT∗/
shuts off strict type checking in the next expression.

/∗ARGSUSED∗/
turns on the -v option for the next function.

/∗LINTLIBRARY∗/
at the beginning of a file shuts off complaints about unused functions in this file.

FILES
/usr/lib/lint/lint[12] programs
/usr/lib/lint/llib-lc declarations for standard functions
/usr/lib/lint/llib-port declarations for portable functions

SEE ALSO
cc(1)
S. C. Johnson, Lint, a C Program Checker

4th Berkeley Distribution 291

LINT (1) General Commands Manual LINT (1)

BUGS
There are some things you just can’t get lint to shut up about.

4th Berkeley Distribution 292

OPR(1) General Commands Manual OPR(1)

NAME
opr - off line print on Xerox 9700

SYNOPSIS
opr [option ...]

DESCRIPTION
Pn prints its standard input on the Xerox 9700 printer. The options include:

-pland Print in landscape mode, rather than the default portrait mode.

-ystyle Print using font style. Allowable styles are:

dflt lin/page max chr/lin
style chr/in lin/in port land port land
vint 12.0 6.5 66 50 94 126
elit 12.0 6.5 66 50 94 126
pica 10.0 6.0 62 46 78 105
bell 13.6 8.5 88 66 106 132
mini 17.6 12.5 132 96 132 132
xr18 6.8 4.0 42 31 53 71
vg14 5.2 4.2 43 32 40 55
tr14 NA 4.2 43 32 NA NA

The default style is vint. The xr, vg, and tr styles are large fonts for viewgraphs, where
the third and fourth characters of the names indicate the approximate point size of the
font. The tr style is a proportionally spaced font which may not align horizontally for
such constructs as centered text and indented lists.

-kmask The mask is the name of an electronic form to be overlaid on each page. Possibilities are
blogo Bell Laboratories logo (top right corner).
prin3 Proprietary information message (small type).
vgraf Bell logo for viewgraphs (bottom left corner).

-cn Make n copies of the output. Default is 1; max is 99.

-fnohole Print on paper without prepunched holes.

-ln Print n lines per page.

-on Offset the output n spaces from the left margin. Default is 0.

-r The first character of each line is taken to be carriage control (e.g. 1, +)

Pn queues a job to do the printing when facilities become available. A new sheet is begun for each file.
Backspaces, form feeds, carriage returns, and tabs are handled. Escape characters result in a fatal error.
All other control characters are passed on to the output. Tab stops are assumed every 8 spaces. The out-
put bin, user id, and charge account are taken from /etc/passwd.

BUGS
The printer has a limited overprinting capability. If this is exceeded, the page will be blank.
Lines longer than 132 characters are silently truncated.

293

OPS5(1) General Commands Manual OPS5(1)

NAME
ops5 - a rule-based production-system environment

SYNOPSIS
ops5

DESCRIPTION
Ops5 is a rule-based language built on Lisp. A program consists of a collection of if–then rules and a
global ‘working memory’. Each rule has a conditional expression, the ‘LHS’ and a sequence of actions,
the ‘RHS’. A LHS consists of one or more patterns and is ‘satisfied’ when every pattern matches an ele-
ment in working memory.

The rule interpreter executes a ‘recognize-act’ cycle:

1. Match: Evaluate the LHSs of the rules to determine which are satisfied.

2. Conflict Resolution: Select one rule from among the ones with satisfied LHSs. If no LHSs is sat-
isfied halt execution.

3. Act: Perform the operations specified in the RHS of the selected rule.

The top level commands in order of usefulness are:

watch report on firings and working memory changes
(watch) ;Report current watch level
(watch 0) ;No report
(watch 1) ;Report rule names and working memory time tags
(watch 2) ;Report rule names, working memory time tags

;and changes to working memory

load load working memory and rule declarations
(load ’billing.l) ;Load file ‘billing.l’

run start the rule interpreter
(run) ;Run until no rules are satisfied or halt executed
(run 1) ;Run one rule firing

exit exit ops5
(exit)

back back up the rule interpreter
(back 32) ;Back up 32 rule firings

wm display working memory
(wm 32) ;Display working memory element 32

ppwm display parts of working memory
(ppwm customer ˆrecord bad) ;Display all customer working memory

;elements with ‘bad’ records

pm display production or rule memory
(pm good-customer) ;Display rule ‘good-customer’

cs print the conflict set
(cs)

matches print matches for condition elements of a rule
(matches bad-customer) ;Display matches for rule ‘bad-customer’

pbreak set a break point after a production firing
(pbreak bad-but-long-term-customer) ;Set break point after rule

;‘bad-but-long-term-customer’

make make working memory elements
;Make a customer working memory element
(make customer ˆname Terry ˆrecord bad ˆyears 22)

294

OPS5(1) General Commands Manual OPS5(1)

remove remove working memory elements
(remove ∗) ;Remove all working memory elements
(remove 17) ;Remove working memory element 17

excise remove rules
;Remove ‘good-customer’ and ‘bad-customer’ rules
(excise good-customer bad-customer)

openfile open a file
;Open ‘ruletrace.ops’ as output
;and associate it with traceoutput port
(openfile traceoutput |ruletrace.ops| out)
;Open ‘answers’ as input and associate it with stdin port
(openfile stdin |answers| in)

closefile close a file
(closefile traceoutput stdin) ;Close traceoutput and stdin ports

default change default input and output files
(default nil trace) ;Change trace port back to default
(default traceoutput write) ;Change write port to traceoutput
(default stdin accept) ;Change accept port to stdin

strategy select rule interpreter strategy.
(strategy) ;Report current strategy
(strategy mea) ;Selects mea strategy
(strategy lex) ;Selects lex strategy (default on startup)

FILES
/usr/lib/lisp

lisp library

SEE ALSO
Forgy, C. L., OPS5 User’s Manual, Department of Computer Science, Carnegie-Mellon University, July,
1981
lisp (1)

DIAGNOSTICS
When ops5 stops executing for any reason, you are placed in the lisp top-level routine.

295

ORG(1) General Commands Manual ORG(1)

NAME
org - show the organization of a document

SYNOPSIS
org [-flags][-ver] [file ...]

DESCRIPTION
Org copies the input text to the output, and formats it, preserving headings and paragraph boundaries, but
only including the first and last sentence of each paragraph. The input text must contain standard mm(1)
macros.

The output can be used to study the general organization of the paper, and is sometimes a good abstract.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

SEE ALSO
mm(1).

BUGS
The input text must contain standard mm macros.

Org will not recognize common abbreviations at the end of a sentence as the sentence end. Consequently,
more than two sentences may be printed for a paragraph.

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

296

SH(1) General Commands Manual SH(1)

NAME
sh - shell, the standard command programming language

SYNOPSIS
sh [-ceiknrstuvx] [args]

DESCRIPTION
Sh is a command programming language that executes commands read from a terminal or a file. See In-
vocation below for the meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non-blank words separated by blanks (a blank is a tab or a space).
The first word specifies the name of the command to be executed. Except as specified below, the remain-
ing words are passed as arguments to the invoked command. The command name is passed as argument 0
(see exec(2)). The value of a simple-command is its exit status if it terminates normally, or (octal)
200+status if it terminates abnormally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by . The standard output of each com-
mand but the last is connected by a pipe(2) to the standard input of the next command. Each command is
run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, &&, or , and optionally terminated by ;
or &. Of these four symbols, ; and & have equal precedence, which is lower than that of && and .
The symbols && and also have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding pipeline (i.e., the
shell does not wait for that pipeline to finish). The symbol && () causes the list following it to be ex-
ecuted only if the preceding pipeline returns a zero (non-zero) exit status. An arbitrary number of new-
lines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise stated, the value re-
turned by a command is that of the last simple-command executed in the command.

for name [in word . . .] do list done
Each time a for command is executed, name is set to the next word taken from the in word list.
If in word . . . is omitted, then the for command executes the do list once for each positional pa-
rameter that is set (see Parameter Substitution below). Execution ends when there are no more
words in the list.

case word in [pattern [pattern] . . .) list ;;] . . . esac
A case command executes the list associated with the first pattern that matches word . The form
of the patterns is the same as that used for file-name generation (see File Name Generation be-
low).

if list then list [elif list then list] . . . [else list] fi
The list following if is executed and, if it returns a zero exit status, the list following the first
then is executed. Otherwise, the list following elif is executed and, if its value is zero, the list
following the next then is executed. Failing that, the else list is executed. If no else list or then
list is executed, then the if command returns a zero exit status.

while list do list done
A while command repeatedly executes the while list and, if the exit status of the last command
in the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do
list are executed, then the while command returns a zero exit status; until may be used in place
of while to negate the loop termination test.

(list)
Execute list in a sub-shell.

{list;}
list is simply executed.

The following words are only recognized as the first word of a command and when not quoted:

if then else elif fi case esac for while until do done { }

Comments.
A word beginning with # causes that word and all the following characters up to a new-line to be ignored.

297

SH(1) General Commands Manual SH(1)

Command Substitution.
The standard output from a command enclosed in a pair of grave accents (` `) may be used as part or all
of a word; trailing new-lines are removed.

Parameter Substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may be assigned val-
ues by set. Variables may be set by writing:

name=value [name=value] . . .

Pattern-matching is not performed on value.

${parameter}
A parameter is a sequence of letters, digits, or underscores (a name), a digit, or any of the char-
acters ∗, , #, ?, -, $, and ! . The value, if any, of the parameter is substituted. The braces are re-
quired only when parameter is followed by a letter, digit, or underscore that is not to be inter-
preted as part of its name. A name must begin with a letter or underscore. If parameter is a
digit then it is a positional parameter. If parameter is ∗ or , then all the positional parameters,
starting with $1, are substituted (separated by spaces). Parameter $0 is set from argument zero
when the shell is invoked.

${parameter:-word}
If parameter is set and is non-null then substitute its value; otherwise substitute word .

${parameter:=word}
If parameter is not set or is null then set it to word; the value of the parameter is then substi-
tuted. Positional parameters may not be assigned to in this way.

${parameter:?word}
If parameter is set and is non-null then substitute its value; otherwise, print word and exit from
the shell. If word is omitted, then the message ‘‘parameter null or not set’’ is printed.

${parameter:+word}
If parameter is set and is non-null then substitute word; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the following
example, pwd is executed only if d is not set or is null:

echo ${d:-`pwd`}

If the colon (:) is omitted from the above expressions, then the shell only checks whether parameter is set
or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
- Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed command.
$ The process number of this shell.
! The process number of the last background command invoked.

The following parameters are used by the shell:
HOME

The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below).
MAIL If this variable is set to the name of a mail file, then the shell informs the user of the ar-

rival of mail in the specified file.
PS1 Primary prompt string, by default ‘‘$ ’’.
PS2 Secondary prompt string, by default ‘‘> ’’.
IFS Internal field separators, normally space, tab, and new-line.

The shell gives default values to PATH, PS1, PS2, and IFS, while HOME and MAIL are not set at all by the
shell (although HOME is set by login(1)).

Blank Interpretation.
After parameter and command substitution, the results of substitution are scanned for internal field separa-
tor characters (those found in IFS) and split into distinct arguments where such characters are found. Ex-
plicit null arguments ("" or ´ ´) are retained. Implicit null arguments (those resulting from parameters
that have no values) are removed.

298

SH(1) General Commands Manual SH(1)

File Name Generation.
Following substitution, each command word is scanned for the characters ∗, ?, and [. If one of these
characters appears then the word is regarded as a pattern. The word is replaced with alphabetically sorted
file names that match the pattern. If no file name is found that matches the pattern, then the word is left
unchanged. The character . at the start of a file name or immediately following a /, as well as the charac-
ter / itself, must be matched explicitly.

∗ Matches any string, including the null string.
? Matches any single character.
[. . .] Matches any one of the enclosed characters. A pair of characters separated by -

matches any character lexically between the pair, inclusive. If the first character follow-
ing the opening ``[´´ is a ‘‘!’’ then any character not enclosed is matched.

Quoting.
The following characters have a special meaning to the shell and cause termination of a word unless
quoted:

; & () < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with a \. The pair \new-line is
ignored. All characters enclosed between a pair of single quote marks (´ ´), except a single quote, are
quoted. Inside double quote marks (""), parameter and command substitution occurs and \ quotes the
characters \, `, ", and $. "$∗" is equivalent to "$1 $2 . . .", whereas "$ " is equivalent to "$1" "$2"
. . . .

Prompting.
When used interactively, the shell prompts with the value of PS1 before reading a command. If at any
time a new-line is typed and further input is needed to complete a command, then the secondary prompt
(i.e., the value of PS2) is issued.

Input/Output.
Before a command is executed, its input and output may be redirected using a special notation interpreted
by the shell. The following may appear anywhere in a simple-command or may precede or follow a com-
mand and are not passed on to the invoked command; substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1). If the file does not exist then it is

created; otherwise, it is truncated to zero length.
>>word Use file word as standard output. If the file exists then output is appended to it (by first

seeking to the end-of-file); otherwise, the file is created.
<<[-]word The shell input is read up to a line that is the same as word , or to an end-of-file. The re-

sulting document becomes the standard input. If any character of word is quoted, then
no interpretation is placed upon the characters of the document; otherwise, parameter
and command substitution occurs, (unescaped) \new-line is ignored, and \ must be used
to quote the characters \, $, `, and the first character of word . If - is appended to <<,
then all leading tabs are stripped from word and from the document.

<&digit The standard input is duplicated from file descriptor digit (see dup(2)). Similarly for the
standard output using >.

<&- The standard input is closed. Similarly for the standard output using >.

If one of the above is preceded by a digit, then the file descriptor created is that specified by the digit (in-
stead of the default 0 or 1). For example:

. . . 2>&1

creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the command is the empty file
/dev/null. Otherwise, the environment for the execution of a command contains the file descriptors of the
invoking shell as modified by input/output specifications.

Environment.
The environment (see environ(7)) is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list. The shell interacts with the environment in several ways. On

299

SH(1) General Commands Manual SH(1)

invocation, the shell scans the environment and creates a parameter for each name found, giving it the cor-
responding value. Executed commands inherit the same environment. If the user modifies the values of
these parameters or creates new ones, none of these affects the environment unless the export command is
used to bind the shell’s parameter to the environment. The environment seen by any executed command is
thus composed of any unmodified name-value pairs originally inherited by the shell, plus any modifica-
tions or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more assign-
ments to parameters. Thus:

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even if they occur after the
command name. The following first prints a=b c and then c:

echo a=b c
set -k
echo a=b c

Signals.
The INTERRUPT and QUIT signals for an invoked command are ignored if the command is followed by
&; otherwise signals have the values inherited by the shell from its parent, with the exception of signal 11
(but see also the trap command below).

Execution.
Each time a command is executed, the above substitutions are carried out. Except for the Special Com-
mands listed below, a new process is created and an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the command. Alternative
directory names are separated by a colon (:). The default path is :/bin:/usr/bin (specifying the current di-
rectory, /bin, and /usr/bin, in that order). Note that the current directory is specified by a null path name,
which can appear immediately after the equal sign or between the colon delimiters anywhere else in the
path list. If the command name contains a / then the search path is not used. Otherwise, each directory in
the path is searched for an executable file. If the file has execute permission but is not an a.out file, it is
assumed to be a file containing shell commands. A sub-shell (i.e., a separate process) is spawned to read
it. A parenthesized command is also executed in a sub-shell.

Special Commands.
The following commands are executed in the shell process and, except as specified, no input/output redi-
rection is permitted for such commands:

: No effect; the command does nothing. A zero exit code is returned.
. file Read and execute commands from file and return. The search path specified by PATH is used to

find the directory containing file.
break [n]

Exit from the enclosing for or while loop, if any. If n is specified then break n levels.
continue [n]

Resume the next iteration of the enclosing for or while loop. If n is specified then resume at the
n-th enclosing loop.

cd [arg]
Change the current directory to arg. The shell parameter HOME is the default arg.

eval [arg . . .]
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg . . .]
The command specified by the arguments is executed in place of this shell without creating a
new process. Input/output arguments may appear and, if no other arguments are given, cause the
shell input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is omitted then the exit status is that
of the last command executed (an end-of-file will also cause the shell to exit.)

300

SH(1) General Commands Manual SH(1)

export [name . . .]
The given names are marked for automatic export to the environment of subsequently-executed
commands. If no arguments are given, then a list of all names that are exported in this shell is
printed.

newgrp [arg . . .]
Equivalent to exec newgrp arg

read [name . . .]
One line is read from the standard input and the first word is assigned to the first name, the sec-
ond word to the second name, etc., with leftover words assigned to the last name. The return
code is 0 unless an end-of-file is encountered.

readonly [name . . .]
The given names are marked readonly and the values of the these names may not be changed by
subsequent assignment. If no arguments are given, then a list of all readonly names is printed.

set [-ekntuvx [arg . . .]]
-e If the shell is non-interactive then exit immediately if a command exits with a non-zero

exit status.
-k All keyword arguments are placed in the environment for a command, not just those that

precede the command name.
-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.
-- Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These flags can also be used upon invo-
cation of the shell. The current set of flags may be found in $-. The remaining arguments are
positional parameters and are assigned, in order, to $1, $2, If no arguments are given then
the values of all names are printed.

shift
The positional parameters from $2 . . . are renamed $1

test
Evaluate conditional expressions. See test(1) for usage and description.

times
Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] . . .
arg is a command to be read and executed when the shell receives signal(s) n. (Note that arg is
scanned once when the trap is set and once when the trap is taken.) Trap commands are executed
in order of signal number. Any attempt to set a trap on a signal that was ignored on entry to the
current shell is ineffective. An attempt to trap on signal 11 (memory fault) produces an error. If
arg is absent then all trap(s) n are reset to their original values. If arg is the null string then this
signal is ignored by the shell and by the commands it invokes. If n is 0 then the command arg is
executed on exit from the shell. The trap command with no arguments prints a list of commands
associated with each signal number.

umask [nnn]
The user file-creation mask is set to nnn (see umask(2)). If nnn is omitted, the current value of
the mask is printed.

wait Wait for all child processes to terminate report the termination status. If n is not given then all
currently active child processes are waited for. The return code from this command is always
zero.

Invocation.
If the shell is invoked through exec(2) and the first character of argument zero is -, commands are initially
read from /etc/profile and then from $HOME/.profile, if such files exist. Thereafter, commands are read
as described below, which is also the case when the shell is invoked as /bin/sh. The flags below are inter-
preted by the shell on invocation only; Note that unless the -c or -s flag is specified, the first argument is
assumed to be the name of a file containing commands, and the remaining arguments are passed as posi-
tional parameters to that command file:

301

SH(1) General Commands Manual SH(1)

-c string If the -c flag is present then commands are read from string.
-s If the -s flag is present or if no arguments remain then commands are read from the standard

input. Any remaining arguments specify the positional parameters. Shell output is written to
file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal, then this
shell is interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an interac-
tive shell) and INTERRUPT is caught and ignored (so that wait is interruptible). In all cases,
QUIT is ignored by the shell.

The remaining flags and arguments are described under the set command above.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. If the
shell is being used non-interactively then execution of the shell file is abandoned. Otherwise, the shell re-
turns the exit status of the last command executed (see also the exit command above).

FILES
/etc/profile
$HOME/.profile
/tmp/sh∗
/dev/null

SEE ALSO
cd(1), env(1), login(1), newgrp(1), rsh(1), test(1), umask(1), dup(2), exec(2), fork(2), pipe(2), signal(2),
ulimit(2), umask(2), wait(2), a.out(5), profile(5), environ(7).

BUGS
The command readonly (without arguments) produces the same output as the command export.
If << is used to provide standard input to an asynchronous process invoked by &, the shell gets mixed up
about naming the input document; a garbage file /tmp/sh∗ is created and the shell complains about not be-
ing able to find that file by another name.

302

P(1) General Commands Manual P(1)

NAME
p, pg, more − paginate

SYNOPSIS
p [-number] [file ...]

DESCRIPTION
P copies its standard input, or the named files if given, to its standard output, stopping at the end of every
22nd line, and between files, to wait for a newline from the user. The page size may be set by saying (for
example)

p

While waiting for a newline, p interprets some commands:

- Reprint last page. -- reprints the second last page, etc.

! Pass the rest of the line to the shell as a command.

q Quit.

Pg and more are synonyms for p.

BUGS
Because of limited storage, p can’t back up too far.
Pg and more exist only to placate old programs that call paginators.

303

PACK (1) General Commands Manual PACK (1)

NAME
pack, unpack, pcat, compress, uncompress, zcat − compress and expand files

SYNOPSIS
pack [-] file ...

unpack file ...

pcat [file ...]

compress [option ...] [file ...]

uncompress [option ...] [file ...]

zcat [-V] [file ...]

DESCRIPTION
Pack attempts to compress the files and places the results in corresponding files named file.z with the
same access modes, dates, and owner as the originals. Successfully packed files are removed.

Unpack reverses the process.

Pcat unpacks files to the standard output.

The .z suffix may be omitted from the name of the input file for unpack or pcat.

Pack encodes individual characters in a Huffman code. Option - causes statistics of the encoding to be
printed. The option toggles on and off at each appearance among the list of files.

Compress, uncompress, and zcat work like pack, unpack, and pcat, putting each compressed file into
file.Z. The options are

-f (force) Compress even when it doesn’t save space.

-c Write to the standard output; change no files. Zcat is identical to uncompress -c.

-bbits Compress uses a modified Lempel-Ziv encoding. Common substrings in the file are replaced by
variable-length codes up to size bits (default 16). Smaller limits devour less address space.

-v Print percent reduction for each file.

-V Print program version number.

Compress-uncompress pack better and are faster overall; pack-unpack work on smaller machines and are
much more widely available.

SEE ALSO
T. A. Welch, ‘A Technique for High Performance Data Compression,’ IEEE Computer, 17 (1984) 8-19.

DIAGNOSTICS
The exit code of pack, unpack, or pcat is the number of files it failed to process.

The exit code of compress, uncompress, or zcat is 0 normally, 1 for error, 2 for ineffective compression
(i.e. expansion).

304

PAPER(1) General Commands Manual PAPER(1)

NAME
paper - list input on HP2621P printer

SYNOPSIS
paper [file] (.,.).SH DESCRIPTION paper prints the argument files (or the standard input if there are
no arguments) on the user’s terminal which is assumed to be a HP2621P. A handshaking protocol is used
to prevent overrunning the terminal’s buffer and dropping characters.

305

PASCAL(1) General Commands Manual PASCAL(1)

NAME
pascal − language interpreter

SYNOPSIS
pascal [-cx] [-options] [-i name ...] [name.p] [obj [argument ...]]

pmerge name.p ...

DESCRIPTION
Pascal translates Pascal source programs to interpretable form, executes them, or both. Under option -c
the programs are translated but not executed. The translated code appears in file Under option -x pascal
interprets the previously translated code in file obj (default Arguments are made available through the
built-ins argc and argv.

Options -c and -x must come first.

Option -i causes the named procedures and include files to be listed.

Other options are combined in a separate string:

b Buffer the runtime file output.
l Make a program listing during translation.
n List each included file on a new page with a banner line.
p Suppress the post-mortem control flow backtrace if an error occurs; override execution limit of

500,000 statements.
s Accept standard Pascal only; non-standard constructs cause warning diagnostics.
t Suppress runtime tests of subrange variables and treat assert statements as comments.
u Card image mode; only the first 72 characters of input lines are used.
w Suppress warning diagnostics.
z Cause the interpreter to gather profiling data for later analysis by pxp(A)

Pmerge combines the named source files into a single source file on the standard output.

FILES
∗.p source

∗.i include files

/usr/lib/pascal/∗

obj

/tmp/pix∗
obj for compile-and-go

pmon.out
profile data file

SEE ALSO
pc(1), pxp(A)
W. N. Joy, Susan L. Graham, C. B. Haley, ‘Berkeley Pascal User’s Manual’, in Unix Programmer’s Man-
ual, Seventh Edition, Virtual VAX-11 Version, 1980, Vol 2C (Berkeley). There pascal is called pi, px, and
pix.

DIAGNOSTICS
The first character of an error message indicates its class:

E Fatal error; no code will be generated.
e Non-fatal error.
w Warning - a potential problem.
s Warning - nonstandard Pascal construct.

BUGS
The keyword packed is recognized but has no effect.
Diagnostics for an included file may appear in the listing of the next one.
A dummy obj must be given if both source and arguments are present.

306

PASSWD(1) General Commands Manual PASSWD(1)

NAME
passwd − change login password

SYNOPSIS
passwd [-an] [name]

DESCRIPTION
This command changes a password associated with the user name (your own name by default).

The program prompts for the old password and then for the new one. The caller must supply both. The
new password must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet and at least six
characters long if monocase. These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password; the owner must prove he knows the
old password.

If the -a option is given, passwd prompts for new values of certain fields of the password file entry.

The super-user may use the -n option to install new users. The prompts are self-explanatory, and most of
the defaults obvious. A null response to the UID: prompt assigns a numeric userid one greater than the
largest one previously in A null response to Directory: assigns a home directory in If the first charac-
ter of the response to this prompt is an asterisk, the remaining characters are taken as the name of the new
user’s home directory, and a symbolic link to this directory is placed in

If /etc/stdprofile exists, each new user’s home directory starts with a file name which is a copy of
/etc/stdprofile with \N replaced by the user’s name, and \D replaced by the name of the home
directory.

FILES
/etc/passwd
/etc/stdprofile

SEE ALSO
crypt(3) passwd(5)
Robert Morris and Ken Thompson, ‘UNIX password security,’ AT&T Bell Laboratories Technical Journal
63 (1984) 1649-1672

BUGS
The password file information should be kept in a different data structure allowing indexed access.

307

PATCH(1) General Commands Manual PATCH(1)

NAME
patch - a program for applying a diff file to an original

SYNOPSIS
patch [options] orig diff [+ [options] orig]

DESCRIPTION
Patch will take a patch file containing any of the three forms of difference listing produced by the diff
program and apply those differences to an original file, producing a patched version. By default, the
patched version is put in place of the original, with the original file backed up to the same name with the
extension ‘‘.orig’’, or as specified by the -b switch. You may also specify where you want the output to go
with a -o switch. If diff is omitted, or is a hyphen, the patch will be read from standard input.

Upon startup, patch will attempt to determine the type of the diff file, unless over-ruled by a -c, -e, or -n
switch. Context diffs and normal diffs are applied by the patch program itself, while ed diffs are simply
fed to the ed editor via a pipe.

Patch will try to skip any leading garbage, apply the diff, and then skip any trailing garbage. Thus you
could feed an article or message containing a context or normal diff to patch, and it should work. If the
entire diff is indented by a consistent amount, this will be taken into account.

With context diffs, and to a lesser extent with normal diffs, patch can detect when the line numbers men-
tioned in the patch are incorrect, and will attempt to find the correct place to apply each hunk of the patch.
As a first guess, it takes the line number mentioned for the hunk, plus or minus any offset used in applying
the previous hunk. If that is not the correct place, patch will scan both forwards and backwards for a set
of lines matching the context given in the hunk. All lines of the context must match. If patch cannot find
a place to install that hunk of the patch, it will put the hunk out to a reject file, which normally is the name
of the output file plus ‘‘.rej’’. (Note that the rejected hunk will come out in context diff form whether the
input patch was a context diff or a normal diff. If the input was a normal diff, many of the contexts will
simply be null.)

If no original file is specified on the command line, patch will try to figure out from the leading garbage
what the name of the file to edit is. In the header of a context diff, the filename is found from lines begin-
ning with ‘‘∗∗∗ ’’ or ‘‘---’’, with the shortest name of an existing file winning. Only context diffs have
lines like that, but if there is an ‘‘Index:’’ line in the leading garbage, patch will try to use the filename
from that line. The context diff header takes precedence over an Index line. If no filename can be intuited
from the leading garbage, you will be asked for the name of the file to patch.

(If the original file cannot be found, but a suitable SCCS or RCS file is handy, patch will attempt to get or
check out the file.)

Additionally, if the leading garbage contains a ‘‘Prereq: ’’ line, patch will take the first word from the pre-
requisites line (normally a version number) and check the input file to see if that word can be found. If
not, patch will ask for confirmation before proceeding.

The upshot of all this is that you should be able to say, while in a news interface, the following:

| patch -d /usr/src/local/blurfl

and patch a file in the blurfl directory directly from the article containing the patch.

If the patch file contains more than one patch, patch will try to apply each of them as if they came from
separate patch files. This means, among other things, that it is assumed that separate patches will apply to
separate files, and that the garbage before each patch will be examined for interesting things such as file-
names and revision level, as mentioned previously. You can give switches (and another original file name)
for the second and subsequent patches by separating the corresponding argument lists by a ‘+’. The argu-
ment list for a second or subsequent patch may not specify a new patch file, however.

Patch recognizes the following switches:

-b causes the next argument to be interpreted as the backup extension, to be used in place of ‘‘.orig’’.

-c forces patch to interpret the patch file as a context diff.

Systems Development Corp May 10, 1986 308

PATCH(1) General Commands Manual PATCH(1)

-d causes patch to interpret the next argument as a directory, and cd to it before doing anything else.

-D causes patch to use the "#ifdef...#endif" construct to mark changes. The argument following will
be used as the differentiating symbol. Note that, unlike the C compiler, there must be a space be-
tween the -D and the argument.

-e forces patch to interpret the patch file as an ed script.

-l causes the pattern matching to be done loosely, in case the tabs and spaces have been munged in
you input file. Any sequence of whitespace in the pattern line will match any sequence in the input
file. Normal characters must still match exactly. Each line of the context must still match a line in
the input file.

-n forces patch to interpret the patch file as a normal diff.

-N forces patch to not try and reverse the diffs if it thinks that they may have been swapped. See the
-R option below.

-o causes the next argument to be interpreted as the output file name.

-p causes leading pathnames to be kept. If the diff is of the file “b/a.c”, patch will look for “a.c” in the
“b” directory, instead of the current directory. This probably won’t work if the diff has rooted path-
names.

-r causes the next argument to be interpreted as the reject file name.

-R tells patch that this patch was created with the old and new files swapped. (Yes, I’m afraid that
does happen occasionally, human nature being what it is.) Patch will attempt to swap each hunk
around before applying it. Rejects will come out in the swapped format. The -R switch will not
work with ed diff scripts because there is too little information to reconstruct the reverse operation.

If the first hunk of a patch fails, patch will reverse the hunk to see if it can be applied that way un-
less the -N option is supplied. If it can, the -R switch will be set automatically. If it can’t, the
patch will continue to be applied normally. (Note: this method cannot detect a reversed patch if it is
a normal diff and if the first command is an append (i.e. it should have been a delete) since appends
always succeed. Luckily, most patches add lines rather than delete them, so most reversed normal
diffs will begin with a delete, which will fail, triggering the heuristic.)

-s makes patch do its work silently, unless an error occurs.

-x<number>
sets internal debugging flags, and is of interest only to patch patchers.

ENVIRONMENT
No environment variables are used by patch.

FILES
/tmp/patch∗

SEE ALSO
diff(1)

DIAGNOSTICS
Too many to list here, but generally indicative that patch couldn’t parse your patch file.

The message ‘‘Hmm...’’ indicates that there is unprocessed text in the patch file and that patch is attempt-
ing to intuit whether there is a patch in that text and, if so, what kind of patch it is.

CAVEATS
Patch cannot tell if the line numbers are off in an ed script, and can only detect bad line numbers in a nor-
mal diff when it finds a ‘‘change’’ command. Until a suitable interactive interface is added, you should
probably do a context diff in these cases to see if the changes made sense. Of course, compiling without
errors is a pretty good indication that it worked, but not always.

Patch usually produces the correct results, even when it has to do a lot of guessing. However, the results
are guaranteed to be correct only when the patch is applied to exactly the same version of the file that the
patch was generated from.

Systems Development Corp May 10, 1986 309

PATCH(1) General Commands Manual PATCH(1)

BUGS
Could be smarter about partial matches, excessively deviant offsets and swapped code, but that would take
an extra pass.

If code has been duplicated (for instance with #ifdef OLDCODE ... #else ... #endif), patch is incapable of
patching both versions, and, if it works at all, will likely patch the wrong one, and tell you it succeeded to
boot.

If you apply a patch you’ve already applied, patch will think it is a reversed patch, and un-apply the
patch. This could be construed as a feature.

Systems Development Corp May 10, 1986 310

PC(1) General Commands Manual PC(1)

NAME
pc - pascal language compiler

SYNOPSIS
pc [option] [-i name ...] name ...

DESCRIPTION
Pc compiles the Pascal source file name.p into an executable file called, by default, a.out.

Multiple .p files are compiled into object files suffixed .o in place of .p. Object files may be combined by
ld(1) into an executable a.out file. Exactly one object file must supply a program statement. The other
files contain declarations which logically nest within the program. Objects shared between separately
compiled files must be declared in included header files, whose names must end with .h. An external di-
rective, similar to forward, declares functions and procedures in .h files.

These options have the same meaning as in cc(1): -c -g -w -p -O -S -o. The following options are peculiar
to pc.

-C Compile code to perform runtime checks, verify assert statements, and initialize variables to
zero as in pascal(1).

-b Block buffer the file output.
-i Produce a listing for the specified procedures, functions and include files.
-l Make a program listing during translation.
-s Accept standard Pascal only; non-standard constructs cause warning diagnostics.
-z Allow execution profiling with pxp(A) by generating statement counters, and arranging for the

creation of the profile data file pmon.out when the resulting object is executed.

Other arguments are taken to be loader option arguments, perhaps libraries of pc-compatible routines; see
ld(1). Certain options can also be controlled in comments within the program as described in the Berkeley
Pascal User’s Manual.

FILES
file.p pascal source files

/usr/lib/pc0
compiler

/lib/f1 code generator

/usr/lib/pc2
runtime integrator (inline expander)

/lib/c2
peephole optimizer

/usr/lib/pc3
separate compilation consistency checker

/usr/lib/pc2.0strings
text of the error messages

/usr/lib/how_pc
basic usage explanation

/usr/lib/libpc.a
intrinsic functions and I/O library

/usr/lib/libm.a
math library

/lib/libc.a
standard library, see intro(3)

SEE ALSO
pascal(1), pxp(A) , cc(1), ld(1), adb(1), sdb(1), prof(1)
W. N. Joy, Susan L. Graham, C. B. Haley, ‘Berkeley Pascal User’s Manual’, in Unix Programmer’s Man-
ual, Seventh Edition, Virtual VAX-11 Version, 1980, Vol 2C (Berkeley).

311

PC(1) General Commands Manual PC(1)

DIAGNOSTICS
See pascal(1) for an explanation of the error message format. Internal errors cause messages containing
the word ‘SNARK’.

BUGS
The keyword packed is recognized but has no effect.
The binder is not as strict as it might be.
The -z flag doesn’t work for separately compiled files.
Because -s is used by pc, it can’t be passed to the loader.

312

PIC(1) General Commands Manual PIC(1)

NAME
pic, tpic − troff and tex preprocessors for drawing pictures

SYNOPSIS
pic [files]

tpic [files]

DESCRIPTION
Pic is a troff(1) preprocessor for drawing figures on a typesetter. Pic code is contained between .PS and
.PE lines:

.PS optional-width optional-height
element-list
.PE
If optional-width is present, the picture is made that many inches wide, regardless of any dimen-
sions used internally. The height is scaled in the same proportion unless optional-height is
present. If .PF is used instead of .PE, the typesetting position after printing is restored to what it
was upon entry.

A line of the form

.PS<file causes pic to treat the the named file as if it stood in place of the .PS line.

An element-list is a list of elements:
primitive attribute-list
placename : element
placename : position
var = expr
direction
{ element-list }
[element-list]
for var = expr to expr by expr do { anything }
if expr then { anything } else { anything }
copy file, copy thru macro, copy file thru macro
sh { commandline }
print expr
reset optional var-list
troff-command

Elements are separated by newlines or semicolons; a long element may be continued by ending the line
with a backslash. Comments are introduced by a # and terminated by a newline. Variable names begin
with a lower case letter; place names begin with upper case. Place and variable names retain their values
from one picture to the next.

After each primitive the current position moves in the current direction (up,down, left,right (default)) by
the size of the primitive. The current position and direction are saved upon entry to a {...} block and re-
stored upon exit. Elements within a block enclosed in [...] are treated as a unit; the dimensions are deter-
mined by the extreme points of the contained objects. Names, variables, and direction of motion within a
block are local to that block.

troff-command is any line that begins with a period. Such a line is assumed to make sense in the context
where it appears; generally, this means only size and font changes. Changes to vertical spacing will pro-
duce broken pictures.

The primitive objects are:
box circle ellipse arc line arrow spline move text-list

arrow is a synonym for line ->.

An attribute-list is a sequence of zero or more attributes; each attribute consists of a keyword, perhaps fol-
lowed by a value.

h(eigh)t expr wid(th) expr
rad(ius) expr diam(eter) expr
up opt-expr down opt-expr

313

PIC(1) General Commands Manual PIC(1)

right opt-expr left opt-expr
from position to position
at position with corner
by expr, expr then
dotted opt-expr dashed opt-expr
chop opt-expr -> <- <->
invis same
text-list expr

Missing attributes and values are filled in from defaults. Not all attributes make sense for all primitives;
irrelevant ones are silently ignored. The attribute at causes the geometrical center to be put at the speci-
fied place; with causes the position on the object to be put at the specified place. For lines, splines and
arcs, height and width refer to arrowhead size. A bare expr implies motion in the current direction.

Text is normally an attribute of some primitive; by default it is placed at the geometrical center of the
object. Stand-alone text is also permitted. A text list is a list of text items:
text-item:

"..." positioning ...
sprintf("format", expr, ...) positioning ...

positioning:
center ljust rjust above below

If there are multiple text items for some primitive, they are arranged vertically and centered except as
qualified. Positioning requests apply to each item independently. Text items may contain in-line troff
commands for size and font changes, local motions, etc., but make sure that these are balanced so that the
entering state is restored before exiting.

A position is ultimately an x,y coordinate pair, but it may be specified in other ways.
position:

expr, expr
place ± expr, expr
place ± (expr, expr)
(position, position) x from one, y the other
expr [of the way] between position and position
expr < position , position >
(position)

place:
placename optional-corner
corner of placename
nth primitive optional-corner
corner of nth primitive
Here

An optional-corner is one of the eight compass points or the center or the start or end of a primitive.
optional-corner:

.n .e .w .s .ne .se .nw .sw .c .start .end
corner:

top bot left right start end
Each object in a picture has an ordinal number; nth refers to this.
nth:

nth, nth last

The built-in variables and their default values are:
boxwid = 0.75 boxht = 0.5
circlerad = 0.25 arcrad = 0.25
ellipsewid = 0.75 ellipseht = 0.5
linewid = 0.5 lineht = 0.5
movewid = 0.5 moveht = 0.5
textwid = 0 textht = 0
arrowwid = 0.05 arrowht = 0.1
dashwid = 0.1 arrowhead = 2

314

PIC(1) General Commands Manual PIC(1)

scale = 1
These may be changed at any time, and the new values remain in force from picture to picture until
changed again or reset by a reset statement. Variables changed within [and] revert to their previous
value upon exit from the block. Dimensions are divided by scale during output.

Expressions in pic are evaluated in floating point. All numbers representing dimensions are taken to be in
inches.
expr:

expr op expr
- expr
! expr
(expr)
variable
number
place .x place .y place .ht place .wid place .rad
sin(expr) cos(expr) atan2(expr,expr) log(expr) exp(expr)
sqrt(expr) max(expr,expr) min(expr,expr) int(expr) rand()

op:
+ - ∗ / % < <= > >= == != && ||

The define and undef statements are not part of the grammar.
define name { replacement text }
undef name

Occurrences of $1, $2, etc., in the replacement text will be replaced by the corresponding arguments if
name is invoked as

name(arg1, arg2, ...)
Non-existent arguments are replaced by null strings. Replacement text may contain newlines. The undef
statement removes the definition of a macro.

Tpic is a tex(1) preprocessor that accepts pic language. It produces Tex commands that define a box
called \graph, which contains the picture. The box may be output this way:

\centerline{\box\graph}

EXAMPLES
arrow "input" above; box "process"; arrow "output" above
move
A: ellipse

circle rad .1 with .w at A.e
circle rad .05 at 0.5 <A.c, A.ne>
arc from A.c to A.se rad 0.5

input
process

output

SEE ALSO
cip(9) ideal(1), ped(9) grap(1), dag(1), doctype(1), troff(1)
B. W. Kernighan, ‘PIC—a Graphics Language for Typesetting’, this manual, Volume 2

315

PICASSO(1) General Commands Manual PICASSO(1)

NAME
picasso - a line drawing program

SYNOPSIS
picasso [-bsize -Fpath -Ipath -ln -Mn -mmargin -pmxn -t -x] [-] [file_name(s)]

DESCRIPTION
Picasso is a processor for a PIC-like drawing language that produces PostScript output. By default, this
output is scaled to fit an 8 by 10 inch print area, and centered on the page.

-b size specifies a buffer of size objects accumulated before translation into PostScript. By default, an en-
tire picture is buffered; on machines with small memories, a buffer of a few thousand objects can prevent
thrashing when processing a very large picture. This option is for exceptional cases and is not often
needed.

-I path overrides the standard path for searching for the PostScript prologue and font descriptions (not
needed in normal use).

-F path overrides the standard path for font width tables. The default is to use the troff tables.

-l n processes layer n only, as specified by curlayer=n.

-M n magnifies the output image by n (shrinks if 0 < n < 1).

-p mxn specifies output device size in inches (8.5x11 default).

-t packages the PostScript with surrounding troff input so that the output file may be passed down a
pipeline to troff(1). The Drechsler/Wilks mpictures macro package can be used with troff to insert the
pictures appropriately within the document. Without the flag picasso outputs only PostScript, dropping
any text outside the markers (.PS and .PE) delimiting each picture.

-m margin specifies an empty border, in printer’s points, that picasso will place around each picture.
This may be useful at times to prevent too tight clipping against adjacent text or the edge of the paper. By
default no margin is supplied; to cause a 1/8" (9 point) margin, for example, specify -m9.

-x suppresses the default scaling and centering.

The picasso picture description language is object oriented, the basic objects being arrow, arc, box, cir-
cle, ellipse, line, sector, spline, and (quoted) text. These can be combined, hierarchically, into blocks.
Primitive objects can be drawn with solid, dashed, dotted, or invisible edges. These edges may be of
varying weight (thickness) and of any shade of gray (from black = 0 to white = 1) or color. The prede-
fined colors are black, white, red, green, blue, cyan, magenta, and yellow.

Objects may be named and referred to by name or by anonymous references such as 1st box, 4th object, or
2nd last circle. Object names require an initial upper case letter; names beginning with lower case or an
underscore are numeric variables. There are a number of predefined variables such as circlerad, boxwid,
linecolor. Picasso provides a limited set of programming language constructs (loops, if statements,
macros, some arithmetic) for combining simple objects into relatively complex pictures.

By default, objects are placed on the page adjacent to each other and from left to right. The default direc-
tion may be changed, and any object can be placed at a specific postion, given either in absolute coordi-
nates or by reference to other objects and points of interest. Any object has a top, bottom, left, and right
point; these points may also be refered to directionally as north, south, west, and east (or n, s, w, and e.)
The ‘‘corner’’ points may also be specified, e.g., northwest or nw. Lines have start and end points; you
may also refer to 1st, 2nd... nth points along a line. Boxes, circles, and ellipses have eight predefined
points corresponding to the directional references mentioned above, the first point being in the eastern di-
rection and the 8th point towards the southeast. For any object, the ‘‘corner’’ points really lie on the cor-
ners of a box surrounding the object while the ‘‘counted’’ points lie on the object itself. This distinction is
normally relevant only for circles and ellipses, but since an object can be rotated or otherwise transformed
it occasionally has significance for other objects as well.

EXAMPLE
The following is a simple no-smoking sign described in the picasso language.

.PS
d = 0.5
[box ht d wid 3.5 weight d/20

316

PICASSO(1) General Commands Manual PICASSO(1)

box ht d wid d/2 filled 0.5 noedge
spline weight 0.2 edge .75 right d then up d \

then right d then up d
]
linecolor = red; lineweight = 0.375
circle rad 3 at last block
line from last circle .4th to last circle .8th
.PE

If this is used in a troff document and processed through picasso with the -t flag, the .PS marking the start
of the picture can specify the size and placement of the picture at that point in your document. For exam-
ple, to place the no smoking sign centered on the page in a 3 inch square area, flag the start of the picture
with .PS 3 3 c.

SEE ALSO
troff(1), troff(5)

REFERENCE
R. L. Drechsler and A. R. Wilks, PostScript pictures in troff documents.
B. W. Kernighan, PIC — A Crude Graphics Language for Typesetting
N-P. Nelson, M. L. Siemon, Picasso 1.0, An OPEN LOOK Drawing Program

BUGS
Picasso is not completely compatible with pic(1). Besides having a number of new keywords and prede-
fined variable names, picasso also centers pictures on a page rather than placing them at upper left.

The interactive version is unable to generate many elements of the language, nor will it preserve such ele-
ments (e.g., loops) if they are read in then written out.

317

PICO(1) General Commands Manual PICO(1)

NAME
pico − graphics editor

SYNOPSIS
pico [-mfto] [-wN -hN] [files]

DESCRIPTION
Pico is an interactive editor for grey-scale and color images. Editing operations are expressed in a C-like
style. The options are

-mn Display on a Metheus frame buffer, /dev/omn. A missing n is taken to be 0.

-f Display on an Itoh frame buffer, /dev/iti0.

-t Show parse trees for expressions; toggled by the interactive command tree.

-o Turn off the optimizer; toggled by optim.

Files are referred to in expressions as $n, where n is the basename or an integer, see f below. Otherwise
file names are given as strings in double quotes, which may be elided from names that do not contain /.

In general, the result of the previous edit operation is available under the name old. The destination of
the current operation is called new.

Pico handles images with coordinates (0,0) in the upper left hand corner and (X,Y) in the lower right.
Brightnesses range from 0 (black) to Z (white, Z=255). The quantities X,Y,Z may be used in expressions
and set by options:

-w n Set the width X of the work area to n pixels, default 511.

-h n Set the height Y, default 511.

Pico reads commands from the standard input:

help Give a synopsis of commands and functions.

a file
a x y w d file

Attach a new file. Optional parameters x and y give the origin of a subrectangle in the work
buffer; w and d define width and depth of the image as stored in the file.

d file
d $n Delete (close) the file.

h file Read header information from the file.

r file Read commands from file as if they were typed on the terminal. Can not be done recursively.

w file
w - file

Write the file, restricted to the current window (see below). Use pico format by default. With a
minus flag, write a headerless image (red channel only, if picture is colored); see also picfile(5).

nocolor
color Set the number of channels updated in the work buffer to 1 (black and white) or 3 (red, green,

blue).

window x y w d
Restrict the work area to a portion of the work buffer with the upper left corner at (x,y), and the
lower right at (x+w,y+d).

get file
get $n The picture file is (re)opened and read into the work area.

f Show names, sizes, and file numbers of open files.

faster
slower

In slow display the screen is updated once per pixel computed; in fast display (default), once per
line of pixels.

318

PICO(1) General Commands Manual PICO(1)

show name
Show symbol table information, such as the current value of variables. If name is omitted, the
whole symbol table is shown.

functions
Print information on all user defined and builtin functions.

def name (args) { program }
Define a function, with optional arguments. Variables are declared in these styles:
int var;
global int var;
array var[N];
global array var[N];

x expr Execute the expression in a default loop over all pixels in the current window.

x {program }
Execute the program. The program must define its own control flow.

q Quit.

EXAMPLES
pico -w1280 -h1024 -m5

Get a work buffer that exactly fills a Metheus screen.

a "/tmp/images/rob" Make a file accessible. It will be known henceforth as $rob.

a
get

Direct attention to a 512× 512 subrectangle in the middle of a 3072× 512 image stored in a file
named junk, and read it into the workspace.

x new = Z - old
x new[x,y] = Z - old[x,y]
x {for(x=0; x<=X; x++) for(y=0; y<=Y; y++) new[x,y] = Z-old[x,y];}

Three ways to make a negative image. Note the defaults on control flow and array indexing.

window 0 0 256 256
x new = $1[xclamp(x∗2), yclamp(y∗2)]

Scale a 512× 512 image to one quarter of the screen. The built-in functions xclamp and
yclamp guard against indexing out of range.

x { printf("current value of %s[%d]:\t%d\n", "histo", 128, hist[128]); }
Turn off the default control flow (curly braces) and use the builtin function printf to check the
value of an array element.

SEE ALSO
bcp(1), imscan(1), flicks(9) rebecca(9) picfile(5), flickfile(9)
G. J. Holzmann, ‘PICO Tutorial’, this manual, Volume 2
G. J. Holzmann, Beyond Photography—the Digital Darkroom, Prentice-Hall, 1988

319

PL(1) General Commands Manual PL(1)

NAME
pl - print share information for designated users

SYNOPSIS
pl [-a[g]] [-[n][v]] [-pfilename] [-u uid[-uid] ...] [login-name ...]

DESCRIPTION
Pl prints the share information for the given list of login names. The optional flags affect the default be-
haviour as follows:-

-a[g] This flag causes information on all currently active users to be printed. The optional flag g re-
stricts the selection to real users (ie: doesn’t print groups).

-n The normal output is one item per line, this flag puts all items for a user on the same line.

-p file Directs pl to use an alternate shares file, whose path name is file.

-u The list is assumed to be user IDs. If any two user IDs are separated by a minus, then an inclu-
sive range is assumed.

-v The normal output includes descriptions of each item, this flag turns off verbose mode.

If no arguments are given then pl will use the login name of the person that executed the command.

FILES
/etc/shares The shares file.
/etc/passwd

Information on user names and IDs.

SEE ALSO
lnode(5), passwd(5), share(5).

SHARE 320

PLOT (1) General Commands Manual PLOT (1)

NAME
plot − graphics filters

SYNOPSIS
plot [-Tterminal]

DESCRIPTION
These filters read plotting instructions (see plot(5)) from the standard input, and in general produce plot-
ting instructions suitable for a particular terminal on the standard output.

If no terminal type is specified, the environment parameter TERM (see environ(5)) is used. Known termi-
nals are:

2621
hp Hewlett-Packard screen terminal.

4014
tek Tektronix 4014 storage scope.

troff Convert to troff(1) input.

5620
jerq Teletype DMD display under mux(9) The filter persists after plotting, to make a layer that skips

downloading on subsequent plots.

750
pen Hewlett-Packard pen plotter.

FILES
/usr/lib/plot/hpplot
/usr/lib/plot/trplot
/usr/lib/plot/penplot
/usr/lib/plot/tek
/usr/jerq/bin/jplot

SEE ALSO
plot(3), plot(5)

BUGS
A persistent plot layer on a 5620 terminal imitates term 33, it loses most abilities of a mux(9) layer; see
term(9)
Which plotters are known depends on which computer you are on.

321

POST (1) General Commands Manual POST (1)

NAME
post − mail and directory service by name

SYNOPSIS
post [option ...] [person ...]

postext [-c directory] extension ...

postorg [-c directory] organization

postorg [-h directory]

postsx [-c directory] person ...

DESCRIPTION
Post mail and gives directory assistance based on a corporate database. Aside from addressing, it reads
and sends mail in the manner of mail(1).

Mail may be sent to a person by name:

first.middle.lastname:dir:org:loc:paper

where partial fields are valid and every field except lastname may be omitted. Dir is a phone book, such
as attbl or attc; loc is a location code such as ih, and org is an organization number such as 45 or
11271; paper sends paper mail. This happens automatically for persons with no electronic mail
address. If a person argument is ambiguous, post gives a list of possibilities to choose from.

Mail may also be sent to a person specifed as system!userid for electronic mail.

Options are:

-c directory
Search for persons only in the given directory.

-p Send paper mail.

-w Directory assistance. Give the full directory entry for each person. The answer comes by mail if
your machine is a remote post office.

The following options are not to be accompanied by persons or addresses.

-A dafile
Send mail to all names in dafile where dafile is output from a -w request.

-B [mbox]
Read mail from a specified mbox file or from the default $HOME/mbox.

-D [directory]
Give modification times for the directory or for all post directories if no directory name is given.

-S Start an interactive session to send change-of-address notices to an update site.

-v Give the current version of post and tell whether the local post office is general, g, (has a direc-
tory) or remote, r, (no directory).

-X Start an interactive set-up session. Should be used by new users.

To maintain mailing lists or to avoid typing long addresses, you may keep an address book in
$HOME/.mailrc Each line in this file begins with the word alias followed by the alias and the per-
sons or previous aliases that it stands for.

If environment variable POSTETC=ON, the passwd(5) file is treated as a directory so that login names
may be used as persons. In any case a login name on the local system can be written !userid.

Post will ask for verification of recipient addresses if environment variable CONFIRM=ON.

Post searches directories sequentially. The directory search path may be altered by setting the environ-
ment variable DIRPATH similarly to PATH in sh(1).

Postext is like post -w, but retrieves by phone number instead of by name:

number:dir:loc:org

Postorg retrieves by organization:

322

POST (1) General Commands Manual POST (1)

org:dir:loc:occlevel

where occlevel is a (possibly partial) occupation level. Option -h lists occupation levels.

Postsx retrieves names phonetically similar to persons.

EXAMPLES
post s.j.griesmer

Send mail.

post -c attc -w smith
Who are all the smiths in attc?

post -w jackson:452:ih >dafile; post -A dafile

FILES
/usr/mail/∗

mailboxes

dead.letter
unmailable text

$HOME/mail
default directory for secure saving of mail

$HOME/.mailrc
Mail options

$HOME/mbox
default mail repository

/usr/post/info/post/∗db∗
LLA database components

/usr/post/info/post/postsys
post administrative address

/usr/post/postlib/postoff
local and remote directories

/usr/post/postlib/postversion
version number

/usr/post/tmp/post/postlog
log of command executions

SEE ALSO
mail(1)

DIAGNOSTICS
Exit status is 0 on total success, 1 on lookup failure, 2 on partial failure (e.g. ambiguous entries).

323

PP(1) General Commands Manual PP(1)

NAME
pp - C program pretty printer

SYNOPSIS
pp [option ...] [file ...]

DESCRIPTION
Pp formats the named C source files, or its standard input if none are given, and writes a ‘publication for-
mat’ on the standard output for printing on a typesetter with filters like lp(1). The options are

-Tdev Prepare output for devices named as in troff(1); default is 202.

-b Use bold fonts suffixed K (demi-bold) rather than B (bold).

-f font Set the main font; the default is MM, Memphis Medium.

-k file Cause words in the named file, one per line, to be recognized as keywords; the file will be looked
up in /usr/lib/pp if it is not in the current directory.

-ttitle Generate a title page with the title specified and a date stamp.

SEE ALSO
pr(1), troff(1), d202(1), lp(1), font(6)

DIAGNOSTICS
Pp complains and exits if it cannot find a required font. If this happens, take the name of the missing font
to a local font guru.

BUGS
The default device for pp should be -Tpost.

324

PR(1) General Commands Manual PR(1)

NAME
pr − print file

SYNOPSIS
pr [option ...] [file ...]

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages headed by a date,
the name of the file or a specified header, and the page number. For no file arguments, or for a file argu-
ment -, pr prints its standard input.

Options apply to all following files but may be reset between files:

-n Produce n-column output.

+n Begin printing with page n.

-b Balance columns on last page, in case of multi-column output.

-d Double space.

-h Take the next argument as a page header (file by default).

-f Use formfeeds to separate pages. Pause, ring bell, and wait for newline before beginning.

-ln Take the length of the page to be n lines instead of the default 66.

-m Print all files simultaneously, each in one column.

-n Number the lines of each file.

-on Offset the left margin n character positions.

-p Between pages pause, ring bell, and wait for newline.

-sc Separate columns by the single character c instead of aligning them with white space. A missing
c is taken to be a tab.

-t Do not print the 5-line header or the 5-line trailer normally supplied for each page.

-wn For purposes of multi-column output, take the width of the page to be n characters instead of the
default 72.

Inter-terminal messages via write(1) are forbidden during a pr.

FILES
/dev/tty to suspend messages

SEE ALSO
cat(1), lp(1), thinkblt(9)

DIAGNOSTICS
There are no diagnostics when pr is printing on a terminal.

325

PREFER(1) General Commands Manual PREFER(1)

NAME
prefer, pinvert, penter, plook, pconvert - maintain and use bibliographic references

SYNOPSIS
prefer [option ...]

penter [outfile]

pinvert [option ...] [file ...]

plook [-p dbfile] [keyword ...]

pconvert [-d] file

DESCRIPTION
Prefer is a troff(1) preprocessor for bibliographic references. It copies a document from the standard in-
put to the standard output, using a bibliographic database to change symbolic references into full refer-
ences ready for typesetting by troff(1). Although symbolic references are in the style of monk(1), prefer
does not depend on monk. The options are:

-n Format for nroff .

-osortkey
Under the |reference_list command, sort according to sortkey, any combinations of the letters a
(author) d (date), and t (title), rather than in database sequence. If sortkey is sort, sort accord-
ing to the current style.

-pdbfile
Use dbfile as the bibliographic database (default

-r Format as a released paper (technical memorandum default).

-sstyle
Set the formatting style , one of att (default), acm, apa, ieee, lsa, pami, spectrum.

Prefer recognizes the following commands, which may appear anywhere in a document. Parentheses () in
the commands may be replaced by any of {} [] <> .

|reference_style(style arg ...)
Switch to a new formatting style. All previous references are forgotten and a new list of refer-
ences is begun. If style is same the current style remains (but all previous references are forgot-
ten). Optional args are:

tm Format as a technical memorandum.

rp Format as a released paper.

nroff Format for nroff.

troff Format for troff.

sort Print a |reference_list in an order appropriate for the current style.

sequence
Print a |reference_list in database sequence.

sortkey
Print a |reference_list according to the sortkey, any combination of the letters a, d, t as
above.

|reference(keywords
%ref_fields %flags)
Insert a citation mark in the current style (e.g. [7], 3, (Knuth, 1975)). One or more keywords
cause selection from the bibliographic database. Each % argument must begin a new line.
%ref_field lines override information from the database; with no keywords a complete reference
may be given. For the form of reference fields, see the output of penter or the paper in Volume
2. The following %flags may modify the citation.

326

PREFER(1) General Commands Manual PREFER(1)

%no_author
Exclude author information.

%no_date
Exclude date from the citation mark.

%no_cite
Omit the entire citation, but include the entry in the final reference list.

%pre_text string
Insert string before the citation mark.

%post_text string
Insert string after the citation mark

|reference_include(dbfile ...)
Include the contents of the database(s) dbfile(s) in the list of references, treating them as
%no_cite entries.

|reference_placement
Produce a list of all references specified in |reference or |reference_include commands since the
beginning of the document or the last |reference_style or |reference_placement.

|reference_list(dbfile ...)
Format the contents of the database(s) dbfile.

|reference_database(dbfile)
Switch to database dbfile

Penter helps build prefer bibliographic databses. It prompts for a reference type, and then for admissible
attributes, such as author, date, etc. A default value proposed in brackets [] may be accepted by typing a
newline, skipped by typing spaces before the newline, or overridden by typing a new value. The character
& appended to an attribute causes penter to prompt for the attribute again (to enter multiple authors, for
example).

The answer ? to the initial prompt gets a list of all reference types. The answer help gets a subprompt
for a reference type whose pertinent attributes will then be listed. The answer ? to the subprompt gets
attributes for every type.

The attribute also permits one entry to refer to another by naming keywords for the other reference. An
entire ‘also’ citation may be included within a |reference thus:

%also_begin text
%ref_fields
%also_end

The attribute keywords prompts for distinguishing keys for the current entry, in addition to those already
occurring within author, title, etc.

The ‘reference type’ quit causes penter to exit, first appending the collected database information to out-
file by default).

The ‘attribute’ e permits editing of the current reference with the editor specified by environment variable
EDITOR, ed(1) by default; v gets the editor VISUAL, vi(1) by default.

Pinvert creates an inverted index to one or more bibliographic database files. The index is placed in
file.i, where file is the first input file. An associated file.h contains the names of the input files. The
options are:

-ccommon
Do not index words listed in file common (default

-iignore
Do not index information about attributes listed in file ignore. (The default
/usr/lib/prefer/ignore lists %volume, %number, %part, %pages, %X (location
status), %Y (read status), %Z (comment).)

327

PREFER(1) General Commands Manual PREFER(1)

-ki Maximum number of keys kept per record (default 100).

-li Maximum length of keywords (default 6, none is less than 3).

-p file The basename of the index is file. Prefer will write the index to file.i.

-v Verbose. Print statistics.

Plook uses the inverted index to retrieve bibliographic records by keywords from the command line or the
standard input. Records that contain all the keywords in the request are sent to the standard output.
Option -p is the same as for pinvert.

Pconvert converts a refer(1) database to prefer style. Under option -d it converts refer-style commands
in a document to prefer style.

FILES
prefer.out

default database

prefer.out.i
default index file

prefer.out.h
default header file containing names of databases

/usr/lib/eign
default list of common words

/usr/lib/prefer/ignore
default list of %ref_fields to ignore for indexing

/usr/lib/prefer/styles/∗
awk scripts of formatting instructions for each style

/tmp/prefer∗
scratch file

/usr/lib/prefer/ptemplate
reference type definitions, self-describing

/usr/lib/prefer/mypubenter
program executed by penter

SEE ALSO
M. A. Derr, ‘Formatting References with Prefer’, this manual, Volume 2
refer(1), monk(1), troff(1)

BUGS
Prefer commands don’t work immediately after certain formatting macros, e.g. .SM, .I, .B.
Plook complains if the first key matches more references than it can store. Try rearranging your request
so a less common word comes first.
Pinvert does not record options -c and -l. If you use them with pinvert, you will have to supply them for
prefer and plook as well.

328

PRINTENV (1) General Commands Manual PRINTENV (1)

NAME
printenv - print environment

SYNOPSIS
printenv [name]

DESCRIPTION
With no arguments, printenv places the strings of the environment, described in environ(5), on the stan-
dard output one per line.

If a name is specified, its value is retrieved from the environment and printed.

SEE ALSO
sh(1), rc(1), environ(5), getenv(3)

DIAGNOSTICS
Exit status 1 is returned when a specified name is not present in the environment.

BUGS
The name feature cannot handle functions.

329

PROF(1) General Commands Manual PROF(1)

NAME
prof − display profile data

SYNOPSIS
prof [option ...] [a.out [mon.out ...]]

DESCRIPTION
Prof interprets files produced by monitor(3) or the -p option of cc or f77. The symbol table in the named
object file by default) is read and correlated with the profile file by default). For each symbol, the percent-
age of time spent executing between that symbol and the next is printed (in decreasing order), together
with the time spent there and the number of times that routine was called. If more than one profile file is
specified, the output represents the sum of the profiles.

Zero call counts are tallied for subroutines not compiled with option -p. The flag -p must be passed to the
loader to get the profiling output written.

Options are:

-l Sort the output by symbol value.

-n Sort the output by number of calls.

-s Produce a summary profile file in

-v -low -high
Produce a graphic profile on the standard output for display by the plot(1) filters. Optional num-
bers low and high, by default 0 and 100, select a percentage of the profile to be plotted.

-z Include routines with zero usage in the output.

FILES
mon.out

for profile

a.out
for namelist

mon.sum
for summary profile

SEE ALSO
time(1), lcomp(1), monitor(3), getopt(3), profil(2), plot(1), cc(1), f77(1)

BUGS
Beware of quantization errors.
Prof is confused by f77, which puts the entry points at the bottom of subroutines and functions.
Option -v has been disabled.

330

PROOFR(1) General Commands Manual PROOFR(1)

NAME
proofr - automatic proofreader
proofer - alternative command-name for proofr

SYNOPSIS
proofr [-s][-flags][-ver] file ...

DESCRIPTION
Proofr is an automatic proofreading system that runs modified versions of 5 programs:

spellwwb(1) - checks for misspelled words.

punct(1) - checks for rudimentary punctuation errors.

double(1) - searches for consecutive occurrences of the same word.

dictplus(1) - locates wordy and/or misused phrases and suggests alternatives.

splitinf (1) - searches for split infinitives.

Proofr is one of the programs run under the wwb(1) command.

Options are:

-s produce a short summary version of proofr.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

NOTE
If the user has a file called $HOME/lib/ddict, proofr will run dictplus so that phrases in ddict are located
or ignored, as specified. See diction(1), dictadd(1), dictplus(1) for more information.

If the user has a file called $HOME/lib/spelldict, proofr will run spellwwb so that words in spelldict are
not listed as errors. See spellwwb(1) and spelladd(1) for more information.

FILES
/tmp/$$∗ temporary files

SEE ALSO
spellwwb(1), punct(1), double(1), splitinf(1), diction(1), wwb(1), worduse(1), spelltell(1), deroff(1).

BUGS
See other manual pages for bugs in individual programs.

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

331

PROSE(1) General Commands Manual PROSE(1)

NAME
prose - describe style characteristics of text

SYNOPSIS
prose [-flags][-ver] [-tm | -c | -t | -x standards-file][-mm | -ms] [-li | +li][-s][-f style-file |
file ...]

DESCRIPTION
Prose describes the writing style of a document as determined by style(1), but the output is in prose form.
The output describes readability, word and sentence lengths, sentence structure and variation.

The program checks that a document’s scores on certain style variables fall within the average range for
documents of a specified type. Whenever the score for a variable is outside the average range, a warning
message is printed with information about the variable, and commands that can be run to get further infor-
mation.

Prose creates a file called styl.tmp that contains the table produced by style.

Prose compares a document with standards for one of several document types, according to the following
flags:

-tm
Compare input text to good Bell Laboratories TM’s. (This is the default.)

-c Evaluate input text for craft suitability.

-t Compare input text with good training documents.

-x standards-file
Compare input text with standards contained in user-specified standards-file. See mkstand(1)
to set up the standards-file.

Because prose runs deroff(1) before looking at the text, formatting header files should be included as part
of the input.

Options affecting deroff(1) are:

-mm eliminate mm(1) macros, and associated text that is not part of sentences (e.g. headings),
from the analysis. This is the default.

-ms eliminate ms(1) macros, and associated text that is not part of sentences, from the analysis.
The -ms flag overrides the default, -mm.

-li eliminate list items, as defined by mm macros, from the analysis. This is the default.

+li Include list items in the input text, in the analysis. This flag should be used if the text con-
tains lists of sentences, but not if the text contains many lists of non-sentences.

Other options are:

-s Produce a short (10 line) summary version of prose.

-f style-file
If a file containing the style table exists as output from the style program, or from a previ-
ous prose run, it may be specified so that prose need not run style again. Styl.tmp can be
used as the style-file. The input text file should not be used with the -f flag.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

Prose is one of the programs run under the wwb(1) command.

EXAMPLES
The command:

prose -t +li filename

332

PROSE(1) General Commands Manual PROSE(1)

will describe how the style characteristics of filename compare with standards for training documents.
Lists will be included in the analysis. The style(1) table will be left in the file styl.tmp.
Then the command:

prose -x standards-file -f styl.tmp

will use the style statistics already gathered for filename, and describe how they compare with the user-
defined standards contained in standards-file.

FILES
styl.tmp contains style table

wwb/lib/prosedoc contains all standards used for comparison, and stored prose output text files

SEE ALSO
style(1), wwb(1), deroff(1), match(1), wwbstand(1), mkstand(1), worduse(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

333

PS(1) General Commands Manual PS(1)

NAME
ps − process status

SYNOPSIS
ps option ...

DESCRIPTION
Ps prints information about processes.

For each process reported, the process id, control terminal, status, cpu time, and command name are
printed. Status is at least one of the following letters:

R Runnable.
S Asleep for less than 20 seconds.
I Asleep for 20 seconds or more.
P Waiting for memory to be paged in.
T Stopped by a debugger.
W Swapped out of memory.
N Positive scheduling priority; see nice(2).

These options modify the report for each process:

f Print additional lines listing each open file in use by the process.
ff Print open files, but omit the process id at the beginning of each line.
h Print column headers.
l Also print virtual size and current resident size in kilobytes, parent process id, and wait channel.
n Don’t sort the output.
u Also print effective userid and recent cpu share; sort by cpu share rather than by process id.

By default, processes running under the current real userid that don’t appear to be shells are reported.
These options pick different processes:

a Report processes running under any userid.
F file Report processes using the named file.
r Report processes with real or effective userid matching the current real userid.
ts Report processes with controlling terminal s. S may be . (the current controlling terminal) or

one of the abbreviations printed by ps, e.g. 03 for dk26 for or ? for processes with no control
terminal.

x Include processes that appear to be shells.
num Report the process with process id num.

Multiple F, t, and num options are allowed; the union of all selections is printed.

By default, ps looks for process data in the process file system proc(4), but reads /dev/drum for infor-
mation about swapped processes (to avoid swapping them in just to look at them) and /dev/kmem for
information about open files. These options cause it to gather information differently:

o Ignore proc(4); read directly from /dev/mem and the swap area. Useful mostly in single-user
mode or when examining a crash dump.

Mmem
Read memory data from mem instead of /dev/mem or

Dswap
Read swap data from swap instead of

Nname
Read symbols from name instead of This matters only under option o.

To examine a crash dump, use ps oMdumpfile. Option M changes the default swap device to

FILES
/proc

process images

/dev/drum
swap device

334

PS(1) General Commands Manual PS(1)

/dev/kmem
kernel memory

/dev/mem
physical memory

/lib/ttydevs
searched to find tty names

/etc/fstab
searched to find local file system names

SEE ALSO
kill(1), proc(4), load(1), pstat(8)

BUGS
Things can change while ps is running.
Since ps is usually set-userid, filename arguments like that to -M are potential security botches.

335

PSIFILE(1) General Commands Manual PSIFILE(1)

NAME
psifile, mhssend- postscript interpreter/fax sender

SYNOPSIS
psifile [option ...] [file]
mhssend phone_number file

DESCRIPTION
Psifile reads Postscript input from file or from standard input and produces a file containing an image of
the page. The format of the output file is specified by the following options:

-fax runs at 200 dpi and produces g31 fax in the multipage fax format called mhs, putting its output in
file fax$$.mhs by default. If a phone number is supplied, the output file is pushed to /tmp on
fama and mhssend is run to send the fax.

-P phone_no
specifies the destination phone number for -fax.

-g4 runs at 300 dpi and produces a fax g4 file called psi.out.g4 by default that can be displayed on
the gnots with rbits.

-bm produces bitfile(9) output in file psi.out by default. -bm is useful for debugging postscript pro-
grams because it has better diagnostics than the printers.

Other options are

-s assumes the file is in mhs format and sends it to the phone number provided with -P above.

-o name
use name as the basename of the output file.

-p page
only output postscript page number page as determined by %%Page comments in the file.

Fonts are implemented with 24 point bitmap fonts. Those available are Symbol, Courier, Times-Roman,
Times-Italic, Times-Bold, Times-BoldItalic, Helvetica, Helvetica-Oblique, Helvetica-Bold, Helvetica-
BoldOblique. Fonts Courier-Bold, Courier-Oblique, and Courier-BoldOblique are mapped to Courier.
Postscript type 1 fonts are implemented and work if supplied with the input.

For best results with TeX documents, run dvips with the -Tfax or -D 200 option to get fonts of the proper
resolution.

EXAMPLES
troff -ms memo | lp -dstdout -H | psifile -fax -P 4223

troff -ms memo | dpost | psifile -fax -P 4223 Two equivalent ways to format a memo, convert it to
PostScript, and produce a fax file.

FILES
fax$$.mhs

default -fax output file

psi.out.g4
default -g4 output file

psi.out
default -bm output file

/usr/lib/psi/psifax
postscript->mhs format program

/usr/lib/psi/psifaxg4
postscript->fax g4 program

/usr/lib/psi/psibm
postscript->bitfile program

336

PSIFILE(1) General Commands Manual PSIFILE(1)

SEE ALSO
psi(9) lp(1), dvips(1), postscript(8), proof(9) bcp(1)

DIAGNOSTICS
Symbols that lack bitmaps are replaced by ‘?’ and an error is reported.

BUGS
Unimplemented PostScript features are rotated images and half tone screens. Imagemasks may only be
rotated by multiples of 90 degrees, not by arbitrary angles.

337

PSIX(1) General Commands Manual PSIX(1)

NAME
psix - postscript interpreter

SYNOPSIS
psix [option ...] [file]

DESCRIPTION
Psix reads Postscript input from file or from standard input and simulates the resulting pages in a window
under X Windows. If the large window it brings up is too big for your screen, you can use -geometry to
change its size. You may also want to use the -a option described below.

The options are

-pn Display page n, where n is determined from the %%Page comments in the file. If these are not
present, page selection will not work.

-R Pages in the file are in reverse order. This flag must be used on such files for the -p option to
work.

-r Display the image at full scale, with the bottom left corner positioned at the bottom left corner of
the window. (By default, the image is scaled to fit the window, maintaining the aspect ratio of a
printer.)

-a x y
Display the image at full scale with position x,y of the image placed at the bottom left corner of
the window.

Fonts are implemented with size-24 bitmap fonts. Those available are Symbol, Courier, Times-Roman,
Times-Italic, Times-Bold, Times-BoldItalic, Helvetica, Helvetica-Oblique, Helvetica-Bold, Helvetica-
BoldOblique. Fonts Courier-Bold, Courier-Oblique, and Courier-BoldOblique are mapped to Courier.
Other postscript fonts, including type1, may be used if they are supplied before they’re referenced.

When the ‘cherries’ icon is displayed, you can move forward by typing return or you can use mouse but-
ton 3 to move forward (more), to a particular page (page), or quit (done).

EXAMPLES
troff -ms memo | lp -dstdout -H | psi
troff -ms memo | dpost | psi Two equivalent ways to format a memo, convert it to PostScript, and
display it.

For best results with TeX documents, use dvips with the -Tjerq, -Tgnot, or -D 100 option to get fonts of
the proper resolution and run psi with the -r or -a flag to prevent psi from scaling.

FILES
psi.err

error messages

SEE ALSO
lp(1), dvips(1), postscript(8), proof(9) psifile(1), psi(9)

DIAGNOSTICS
A ‘dead mouse’ icon signals an error; error comments are placed on file

Symbols that lack bitmaps are replaced by ‘?’ and an error is reported.

BUGS
Unimplemented PostScript features are rotated images and half tone screens. Imagemasks may only be
rotated by multiples of 90 degrees, not by arbitrary angles.
Skipping pages may cause operators to be undefined.

338

PTX(1) General Commands Manual PTX(1)

NAME
ptx - permuted index

SYNOPSIS
ptx [option ...] [input [output]]

DESCRIPTION
Ptx generates a permuted index to file input on file output (standard input and output default). It has
three phases: the first does the permutation, generating one line for each keyword in an input line. The
keyword is rotated to the front. The permuted file is then sorted. Finally, the sorted lines are rotated so
the keyword comes at the middle of the page. Ptx produces output exemplified by:

.xx "tail" "before" "keyword and after" "head"

where .xx may be defined as a troff(1) macro for user-defined formatting. The before and keyword and
after fields incorporate as much of the line as will fit around the keyword when it is printed at the middle
of the page. Tail and head, at least one of which is an empty string, are wrapped-around pieces small
enough to fit in the unused space at the opposite end of the line. When original text must be discarded, /
marks the spot.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter; the default line length is 100 characters.

-w n Use the next argument, n, as the width of the output line. The default line length is 72 characters.

-g n Use the next argument, n, as the number of characters to allow for each gap among the four parts
of the line as finally printed. The default gap is 3 characters.

-o only
Use as keywords only the words given in the only file.

-i ignore
Do not use as keywords any words given in the ignore file. If the -i and -o options are missing,
use /usr/lib/eign as the ignore file.

-b break
Use the characters in the break file to separate words. In any case, tab, newline, and space char-
acters are always used as break characters.

-r Take any leading nonblank characters of each input line to be a reference identifier (as to a page
or chapter) separate from the text of the line. Attach that identifier as a 5th field on each output
line.

The index for this manual was generated using ptx.

FILES
/usr/lib/eign

BUGS
Line length counts do not account for overstriking or proportional spacing.

339

PUNCT (1) General Commands Manual PUNCT (1)

NAME
punct - punctuation checker

SYNOPSIS
/usr/bin/WWB/punct [file ...]

DESCRIPTION
Punct scans English text for punctuation errors and doubled words. When it finds an error, it places the
error on the standard output together with line number and suggested repunctuation.

FILES
/tmp/$$∗ temporary files

SEE ALSO
style(1), diction(1), wwb(1)

BUGS
Punct will consider unfamiliar abbreviations ending with a period (except initials) to be the end of the
sentence, consequently, it will capitalize the next word.

340

PUSH(1) General Commands Manual PUSH(1)

NAME
push, pull, npush, npull - datakit remote file copy

SYNOPSIS
push [-v] machine file ... remotedir

pull [-v] machine file ... localdir

npush [-v] machine file ... remotedir

npull [-v] machine file ... localdir

DESCRIPTION
Push and pull copy files between machines over Datakit. Push copies files from the local machine to the
directory remotedir on the named machine. Pull copies files from the named machine to the directory lo-
caldir on the local machine. The last component of the name of a copy is the same as that of the original.
If one of the files is a directory, a corresponding directory is created and the directory’s files are copied,
recursively.

Option -v announces each file as it is copied.

Pushing and pulling involve two programs running in different contexts on different machines. In particu-
lar, pulling to directory . puts files in the local current directory, but pushing to . puts files in the remote
home directory. Shell metacharacters which are to be interpreted on the remote machine must be quoted.

Npush and npull behave exactly like push and pull, but use a different protocol, necessary for communi-
cating to some other Datakit clusters.

FILES
/usr/lib/Rpull

link to /usr/bin/pull for remote end of transaction

/usr/lib/Rpush
link to /usr/bin/push

SEE ALSO
con(1), cp(1), rcp(1), cu(1), uucp(1)

DIAGNOSTICS
Messages marked (remote) are from the sister process running on the remote machine.

341

PWD(1) General Commands Manual PWD(1)

NAME
pwd, where − machine name and working directory

SYNOPSIS
pwd

where

DESCRIPTION
Pwd prints the pathname of the working (current) directory.

Where prints the name of the machine and the pathname of the current directory in the form

machine! fullpathname

SEE ALSO
cd in sh(1)

342

PWINTF(1) General Commands Manual PWINTF(1)

NAME
pwintf - print selected limits file entries using printf formats

SYNOPSIS
pwintf [-p shares_file] expression format [identifier..]

DESCRIPTION
For each entry in the system shares file the expression argument is evaluated. If the result is non zero the
remaining arguments are treated as if they were arguments to printf (see printf (3S)). An alternative
shares file may be specified with the -p option.

Expression elements are:

|| Binary or. Non zero if the left hand side or the right hand side evaluates to a non zero
value.

&& Binary and. Non zero if the left hand side and the right hand side are both non zero.

== != Equal/not equal to. Non zero if the left hand side and the right hand side are equal/not
equal.

> < Greater/less than. Non zero is the left hand side is greater/less than the right hand side.

>= <= Greater/less than or equal to. Non zero if the left hand side is greater/less than or equal to
the right hand side.

Regular expression matching. Non zero if the string on the left hand side matches the reg-
ular expression given by the string on the right hand side. Regular expressions are given
in the style of ed (see ed(1)).

! Unary not. Non zero if the right hand side evaluates to zero.

".." A string of characters.

{..} A date. Date specifications are in the style: {[[[[[yy]mm]dd]hh]mm][.ss]}. For example
{01271200} would be noon on the 27th of January in the current year.

(..) A sub-expression.

identifier Any one of the identifiers described below.

number A decimal digit string.

Note that the expression may have to be quoted to stop the shell from interpreting symbols such as & as
symbols having special meaning.

FORMATS
All printf format specifications and modifiers are allowed except the ’∗ ’ modifier. To facilitate the print-
ing of dates which are stored as the number of seconds since 1st January 1970, %t may be used. This will
cause the corresponding integral argument to be interpreted as a time and given in the style of ctime (see
ctime(3C)). All modifiers will be ignored in such a time specification.

IDENTIFIERS
In the following list words printed in this font are as defined in the include files <shares.h> and <sys/ln-
ode.h>.
activelnode 1 if the account has the ACTIVELNODE flag set.
changed 1 if the account has the CHANGED flag set.
charge The long term accumulated costs of the account as a floating point number.
deadgroup 1 if the account has the DEADGROUP flag set.
dirpath The initial directory of the account as a string.
flags A string containing the names of the flags set for this account.
gecos The ‘‘gecos’’ field of the account as a string.
gid The integral gid of this account.
lastref 1 if the account has the LASTREF flag set.
lastused The time the account last did anything.
lname The login name of the account as a string.

SHARE 343

PWINTF(1) General Commands Manual PWINTF(1)

notshared 1 if the account has a NOTSHARED flag.
now The current time.
pword The encrypted password of the account as a string.
sgroup The uid of the scheduling group of this account.
sgroupname The lname of the scheduling group of this account.
shares The integral number of shares the account has.
shellpath The initial shell of the account as a string.
usage The usage of the account as a floating point number.
uid The integral uid of this account.

FILES
/etc/passwd
/etc/shares

SEE ALSO
printf(3S), ctime(3C), shares(5).

DIAGNOSTICS
Yes. A summary of usage is given when pwintf is invoked with no arguments.

SHARE 344

PXP(1) General Commands Manual PXP(1)

NAME
pxp, pxref - pascal printer, profiler, and cross-reference lister

SYNOPSIS
pxp [-acdefjnstuw_] [-23456789] [-z [name ...]] name.p

pxref [-] name.p

DESCRIPTION
Pxp prints the Pascal program name.p in a standard ‘pretty’ form. Under option -z the listing is annotated
with statement execution counts from a previous pascal(1) run.

-a Print the bodies of all procedures and functions in the profile; even those which were never exe-
cuted.

-d Include declaration parts in a profile.

-e Eliminate include directives when reformatting a file; the include is replaced by the reformatted
contents of the specified file.

-f Fully parenthesize expressions.

-j Left justify all procedures and functions.

-n Eject a page as each file is included; in profiles, print a blank line at the top of the page.

-s Strip comments from the input text.

-t Print only a table of counts of procedure and function calls.

-u Card image mode; only the first 72 characters of input lines are used.

-w Suppress warning diagnostics.

-z Generate an execution profile. The presence of any names causes the profile to be restricted to
the named procedures, functions, and include files.

- Underline keywords.

-d With d a digit, use d spaces as the indenting unit. The default is 4.

Pxref makes a line-numbered listing and cross-reference index for name.p. The optional - argument sup-
presses the listing.

FILES
∗.p input files

∗.i include files

pmon.out
profile data

/usr/lib/how_pxp
information on basic usage

SEE ALSO
Berkeley Pascal User’s Manual
pascal(1)

BUGS
Pxref trims identifiers to 10 characters and pads lines with blanks.

345

QED(1) General Commands Manual QED(1)

NAME
qed - multi-file text editor

SYNOPSIS
qed [-] [-i] [-q] [-e] [-x startupfile] [filename1 filename2 ...]

DESCRIPTION
Qed is a multiple-file programmable text editor based on ed .

Qed operates on a copy of any file it is editing; changes made in the copy have no effect on the file until a
w or W (write) command is given. The copy of the text being edited resides in a scratch area called a
buffer. There are 56 buffers, labeled by alphabetics ‘a’ to ‘z’ and ‘A’ to ‘Z’, and the characters ‘{’, ‘|’, ‘}’
and ‘ ’ (the four ASCII characters following ‘z’). These 56 characters are called, for notational efficiency,
bnames. The buffers can contain any ASCII character except NUL.

If file arguments are given, qed simulates an r command (see below) on each of the named files; that is to
say, the files are read into qed’s buffers so that they can be edited. The first is read into buffer ‘a’, the sec-
ond into buffer ‘b’, through ‘z’, then from ‘A’ to ‘Z’, up to a maximum of 52 files. The optional - puts
qed in non-verbose mode (described with the o command). The -q, -e and -i are equivalent to perform-
ing an initial ‘oqs’, ‘oes’ or ‘ois’ command (see the o command below).

When qed starts up, the file named by the environment variable QEDFILE is read into buffer ‘ ’ and exe-
cuted (i.e. read as command input), before reading in files and accepting commands from the terminal.
The argument filenames are set in the buffers before the startup file is executed, so the startup file can treat
the filenames as arguments. The default startup file may be overridden with the -x option.

Input to qed can be redirected, at any time, to come from storage such as a buffer by use of a special
character such as ‘‘\b’’. All the qed special character sequences are discussed in detail below; they all
begin with a backslash ‘\’.

Qed has a truth flag which is set according to the success of certain commands and which can be tested
for conditional execution, and a count which is set to such values as the number of successful substitu-
tions performed in an s command. Each buffer has associated with it a (possibly null) filename and a
changed flag, which is set if the contents of the buffer are known to differ from the contents of the named
file in that buffer.

Commands to qed have a simple and regular structure: zero or more addresses followed by a single char-
acter command, possibly followed by parameters to the command. These addresses specify one or more
lines in the buffer. Every command which requires addresses has default addresses, so that the addresses
can often be omitted.

In general, any number of commands can appear on a line. Some commands require that the character
following the command be a separator, such as blank, tab or newline. Usually, a display character, p, P,
l, or L may precede the separator, causing the resulting line to be displayed in the specified format after
the command. Certain commands allow the input of text for placement in the buffer. This text can be
supplied in two forms: either on the same line, after the command, or on lines following the command,
terminated by a line containing only a period ‘.’. If the text is on the command line, it is separated from
the command by a space or a tab. If the tab is used, it is considered part of the text.

Qed supports a limited form of regular expression notation. A regular expression specifies a set of strings
of characters. A member of this set of strings is said to be matched by the regular expression. Regular
expressions in qed are delimited by enclosing them in a pair of identical characters, frequently slashes ‘/’.
In the following specification for regular expressions the word ‘character’ means any character but new-
line. Note that special character interpretation always occurs before executing a command. Thus, the
backslashes mentioned below are those present after special characters have been interpreted.

1. Any character except a metacharacter matches itself. Metacharacters are the regular expression
delimiter plus < [. and \ | > ˆ ∗ + $ when another rule gives them a meaning.

2. A . matches any character.

3. A backslash \ followed by any metacharacter in the list given in rule 1 is a regular expression and
matches that character. A backslash followed by one of ! _ { } () or a non-zero digit has a spe-
cial meaning discussed below; otherwise, backslashes have literal meaning in regular expres-
sions.

346

QED(1) General Commands Manual QED(1)

4. The metacharacter \ ! matches any control character except tab or newline.

5. A non-empty string s enclosed in square brackets [s] (or [ˆs]) matches any character in (or not in)
s. In s, \ has no special meaning, and] may only appear as the first character. A substring a-b,
with a and b in ascending ASCII order, stands for the inclusive range of ASCII characters.

6. A regular expression, of the form <x1> or <x1| x2| ...| xn>, where the x’s are regular expressions
of form 1-12, matches what the leftmost successful x matches.

7. A backslash followed by a non-zero digit n matches a copy of the string that the bracketed regu-
lar expression (see rule 11) beginning with the nth \ (matched.

8. A regular expression of form 1-7 followed by ∗ (+) matches a sequence of zero (one) or more
matches of the regular expression.

9. The metacharacter \ _ matches a non-empty maximal-length sequence of blanks and tabs.

10. The metacharacter \ { (\ }) matches the empty string at the beginning (end) of an identifier. An
identifier is defined to be an underscore _ or alphabetic followed by zero or more underscores, al-
phabetics or digits.

11. A regular expression, x, of form 1-12, bracketed \ (x \) matches what x matches. The nesting of
these brackets in each regular expression of an alternation (rule 6) must be identical. An alterna-
tion with these brackets may not be iterated (rule 8).

12. A regular expression of form 1-12, x, followed by a regular expression of form 1-11, y, matches
a match for x followed by a match for y, with the x match being as long as possible while still
permitting a y match.

13. A regular expression of form 1-12 preceded by ˆ (followed by $) is constrained to matches that
begin at the left (end at the right) end of a line.

14. A regular expression of form 1-13 picks out the longest among the leftmost matches in a line.

15. An empty regular expression stands for a copy of the last regular expression encountered.

Regular expressions are used in addresses and the g and v commands to specify lines, in the s command
to specify a portion of a line which is to be replaced, in the G and V commands to refer to buffers in
which to perform commands, and in general whenever text is being specified.

To understand addressing in qed it is necessary to know that at any time there is a current buffer and a
current line. When qed is invoked, the current buffer is buffer ‘a’, but may be changed at any time by a b
(change buffer) command. All addresses refer to lines in the current buffer, except for a special case de-
scribed under the m (move) command.

Generally speaking, the current line is the last line affected by a command; however, the exact effect on
the current line is discussed under the description of the command. Addresses are constructed as follows.

1. The character ‘.’ addresses the current line.

2. The character ‘$’ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ‘´x’ addresses the line marked with the mark name character x, which must be a bname. Lines
are marked with the k command described below. It is an error for the marked line to be outside
of the current buffer.

5. A regular expression enclosed in slashes ‘/’ addresses the first matching line found by searching
forwards from the line after the current line. If necessary, the search wraps around to the begin-
ning of the buffer. If the trailing ‘/’ would be followed by a newline, it may be omitted.

6. A regular expression enclosed in queries ‘?’ addresses the first matching line found by searching
backwards from the line before the current line. If necessary the search wraps around to the end
of the buffer. If the trailing ‘?’ would be followed by a newline, it may be omitted.

7. An address followed by a plus sign ‘+’ or a minus sign ‘-’ followed by a decimal number speci-
fies that address plus (resp. minus) the indicated number of lines. The plus sign may be omitted.

347

QED(1) General Commands Manual QED(1)

8. An address followed by ‘+’ or ‘-’ followed by a regular expression enclosed in slashes specifies
the first matching line following (resp. preceding) that address. The search wraps around if nec-
essary. The ‘+’ may be omitted. Enclosing the regular expression in ‘?’ reverses the search di-
rection.

9. If an address begins with ‘+’ or ‘-’ the addition or subtraction is taken with respect to the current
line; e.g. ‘-5’ is understood to mean ‘.-5’.

10. If an address ends with a ‘+’ (or ‘-’) 1 is added (resp. subtracted). As a consequence of this rule
and rule 9, the address ‘-’ refers to the line before the current line. Moreover, trailing ‘+’ and ‘-’
characters have cumulative effect, so ‘--’ refers to the current line less 2.

11. To maintain compatibility with earlier versions of the editor, the character ‘ˆ’ in addresses is en-
tirely equivalent to ‘-’.

Commands may require zero, one, or two addresses. Commands which require no addresses regard the
presence of an address as an error. Commands which accept one or two addresses assume default ad-
dresses when none is given. If more addresses are given than the command requires, the last one or two
(depending on what is accepted) are used. The last addressed line must not precede the second-last ad-
dressed line.

Typically, addresses are separated from each other by a comma ‘,’. They may instead be separated by a
semicolon ‘;’ in which case the current line ‘.’ is set to the first address before the second address is inter-
preted. The second of two separated addresses may not be a line earlier in the buffer than the first. If the
address on the left (right) side of a comma or semicolon is absent, it defaults to the first (resp. last) line.

Filename operands of commands may be made up of printing characters only. However, when the file-
name appears as the argument to the invocation of qed, non-printing characters may be included. When a
filename is specified for a command, it is terminated at the first blank, tab or newline.

In the following list of qed commands, the default addresses are shown in parentheses. The parentheses
are not part of the address, but are used to show that the given addresses are the default.

(.) a <text>
The append command accepts input text and appends it after the addressed line. ‘.’ is left on the
last line input, if there were any, otherwise at the addressed line. Address ‘0’ is legal for this com-
mand; text is placed at the beginning of the buffer.

b<bname>
The change buffer command sets the current buffer to be that named. ‘.’, ‘$’ and the remembered
filename are set to those of the new buffer; upon return to a previously used buffer, ‘.’ will be set to
its value when the buffer was last used.

(.) b[+- .][pagesize][display character]
The browse command provides page-oriented printing. The optional ‘+’, ‘-’, or ‘.’ specifies
whether the next, previous, or surrounding page is to be printed; if absent, ‘+’ is assumed. b. also
prints several carets ‘ˆˆˆˆˆ’ immediately below the current line. If a pagesize is given, it is used for
the current browse command and remembered as the default. The pagesize is initially 22 lines. If a
display character is given, the lines are printed in the specified format, and the format is remem-
bered as the default. Initially, ‘p’ is the default. For b+ and b-, ‘.’ is left at the last line displayed;
for b., it is unchanged. NOTE: The browse and change buffer commands are the same character!
The two commands can be syntactically distinguished in all cases except for ‘b<display char>’; this
ambiguity may be resolved by typing the (implicit) ‘+’ after the ‘b’.

(. , .) c <text>
The change command deletes the addressed lines, then accepts input text which replaces these lines.
‘.’ is left at the last line input; if there were none, it is left at the line preceding the deleted lines. If
an interrupt signal (usually ASCII DEL) is received during a change command, the old lines are not
deleted.

(. , .) d
The delete command deletes the addressed lines from the buffer. The line after the deleted section
becomes the current line; if the deleted lines were originally at the end, the new last line becomes
the current line. The character after the ‘d’ can only be one of a blank, newline, tab, or display

348

QED(1) General Commands Manual QED(1)

character. Line 0 is a valid address for deletion; deleting line 0 has no affect on any lines in the
buffer.

e filename
The edit command causes the entire contents of the current buffer to be deleted, and then the named
file to be read in. ‘.’ is set to the last line of the buffer. The number of characters read is typed if
qed is in verbose mode. The filename is remembered for possible use as a default file name in a
subsequent f, r, w, or W command.

E filename
The E command is like e, except that qed does not check to see if the buffer has been modified
since the last w command.

f filename
The filename command prints information about the current buffer, in the format used by the n
command. If filename is given, the currently remembered file name is changed to filename. If qed
is not in verbose mode, the information is only printed if the filename is not specified. If it is not
desired to set the filename, the character immediately after the f must be a newline. Otherwise, the
first token (which may be the null string) on the line, after a mandatory non-empty sequence of
blanks and tabs, is taken to be the filename. These rules apply to all filename-using commands, e, f,
r, R, S, w and W, although some regard specification of an explicitly null filename as an error.

(1 , $) g/regular expression/command list
In the global command, the first step is to mark every line in the range which matches the regular
expression. Then for every such line, the command list is executed with ‘.’ initially set to that line.
Any embedded newlines in the command list must be escaped with a backslash. The a, i, and c
commands and associated input are permitted; the ‘.’ terminating input mode may be omitted if it
would be on the last line of the command list. The commands g and v are not permitted in the com-
mand list. If the command list is empty, ‘.p’ is assumed. The regular expression may be delimited
by any character other than newline.

G/regular expression/command list
In the globuf command, the first step is to mark every active buffer whose output from an f com-
mand (with the filename printed literally) would match the regular expression. (An active buffer is
one which has either some text or a remembered file name.) Then for every such buffer, the com-
mand list is executed with the current buffer set to that buffer. In other respects it is like the global
command, except that only the commands G and V are not permitted in the command list. If the
command list is empty, ‘f’ is assumed.

h<option> command list
The until command provides a simple looping mechanism. The command list is a newline-termi-
nated command sequence which forms the body of the loop; embedded newlines must be escaped
with a backslash. The option specifies the exit condition for the loop, and is specified by the char-
acter(s) immediately following the ‘h’:

h[N]t The loop is executed until the truth flag is true.
h[N]f The loop is executed until the truth flag is false.
h[N] The loop is executed indefinitely.

The loop condition is tested after execution, so the ‘ht’ and ‘hf’ forms execute at least once. N de-
notes an optional non-negative number which indicates the maximum number of times to execute
the loop.

(.) i <text>
The insert command accepts input text and inserts it before the addressed line. ‘.’ is left at the last
line input; if there were none, at the line before the addressed line. This command differs from the
a command only in the placement of the text.

(.-1 , .) j
(.-1 , .) j /replacement/

The join command collapses all addressed lines into a single line by deleting intermediate newlines.
The replacement (if any) is placed between joined lines. Newlines, backslashes ‘\’, and slashes ‘/’
within replacement must be preceded by a backslash. Only slashes may delimit replacement. ‘.’ is

349

QED(1) General Commands Manual QED(1)

left at the resulting line. NOTE: The join command in qed has a different default addressing from
that in ed.

(.) k<bname>
The mark command marks the addressed line with the given bname. (The bname used in the mark
has no relation to any buffer; it is just a label.) The address form ‘´<bname>’ then addresses this
line. ‘.’ is not changed. The marks are global to qed; marking a line ‘x’ erases any previous mark
‘x’ in any buffer.

(. , .) l
The list command prints the addressed lines in an unambiguous way: a tab is printed as ‘\t’, a back-
space as ‘\b’, a backslash as ‘\\’, a non-printing character is printed as a backslash followed by three
octal digits, and a long line is folded, with the second and subsequent sub-lines indented one tab
stop. If the last character in the line is a blank, it is followed by ‘\n’.

(. , .) L
The L command is similar to the l command, but each line displayed is preceded by its line number,
any marks it has (which appear as ‘´x’), and a tab.

(. , .) ma
The move command repositions the addressed lines after the line addressed by a. The last of the
moved lines becomes the current line. The address a can also be of the form <bname>address, in
which case the text is moved after the address in the named buffer. The buffer to which the text was
moved becomes the current buffer. The original buffer (if different) has ‘.’ left at the line before the
moved lines.

n The names command displays the bname, dollar and filename (in ‘l’ format) of the current buffer
and all active buffers. If the buffer’s changed flag is set, an apostrophe ‘´’ is printed after the
bname. The current buffer is indicated by a period ‘.’ before the dollar value. If present, the file-
name is preceded by a tab.

N The N command is similar to the n command, but the display is only given for those buffers which
have a filename and for which the changed flag is set.

ops The option command allows various options to be set. The first argument, p, specifies which option
is being set. The rest of the command, s, specifies the setting. Most options can be either enabled
or disabled; s is ‘s’ to set the option, or ‘r’ to reset it. The following table describes the available
options. The default setting is shown after the option’s letter.

b22p Set the length and format of the page printed by the browse command. Either the length or
the format may be omitted.

B<null string>
Set the default command sequence to be performed when a newline command is typed at the
terminal. The command sequence is set by following the ‘B’ with a newline-terminated
string. If the string is null, the newline command resumes its default behaviour.

cr Set the changed flag of the current buffer.
dr Dualcase search mode affects rule one of regular expression construction so that a letter is

matched without regard to its case.
er Error exit mode causes qed to exit if an error occurs (see the DIAGNOSTICS section). This

option is mainly intended for use of qed in shell files.
ir Interrupt catching mode causes qed to exit when interrupted. (This includes removing the

temporary file).
pr Prompting mode causes ‘∗ ’ to be typed immediately before a command (as opposed to text) is

read from the terminal.
qr Quit catching mode causes qed to dump core, leaving the temporary file intact, when a QUIT

signal is received.
Tr Tracing mode causes all commands not typed directly by the user to be echoed on the termi-

nal. When a special character (other than ‘\B or ‘\N’) is encountered, a ‘[’ is typed, followed
by a code specifying the character — ‘za’ for register ‘a’, ‘g’ for global command list, ‘l’ for
‘\l’, ‘B’ for browse pseudo-register, etc. Then, an ‘=’ is typed, followed by the interpretation
of the special character, followed by a ‘]’.

350

QED(1) General Commands Manual QED(1)

us Uppercase conversion mode enables case transformation in substitute commands. If the ‘u’
flag is set, the character caret (‘ˆ’) becomes non-literal in the replacement text of a substitu-
tion. It behaves just like ‘&’, but with case switching of alphabetics in the replaced text. If
the flag is ‘u’, all alphabetics are mapped to upper case; if ‘l’, lower case; and if ‘s’, the case
is switched.

vs Verbose mode causes character counts to be typed after e, r, w, R, S, and W commands. It
also causes ‘!’ to be typed upon completion of the !, <, | and > commands.

?c c must be one of ‘c’, ‘d’, ‘i’, ‘p’, ‘T’ or ‘v’. The value of the corresponding flag is stored in
the truth.

(. , .) p
The print command prints the addressed lines. ‘.’ is left at the last line printed.

(. , .) P
The PRINT command is similar to the print command, but each line displayed is preceded by its
line number, any marks it has (which appear as ‘´x’), and a tab.

q The quit command causes qed to exit. No automatic write of a file is done. If the changed flag is
set in any buffer, qed prints ‘?q’ and refuses to quit. A second q or a Q will get out regardless, as
will an end-of-file on the standard input.

Q Like q, but changed flags are not checked.

($) r filename
The read command reads in the given file after the addressed line. If no filename is given, the re-
membered filename is used (see e and f commands). The filename is remembered if there was not
already a remembered filename in the current buffer. Address ‘0’ is legal for r and causes the file to
be read at the beginning of the buffer. If qed is in verbose mode and the read is successful, the
number of characters read is typed, except while qed is starting up, in which case an f command is
performed. ‘.’ is left at the last line read in from the file.

R filename
The restore command restores an environment saved by a save (S) command. The changed flag in
each buffer is restored from the files; all other flags are unaffected. The input stack is reset to the
top (teletype input) level, and the current buffer becomes ‘a’. ‘.’ is left at the saved value of ‘.’ in
buffer ‘a’. If the filename is not specified, ‘q’ is used.

(. , .) sn/regular expression/replacement/
(. , .) sn/regular expression/replacement/g

The substitute command searches each addressed line for occurrences of the specified regular ex-
pression. The decimal number n defaults to 1 if missing. On each line in which n matches are
found, the nth matched string is replaced with replacement. If the global replacement indicator ‘g’
follows the command, all subsequent matches on the line are also replaced. Within a line, a search
starts from the character following the last match, unless the last match was an empty string, in
which case the search starts at the second character following the empty string (to ensure a match is
not repeated). It is an error for the substitution to fail on all addressed lines unless it is in a global
command. ‘.’ is left at the last line substituted.

Any character other than newline or a numeral may be used instead of ‘/’ to delimit the regular
expression and replacement. If the trailing delimiter is missing (i.e., an unescaped newline in the
replacement), its presence is assumed, and the last line affected is printed, as if the substitute was
followed by a p command. If delimiter following the expression is omitted as well, an empty
replacement is assumed.

An ampersand ‘&’ appearing in replacement is replaced by the string matching the regular ex-
pression. As a more general feature, the characters ‘\n’, where n is a digit, are replaced by the
text matched by the n-th regular subexpression enclosed between ‘\ (’ and ‘\)’. When nested
parenthesized subexpressions are present, n is determined by counting occurrences of ‘\ (’ start-
ing from the left.

A caret ‘ˆ’ appearing in replacement behaves much like an ampersand, but provides a mechanism
for case switching of alphabetics, as discussed under the o command. To include an ampersand
‘&’, caret ‘ˆ’, backslash ‘\’, newline, or the delimiter literally in replacement, the character must

351

QED(1) General Commands Manual QED(1)

be preceded by a backslash. Lines may be split by substituting newline characters into them.

S filename
The save command saves the full buffer and register information in two files called ‘filename:aq’
and ‘filename:bq’. If the filename is absent, ‘q’ is used. If the filename has more than 12 charac-
ters after the last slash ‘/’, it is truncated to 12 characters to avoid overwriting the file.

(. , .) ta
The copy command acts just like the move m command except that a copy of the addressed lines is
placed after address a. ‘.’ is left on the last line of the copy. The buffer to which the text was
copied becomes the current buffer.

u The undo command restores the last line changed by a s, u, or x command. Any new lines created
by splitting the original are left. It is an error if the line is not in the current buffer. ‘.’ is left at the
restored line.

(1 , $) v/regular expression/command list
This command is the same as the global command except that the command list is executed with ‘.’
initially set to every line except those matching the regular expression.

V/regular expression/command list
This command is the same as the globuf command except that the command list is executed with
the current buffer initially set to every active buffer except those matching the regular expression.

(1 , $) w filename
The write command writes the addressed lines onto the given file. If the file does not exist, it is cre-
ated. The filename is remembered if there was not already a remembered file name in the current
buffer. If no file name is given, the remembered file name is used. ‘.’ is unchanged. If qed is in
verbose mode and the command is successful, the number of characters written is typed.

(1 , $) W
The W command is the same as the w command except that the addressed lines are appended to the
file.

(. , .) x
The xform command allows one line at a time to be modified according to graphical requests. The
line to be modified is typed out, and then the modify request is read from the terminal (even if the
xform command is in a global command or other nested input source). Generally each character in
the request specifies how to modify the character immediately above it, in the original line, as de-
scribed in the following table.

Delete the above character.
% Replace the above character with a space.
ˆ Insert the rest of the request line before the above character. If the rest of the request line is

empty, insert a newline character.
$ Delete the characters in the above line from this position on; replace them with the rest of the

request line.
space or tab:

Leave above character(s) unchanged.
any other:

This character replaces the one above it.

If the request line is longer than the line to be modified, the overhang is added to the end of the line
without interpretation, that is, without treating ‘#’, ‘%’, ‘ˆ’ or ‘$’ specially. Any characters after a
‘ˆ’ or ‘$’ request are not interpreted either.

Xform will not process control characters other than tab and newline, except in contexts where it
need not know their width (that is, after a ‘ˆ’ or ‘$’ request, or in the part of either the request or the
line that overhangs the other). Remember that the ERASE character (processed by the system)
erases the last character typed, not the last column.

Some characters take more than one column of the terminal to enter or display. For example, enter-
ing the ERASE or KILL characters literally takes two columns because they must be escaped. To
delete a multi-column character, one must type ‘#’ under all its columns. To replace a multicolumn

352

QED(1) General Commands Manual QED(1)

character, the replacement must be typed under the first column of the character. Similarly, if a re-
placement character is multi-columned, it replaces the character in its first column.

The tab character prints as a sequence of spaces, and may be modified as if it were that sequence.
As long as the last space is unmodified, it and the remaining contiguous spaces will represent a tab.

The modification process is repeated until the request is empty. Only a newline may immediately
follow the ‘x’.

y<condition><type>
The jump command controls execution nested input sources. The condition is compared to the truth
flag to see if the jump should be performed; if a ‘t’, the jump is performed if the truth flag is true, if
an ‘f’, the jump is performed if the truth flag is false, if absent the jump is always performed. Sev-
eral types of jumps exist:

y[tf]o Jump out of the current input source. If the current input source is the command line for a
g, G, v, V or h command, the command is terminated.

y[tf]N Control is transferred to absolute line N (an integer) in the executing buffer. The current
input source must be a buffer.

y[tf]´<label>
Control is transferred to the first line found, searching forward in the buffer, that begins
with a comment "<label>. The match of the labels must be exact; regular expressions are
not used to define the control label. (A tab, blank or newline after the double quote speci-
fies a null label: a line beginning ‘" LAB’ cannot be transferred to by this form of jump.)
If no such label is found, control resumes at the character after the label in the jump com-
mand. The current input source must be a buffer.

y[tf]`<label>
Similar to ‘y´<label>’, but the search is in the opposite (reverse) direction.

y[tf] If no recognized type is given, input is skipped up to the next newline.

It is an error if reading the label or line number for a jump command causes the current input source
(i.e. buffer) to be ‘popped.’ This can happen if the label is the last word in the buffer, but can be cir-
cumvented by putting an extra blank or newline after the jump command.

(. , .) zXc
Qed has 56 registers labeled by bnames. Three of these, registers ‘T’, ‘C’, and ‘U’, are reserved:
‘T’ is the truth flag, ‘C’ is the count, ‘U’ contains the UNIX command from the most recent bang,
crunch, zap, or pipe command. The contents of register X, where X is a bname, can be inserted into
the input stream with the special character ‘‘\zX’’. The command ‘‘zX’’ specifies register X as the
argument to the operation character (signified above by c) that follows it. In the description below,
N stands for a possibly signed decimal integer and S stands for a newline-terminated string. New-
lines may be embedded in registers by escaping them with a backslash. Although some of the reg-
ister commands refer to addressed lines, ‘.’ is unaffected by a z command. The operations are as
follows:

p Print the contents of the register in ‘p’ format.
l Print the contents of the register in ‘l’ format.
. Set the register to the contents of the addressed line.
/reg-exp/Set the register to the portion of current line that matches the regular expression in slashes.

If no such pattern is found, the register is cleared. The truth flag is set according to
whether a match was found.

:S Set register to the string following the colon.
´Y Make a direct copy of register Y in register X, without interpreting special characters. Y is

any register bname.
+N Increment by N the ASCII value of each character in the register. Similarly, a ‘-’ decre-

ments each character.
=S (Or ‘<’ or ‘>’ or ‘!=’ or ‘!<’ or ‘!>’.) Set truth flag to the result of the lexical comparison

of the register and the string S.
n Set the count to the length of the register.

353

QED(1) General Commands Manual QED(1)

) N (Or ’(’.) ‘Take’ the first N characters of the register, i.e. truncate at the N+1’th character.
‘(’ (‘drop’) is the complementary operator; it deletes the first N characters from the regis-
ter. If N is negative, the break point is | N| from the end.

[/reg-exp/
Set the count to the starting index of the regular expression in the register. Set the truth to
whether the expression matches any of the register.

sn/reg-exp/replacement/
sn/reg-exp/replacement/g

Perform a substitute command with semantics identical to the s command, but in the text
of the register, not a line of the buffer.

C ‘Clean’ the register: collapse each occurrence of ‘white space’ in the register to a single
blank, and delete initial and trailing white space.

{ S Set the register to the value of the shell environment variable S, whose name may be termi-
nated by a space, tab, newline or ‘}’.

The registers can also be manipulated as decimal numbers. Numerical operations are indicated by a
number sign ‘#’ after the register name: e.g. ‘zx#+2’. It is an error to attempt to perform arithmetic
on a register containing non-numeric text other than a leading minus sign. The numerical opera-
tions are:

a Set the value of the register to be the value of the address given to the command; e.g.
‘$za#a’ sets register ‘a’ to the number of lines in the buffer.

r Set register X to be the first address given the command, and X+1 to be the second. If X is
‘ ’, an error is generated. For example, ‘5,$zi#r’ sets register ‘i’ to 5, and register ‘j’ to the
value of ‘$’. ‘.’ is unchanged. This command is usually used to pass addresses to a com-
mand buffer.

n Set register to the length of the addressed line.
:N Set register to N. Scanning of the number stops at the first non-numeric character, not at

the end of the line.
+N Increment register by N. ‘-’, ‘∗ ’, ‘/’, and ‘%’ decrement, multiply, divide, or modulo the

register by N.
P Set register to the decimal value of the process id of qed.
=N (Or ‘<’ or ‘>’ or ‘!=’ or ‘!<’ or ‘!>’.) Set truth flag to the result of the numeric comparison

of the register and the number N.

Several numerical operations may be combined in one command (and it is more efficient to do so
when possible.) For example, ‘$zd#a-3’ sets register ‘d’ to three less than the value of ‘$’.

Z The zero command clears the current buffer. The contents, filename and all flags for the buffer are
zeroed. The character after the ‘Z’ must be a blank, tab or newline.

($) =
The line number of the addressed line is typed. ‘.’ is unchanged.

! <UNIX command>
The bang command sends the command line after the ‘!’ to the UNIX shell to be interpreted as a
command. Embedded newlines must be preceded by a backslash. The signals INTR, QUIT, and
HUP are enabled or disabled as on entry to qed. At the completion of the command, if qed is in
verbose mode, an ‘!’ is typed. The return status of the command is stored in the truth flag. ‘.’ is
unchanged.

The command line is stored in register ‘U’. If a second ‘!’ immediately follows the first, it is re-
placed with the uninterpreted contents of this register. Thus ‘!!’ repeats the most recent bang com-
mand, and ‘!! wc’ repeats the command with an additional pipeline element added.

(1 , $) > <UNIX command>
The zap command is similar to the bang command, but the addressed lines become the default stan-
dard input of the command. The command is stored in register ‘U’, as for bang; ‘>>’ corresponds
to ‘!!’.

354

QED(1) General Commands Manual QED(1)

($) < <UNIX command>
The crunch command is similar to the bang command, but the standard output of the command is
appended to the current buffer after the addressed line, as though read with an r command from a
temporary file. The command is stored in register ‘U’ as for bang; ‘<<’ corresponds to ‘!!’. ‘.’ is
left at the last line read.

(1 , $) | <UNIX command>
The pipe command is similar to the bang command, but the addressed lines become the default
standard input of the command, and are replaced by the standard output of the command. The com-
mand is stored in register ‘U’ as for bang; ‘| |’ corresponds to ‘!!’. If the command returns non-zero
status, the original lines are not deleted. ‘.’ is left at the last line read.

(.)"
The comment command sets dot to the addressed line, and ignores the rest of the line up to the first
following double quote or newline. If, however, the character immediately after the double quote is
a second double quote (i.e. the command is ‘‘""’’), the text which would normally be ignored is
typed on the standard output. Special characters in the text will be interpreted, whether or not the
text is printed, so to print a message such as ‘‘Type \bx’’ requires the command ‘‘" " Type \cbx’’.
Commented lines are used as labels by the y (jump) command.

% The register print command displays the name and value of all defined registers, followed by the \p
(‘P’) and \r (‘R’) pseudo-registers, and the browse (‘B’) pseudo-register, if defined.

The numeric register print command displays the name and value of all defined registers with nu-
meric values.

(.+1 , .+1)<newline>
An address or addresses alone on a line cause the addressed lines to be printed. If the last address
separator before the newline was ‘;’, only the final addressed line is printed. A blank line alone
causes the contents of the browse pseudo-register (described with the o command) to be executed.
If the register is null, as it is initially, the newline command behaves as though the register contains
‘.+1p’.

Special Characters

Qed has some special character sequences with non-literal interpretations. These sequences are processed
at the lowest level of input, so their interpretation is completely transparent to the actual commands.
Whenever input from the user is expected, a special character can appear and will be processed. Special
characters can be nested in the sense that, for example, a buffer invoked by ‘\b’ can contain a register in-
vocation ‘\ z’. Backslashed escape sequences such as ‘\ (’ in regular expressions are not special charac-
ters, so are not interpreted at input. The sequence ‘\ (’ is left untouched by the input mechanism of qed;
any special meaning it receives is given it during regular expression processing. The special characters
are:

\b<bname>
The ‘b’ must be followed by a bname. When ‘\bX’ is typed, the contents of buffer X, up
to but not including the last newline, are read as if they were entered from the keyboard.
Typically, the missing newline is replaced by the newline which appears after the buffer
invocation. Changing the contents of an executing buffer may have bizarre effects.

\ B Equivalent to current buffer’s bname.
\c The sequence \c is replaced by a single backslash, which is not re-scanned. The effect

of the ‘c’ is to delay interpretation of a special character.
\ f Equivalent to current buffer’s file name.
\ F<bname>

Equivalent to the file name in the named buffer.
\ l One line is read from the standard input up to, but not including the terminal newline,

which is discarded. Note that the first invocation will read the remainder of the last line
entered from the keyboard. For example, if a buffer is invoked by typing the line:

\bxjunk
the first \ l in buffer ‘x’ will return the string ‘junk’.

355

QED(1) General Commands Manual QED(1)

\ N Equivalent to a newline. Primarily useful when delayed.
\p Equivalent to the most recent regular expression used.
\ r Equivalent to the replacement text of the most recent substitute or join command.
\ z<bname>

Equivalent to the contents of register ‘\ zX’. If the register changes during execution, the
changes appear immediately and affect execution. If a ‘+’ (‘-’) appears between the ‘z’
and the bname, the ASCII values of the characters in the register are incremented
(decremented) by one before interpretation. If a ‘#’ precedes the ‘+’ (‘-’) the contents
of the register are numerically incremented (decremented).

\" The sequence \" means ‘no character at all’! It is primarily used to delay interpretation
of a period that terminates an append, until the second or third time it is read (e.g. in
loading execution buffers): the sequence \c". at the beginning of a line puts a period on
the line which will terminate an append the second time it is read.

\´[bfFlprz]
If an apostrophe appears between the backslash and the identifying character for one of
the special characters ‘\b’, ‘\ f’, ‘\ F’, ‘\ l’, ‘\ p’, ‘\ r’ or ‘\ z’, interpretation is as usual ex-
cept that any further special characters embedded in the buffer, register, etc. are not in-
terpreted. Actually, any special character may be quoted, but in forms such as ‘\´ B’, the
quote has no effect.

A special character is interpreted immediately when it appears in the input stream, whether it is currently
coming from the teletype, a buffer, a register, etc. (This includes characters read when typing a special
character: ‘\´b\za’, with register ‘a’ containing the character ‘X’, invokes the literal contents of buffer
‘X’.) Thus, interpretation is recursive unless the special character is ‘\c’. Special characters appearing in
text processed in a command such as move, read or write, are not interpreted. If the backslash-character
pair is not a special character from the above list, it is passed unchanged. Interpretation may be delayed
using ‘\c’; for example, if a ‘\bx’ is to be appended to a buffer for later interpretation, the user must type
‘\cbx’. To delay interpretation n times, n c’s must be placed between the backslash and the identifying
character. In regular expressions and substitutes, a backslash preceding a metacharacter turns off its spe-
cial meaning. Even in these cases, a backslash preceding an ordinary character is not deleted, unlike in
ed. For example, since the ‘g’ command must read its entire line, a ‘\ zx’ in a substitute driven by a global
must be delayed if the contents of the register are to be different for each line, but since ‘\&’ is not a spe-
cial character except to the substitute, its interpretation need not be delayed:

zA#:1
g/ \$/ s / \.xyz / \czA \&/p zA#+1

globally searches for lines with a literal currency sign, and on each one substitutes for ‘.xyz’ the contents
of register ‘A’ at the time of substitution, followed by a space and a literal ampersand, prints the result and
increments register ‘A’. As a second example, the substitute

s /xyz / \\ N&/

replaces ‘xyz’ with a newline followed by ‘xyz’. Note that the ‘\\ N’ is interpreted as ‘backslash followed
by newline,’ as the sequence ‘\\’ has no special meaning in qed outside of regular expressions and replace-
ment text. However, to match, say, ‘\\ z’ using a regular expression, it must be entered as ‘\\\cz’.

If an interrupt signal (ASCII DEL) is sent, qed prints ‘??’ and returns to its command level. If a hangup
signal is received, qed executes the command ‘S qed.hup’.

Some size limitations: 512 characters per line, 256 characters per global command list, 1024 characters of
string storage area, used for storing registers, file names and regular expressions, 16 levels of input nest-
ing, and 128K characters in the temporary file. The limit on the number of lines depends on the amount
of core: each line takes 1 word.

FILES
/tmp/q#, temporary; ‘#’ is the process number (six decimal digits).

356

QED(1) General Commands Manual QED(1)

DIAGNOSTICS
Diagnostics are in the form of ‘?’ followed by a single letter code. If the diagnostic is because of an inac-
cessible file, the offending file name is also displayed. If input is not from the highest level (i.e. the stan-
dard input, usually the terminal), a traceback is printed, starting with the lowest level. The elements of the
traceback are of the form ?bXM.N or ?zXN, where X is the buffer or register being executed when the error
was encountered, M is the line number in the buffer and N is the character number in the line or register.
The possible errors are:
0 non-zero status return in | command
F bad bname for \ F
G nested globuf commands
N last line of input did not end with newline
O unknown option in the o?c command
R restore (R) command failed (file not found or bad format)
T I/O error or overflow in tempfile
Z out of string space; clear a few registers or file names
a address syntax
b bad bname in a b command or for \b
c ran out of core
f filename syntax error
g nested global commands
i more than 52 files in initialization argument list
k bad bname in k command
l an internal table length was exceeded
m tried to move to an illegal place (e.g. 1,6m4)
o error opening or creating a file
p bad regular expression (pattern) syntax
q e with the current changed flag set, or q with any changed flag set
r read error from file
s no substitutions found
t bad x command data or single-case terminal
u no line for u command to undo
x command syntax error
w write error on file
y bad jump command (including popping the input buffer while scanning the label)
z bad register bname
| failure to create pipe for <, | or > command
bad numeric register operation
$ line address out of range
? interrupt
/ line search failed
[bad index in a register take or drop command
\ attempt to recursively append a buffer
! jackpot — you found a bug in regular expression matching

SEE ALSO
qedbufs(1)
A Tutorial Introduction to the ED Text Editor (B. W. Kernighan)
Programming in Qed: a Tutorial (Robert Pike)
ed(1)

U of T INFO
Written at U of T, based on several incarnations of ed, with contributions from Tom Duff, Robert Pike,
Hugh Redelmeier and David Tilbrook.

BUGS
The changed flag is not omniscient; changing the contents of the file outside of qed will fool it.
Xform could work on single-case terminals, but backslashes become very confusing for the user.
On the PDP-11, numeric registers are 16-bit integers, but the count is a 32-bit integer.

357

QSNAP(1) General Commands Manual QSNAP(1)

NAME
qsnap − high resolution digital film printer

SYNOPSIS
qsnap [-bfmrxRXY] [N ...] file

DESCRIPTION
Qsnap produces images on a QCR digital film printer. The input file should be in the form of picfile(5),
3-channel for color or 1-channel for black and white.

Option letters appear in one string. Certain options require a numeric argument, N, which follows the
string as a separate argument.

b N Set the brightness of the image to N, 0≤N≤ 8; 0 is brightest. The default brightness value is 2 in
high resolution mode (4K× 4K pixels), and 0 in low resolution mode (2K× 2K pixels) as set by op-
tion R.

f N Correct the exposure for a given type of film. Valid film types are: 7, 8, and 0 to 5 inclusive.
0 = (default) Polaroid Type 52 (4× 5 inch).
1 = linear correction table.
2 = Polaroid Type 559 color pack film (4× 5 inch), 2K mode.
3 = Ektachrome 100 color film (35mm), 2K mode.
4 = Ektachrome 100 color film (35mm), 4K mode.
5 = Polaroid Type 559 color pack film (4× 5 inch), 4K mode.
7 = Polaroid Type 809 color film (8× 10 inch), 4K mode.
8 = Tmax-100 black&white film (35mm), 2K or 4K mode.

m N Set the enlargement factor. The image is enlarged with a simple box filter. Default values are
N=3 for 2K resolution and N=6 for 4K.

r Expose the red channel of a color image only (for multiple red overlays).

x N Expose the image N times. (Useful if the maximum brightness value is not bright enough.)

R N Set the resolution, where N is either 2 or 4, to select low (2K× 2K) or high (4K× 4K) resolution,
respectively. The default it to leave the resolution unchanged.

X N Offset the image along the x-coordinate by N pixels. The 35mm camera in 4K mode may require
an X- and/or a Y-offset. The offset in each direction is multiplied by the enlargement factor.

Y N Offset the image along the y-coordinate by N pixels.

The imaging resolution for 35mm film is 114 pixels/mm (2895 dots/inch) in high resolution mode, and 57
pixels/mm in low resolution mode. The maximum size image that fits a 35mm negative is 3840x3072
pixels. It takes about 2 minutes to render such an image in black and white, or 6 minutes in color. Since
the color film is usually less sensitive to red, it is good practice to expose the red channel of a color image
twice, using option r. Kodak Ektachrome color film, 100 ASA, or Kodak Tmax-100 black and white film
are recommended. For 100 ASA film, imaging at brightness level 2 produces the best results.

With the 4× 5 inch module, the imaging resolution is 34 pixels/mm (864 dots/inch) in high resolution
mode, 17 pixels/mm in low resolution. Polaroid Type 559 color film or Polaroid Type 52 black and white
film is recommended.

With the 8× 10 inch module, the imaging resolution is 17 pixels/mm. This module can only be used in
high resolution mode. Polaroid Type 809 color film is recommended.

SEE ALSO
pico(1), bcp(1), cscan(1), imscan(1), picfile(5)

pipe 358

RANDOM(1) General Commands Manual RANDOM(1)

NAME
random, fortune - sample lines from a file, return cookies

SYNOPSIS
random [-e] [n]

/usr/games/fortune [file]

DESCRIPTION
Random reads the standard input and copies each line to the standard output with probability 1/n. The de-
fault value of n is 2.

Option -e writes no output and returns a random exit code in the range [0,n-1].

Fortune prints a one-line aphorism chosen at random. If a file is specified, the saying is taken from that
file; otherwise it is selected from

FILES
/usr/games/lib/fortunes
/usr/games/lib/fortunes.index fast lookup table, maintained automatically

BUGS
Successive results of option -e are highly correlated if random is called more than once per second.

359

RATES(1) General Commands Manual RATES(1)

NAME
rates - show system share scheduling rates by scheduling group

SYNOPSIS
rates [-Kn] [-cn] [-sn] [-u]

DESCRIPTION
Rates prints a table of rates by scheduling group, which purports to show the share of the system being al-
located to each group of users. In particular, it is possible to compare the actual working rate with the in-
tended and effective share.

The table contains ‘#’s to indicate rate of consumption of resources for each group, an ‘I’ indicating the
intended share, and (if different) an ’!’ indicating the effective share. Any difference between intended
and effective share is caused by the recent history of usage.

Invoked without arguments, Rates will print the table and exit. The flags affect operation as follows:-

flag meaning

-Kn Set the half-life for decaying the displayed rate to n seconds [default 4].

-cn Continuous operation, where n, if present, limits the number of cycles.

-sn Delay time between updates becomes n seconds [default 4].

-u The display will show users, instead of scheduling groups.

EXAMPLES
rates -c | dis

SEE ALSO
dis(1), shstats(1), ustats(1), share(5).

SHARE 360

RATFOR(1) General Commands Manual RATFOR(1)

NAME
ratfor - rational Fortran dialect

SYNOPSIS
ratfor [option ...] [filename ...]

DESCRIPTION
Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran. Ratfor provides control flow
constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement }

decision-making:
if (condition) statement [else statement]
switch (integer value) {

case integer: statement
...
[default:] statement

}

loops: while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return (expression)
returns expression to caller from function

define:
define name replacement

include:
include filename

Ratfor is best used with f77(1).

SEE ALSO
efl(1), f77(1), struct(1)
B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

361

RC(1) General Commands Manual RC(1)

NAME
rc, cd, wait, whatis - command language

SYNOPSIS
rc [-dilxepv] [-c command] [file [arg ...]]

DESCRIPTION
Rc is the Plan 9 shell. It executes command lines read from a terminal or a file or, with the -c flag, from
rc’s argument list.

Command Lines
A command line is a sequence of commands, separated by ampersands or semicolons (& or ;) and termi-
nated by a newline. The commands are executed in sequence from left to right. Rc does not wait for a
command followed by & to finish executing before starting the following command. Whenever a com-
mand followed by & is executed, its process id is assigned to the rc variable $apid. Whenever a com-
mand not followed by & exits normally, the low 8 bits of the argument to its exit(2) call are assigned to
the rc variable $status. If it terminates abnormally, $status has value 1000 plus the termination status
provided to wait(2).

A long command line may be continued on subsequent lines by typing a backslash (\) followed by a new-
line. This sequence is treated as though it were a blank. Backslash is not otherwise a special character.

A number-sign (#) and any following characters up to (but not including) the next newline are ignored, ex-
cept in quotation marks.

Simple Commands
A simple command is a sequence of arguments interspersed with I/O redirections. If the first argument is
the name of an rc function or of one of rc’s built-in commands, it is executed by rc. Otherwise if the
name contains a slash (/), it must be the pathname of the program to be executed. Names containing no
slash are searched for in a list of directory names stored in $path. The first executable file of the given
name found in a directory in $path is the program to be executed.

The first word of a simple command cannot be a keyword unless it is quoted or otherwise disguised. The
keywords are

for in while if not switch fn ! @

Arguments and Variables
A number of constructions may be used where rc’s syntax requires an argument to appear. In many cases
a construction’s value will be a list of arguments rather than a single string.

The simplest kind of argument is the unquoted word: a sequence of one or more characters none of which
is a blank, tab, newline or any of the following:

; & | ˆ $ = ‘ ’ { } () < >
An unquoted word that contains any of the characters ∗ ? or [, is a pattern for matching against file
names. The character ∗ matches any sequence of characters, ? matches any single character and [class]
matches any character in the class. If the first character of class is , the class is complemented. The
class may also contain pairs of characters separated by -, standing for all characters lexically between the
two. The character / must appear explicitly in a pattern, as must the first character of the pathname com-
ponents . and ... A pattern is replaced by a list of arguments, one for each pathname matched, except that
a pattern matching no names is not replaced by the empty list, but rather stands for itself. Pattern match-
ing is done after all other operations. Thus,

x=/tmp echo $xˆ/∗.c
matches /tmp/∗.c, rather than matching /∗.c and then prepending /tmp.

A quoted word is a sequence of characters surrounded by single quotes (’). A single quote is represented
in a quoted word by a pair of quotes (’’).

Each of the following is an argument.
(arguments)

The value of a sequence of arguments enclosed in parentheses is a list comprising the members
of each element of the sequence. Argument lists have no recursive structure, although their syn-
tax may suggest it. The following are entirely equivalent:

echo hi there everybody
((echo) (hi there) everybody)

362

RC(1) General Commands Manual RC(1)

$argument
$argument(subscript)

The argument after the $ is the name of a variable whose value is substituted. Multiple levels of
indirection are possible, but of questionable utility. Variable values are lists of strings. If argu-
ment is a number n, the value is the nth element of $∗ , unless $∗ doesn’t have n elements, in
which case the value is empty. If argument is followed by a parenthesized list of subscripts, the
value substituted is a list composed of the requested elements (origin 1). The parenthesis must
follow the variable name with no spaces. Assignments to variables are described below.

$#argument
The value is the number of elements in the named variable. A variable never assigned a value
has zero elements.

‘{command}
rc executes the command and reads its standard output, splitting it into a list of arguments, using
characters in $ifs as separators. If $ifs is not otherwise set, its value is ’ \t\n’.

<{command}
>{command}

The command is executed asynchronously with its standard output or standard input connected
to a pipe. The value of the argument is the name of a file referring to the other end of the pipe.
This allows the construction of non-linear pipelines. For example, the following runs two com-
mands old and new and uses cmp to compare their outputs

cmp <{old} <{new}
This feature does not work on systems that do not support /dev/fd or its equivalent, e.g. on Sunos
and System V.

argumentˆargument
The ˆ operator concatenates its two operands. If the two operands have the same number of com-
ponents, they are concatenated pairwise. If not, then one operand must have one component, and
the other must be non-empty, and concatenation is distributive.

Free Carets
In a most circumstances, rc will insert the ˆ operator automatically between words that are not separated
by white space. Whenever one of $ ’ ‘ follows a quoted or unquoted word or an unquoted word follows a
quoted word with no intervening blanks or tabs, a ˆ is inserted between the two. If an unquoted word im-
mediately follows a $ and contains a character other than an alphanumeric, underscore, or ∗ , a ˆ is inserted
before the first such character. Thus

cc -$flags $stem.c

is equivalent to

cc -ˆ$flags $stemˆ.c

I/O Redirections
The sequence >file redirects the standard output file (file descriptor 1, normally the terminal) to the named
file; >>file appends standard output to the file. The standard input file (file descriptor 0, also normally the
terminal) may be redirected from a file by the sequence <file, or from an inline ‘here document’ by the se-
quence <<eof-marker. The contents of a here document are lines of text taken from the command input
stream up to a line containing nothing but the eof-marker, which may be either a quoted or unquoted
word. If eof-marker is unquoted, variable names of the form $word have their values substituted from
rc’s environment. If $word is followed by a caret (ˆ), the caret is deleted. If eof-marker is quoted, no
substitution occurs.

Redirections may be applied to a file-descriptor other than standard input or output by qualifying the redi-
rection operator with a number in square brackets. For example, the diagnostic output (file descriptor 2)
may be redirected by writing cc junk.c >[2]junk.

A file descriptor may be redirected to an already open descriptor by writing >[fd0= fd1] or <[fd0= fd1].
Fd1 is a previously opened file descriptor, and fd0 becomes a new copy (in the sense of dup(2)) of it. A
file descriptor may be closed by writing >[fd0=] or <[fd0=].

Redirections are executed from left to right. Therefore, cc junk.c >/dev/null >[2=1] and cc junk.c
>[2=1] >/dev/null have different effects − the first puts standard output in /dev/null, and then puts diag-
nostic output in the same place, where the second directs diagnostic output to the terminal and sends

363

RC(1) General Commands Manual RC(1)

standard output to /dev/null.

Compound Commands
A pair of commands separated by a pipe operator (|) is a command. The standard output of the left com-
mand is sent through a pipe to the standard input of the right command. The pipe operator may be deco-
rated to use different file descriptors. |[fd] connects the output end of the pipe to file descriptor fd rather
than 1. |[fd0= fd1] connects output to fd0 of the left command and input to fd1 of the right command.

A pair of commands separated by && or || is a command. In either case, the left command is executed
and its exit status examined. If the operator is && the right command is executed if the left command’s
status is zero. || causes the right command to be executed if the left command’s status is non-zero.

The exit status of a command may be inverted (non-zero is changed to zero, zero is changed to one) by
preceding it with a !.

The | operator has highest precedence, and is left-associative (i.e. binds tighter to the left than the right.) !
has intermediate precedence, and && and || have the lowest precedence.

The unary @ operator, with precedence equal to !, causes its operand to be executed in a subshell.

Each of the following is a command.
if (list) command

A list is a sequence of commands, separated by &, ; or newline. It is executed and if its exit sta-
tus is zero, the command is executed.

if not command
The immediately preceding command must have been if (list) command . If its condition was
non-zero, the command is executed.

for (name in arguments) command
for (name) command

The command is executed once for each argument with that argument assigned to name. If the
argument list is omitted, $∗ is used.

while (list) command
The list is executed repeatedly until its exit status is non-zero. Each time it returns zero status,
the command is executed. The empty list always yields zero status.

switch(argument){list}
The list is searched for simple commands beginning with the word case. (The search is only at
the ‘top level’ of the list. That is, cases in nested constructs are not found.) Argument is
matched against each word following case using the pattern-matching algorithm described
above, except that / and the first characters of . and .. need not be matched explicitly. When a
match is found, commands in the list are executed up to the next following case command (at the
top level) or the closing parenthesis.

{list}
Braces serve to alter the grouping of commands implied by operator priorities. The body is a se-
quence of commands separated by &, ; or newline.

fn name{list}
fn name

The first form defines a function with the given name. Subsequently, whenever a command
whose first argument is name is encountered, the current value of the remainder of the com-
mand’s argument list will be assigned to $∗ , after saving its current value, and rc will execute the
list. The second form removes name’s function definition.

fn signal{list}
fn signal

A function with the name of a signal, in lower case, is defined in the usual way, but called when
rc receives that signal; see signal(2). By default rc exits on receiving any signal, except when
run interactively, in which case interrupts and quits normally cause rc to stop whatever it’s doing
and start reading a new command. The second form causes rc to handle a signal in the default
manner. Rc recognizes an artificial signal, sigexit, which occurs when rc is about to finish exe-
cuting.

name=argument command
Any command may be preceded by a sequence of assignments interspersed with redirections.
The assignments remain in effect until the end of the command, unless the command is empty

364

RC(1) General Commands Manual RC(1)

(i.e. the assignments stand alone), in which case they are effective until rescinded by later assign-
ments.

Built-in Commands
These commands are executed internally by rc, usually because their execution changes or depends on
rc’s internal state.
. file ...

Execute commands from file. $∗ is set for the duration to the remainder of the argument list fol-
lowing file. File is searched for using $path.

builtin command ...
Execute command as usual except that any function named command is ignored.

cd [dir]
Change the current directory to dir. The default argument is $home. dir is searched for in each
of the directories mentioned in $cdpath.

eval [arg ...]
The arguments are concatenated separated by spaces into a single string, read as input to rc, and
executed.

exec [command ...]
Rc replaces itself with the given (non-built-in) command .

exit [status]
Exit with the given exit status. If none is given, the current value of $status is used.

shift [n]
Delete the first n (default 1) elements of $∗.

umask [octal]
Set rc’s file-creation mask (see umask(2)) to the given octal value. If no value is given, the cur-
rent mask value is printed.

wait [pid]
Wait for the process with the given pid to exit. If no pid is given, all outstanding processes are
waited for.

whatis name ...
Print the value of each name in a form suitable for input to rc. The output is an assignment to
any variable, the definition of any function, a call to builtin for any built-in command, or the
completed path name of any executable file.

subject pattern ...
The subject is matched against each pattern in sequence. If it matches any pattern, $status is set
to zero. Otherwise, $status is set to one. Patterns are the same as for file name matching, except
that / and the first character of . and .. need not be matched explicitly. The patterns are not sub-
jected to file name matching before the command is executed, so they need not be enclosed in
quotation marks.

Environment
The environment is a list of strings made available to executing binaries. Rc creates an environment entry
for each variable whose value is non-empty, and for each function. The string for a variable entry has the
variable’s name followed by = and its value. If the value has more than one component, these are sepa-
rated by ctrl-a (’\001’) characters. The string for a function is just the rc input that defines the function.

When rc starts executing it reads variable and function definitions from its environment.

Special Variables
The following variables are set or used by rc.
$∗ Set to rc’s argument list during initialization. Whenever a . command or a function is executed,

the current value is saved and $∗ receives the new argument list. The saved value is restored on
completion of the . or function.

$apid Whenever a process is started asynchronously with &, $apid is set to its process id.
$home

The default directory for cd. Initially, if $home is not set and $HOME is, then $home is set to
the value of $HOME.

365

RC(1) General Commands Manual RC(1)

$ifs The input field separators used in backquote substitutions. If $ifs is not set in rc’s environment,
it is initialized to blank, tab and newline.

$path The search path used to find commands and input files for the . command. If not set in the envi-
ronment, it is initialized by path=(. /bin /usr/bin).

$pid Set during initialization to rc’s process id.
$prompt

When rc is run interactively, the first component of $prompt is printed before reading each com-
mand. The second component is printed whenever a newline is typed and more lines are required
to complete the command. If not set in the environment, it is initialized by prompt=(’% ’ ’ ’).

$status
Set to the low 8 bits of the exit(2) argument of a normally terminating binary (unless started with
&), or to 1000 plus the termination status on abnormal termination. ! and also change $status.
Its value is used to control execution in &&, ||, if and while commands. When rc exits at end-of-
file of its input or on executing an exit command with no argument, $status is its exit status.

Invocation
If rc is started with no arguments it reads commands from standard input. Otherwise its first non-flag ar-
gument is the name of a file from which to read commands (but see -c below). Subsequent arguments be-
come the initial value of $∗. Rc accepts the following command-line flags.
-c string

Commands are read from string.
-d Debugging flag, causes rc only to catch SIGINT, so that SIGQUIT will cause it to dump core.
-e Exit if $status is non-zero after executing a simple command.
-i If -i is present, or rc is given no arguments and its standard input is a terminal, it runs interac-

tively. Commands are prompted for using $prompt and SIGINT and SIGQUIT are caught and
sloughed off.

-l If -l is given or the first character of argument zero is -, rc reads commands from $home/.rcrc, if
it exists, before reading its normal input.

-p A no-op.
-v Echo input on file descriptor 2 as it is read.
-x Print each simple command before executing it.

BUGS
It’s too slow and too big.
There should be away to match patterns against whole lists rather than just single strings.
Using to check the value of $status changes $status.
Functions that use here documents don’t work.
Environment entries for variables are kludgy for UNIX compatibility. Woe betide the imported variable
whose value contains a ctrl-a.

366

RCP(1) General Commands Manual RCP(1)

NAME
rcp - remote file copy

SYNOPSIS
rcp filename1 filename2

rcp [-r] filename ... directory

DESCRIPTION
Rcp copies files across TCP/IP connections. Each filename or directory argument is either a remote file
name of the form:

hostname:path

or a local file name (containing no : unless preceded by /).

If a filename is not a full path name, it is interpreted relative to your home directory on machine host-
name. A path on a remote host may be quoted to cause metacharacters to be interpreted remotely.

Your current local user name must exist on hostname and allow remote command execution by rsh; see
con(1).

Rcp handles third party copies, where neither source nor target files are on the current machine. Host-
names may also take the form

username@hostname:filename

to use username rather than your current local user name as the user name on the remote host. In this
usage, hostname may be a full internet domain name.

The option is

-r Copy each subtree rooted at filename; in this case the destination must be a directory.

FILES
.cshrc

.login

.profile

SEE ALSO
con(1), cu(1), push(1), uucp(1)

BUGS
There is no check against copying a file onto itself.
Certain cases where a file name is given when a directory is required are not diagnosed.

367

READSLOW (1) General Commands Manual READSLOW (1)

NAME
readslow - watch a growing file

SYNOPSIS
readslow [-e] [file]

DESCRIPTION
Readslow copies the contents of the file (standard input by default) to the standard output. Upon reaching
an apparent end of file, it tries periodically to read further, thus letting you watch the progress of a file that
another process is writing into. Option -e causes readslow to begin at the present end of the file.

SEE ALSO
tail(1)

368

REFER(1) General Commands Manual REFER(1)

NAME
refer, lookbib, pubindex - maintain and use bibliographic references

SYNOPSIS
refer [option ...] [file ...]

lookbib [file ...]

pubindex file ...

DESCRIPTION
Refer is a preprocessor for nroff or troff(1) that finds and formats references. The input files (standard in-
put default) are copied to the standard output, except for lines between .[and .] which are assumed to
contain keywords and are replaced by information from the bibliographic data base. The user may avoid
the search, override fields from it, or add new fields. The reference data, from whatever source, are
assigned to a set of troff strings. Macro packages such as ms(6) print the finished reference text from
these strings. A flag is placed in the text at the point of reference; by default the references are indicated
by numbers.

The following options are available:

-ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If r is omitted all author
names are reversed.

-b Bare mode: do not put any flags in text (neither numbers nor labels).

-cstring
Capitalize (with CAPS SMALL CAPS) the fields whose key-letters are in string.

-e Instead of leaving the references where encountered, accumulate them until a sequence of the
form

.[
$LIST$
.]

is encountered, and then write out all references collected so far. Collapse references to the same
source.

-kx Instead of numbering references, use labels as specified in a reference data line beginning %x;
by default x is L.

-lm,n Instead of numbering references, use labels made from the senior author’s last name and the year
of publication. Only the first m letters of the last name and the last n digits of the date are used.
If either m or n is omitted the entire name or date respectively is used.

-p Take the next argument as a file of references to be searched. The default file is searched last.

-n Do not search the default file.

-skeys Sort references by fields whose key-letters are in the keys string; permute reference numbers in
text accordingly. Implies -e. The key-letters in keys may be followed by a number to indicate
how many such fields are used, with + taken as a very large number. The default is AD which
sorts on the senior author and then date; to sort, for example, on all authors and then title use
-sA+T.

A bibliographic reference in a -p file is a set of lines that contain bibliographic information fields. Empty
lines separate references. Each field starts on a line beginning with %, followed by a key-letter, followed
by a blank, and followed by the contents of the field, which continues until the next line starting with %.
The most common key-letters and the corresponding fields are:

A Author name
B Title of book containing article referenced
C City
D Date
d Alternate date

alice 369

REFER(1) General Commands Manual REFER(1)

E Editor of book containing article referenced
G Government (CFSTI) order number
I Issuer (publisher)
J Journal
K Other keywords to use in locating reference
M Technical memorandum number
N Issue number within volume
O Other commentary to be printed at end of reference
P Page numbers
R Report number
r Alternate report number
T Title of article, book, etc.
V Volume number
X Commentary unused by pubindex

Except for A, each field should only be given once. Only relevant fields should be supplied. When refer
is used with eqn, neqn or tbl(1), refer should be first, to minimize the volume of data passed through
pipes.

Lookbib accepts keywords from the standard input and searches a bibliographic data base for references
that contain those keywords anywhere in the title, author, journal name, etc. Matching references are
printed on the standard output. Blank lines are taken as delimiters between queries.

Pubindex makes a hashed inverted index to the named bibliographic files for use by refer.

EXAMPLES
%T 5-by-5 Palindromic Word Squares
%A M. D. McIlroy
%J Word Ways
%V 9
%P 199-202
%D 1976

FILES
/usr/dict/papers

directory of default publication lists and indexes

/usr/lib/refer
directory of programs

x.ia, x.ib, x.ic
where x is the first argument to pubindex

SEE ALSO
M. E. Lesk, ‘Some Applications of Inverted Indexes on UNIX’ in AT&T Bell Laboratories, UNIX Pro-
grammer’s Manual, Volume 2, Holt-Rinehart (1984)
troff(1), doctype(1), prefer(1)

BUGS
Refer is unmaintained; better use prefer(1).

alice 370

REMSHENT (1) General Commands Manual REMSHENT (1)

NAME
remshent - remove an entry from the shares data-base

SYNOPSIS
remshent [name|uid ...]

DESCRIPTION
Remshent removes entries from the shares data-base in the file /etc/shares. Entries are specified as user
names, or as uids. If no arguments are given, remshent reads the names from standard input, one per line.

FILES
/etc/shares for share details.
/etc/passwd for user names and IDs.

SEE ALSO
lim(1), pl(1), shares(5).

SHARE 371

REV (1) General Commands Manual REV (1)

NAME
rev, revpag - reverse lines or pages

SYNOPSIS
rev [file ...]

revpag [option ...] [file ...]

DESCRIPTION
Rev copies the standard input or the named files to the standard output, reversing the order of characters in
every line.

Revpag copies the standard input or the named files to the standard output, reversing the order of the
pages. (The name - means the standard input.) Options define what constitutes a ‘page’:

-d The input is troff(1) output; page breaks are encoded in it.

-f Append a new-page character (014) to the last input page (which is the first page on the output),
if this page is not of the declared length.

-l n Set the number of lines per page in ordinary ASCII input (66 by default). A new-page character
(014) is also recognized as a page break.

-o list Output only pages whose page numbers appear in the comma-separated list of numbers and
ranges. A ‘page number’ means the ordinal position of a page in the input. A range n-m means
pages n through m. In a range, a missing m means the beginning; a missing n means the end.

EXAMPLES
rev <webster | sort | rev >walker

From a standard Webster’s dictionary, produce Walker’s rhyming dictionary, which is alphabet-
ized from right to left.

tail -r <forward >backward
Reverse the order of lines in a file; see tail(1).

372

RM(1) General Commands Manual RM(1)

NAME
rm - remove (unlink) files

SYNOPSIS
rm [-fri] file ...

DESCRIPTION
Rm removes directory entries. If an entry was the last link to a file, the file is destroyed. If an entry is a
directory it is removed only if empty. Removal of a file requires write permission in its directory, but nei-
ther read nor write permission on the file itself.

If a file lacks write permission and the the standard input is a terminal, a query is written to the standard
output and a line is read from the standard input. If that line begins with y the file is deleted, otherwise
the file remains. The options are

-f (force) Ask no questions about unwritable files and report no errors.

-r Recursively delete the entire contents of a directory and the directory itself.

-i (interactive) Ask whether to delete each file, and, under -r, whether to examine each directory. If
the first character of the response is y, the answer is yes; otherwise the answer is no.

SEE ALSO
unlink(2)

DIAGNOSTICS
It is forbidden to remove the file .. merely to avoid the antisocial consequences of inadvertently doing
something like rm -r .∗.

373

RSCAN (1) General Commands Manual RSCAN (1)

NAME
rscan, pix - scan page on ricoh scanner and display on 5620

SYNOPSIS
rscan [-D] [-r n] [name]

DESCRIPTION
Rscan reads data from the Ricoh scanner and writes it in file name with a header as described in pic-
tures(5)If no name is given, it calls the file Junk. The flag -D turns on dither mode. The flag -r selects
the scanner resolution. Values of n are 0 for 200× 200 dots per inch, 1 for 200× 100 DPI, 2 for 300×300
DPI (default), and 3 for 240× 240 DPI. The data from the scanner are bytes with the low order bit corre-
sponding to the left edge of the paper. There are 324 bytes/scan line at the default resolution.

Pix displays a scanned page in a window on the 5620 terminal. Button 3 displays a menu for moving
around in the data.

SEE ALSO
imscan(1), pictures(5)

polya 374

SDB(1) General Commands Manual SDB(1)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [objfil [corfil [directory]]]

DESCRIPTION
Sdb is a symbolic debugger. It may examine source files, object files, and running or stopped core im-
ages.

Objfil is an executable program (default a.out) compiled with option -g of cc or f77(1). Corfil is a core
image (default core) resulting from the execution of objfil . Directory is the home of source files, . by
default.

Sdb maintains a ‘current line’ and a ‘current file’, initially the line number and source file name where
corfil stopped executing, or the first line in function main if there is no core image.

Variables are referred to by name, by structure or array reference, or by a combination thereof. Variables
not in scope at the current line are referred to as procedure:variable (procedure may be a Fortran com-
mon block). In the syntax below, a ‘variable’ may also be an integer constant designating a storage loca-
tion, or a variable plus a constant designating a storage offset.

Line numbers in the source program are referred to as filename:number, procedure:number, or number (in
the current file). The number is always relative to the beginning of the file. A missing number is taken as
the first line of the procedure or file.

The commands for examining data are:

t Print a stack trace of the terminated or stopped program.

T Print the top line of the stack trace.

variable/lm

variable?lm
Print the value of the variable according to (an optional) length l and format m. By default l
and m are taken from the variable’s declaration. The length specifier for formats duox is b (1
byte), h (2 bytes), or l (4 bytes, default). For formats s and a it is an integer string length.
Punctuation / designates variables in data segments, ? in the text segment. Legal values for for-
mat m are:

c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
f 32 bit single precision floating point
g 64 bit double precision floating point
s Assume variable is a string pointer and print characters until a null is reached.
a Print characters starting at the variable’s address until a null is reached.
p pointer to procedure
i machine instruction

variable=lm
linenumber=lm
number=lm

Print the address of the variable or line number or the value of the number in the specified for-
mat, lx by default. The last variant may be used to convert number bases.

variable!value
Set the variable to the given value. The value may be an integer or character constant, a vari-
able, or a floating-point constant (if variable is float or double).

The commands for examining source files are

375

SDB(1) General Commands Manual SDB(1)

e procedure
e filename.c

Set the current line and file. If no name is given, report the current procedure and file.

/regular expression/
Search forward as in ed(1).

?regular expression?
Search backward.

p Print the current line.

z Print the current line and 9 more; set the current line to the last one printed.

control-D
Print the next 10 lines; set the current line to the last one printed.

w Window. Print the 10 lines around the current line.

number
Set the current line and print it.

count + Advance the current line by count lines. Print the new current line.

count - Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command with no arguments reuses the pre-
vious arguments to the program while the R command runs the program with no arguments.
An argument beginning with < or > causes redirection for the standard input or output respec-
tively. Count, if given, specifies a number of breakpoints to be ignored.

linenumber c count
linenumber C count

Continue after a breakpoint or interrupt. Count is as for r. C continues with the signal which
caused the program to stop and c ignores it. If a linenumber is given, a temporary breakpoint is
placed there and is deleted when the command finishes.

count s Single step. Run the program through count lines, one line by default.

count S Single step, but step through subroutine calls.

k Kill the debugged program.

procedure(arg1,arg2,...)/m
Execute the named procedure with the given arguments. Arguments can be variables in scope
or integer, character or string constants. If a format, /m, is given, print the result in that form,
otherwise d.

linenumber b commands
Set a breakpoint at the given line. If a procedure name without a line number is given (e.g.
proc:), a breakpoint is placed at the first line in the procedure. If no linenumber is given, a
breakpoint is placed at the current line.

If no commands are given, stop execution just before the breakpoint. Otherwise, when the
breakpoint is encountered perform the semicolon-separated commands and then continue exe-
cution.

linenumber d
Delete a breakpoint at the given line. If no linenumber is given, each breakpoint location is
printed and a line is read from the standard input. Answer y or d to delete it.

B Print a list of the currently active breakpoints.

D Delete all breakpoints.

376

SDB(1) General Commands Manual SDB(1)

l Print the last executed line.

linenumber a
Announce. If linenumber is of the form proc:number the command does linenumber b l
(print the line each time it’s reached). If linenumber is of the form proc:, the command does
proc: b T (print the stack frame).

Miscellaneous commands.

! command
The command is interpreted by sh(1).

newline
Advance to the next storage location or source line, depending on which was last printed, and
display it.

" string
Print the given string.

q Exit the debugger.

The following commands are intended for debugging the debugger.

V Print the version number.
X Print a list of procedures and files being debugged.
Y Toggle debug output.

FILES
a.out
core

SEE ALSO
adb(1), pi(9) cin(1), nm(1), a.out(5), bigcore(1), cc(1), f77(1)

BUGS
Sdb is old and unmaintained.
If a procedure is called when the program is not stopped at a breakpoint, a fresh core image results. Thus
a procedure can’t be used to extract data from a dump.
Sdb doesn’t know Fortran: arrays are singly dimensioned and 0-indexed; scalar arguments are reported as
pointers.
The default type for printing Fortran parameters is incorrect: address instead of value.
Tracebacks containing Fortran subprograms with multiple entry points may print too many arguments in
the wrong order, but their values are correct.
The meaning of control-D is nonstandard.

377

SED(1) General Commands Manual SED(1)

NAME
sed - stream editor

SYNOPSIS
sed [-n] script [file ...]

sed [-e script] [-f sfile] [file ...]

DESCRIPTION
Sed copies the named files (standard input default) to the standard output, edited according to a command
script. Script options accumulate.

-e script
Script is given literally in command line.

-f sfile Script is given in file sfile.

-n Suppress the default output.

A script consists of editing commands, usually one per line. If a command ends with ;, {, or }, the next
command begins immediately thereafter. Empty commands are ignored. Commands have the form

[address [, address]] function [argument ...] [;]

In normal operation sed cyclically copies a line of input into a pattern space (unless there is something
left after a D command), applies in sequence all commands whose addresses select that pattern space, and
at the end of the script copies the pattern space to the standard output (except under -n) and deletes the
pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a $ that addresses
the last line of input, or a context address, /regular-expression/, in the style of ed(1), with the added con-
vention that \n matches a newline embedded in the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address. (Address 0 is
never matched.)

A command line with two addresses selects the inclusive range from the first pattern space that matches
the first address through the next pattern space that matches the second. (If the second address is a num-
ber less than or equal to the line number first selected, only one line is selected.) Thereafter the process is
repeated, looking again for the first address.

Editing commands can be applied to non-selected pattern spaces by use of the negation function !
(below).

In the following list of functions the maximum number of permissible addresses for each function is indi-
cated in parentheses.

A text argument consists of one or more lines, all but the last of which end with \ to hide the newline.
Backslashes in text are treated like backslashes in the replacement string of an s command, and may be
used to protect initial blanks and tabs against the stripping that is done on every script line.

An rfile or wfile argument must terminate the command line and must be preceded by exactly one blank.
Each wfile is created before processing begins. There can be at most 120 distinct wfile arguments.

(1) a\
text Append. Place text on the output before reading the next input line.

(2) b label
Branch to the : command bearing the label. If label is empty, branch to the end of the script.

(2) c\
text Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address range, place

text on the output. Start the next cycle.

(2) d Delete the pattern space. Start the next cycle.

378

SED(1) General Commands Manual SED(1)

(2) D Delete the initial segment of the pattern space through the first newline. Start the next cycle.

(2) g Replace the contents of the pattern space by the contents of the hold space.

(2) G Append the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the pattern space.

(2) H Append the contents of the pattern space to the hold space.

(1) i\
text Insert. Place text on the standard output.

(2) l Literal. Place an unambiguous image of the pattern space on the standard output, using C escape
sequences. Break long lines, indicating the breakpoint by a single backslash. Append \n if pat-
tern space ends with space or newline.

(2) n Copy the pattern space to the standard output. Replace the pattern space with the next line of
input.

(2) N Append the next line of input to the pattern space with an embedded newline. (The current line
number changes.)

(2) p Print. Copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first newline to the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rfile
Read the contents of rfile. Place them on the output before reading the next input line.

(2) s/regular-expression/replacement/flags
Substitute the replacement string for instances of the regular-expression in the pattern space.
Any character may be used instead of /. For a fuller description see ed(1); although unlike ed ,
the trailing / must be supplied. Flags is zero or more of

g Global. Substitute for all non-overlapping instances of the regular expression rather
than just the first one.

p Print the pattern space if a replacement was made.

w wfile
Write. Append the pattern space to wfile if a replacement was made.

(2) t label
Test. Branch to the : command bearing the label if any substitutions have been made since the
most recent reading of an input line or execution of a t. If label is empty, branch to the end of
the script.

(2) w wfile
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/string1/string2/
Transform. Replace all occurrences of characters in string1 with the corresponding character in
string2. The lengths of string1 and string2 must be equal.

(2)! function
Don’t. Apply the function (or group, if function is {) only to lines not selected by the
address(es).

(0)# Comment. Ignore the rest of the line.

(0) : label
This command does nothing; it bears a label for b and t commands to branch to.

(1) = Place the current line number on the standard output as a line.

379

SED(1) General Commands Manual SED(1)

(2) { Execute the following commands through a matching } only when the pattern space is selected.

(0) An empty command is ignored.

EXAMPLES
sed 10q file

Print the first 10 lines of the file.

sed ’/ˆ$/d’
Delete empty lines from standard input.

sed ’s/UNIX/& system/g’
Replace every instance of UNIX by UNIX system.

sed ’s/ ∗$//drop trailing blanks
/ˆ$/d drop empty lines
s/ ∗/\ replace blanks by newlines
/g
/ˆ$/d’ chapter∗

Print the files chapter1, chapter2, etc. one word to a line.

nroff -ms manuscript | sed ’
${

/ˆ$/p if last line of file is empty, print it
}
//N if current line is empty, append next line
/ˆ\n$/D’ if two lines are empty, delete the first

Delete all but one of each group of empty lines from a formatted manuscript.

ls /usr/∗ | sed ’
/ˆ$/d delete empty lines
/ˆ[/].∗:$/{ look for lines like /usr/lem:

s/:$/\// replace : by /
h hold directory name
d don’t print; get next line

}
G append held directory name
s/\(.∗\)\n\(.∗\)/\2\1/’ exchange file and directory

List all files in user directories, as ls -d /usr/∗/∗ would do if it didn’t cause argument list over-
flow.

SEE ALSO
ed(1), gre(1), awk(1), lex(1), cut(1), split(1), sam(9)
L. E. McMahon, ‘SED — A Non-interactive Text Editor’, this manual, Volume 2.

BUGS
If input is from a pipe, buffering may consume characters beyond a line on which a q command is exe-
cuted.

380

SENDNEWS(1) General Commands Manual SENDNEWS(1)

NAME
sendnews - send news articles via mail

SYNOPSIS
sendnews [-o] [-a] [-b] [-n newsgroups] destination

DESCRIPTION
sendnews reads an article from it’s standard input, performs a set of changes to it, and gives it to the mail
program to mail it to destination.

An ‘N’ is prepended to each line for decoding by uurec(8).

The -o flag handles old format articles.

The -a flag is used for sending articles via the ARPANET. It maps the article’s path from uucphost!xxx to
xxx@arpahost.

The -b flag is used for sending articles via the Berknet. It maps the article’s path from uucphost!xxx to
berkhost:xxx.

The -n flag changes the article’s newsgroup to the specified newsgroup.

SEE ALSO
inews(1), uurec(1), recnews(1), readnews(1), newscheck(1)

381

SEQ(1) General Commands Manual SEQ(1)

NAME
seq - print sequences of numbers

SYNOPSIS
seq [-w] [-f format] [first [incr]] last

DESCRIPTION
Seq prints a sequence of numbers, one per line, from first (default 1) to as near last as possible, in incre-
ments of incr (default 1). The numbers are interpreted as floating point.

Normally integer values are printed as decimal integers. The options are

-f format
Use the printf(3)-style format for printing each (floating point) number. The default is %g.

-w Equalize the widths of all numbers by padding with leading zeros as necessary. Not effective
with option -f, nor with numbers in exponential notation.

EXAMPLES
seq 0 .05 .1 Print 0 0.05 0.1 (on separate lines).

seq -w 0 .05 .1 Print 0.00 0.05 0.10.

BUGS
Option -w always surveys every value in advance, although that’s not necessary for integers. Thus seq -w
1000000000 is a hopeless way to get an ‘infinite’ sequence.

382

SERVER(1) General Commands Manual SERVER(1)

NAME
server - run anonymous command on another machine

SYNOPSIS
server machine command

DESCRIPTION
Server uses Datakit to run command on the named machine. If it has set-userid mode, the owner of
server will log in on the remote machine. In this way, a user can execute commands on the remote ma-
chine without having a login there.

Server typically accepts only a small set of commands, such as who, ps, cat, and date; the list is at the
discretion of the remote machine. Server also checks for suspicious argument characters.

FILES
/etc/server list of legal commands

SEE ALSO
con(1), push(1), dcon(1)

383

SEXIST (1) General Commands Manual SEXIST (1)

NAME
sexist - print sexist terms and suggest alternatives

SYNOPSIS
sexist [-flags][-ver][-f pfile][file ...]

DESCRIPTION
Sexist locates and prints all sentences in a document that contain possibly sexist words or phrases. The
word or phrase in each sentence is surrounded with stars and brackets, e.g. ∗[girl]∗. The line numbers of
the sentences are also printed.

Following that, sexist prints alternatives to the sexist phrases found in the document. The alternatives en-
courage:

1.
describing men and women in parallel terms. For example, "men and girls" should probably be
changed to "men and women."

2.
using neutral terms instead of sex-related terms. For example "business executive" could easily re-
place the stereotypic "businessman."

3.
using new, non-sexist Bell System job titles.

If the user has a file named $HOME/lib/sexdict, sexist locates or ignores phrases contained in that file.
Dictadd(1) can be used to set up $HOME/lib/sexdict. Dictadd gives instructions on the necessary format
for phrases to be located or ignored by sexist.

Options are:

-f pfile Use the user’s phrase file, pfile, in addition to the default file of sexist phrases. When
the -f pfile option is used, sexist does not check $HOME/lib/sexdict for phrases. The
format instructions given by dictadd should be followed in setting up pfile.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

EXAMPLE
1. The command:

sexist -f patfile filename

will print sentences from filename that contain sexist words or phrases, including or suppressing phrases
as specified in patfile. Suggested replacements for sexist phrases will also be printed. Sexist will not lo-
cate or ignore phrases in $HOME/lib/sexdict when the -f option is used.

FILES
/tmp/$$∗ temporary files

SEE ALSO
dictadd(1)

BUGS
Because sexist does not consider context, it may bracket phrases that are used appropriately and may rec-
ommend inappropriate alternatives. It is up to the user to determine which changes should be made.

If formatting macros are included in the input text, the beginning line number of a sentence containing a
sexist phrase may be a line containing a macro preceding the sentence.

Sexist makes no attempt to segment text into sentences accurately, e.g., it does not know any abbrevia-
tions.

Sexist will not find the second of two consecutive sexist phrases, nor will it find a sexist phrase at the end
of a sentence.

384

SEXIST (1) General Commands Manual SEXIST (1)

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

385

SH(1) General Commands Manual SH(1)

NAME
sh, cd, wait, whatis - shell, the standard command programming language

SYNOPSIS
sh [-acefiknpstuvx] [args]

DESCRIPTION
Sh is a command programming language that executes commands read from a terminal or a file. See ‘In-
vocation’ below for the meaning of arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or underscores beginning with a letter
or underscore. A parameter is a name, a digit, or any of the characters ∗, @, #, ?, -, $, and ! . A word is a
sequence of characters and quoted strings set off by operators, blanks, or newlines; see ‘Quoting’.

Commands
A simple-command is a sequence of words separated by blanks. The first word specifies the name of the
command to be executed. Except as specified below, the remaining words are passed as arguments to the
invoked command. The command name is passed as argument 0; see exec(2). The value of a simple-
command is its exit status if it terminates normally, or 0200+status if it terminates abnormally; see sig-
nal(2) for a list of status values.

A pipeline is a sequence of one or more commands separated by |. If there is more than one command,
each is run in a subshell; | denotes a pipe(2) connecting the standard output of one command to the stan-
dard input of the next. Each command is run as a separate process; the shell waits for the last command to
terminate. The exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or ||, and terminated by ; or &. Of
these four symbols, ; and & have equal precedence, which is lower than that of && and ||. The symbols
&& and || also have equal precedence. A semicolon (;) causes sequential execution of the preceding
pipeline; an ampersand (&) causes asynchronous execution of the pipeline; the shell does not wait and
proceeds as if the pipeline had returned zero exit status. The symbol && (||) causes the list following it to
be executed only if the preceding pipeline returns a zero (non-zero) exit status. One or more newlines
may follow any sequencing operator (; & && ||).

One or more newlines may always be used in place of a single semicolon, and newlines may be freely in-
serted after any of | ; & && || ;; if do then elif else fi done while until.

A command is either a simple-command or one of the following. Unless otherwise stated, the value re-
turned by a command is that of the last simple-command executed in the command.

for name [in word . . . ;] do list ; done
A for command executes a list of commands once for each word, with name set to each word
in turn. If in word . . . ; is omitted or replaced by newlines, then the list is executed once for each
positional parameter that is set; see ‘Parameter Substitution’.

case word in [pattern [| pattern] . . .) list ;;] . . . esac
A case command executes the list associated with the first pattern that matches word . The
form of the patterns is the same as that used for file-name generation (see ‘File Name Genera-
tion’) except that a slash, a leading dot, or a dot immediately following a slash need not be
matched explicitly. Newlines may precede each pattern and replace the last ;; before esac.

if list then list [elif list then list] . . . [else list] fi
The list following if is executed and, if it returns a zero exit status, the list following the first
then is executed. Otherwise, the lists in elif clauses are executed in turn until one returns
zero status; then the list following the next then is executed. Otherwise, the else list is exe-
cuted. If no else list or then list is executed, then the if command returns a zero exit status.

while list do list done
A while command repeatedly executes the while list and, if the exit status of the last com-
mand in the list is zero, executes the do list; otherwise the loop terminates. If no commands in
the do list are executed, then the while command returns a zero exit status; until may be
used in place of while to negate the loop termination test.

386

SH(1) General Commands Manual SH(1)

(list)
Execute list in a sub-shell.

{list}
list is simply executed.

name () command
Define a function which is referenced by name. The body of the function is the command . The
most useful form of command is a sequence of commands enclosed in braces { }. Execution of
functions is described under Execution below.

These words are only recognized as the first word of a command and when not quoted: if then else elif fi
case esac for while until do done.

Comments
A word beginning with # causes that word and all the following characters up to a newline to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave accents ‘ ‘ may be used as part or all of a
word; trailing newlines are removed.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are two types of parameters, posi-
tional and keyword. If parameter is a digit, it is a positional parameter. Positional parameters may be
assigned values by set. Keyword parameters (also known as variables) may be assigned values by writ-
ing:

name=value [name=value] . . .

Pattern-matching is not performed on value. There cannot be a function and a variable with the same
name.

${parameter}
The value, if any, of the parameter is substituted. The braces are required only when parameter
is followed by a letter, digit, or underscore that is not to be interpreted as part of its name. If
parameter is ∗ or @, all the positional parameters, starting with $1, are substituted (separated by
spaces). Parameter $0 is set from argument zero when the shell is invoked.

${parameter:-word}
If parameter is set and is non-null, substitute its value; otherwise substitute word .

${parameter:=word}
If parameter is not set or is null set it to word; the value of the parameter is substituted. Posi-
tional parameters may not be assigned to in this way.

${parameter:?word}
If parameter is set and is non-null, substitute its value; otherwise, print word and exit from the
shell. If word is omitted, the message ‘‘parameter null or not set’’ is printed.

${parameter:+word}
If parameter is set and is non-null, substitute word; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the following
example, pwd is executed only if d is not set or is null:

echo ${d:-`pwd`}

If the colon (:) is omitted from the above expressions, the shell only checks whether parameter is set or
not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
- Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed command; see exit(2).
$ The process number of this shell.
! The process number of the last background command invoked.

The following parameters are used by the shell:

387

SH(1) General Commands Manual SH(1)

HOME
The default argument (home directory) for the cd command.

PATH The search path for commands; see ‘Execution’.
CDPATH

The search path for the cd command.
MAIL If this parameter is set to the name of a mail file the shell informs the user of the arrival

of mail in the specified file. The file is inspected every three minutes.
HISTORY

If this parameter is set to the name of a writable file, the shell appends interactive input
to the file, for use by the command =(1).

PS1 Primary prompt string, by default $.
PS2 Secondary prompt string, by default >.
IFS Internal field separators, normally space, tab, and newline.

The shell gives default values to PATH, PS1, PS2 and IFS. HOME is set by login(8).

Blank Interpretation
After parameter and command substitution, the results of substitution are scanned for internal field separa-
tor characters (those found in IFS) and split into distinct arguments where such characters are found.
Explicit null arguments ("" or ´´) are retained. Implicit null arguments (those resulting from parameters
that have no values) are removed.

File Name Generation
Following substitution, each command word is scanned for the characters ∗, ?, and [. If one of these
characters appears the word is regarded as a pattern. The word is replaced with alphabetically sorted file
names that match the pattern. If no file name is found that matches the pattern, the word is left
unchanged. The directories . and .. (initially or after a /) are only matched by patterns beginning with an
explicit period. The character / itself must be matched explicitly.

∗ Matches any string, including the null string.
? Matches any single character.
[. . .] Matches any one of the enclosed characters. A pair of characters separated by - matches

any character lexically between the pair, inclusive. If the first character following the
opening [is a ˆ any character not enclosed is matched.

Quoting
These characters have a special meaning to the shell and terminate a word unless quoted:

; & () | < > { } newline space tab

(The characters { and } need not be quoted inside a ${} construction.) A character may be quoted (i.e.,
made to stand for itself) by preceding it with a \. The pair \newline is ignored. All characters enclosed
between a pair of single quote marks ´´ (except a single quote) are quoted. Inside double quote marks ""
parameter and command substitution occurs and \ quotes the characters \, ̀ , ", and $. "$∗" is equivalent
to "$1 $2 . . .", whereas "$@" is equivalent to "$1" "$2"

Prompting
When used interactively, the shell prompts with the value of PS1 before reading a command. If at any
time a newline is typed and further input is needed to complete a command, the secondary prompt (i.e.,
the value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using a special notation interpreted
by the shell. The following may appear anywhere in a simple-command or may precede or follow a com-
mand and are not passed on to the invoked command; substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1). If the file does not exist it is created;

otherwise, it is truncated to zero length.
>>word Use file word as standard output. If the file exists output is appended to it (by first seek-

ing to the end-of-file); otherwise, the file is created.

388

SH(1) General Commands Manual SH(1)

<<word The shell input is read up to a line that is the same as word , or to an end-of-file. The
resulting document becomes the standard input. If any character of word is quoted, no
interpretation is placed upon the characters of the document; otherwise, parameter and
command substitution occurs, (unescaped) \newline is ignored, and \ must be used to
quote the characters \, $, ̀ , and the first character of word .

<&digit Use the file associated with file descriptor digit as standard input. Similarly for the stan-
dard output using >&digit.

<&- The standard input is closed. Similarly for the standard output using >&-.

If any of the above is preceded by a digit, the file descriptor which will be associated with the file is that
specified by the digit (instead of the default 0 or 1). For example:

. . . 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates redirections left-to-right.
For example:

. . . 1>xxx 2>&1

first associates file descriptor 1 with file xxx, then associates file descriptor 2 with the same file as
descriptor 1, namely xxx, while

. . . 2>&1 1>xxx

associates file descriptor 2 with the current value of file descriptor 1 (typically the terminal) and file
descriptor 1 with xxx.

If a command is followed by &, the default standard input for the command is the empty file /dev/null.
Otherwise, the environment for the execution of a command contains the file descriptors of the invoking
shell as modified by input/output specifications.

Environment
The environment is a list of strings, conventionally function definitions and name-value pairs, that is
passed to an executed program in the same way as a normal argument list; see environ(5). The shell inter-
acts with the environment in several ways. On invocation, the shell scans the environment and creates a
parameter or function for each name found, giving it the corresponding value. If the user modifies the
value of any of these parameters or creates new parameters, none of these affects the environment unless
the export command is used to bind the shell’s parameter to the environment; see also set -a. A parame-
ter may be removed from the environment with the unset command. The environment seen by any exe-
cuted command is thus composed of any unmodified name-value pairs originally inherited by the shell,
minus any pairs removed by unset, plus any modifications or additions, all of which must be noted in
export commands.

The environment for any simple-command may be augmented by prefixing it with one or more assign-
ments to parameters (but not functions). Thus tabs gets the same environment in both lines below, but
the shell has one less variable in the second.

(export TERM; TERM=450; tabs)
TERM=450 tabs

If the -k flag is set, all keyword arguments are placed in the environment, even if they occur after the
command name.

Signals
SIGINT and SIGQUIT (see signal(2)) for an invoked command are ignored if the command is followed
by &; otherwise signals have the values inherited by the shell from its parent (but see also the trap com-
mand below).

Execution
Each time a command is executed, the above substitutions are carried out. If the command name matches
the name of a defined function, the function is executed in the shell process. (Note how this differs from
calling a shell script.) The positional parameters $1, $2, are set to the arguments of the function. If
the command name does not match a function, but matches one of the builtin commands listed below, it is
executed in the shell process. If the command name matches neither a builtin command nor the name of a

389

SH(1) General Commands Manual SH(1)

defined function, a new process is created and an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the command. Alternative
directory names are separated by a colon (:). The default path is :/bin:/usr/bin (specifying the current
directory, /bin, and /usr/bin, in that order). Note that the current directory is specified by a null path
name, which can appear immediately after the equal sign or between the colon delimiters anywhere else in
the path list. If the command name contains a / the search path is not used. Otherwise, each directory in
the path is searched for an executable file. If the file has execute permission but is not executable by
exec(2), it is assumed to be a ‘shell script’, a file of shell commands. A sub-shell is spawned to read it. A
parenthesized command is also executed in a sub-shell.

Builtin Commands
Input/output redirection is permitted for these commands. File descriptor 1 is the default output location.

: No effect; the command does nothing. A zero exit code is returned.
. file Read and execute commands from file and return. The search path specified by PATH is used to

find the directory containing file.
builtin [command]

Execute the builtin command (such as break) regardless of functions defined with the same
name.

break [n]
Exit from the enclosing for or while loop, if any. If n is specified break n levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is specified resume at the n-th
enclosing loop.

cd [arg]
Change the current directory to arg. The shell parameter HOME is the default arg. The shell
parameter CDPATH defines the search path for the directory containing arg. Alternative direc-
tory names are separated by a colon (:). The current directory (default) is specified by a null path
name, which can appear immediately after the equal sign or between the colon delimiters any-
where else in the path list. If arg begins with a / the search path is not used. Otherwise, each
directory in the path is searched for arg.

eval [arg . . .]
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg . . .]
The non-builtin command specified by the arguments is executed in place of this shell without
creating a new process. Input/output arguments may appear and, if no other arguments are given,
cause the shell input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is omitted the exit status is that of
the last command executed (an end-of-file will also cause the shell to exit.)

export [name . . .]
The given names are marked for automatic export to the environment of subsequently-executed
commands. If no arguments are given, a list of all names that are exported in this shell is printed.

read [name . . .]
One line is read from the standard input and the first word is assigned to the first name, the sec-
ond word to the second name, etc., with leftover words assigned to the last name. The return
code is 0 unless an end-of-file is encountered.

return [n]
Causes a function to exit with the return value specified by n. If n is omitted, the return status is
that of the last command executed.

set [--aehknptuvx [arg . . .]]
-a Mark variables which are modified or created for export.
-e Exit immediately if a command exits with a non-zero exit status.
-f Disable file name generation
-k All keyword arguments are placed in the environment for a command, not just those that

precede the command name.

390

SH(1) General Commands Manual SH(1)

-n Read commands but do not execute them.
-p Remove the definitions for all functions imported from the environment, and set IFS to

blank, tab and newline.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.
-- Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These flags can also be used upon invo-
cation of the shell. The current set of flags may be found in $-. The remaining arguments are
positional parameters and are assigned, in order, to $1, $2, If no arguments are given the
values of all names are printed.

shift [n]
The positional parameters from $n+1 . . . are renamed $1 . . . If n is not given, it is assumed to be
1.

times
Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] . . .
The command arg is to be read and executed when the shell receives signal(s) n. (Note that arg
is scanned once when the trap is set and once when the trap is taken.) Trap commands are exe-
cuted in order of signal number. Any attempt to set a trap on a signal that was ignored on entry
to the current shell is ineffective. If arg is absent all traps n are reset to their original values. If
arg is the null string this signal is ignored by the shell and by the commands it invokes. If n is 0
the command arg is executed on exit from the shell. The trap command with no arguments
prints a list of commands associated with each signal number.

umask [nnn]
The user file-creation mask is set to nnn; see umask(2). If nnn is omitted, the current value of
the mask is printed.

unset [name . . .]
For each name, remove the corresponding variable or function. The variables PATH, PS1, PS2
and IFS cannot be unset.

wait [n]
Wait for the specified process and report its termination status. If n is not given all currently
active child processes are waited for and the return code is zero.

whatis [name . . .]
For each name, print the associated value as a parameter, function, builtin or executable file as
appropriate. In each case, the value is printed in a form that would yield the same value if typed
as input to the shell itself: parameters are printed as assignments, functions as their definitions,
builtins as calls to builtin, and executable files as completed pathnames.

Invocation
Normally the shell reads commands from the file named in its first argument (standard input default). The
remaining arguments are interpreted as position parameters; see ‘Parameter substitution’ above. If the
shell is invoked through exec(2) and the first character of argument zero is -, commands are read first from
$HOME/.profile, if it exists. Certain options modify this behavior:

-c string Read commands from string; ignore remaining arguments.
-s Write shell output (except for builtin commands) on file descriptor 2.
-i Interactive. Ignore signal SIGTERM (interactive shell is immune to kill 0). Catch and

ignore SIGINT (wait is interruptible). The shell always ignores SIGQUIT.

Other options are described under the set command above.

FILES
$HOME/.profile
/tmp/sh∗
/dev/null

391

SH(1) General Commands Manual SH(1)

SEE ALSO
=(1), echo(1), newgrp(1), test(1), dup(2), exec(2), fork(2), pipe(2), signal(2), umask(2), exit(2), environ(5)
B. W. Kernighan and R. Pike, The Unix Programming Environment, Prentice-Hall, 1984

DIAGNOSTICS
Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. If the
shell is being used non-interactively execution of the shell file is abandoned. Otherwise, the shell returns
the exit status of the last command executed; see also the exit command.

BUGS
Errors arising from builtins terminate shell scripts.

392

SHSTATS(1) General Commands Manual SHSTATS(1)

NAME
shstats - show histogram of share scheduler user priorities

SYNOPSIS
shstats [-#] [-cn] [-sn] [-un]

DESCRIPTION
Shstats prints a table of system scheduling parameters, the share variables for a selected user (default: the
invoker), and a histogram of users vs. normalised usage. In the histogram, the current user selected is rep-
resented by the character ‘ ’, and other users by a unique character in the ascii range ‘!’ to ‘}’.

Invoked without arguments, shstats will print the table and exit. The flags affect operation as follows:-

flag meaning

-# All users except the invoker will be represented by the character #.

-cn Continuous operation, where n, if present, limits the number of cycles.

-sn Delay time between updates becomes n seconds [default 4].

-un Change the selected user to the one whose uid matches n.

In continuous non-hash mode, shstats will read the standard input while waiting for the next display
update for the invoker to type the identifier for a user to select. This can be either a single character to
select the user represented by that character in the histogram, or a login name, or a uid.

EXAMPLES
shstats -#c | dis

SEE ALSO
dis(1), rates(1), ustats(1), share(5).

BUGS
Reading from the standard input when output is piped through dis doesn’t seem to work, perhaps because
of some weirdness in the way curses drives the screen.

SHARE 393

SIGN (1) General Commands Manual SIGN (1)

NAME
sign, verify, enroll, resign − document certification

SYNOPSIS
sign [-n name] [file]

verify [-s] [file]

enroll

resign

DESCRIPTION
These routines provide a document-certification service.

Sign reads a document from the file or from the standard input, demands a signing password for the cur-
rent login id, and places on standard output a signed and dated copy of the document, with a crypto-
graphic certificate attached. The resulting document can be embedded in a larger one. The option is

-n name
Set the signing name; its password will be demanded.

Verify scans the file or the standard input for a certified document. If the document and date are as they
were when certified, except possibly indented, the verified document is placed on the standard output with
a statement of verification attached. The option is

-s Do not print the document; place only a statement of verification on the standard output.

The signer of a document must be registered with the certification service; the recipient need not be. Two
commands handle registration:

Enroll demands a signing password and registers it for the current login id. It is unwise to use your login
password.

Resign demands the signing password and, if it is correct, terminates the registration for the current login
id.

A signed document and its date are tamperproof and thus are good for ordinary business purposes. The
mere appearance of a certificate, however, is not proof of authenticity. That can be determined only by
verify. The output of verify lacks a certificate; its authenticity cannot be attested at a later date.

There is no notion of an ‘original’ signed document; all copies are equally good and may be reverified at
will.

Signers must trust sign and recipients must trust verify not to have been tampered with on their respective
machines. Both parties must trust the verification service, which is on a separate secure machine, and the
communication channels to it.

EXAMPLES
sign <doc.raw >doc.cert

verify <doc.suspect >doc.checked

sign <letter | mail whomever
The recipient can verify the letter from within mail(1) by using mail’s pipe command:
|verify.

SEE ALSO
notary(8)

DIAGNOSTICS
Verify yields exit status 0 only on successful verification.

‘Bogus’ - the document has been tampered with, or the original password is no longer registered.

BUGS
Only one user with a given login name may be registered; thus the certification service cannot be extended
too far.
To minimize dependence on the certification service, no password check is made at signing. A mistyped
password will not show up until verification.

394

SIZE(1) General Commands Manual SIZE(1)

NAME
size - size of an object file

SYNOPSIS
size [object ...]

DESCRIPTION
Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their sum in hex
and decimal, of each object file argument. If no file is specified, a.out is used.

SEE ALSO
a.out(5), nm(1)

395

SIZE80(1) General Commands Manual SIZE80(1)

NAME
size80 size of an object file for the 8008/8080 or Z80

SYNOPSIS
size80 [object ...]

DESCRIPTION
Size80 prints the decimal and octal number of bytes required by the text, data, and bss portions of each
object-file argument. If no file is specified, 80.out is used.

BUGS

2/23/77 396

SLEEP(1) General Commands Manual SLEEP(1)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds.

EXAMPLES
(sleep

Execute a command 100 seconds hence.

while :
do

command
sleep 30

done
Repeat a command every 30 seconds.

SEE ALSO
alarm(2), sleep(3)

397

SML(1) General Commands Manual SML(1)

NAME
sml − Standard ML compiler

SYNOPSIS
sml [arg ...]

DESCRIPTION
Sml is the Standard ML of New Jersey compiler. It reads declarations and expressions incrementally from
standard input, compiles and evaluates them, and places results on the standard output. Some useful sys-
tem-related facilities are

System.argv : unit -> string list
Return the argument list with which sml was invoked.

System.environ : unit -> string list
Return the environment list with which sml was invoked.

use : string -> unit
Temporarily take sml source from the file named in the argument.

exportML : string->bool
Save the current memory image as the named file, which may later be executed as an argument-
less UNIX command. Return true in the original and false upon resumption of the saved image.

Save a function an executable file and quit ML. The function
takes a UNIX argument list and environment as input; see exec(2).

system : string -> unit
Invoke a shell command.

cd : string -> unit
Change working directory.

System.Control.primaryPrompt : string ref
System.Control.secondaryPrompt : string ref

Primary and secondary prompts analogous to PS1 and PS2 of sh(1).
System.Control.Print.printDepth : int ref

Limit on depth of printing complex objects; default 5.
System.Control.Print.stringDepth : int ref

Limit on length to which strings will be printed; default 70.
System.Control.Print.signatures : bool ref

Print signatures only if true.
EXAMPLES

fun timeit (f: unit->’a) = (∗ use the system timer ∗)
let open System.Timer

val start = start_timer()
val result = f()

in print(makestring(check_timer(start)));
print "\n";
result

end;
SEE ALSO

Robert Harper, ‘Introduction to Standard ML’, Edinburgh University report ECS-LFSC-86-14 (1986)
Robert Harper, Robin Milner, and Mads Tofte, The Definition of Standard ML, MIT Press (1990)

398

SNO(1) General Commands Manual SNO(1)

NAME
sno - Snobol language interpreter

SYNOPSIS
sno [file ...]

DESCRIPTION
Sno is a SNOBOL3 (with slight differences) compiler and interpreter. Sno obtains input from the concate-
nation of the named files and the standard input. All input through a statement containing the label end is
considered program and is compiled. The rest is available to syspit.

Sno differs from SNOBOL3 in the following ways:

There are no unanchored searches. To get the same effect:

a ∗∗ b unanchored search
a ∗x∗ b = x c unanchored assignment

There is no back referencing.

x
a ∗x∗ x unanchored search for "abc"

Function declaration is done at compile time by the use of the (non-unique) label define. Execution of a
function call begins at the statement following the define. Functions cannot be defined at run time, and
the use of the name define is preempted. There is no provision for automatic variables other than parame-
ters. Examples:

define f()
define f(a, b, c)

All labels except define (even end) must have a non-empty statement.

Labels, functions and variables must all have distinct names. In particular, the non-empty statement on
end cannot merely name a label.

If start is a label in the program, program execution will start there. If not, execution begins with the first
executable statement; define is not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence applies. Because of this, the arithmetic
operators / and ∗ must be set off by spaces.

The right side of assignments must be non-empty.

Either ’ or " may be used for literal quotes.

The pseudo-variable sysppt is not available.

SEE ALSO
spitbol(1), snocone(1), awk(1)
SNOBOL, a String Manipulation Language, by D. J. Farber, R. E. Griswold, and I. P. Polonsky, JACM 11
(1964), pp. 21-30.

399

SNOCONE(1) General Commands Manual SNOCONE(1)

NAME
snocone - snobol with syntactic sugar

SYNOPSIS
snocone file ...

DESCRIPTION
Snocone is a programming language, syntactically similar to C, that compiles into SNOBOL4. The Sno-
cone compiler translates the concatenation of all the input files into a SNOBOL4 program, which it writes
in When a.out is executed, the SNOBOL4 interpreter will automatically be invoked. A synopsis of Sno-
cone syntax follows.

Lexical conventions
Everything after the first unquoted # on an input line is ignored.
Statements normally end at the end of the line. If the last character on a line is an operator, open paren-
thesis or bracket, or comma, the statement is continued on the next line.

Binary operators, grouped by decreasing precedence
[] Array and table indexing (denoted in SNOBOL4 by <>).
$. conditional and immediate pattern value assignment, as in SNOBOL4
ˆ power; right-associative as in SNOBOL4
∗ / % multiplication, division, remainder; unlike SNOBOL4, all have the same precedence.
+ - addition, subtraction
< > <= >= == != :<: :>: :<=: :>=: :==: :!=:

comparison operators; the ones surrounded by colons compare strings, the others compare num-
bers. These operators behave as SNOBOL4 predicates: they return the null string if the condition
is true, and fail if it is false.

&& concatenation; evaluates its right operand only after its left operand has been successfully evalu-
ated. It therefore acts as logical and when applied to predicates. The null string may be concate-
nated to any value.

| | the value of the left operand if possible, otherwise the value of the right operand.
| pattern value alternation.
? pattern match. Returns the part of the left operand matched by the right operand, which must be

a pattern. May be used on the left of an assignment if the left operand is appropriate. Right-
associative.

= assignment

Unary operators
+ The numeric equivalent of its argument.
- The numeric equivalent of its argument, with the sign reversed.
∗ Unevaluated expression, as in SNOBOL4.
$ If v is a value of type name, then $v is the variable of that name.
@ Pattern matching cursor assignment.

Logical negation: returns the null string if its argument fails, and fails otherwise.
? Returns the null string if its argument succeeds, and fails otherwise.
. Returns a value of type name that refers to its (lvalue) argument.

Statements
Statements may be prefixed by one or more labels. A label is an identifier followed by a colon, as in C.
All labels are global: it is a good idea to prefix labels in procedures with the name of the procedure.

expression
The given expression is evaluated for its side effects.

{ statement ... }
The statements are executed sequentially.

if (expression) statement [else statement]
If evaluation of the expression succeeds, the first statement is executed. Otherwise, the second
statement, if any, is executed. An else belongs to the closest unmatched if.

400

SNOCONE(1) General Commands Manual SNOCONE(1)

while (expression) statement
The statement is executed repeatedly, as long as the expression can be successfully evaluated.

do statement while (expression)
Like the while statement, except that the statement is executed once before the first time the
expression is evaluated.

for (e1, e2, e3) statement
As in C, except that commas are used instead of semicolons.

return [expression]
returns the value of the expression from the current function. If expression fails or is missing, the
value returned is that of the variable with the same name as the function. If that variable was
never set, the function returns the null string.

nreturn [expression]
The expression must be the name of a variable. That variable is returned from the current func-
tion as an lvalue. If the expression fails or is missing, the variable with the same name as the
function must have been set to the name of a variable.

freturn
The current function returns failure.

goto label
Transfer control to the given label.

Procedures may not be textually nested, but may be recursive and may call each other in forward refer-
ences. The general form of a procedure declaration is:

procedure name (args) locals { statement ... }

The args and locals are lists of variable names, separated by commas. Since Snocone is a dynamically
typed language, further declarations are not necessary. Although procedures are not textually nested,
names are dynamically scoped: a procedure can reference the local variables and parameters of its caller
as if they were global variables.

Assigning a (string) value to the variable output causes that value to be written as a single line on the
standard output. Accessing the variable input causes a line to be read from the standard input. The
access fails at end of file. Accessing or assigning to the variable terminal causes a line to be read from
or written to the standard error file. Other input-output is as implemented by the Macrospitbol interpreter;
see langs(1).

SEE ALSO
A. R. Koenig, ‘The Snocone Programming Language’, this manual, Volume 2
langs(1)

BUGS
Run-time diagnostics refer to SNOBOL4 source statement numbers, not to Snocone line numbers.
Extremely long statements can overflow the SNOBOL4 compiler’s limits on input line length.

401

SOELIM(1) General Commands Manual SOELIM(1)

NAME
soelim - eliminate .so’s from nroff input

SYNOPSIS
soelim [file ...]

DESCRIPTION
Soelim reads the specified files or the standard input and performs the textual inclusion implied by the
nroff directives of the form

.so somefile

when they appear at the beginning of input lines. This is useful since programs such as tbl do not nor-
mally do this; it allows the placement of individual tables in separate files to be run as a part of a large
document.

Note that inclusion can be suppressed by using ‘´’ instead of ‘.’, i.e.

´so /usr/lib/tmac.s

A sample usage of soelim would be

soelim exum?.n | tbl | nroff -ms | col | lpr

SEE ALSO
colcrt(1), more(1)

AUTHOR
William Joy

BUGS
The format of the source commands must involve no strangeness - exactly one blank must precede and no
blanks follow the file name.

3rd Berkeley Distribution 2/24/79 402

SORT (1) General Commands Manual SORT (1)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-cmusMbdfinrtx] [-o output] [option ...] [file ...]

DESCRIPTION
Sort sorts lines of all the files together and writes the result on the standard output. The name - means the
standard input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine collating se-
quence. The ordering is affected globally by the following options, one or more of which may appear.

-b Ignore leading white space (spaces and tabs) in field comparisons.

-d ‘Phone directory’ order: only letters, digits and white space are significant in string comparisons.

-f Fold lower case letters onto upper case.

-i Ignore characters outside the ASCII range 040-0176 in string comparisons.

-n An initial numeric string, consisting of optional white space, optional sign, and a nonempty
string of digits with optional decimal point, is sorted by value.

-g Numeric, like -n, with e-style exponents allowed.

-M Compare as month names. The first three characters after optional white space are folded to
lower case and compared. Invalid fields compare low to jan.

-r Reverse the sense of comparisons.

-tx ‘Tab character’ separating fields is x.

-k pos1,pos2
Restrict the sort key to a string beginning at pos1 and ending at pos2. Pos1 and pos2 each have
the form m.n, optionally followed by one or more of the flags Mbdfginr; m counts fields from
the beginning of the line and n counts characters from the beginning of the field. If any flags are
present they override all the global ordering options for this key. If .n is missing from pos1, it is
taken to be 1; if missing from pos2, it is taken to be the end of the field. If pos2 is missing, it is
taken to be end of line.

Under option -tx fields are strings separated by x; otherwise fields are non-empty strings separated by
white space. White space before a field is part of the field, except under option -b. A b flag may be
attached independently to pos1 and pos2.

When there are multiple sort keys, later keys are compared only after all earlier keys compare equal.
Except under option -s, lines with all keys equal are ordered with all bytes significant.

Single-letter options may be combined into a single string, such as -cnrt:. The option combination -di
and the combination of -n with any of -diM are improper. Posix argument conventions are supported.

These option arguments are also understood:

-c Check that the single input file is sorted according to the ordering rules; give no output unless the
file is out of sort.

-m Merge; the input files are already sorted.

-u Unique. Keep only the first of two lines that compare equal on all keys. Implies -s.

-s Stable sort. When all keys compare equal, preserve input order. Unaffected by -r.

-o output
Place output in a designated file instead of on the standard output. This file may be the same as
one of the inputs. The option may appear among the file arguments, except after --.

-T tempdir
Put temporary files in tempdir rather than in (the default) /usr/tmp.

403

SORT (1) General Commands Manual SORT (1)

-ymemory
Suggests using the specified number of bytes of internal store to tune performance; an unspeci-
fied memory size is taken to be huge.

+pos1 -pos2
Classical alternative to -k, with counting from 0 instead of 1, and pos2 designating next-after-last
instead of last character of the key. A missing character count in pos2 means 0, which in turn
excludes any -t tab character from the end of the key. Thus +1 -1.3 means the same as -k 2,2.3
and +1r -3 means the same as -k 2r,3.

EXAMPLES
sort Print in alphabetical order all the unique spellings in a list of words where capitalized words dif-

fer from uncapitalized.

sort Print the password file (passwd(5)) sorted by userid (the third colon-separated field).

sort Print the first instance of each month in an already sorted file.

FILES
/usr/tmp/stm???

SEE ALSO
comm(1), join(1), uniq(1), look(1)

DIAGNOSTICS
Sort comments and exits with non-zero status for various trouble conditions and for disorder discovered
under option -c.

BUGS
The never-documented default pos1=0 for cases such as sort -1 has been abolished.
Trouble (e.g. crash or file-system overflow) encountered while overwriting an input with -o is irrecover-
able.

404

SPELL(1) General Commands Manual SPELL(1)

NAME
spell - find spelling errors

SYNOPSIS
spell [option] (.,.)[file] (.,.).SH DESCRIPTION Spell looks up words from the named files (standard
input default) in a public spelling list and in a private list. Possible misspellings (words that occur in nei-
ther and are not plausibly derivable from the former) are placed on the standard output.

Spell ignores constructs of troff(1) and its standard preprocessors, or constructs of tex(1). It understands
these options:

-b Check British spelling.

-v Print all words not literally in the spelling list, with derivations.

-x Print on standard error, marked with =, every stem as it is looked up in the spelling list, along
with its affix classes. Typically used for maintenance.

-c
-C Input is one word per line. Output is a single byte per word, delivered immediately: - if the

word is rejected, + if the word is accepted under -c, and a digit if the word is accepted under -C.
Digit zero indicates a word known directly; larger numbers indicate words derived by increas-
ingly elaborate paths. Typically used by other programs piping queries to spell.

The private list, by default is arranged one word per line.

Pertinent files may be specified by environment variables, listed below with their default settings. To help
in gathering local vocabularies, copies of all output are accumulated in the history file, if it exists and is
writable.

As a matter of policy, spell does not admit multiple spellings of the same word. Variants that follow gen-
eral rules are preferred over over those that don’t, even when the unruly spelling is more common. Thus,
in American usage, ‘modeled’, ‘sizable’, and ‘judgement’ are preferred to ‘modelled’, ‘sizeable’, and
‘judgment’. Agglutinated variants are shunned: ‘crew member’ and ‘back yard’ (noun) or ‘back-yard’
(adjective) are preferred to ‘crewmember’ and ‘backyard’.

FILES
/usr/lib/spell/amspell

spelling list, compressed (D_SPELL)

/usr/lib/spell/brspell
British spelling list

/usr/lib/spell/spellhist
history file (H_SPELL)

$HOME/lib/spelldict
private list (A_SPELL)

/usr/lib/spell/sprog
the main routine (P_SPELL)

deroff (or delatex)
(or for removing punctuation and troff(1) constructs (DEROFF)

SEE ALSO
dict(7), deroff(1), wwb(1)

BUGS
Words in a private list are recognized only by exact match, including capitalization and affixing.
The heuristics of deroff(1) and delatex, used to excise formatting information, are imperfect.
The spelling list’s coverage is uneven; in particular biology, medicine, and chemistry, and perforce proper
names, are covered very lightly.
British spelling was done by an American.

405

SPELLTELL(1) General Commands Manual SPELLTELL(1)

NAME
spelltell - find the correct spelling of a word

SYNOPSIS
spelltell [-flags][-ver] [wordpart | grep(1)-regular-expression ...]

DESCRIPTION
The purpose of spelltell is to find the correct spelling of a word. The input to the program can be either:

1. any contiguous letters in the word that are known to be correct; or

2. a grep(1) regular expression representing a correctly spelled part of the word.

Spelltell will print all words in its dictionary of commonly misspelled words that contain the input se-
quence.

When spelltell is typed on a line with the input word(s), it will print the correct spelling(s) and then exit.
When spelltell is typed on a line by itself, the program questions whether the user wants instructions, and
prompts with ">" for word parts. To quit, type "q" after the prompt.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

EXAMPLES
1. The command:

spelltell rece

will print:

precede
preceding
recede
receiving
etc.

then exit.

2. The command:

spelltell
ˆproce

will print "proceed" and other words that begin with "proce," and will then prompt the user for another
letter sequence or regular expression.

SEE ALSO
grep(1), spellwwb(1), proofr(1), wwb(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

406

SPELLWWB(1) General Commands Manual SPELLWWB(1)

NAME
spellwwb - find spelling errors
spelladd - add words to user spelling dictionary

SYNOPSIS
spellwwb [-flags][-ver] [-f pfile][-b][-v][-x][file ...]

spelladd [-flags][-ver] word1 word2 ...

DESCRIPTION
Spellwwb is a modified version of spell(1). Spellwwb allows the user to have his/her own file of addi-
tional legitimate spellings, by default $HOME/lib/spelldict. Before reporting words not found in spell’s
dictionary, spellwwb compares them with words in the specified file ($HOME/lib/spelldict by default).

When a text is run through spellwwb for the first time, words such as names, acronyms, and unusual
words will be listed as errors. Words like these that are spelled correctly can then be added to
$HOME/lib/spelldict, and future spellwwb lists will contain only real spelling errors.

The following options are available:

-f pfile Use pfile instead of $HOME/lib/spelldict as the additional file of legitimate spellings.

-b Check British spelling.

-v Print all words not literally in the spelling list, and show plausible derivations from the
words in the spelling list.

-x For each word, print every plausible stem with =.

Two options, which apply to both spellwwb and spelladd , give information about the programs:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

Spelladd adds words, specified by the user, to $HOME/lib/spelldict, and maintains it in sorted order. It
can be used in two ways.

1. Type:

spelladd word1 word2 word3 ...

2. NOTE: Use this method when there are many words from one file to be added to spelldict.

First, correct all real spelling errors found by spellwwb.

Then, type the following command to have all the remaining words listed by spell (correct
words) added to $HOME/lib/spelldict:

spell corrected-file >> $HOME/lib/spelldict; spelladd

Spellwwb is one of the programs run under the proofr(1) and wwb(1) commands.

FILES
$HOME/lib/spelldict produced by spelladd

/tmp/$$∗ temporary files used by spellwwb and spelladd

SEE ALSO
proofr(1), spell(1), wwb(1), deroff(1), spelltell(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

407

SPIN (1) General Commands Manual SPIN (1)

NAME
spin − protocol analysis software

SYNOPSIS
spin [-nN] [-pglprsm] [-at] [file]

DESCRIPTION
Spin is a tool for analyzing the logical consistency of concurrent systems, specifically communication
protocols. The system is specified in a guarded command language called Promela. The language, de-
scribed in the reference, allows for the dynamic creation of processes, nondeterministic case selection,
loops, gotos, variables and assertions. The tool has fast and frugal algorithms for analyzing liveness and
safeness conditions.

Given a model system specified in Promela, spin can either perform random simulations of the system’s
execution or it can generate a C program that performs a fast exhaustive validation of the system state
space. The validator can check, for instance, if user specified system invariants may be violated during a
protocol’s execution, or if any non-progress execution cycles exist.

Without any options the program performs a random simulation. With option

-nN the seed for the simulation is set explicitly to the integer value N.

The second group of options -pglrs is used to set the desired level of information that the user wants about
the simulation run. Every line of output normally contains a reference to the source line in the specifica-
tion that caused it.

p Show at each time step which process changed state.

l In combination with option p, show the current value of local variables of the process.

g Show at each time step the current value of global variables.

r Show all message-receive events, giving the name and number of the receiving process and the
corresponding the source line number. For each message parameter, show the message type and
the message channel number and name.

s Show all message-send events.

m Changes the semantics of send events. Ordinarily, a send action will be delayed if the target mes-
sage buffer if full. With this option a message sent to a full buffer is lost. The option can be
combined with -a (see below).

a Generate a protocol-specific analyzer. The output is written into a set of C files, named
pan.[cbhmt], that can be compiled (cc pan.c) to produce an executable analyzer. Large systems,
that require more memory than available on the target machine, can still be analyzed by compil-
ing the analyzer with a bit state space:

cc -DBITSTATE pan.c

This collapses the state space to 1 bit per system state, with minimal side-effects.

A compiled analyzer has its own set of options, which can be seen by typing a.out -?.

t If the analyzer finds a violation of an assertion, a deadlock, a non-progress loop, or an unspeci-
fied reception, it writes an error trail into a file named pan.trail. The trail can be inspected in de-
tail by invoking spin with the t option. In combination with the options pglrs different views of
the error sequence are then easily obtained.

SEE ALSO
cospan in langs(1)
G.J. Holzmann, ‘Spin — A Protocol Analyzer’, this manual, Volume 2.

408

SPITBOL(1) General Commands Manual SPITBOL(1)

NAME
spitbol - Snobol language compiler

SYNOPSIS
spitbol [options] ifile ...

DESCRIPTION
Spitbol is an upward compatible dialect of SNOBOL4.

All names used in a program are normally mapped to UPPER CASE during compilation and execution.
For strict compatibility with SNOBOL4, use the -f option or -CASE control statement.

Each ifile is read in order before the standard input. Standard output comes only from assignments to
OUTPUT and from error messages.

Compiler options:

-f don’t fold lower case names to UPPER CASE

-e don’t send error messages to the terminal

-l generate source listing

-c generate compilation statistics

-x generate execution statistics

-a like -lcx

-p long listing format; generates form feeds

-z use standard listing format

-h write spitbol header to standard output

-n suppress execution

-mdd max size (words) of created object (default 8192)

-sdd maximum size (words) of stack space (default 2048)

-idd size (words) of increment by which dynamic area is increased (default 4096)

-ddd size (words) of maximum allocated dynamic area (default 256K)

-u string
executing program may retrieve string with HOST(0)

-o ofile
write listing, statistics and dump to ofile and OUTPUT to standard output

Note: dd can be followed by a k to indicate units of 1024.

Spitbol has two input-output modes, line mode, where records are delimited by new-line characters, and
raw mode where a predetermined number of bytes is transferred. Modes are specified in INPUT or OUT-
PUT function calls. The maximum length of an input record is set by the -l or -r argument. The form of
the INPUT/OUTPUT function call is

INPUT/OUTPUT(.name,channel,file_name args)

where name is the variable name to be input/output associated and channel is an integer or string that
identifies the association to be used in subsequent calls for EJECT, ENDFILE, INPUT, OUTPUT,
REWIND, and SET. If the channel is omitted or the null string, the association is made to the system’s
standard input or output stream. file_name args specifies the source/destination of the input/output and
any IO processing arguments. The file_name can be either a path name to a file or a command string.
Command strings are distinguished from file names by a leading "!". The character following the "!" is the
delimiter used to separate the command string from any IO processing arguments. The ending delimiter
may be omitted if there are no IO processing arguments. There must always be at least one space between
the file_name and args, even if the file_name is null.

Input/output arguments are:

409

SPITBOL(1) General Commands Manual SPITBOL(1)

-a Append output to existing file. If file doesn’t exist then it is created. If -a is not specified then
file is created.

-bdd Set internal buffer size to dd characters. This value is the byte count used on all input/output
transfers except for the last write to an output file (default 4096).

-c Like -r1

-fdd Use dd as file desciptor for IO. spitbol assumes that dd has been opened by the shell. File
names and -fdd arguments are mutually exclusive. File descriptors 0, 1, and 2 may be accessed
in this manner.

-ldd Line mode: maximum input record length is dd characters (default 4096).

-rdd Raw mode: input record length is dd characters.

-w On output, each record is directly written to the file without any intermediate buffering (default
for terminals). On input, each input operation uses exactly one read(2), and fails if read returns
0.

More than one type of transfer may be associated with a channel. This is accomplished by calling IN-
PUT/OUTPUT after the initial call with the name, channel, and file arguments. The file name or -f argu-
ment must not be specified on calls subsequent to the first.

Standard functions: SET(channel,integer,integer) The arguments are same as those to the lseek(2), escept
that the first argument identifies a spitbol channel instead of a file descriptor.

EXIT(command-string)
causes the value of command-string to be handed to the Shell to be executed after spitbol termi-
nates.

EXIT(n)
If n is greater than 0, a load module will be written in a.out before termination. Executing this
load module will restore the state of the spitbol system to what it was when EXIT was called, ex-
cept that any files other than the standard input, output, and error will have been closed. To the
SNOBOL4 program, it will appear as if EXIT had returned a null string. If n is exactly 1, the
generated load module will identify the version of spitbol that created it in a message when it be-
gins execution. If n is greater than 1, it will resume quietly.

HOST()
returns the host string read from /usr/lib/spithost.

HOST(0)
returns the string specified with the -u option on the command line. If -u was not specified the
null string is returned.

HOST(1,"command string")
executes the command string and continues.

HOST(2,n)
returns argument number n from the command line. It fails if n is out of range or not an integer.

HOST(3)
returns the index of the first command line argument that was not examined by spitbol.

HOST(4,"var")
returns the value of the environment variable var. If the value is too long for an internal buffer
(presently 512 bytes) it is quietly truncated.

HOST(5,n)
sets (if n > 0) or resets (if n < 0) a trap for signal number n (see signal(2)). It returns 0 if no trap
was previously set for that signal, 1 if a trap has been previously set but the signal has not oc-
curred since the last call, or 2 if the signal has occurred.

MISCELLANY
A file is not actually opened until the first attempt to read, write, SET, or REWIND it.

Folding of names to UPPER CASE can be controlled during compilation by the -CASE control statement

410

SPITBOL(1) General Commands Manual SPITBOL(1)

and during execution by the &CASE keyword. A value of 0 prevents folding to UPPER CASE and a
value of 1 forces folding to UPPER CASE.

Integers are represented by 32-bit quantities. Real numbers are implemented in single precision.

Setting &STLIMIT = -1 inhibits statement limit checking and provides a way to execute arbitrarily many
statements.

The name TERMINAL is available with default associations for input and output to the terminal.

If the first line of the first input file begins with #! then that line is ignored. This meshes with the way
that exec(2) treats files beginning with #!.

Setting &PROFILE = 1 causes spitbol to accumulate profile information during program execution and
print this information after the program terminates.

FILES
/usr/lib/vaxspitv35.err - Error text.
/usr/lib/spithost - Host computer and operating system identifier.

SEE ALSO
Macro SPITBOL Program Reference Manual by R. B. K. Dewar, A. P. McCann, R. E. Goldberg, and
Steven G. Duff
The SNOBOL4 Programming Language, Second Edition by R. E. Griswold, J. F. Poage and I. P. Polonsky
sno(1), snocone(1)

411

SPLINE(1) General Commands Manual SPLINE(1)

NAME
spline - fit a curve

SYNOPSIS
spline [option ...]

DESCRIPTION
Spline is a filter that interpolates extra points in an input list suitable for graph(1). It is useful for making
smooth-looking curves with graph or with grap (1).

The following options are recognized, each as a separate argument.

-a Similar to graph(1). Supply abscissas automatically; no x-values appear in the input. Spacing is
given by the next argument (default 1). A second optional argument is the starting point for auto-
matic abscissas (default 0, or the lower limit given by -x).

-x Similar to graph. Next 1 (or 2) arguments are lower (and upper) x limits. Normally these quan-
tities are determined automatically.

-k The constant k used in the boundary value computation

y′′
0 = ky′′

1, y′′
n = ky′′

n−1, (.).if t .ig
(2nd deriv. at end) = k∗ (2nd deriv. next to end)

(.).IP is set by the next argument. (Default k = 0.)

-n Space output points so that approximately n intervals occur between the lower and upper x lim-
its. (Default n = 100.)

-p Make output periodic, i.e. match derivatives at ends. First and last input values should normally
agree.

SEE ALSO
graph(1), grap(1), port(3)

DIAGNOSTICS
When data are not strictly monotone in x, spline simply reproduces its input.

BUGS
Spline quietly discards points after the first 1000.
Spline’s curves exhibit the classic ills of piecewise cubics.

412

SPLIT (1) General Commands Manual SPLIT (1)

NAME
split, fsplit - split a file into pieces

SYNOPSIS
split [option ...] [file]

fsplit [option ...] [file ...]

DESCRIPTION
Split reads file (standard input by default) and writes it in pieces of 1000 lines per output file. The names
of the output files are xaa, xab, and so on to xzz. The options are

-n Split into n-line pieces.

-e expression
File divisions occur at each line that matches a grep-style regular expression; see gre(1). Multi-
ple -e options may appear. If a subexpression of expression is contained in escaped parentheses
\(...\), the output file name is the portion of the line which matches the subexpression.

-f stem
Use stem instead of x in output file names.

-s suffix
Append suffix to names identified under -e.

-x Exclude the matched input line from the output file.

-i Ignore case in option -e; force output file names (excluding the suffix) to lower case.

Fsplit splits a collection of Fortran subprograms in one file into separate files. The options are

-f
-e
-r Set the file suffix: procedure proc will go into file proc.f (default), proc.e, or proc.r

accordingly. Block data subprograms will go into files named BLOCKDATA1.f, etc.

-i Force output file names to lower case.

-s Strip off data beyond column 72 together with any resulting trailing blanks.

SEE ALSO
sed(1), awk(1) grep in gre(1)

413

STRINGS(1) General Commands Manual STRINGS(1)

NAME
strings - find printable strings in a file

SYNOPSIS
strings [option ...] [file ...

DESCRIPTION
Strings looks for and prints ASCII strings in files. A string is a sequence of printing characters, tabs, or
backspaces terminated by a newline or a null character. In object files, strings are normally looked for
only in the text and data segments. The options are:

-t Look for strings in the text segment of an object file.

-d Look for strings in the data segment of an object file.

-s Look for symbol strings in the symbol table of an object file.

-a Look for strings throughout the file.

-o Precede each string by its octal offset in the file.

-number
Ignore strings less than number characters long (excluding newlines). Default length is 4.

Strings is useful for identifying random object files and many other things.

SEE ALSO
gre(1), xd(1)

BUGS
Newlines are quietly inserted in very long strings.

414

STRIP(1) General Commands Manual STRIP(1)

NAME
strip - remove symbols and relocation bits

SYNOPSIS
strip [-s] [-g] [-v] file ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the assembler and
loader. This saves space and hampers debuggers. Option -s of ld(1) does the same thing. The options are

-s Squeeze the symbol table by removing duplicate information.

-g Delete line-number information, thus negating the effect of cc -g. Implies -s.

-v Print size information.

FILES
shrink? temporary file

SEE ALSO
cc(1), ld(1) ENVIRONMENT VARIABLES.TH STRLIC 1 "30 June 1988"

NAME
strlic - Esterel parser

SYNOPSIS
strlic [option] ... [file]...

DESCRIPTION
strlic is the Esterel v3 parser, type-checker and intermediate code generator. It checks the Esterel input
programs for syntax and type errors. It produces an ic format output. If no input file is specified, standard
input is used. Output is produced only for valid input files i.e. files that did not generate any error. Warn-
ings do not forbid code generation. Error messages and warnings are written to the standard error stream.
Typical use is:

strlic < game1.strl > game.ic
or
strlic game1.strl game2.strl > game.ic

The following options are interpreted by strlic:

-version Gives the version name and terminates ignoring all others arguments.

-memstat Memory state after compiling.

-stat Prints auxiliary informations onto the standard error stream: parsing, type-checking and cod-
ing times, size of the process.

-w With this option, no warnings are generated.

-W This options tells strlic to generated all possible warnings. Messages printed only if this
option is specified are completely harmless

FILES
The caller of the command must have read/write permission for the directories containing the working
files, and execute permission for the strlic file itself.

DIAGNOSTICS
The diagnostics produced by strlic compiler are intended to be self-explanatory.
System errors are preceded by the message "$$Internal error".

IDENTIFICATION
Author: R. Bernhard
CMA, Ecole des Mines de Paris,

415

STRIP(1) General Commands Manual STRIP(1)

Sophia-Antipolis, 06600 Valbonne, FRANCE
Revision Number: $Revision: 1.14 $; Release Date: $Date: 88/07/11 17:21:41 $.

SEE ALSO
esterel(1), iclc(1), lcoc(1), ocxx(1).
Esterel v3 Programming Language Manual
Esterel v3 System Manuals.

416

STRUCT (1) General Commands Manual STRUCT (1)

NAME
struct - structure Fortran programs

SYNOPSIS
struct [option ...] file

DESCRIPTION
Struct translates the Fortran program specified by file (standard input default) into a Ratfor program.
Wherever possible, Ratfor control constructs replace the original Fortran. Statement numbers appear only
where still necessary. Cosmetic changes are made, including changing Hollerith strings into quoted
strings and relational operators into symbols (e.g. .GT. into >). The output is appropriately indented.

The following options may occur in any order.

-s Input uses standard Fortran comment and continuation conventions. Normally input is in the
form accepted by f77(1)

-i Do not turn computed goto statements into switches. (Ratfor does not turn switches back into
computed goto statements.)

-a Turn sequences of else ifs into a non-Ratfor switch of the form

switch
{ case pred1: code

case pred2: code
case pred3: code
default: code

}

The case predicates are tested in order; the code appropriate to only one case is executed. This
generalized form of switch statement does not occur in Ratfor.

-b Generate goto’s instead of multilevel break statements.

-n Generate goto’s instead of multilevel next statements.

-tn Make the nonzero integer n the lowest valued label in the output program (default 10).

-cn Increment successive labels in the output program by the nonzero integer n (default 1).

-en If n is 0 (default), place code within a loop only if it can lead to an iteration of the loop. If n is
nonzero, admit a small code segment to a loop if otherwise the loop would have exits to several
places including the segment, and the segment can be reached only from the loop. ‘Small’ is
close to, but not equal to, the number of statements in the code segment. Values of n under 10
are suggested.

FILES
/tmp/struct∗
/usr/lib/struct/∗

SEE ALSO
f77(1), ratfor(A)
B. S. Baker, ‘An Algorithm for Structuring Flowgraphs’, JACM 24 (1977) 376-391

BUGS
Struct knows Fortran 66 syntax, but not full Fortran 77.
If an input Fortran program contains identifiers which are reserved words in Ratfor, the structured version
of the program will not be a valid Ratfor program.
The labels generated cannot go above 32767.
If you get a goto without a target, try -e.

417

STTY (1) General Commands Manual STTY (1)

NAME
stty - set terminal options

SYNOPSIS
stty [option ...]

DESCRIPTION
Stty sets certain I/O options for the terminal open on /dev/tty (file descriptor 3). With no argument, it
reports the current settings of the options. The options are:

even Allow even parity.
-even Disallow even parity.
odd Allow odd parity.
-odd Disallow odd parity.
raw Raw mode input: no erase, kill, interrupt, quit, EOT; parity bit passed to processes.
-raw Turn off raw mode.
8bit Eight-bit mode: don’t strip parity in the device driver.
-8bit Turn off eight-bit mode.
cooked Same as -raw.
cbreak Make each character available to read(2) as received; no erase and kill.
-cbreak Make characters available to read only when newline is received.
-nl Allow carriage return for new-line, and output CR-LF for carriage return or new-line.
nl Accept only new-line to end lines.
echo Echo back every character typed.
-echo Turn off echo.
lcase Map upper case to lower case.
-lcase Preserve case.
-tabs Replace tabs by spaces when printing.
tabs Preserve tabs.
ek Reset erase and kill characters to traditional backspace @.
erase c Set erase character to c (initially backspace). In this and other character-setting options a ˆ

may precede c to signify control-c.
kill c Set kill character to c (initially @).
intr c Set interrupt character to c (initially DEL).
quit c Set quit character to c (initially control-\).
stop c Set stop character to c (initially control-S).
start c Set start character to c (initially control-Q).
eof c Set ‘end of file’ character to c (initially control-D).
brk c Set ‘line-break’ character to c (initially undefined).
cr0 cr1 cr2 cr3

Select style of delay for carriage return; see ioctl(2).
nl0 nl1 nl2 nl3

Select style of delay for linefeed.
tab0 tab1 tab2 tab3

Select style of delay for tab.
ff0 ff1 Select style of delay for form feed.
bs0 bs1 Select style of delay for backspace.
hup Hang up on last close.
0 Hang up immediately.
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb

Set terminal baud rate to the number given, if possible.
old Arrange to use normal teletype line discipline, ttyld(4).
old! Force normal teletype line discipline, even if no teletype driver was present.
notty Remove the top-level teletype driver.

SEE ALSO
ttyld(4), ioctl(2), tabs(1)

418

SUM(1) General Commands Manual SUM(1)

NAME
sum, treesum - sum and count blocks in a file

SYNOPSIS
sum [-5ri] [file ...]

treesum [file ...]

DESCRIPTION
By default, sum calculates and prints a 32-bit checksum, a byte count and the name of each file. The
checksum is also a function of the input length. If no files are given, the standard input is summed. Other
summing algorithms are available. The options are

-i Read file names from standard input.

-r Sum with the algorithm of System V’s sum -r and print the length (in 1K blocks) of the input.

-5 Sum with System V’s default algorithm and print the length (in 512-byte blocks) of the input.

Sum is typically used to look for bad spots, to validate a file communicated over some transmission line or
as a quick way to determine if two files might be the same.

Treesum is similar to sum -r, except that if file is a directory, then treesum recursively descends it, sum-
ming all non-directories encountered. If no files are given, treesum recursively sums the current directory.

SEE ALSO
wc(1)

419

SYL(1) General Commands Manual SYL(1)

NAME
syl - syllable counter

SYNOPSIS
syl [-flags][-ver] [-num][file ...]

DESCRIPTION
Syl counts the number of syllables in each word in the input text. The input text can be a file, or words
typed in at the terminal. Syl prints each unique word in the file preceded by its syllable count, with the
words ordered alphabetically within each syllable category. That is, all one-syllable words are printed
first, in alphabetical order, followed by the two-syllable words, and so on.

One option is available:

-num only print words that have at least num syllables, where num is an integer.

To use syl interactively, type syl (carriage return), then type in the word or words to be counted on the
next line. Syl will print the syllable count for each word.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

EXAMPLES
The command:

syl -5 filename
will print all the words in filename that have five syllables or more.

The sequence:
syl (carriage return)
Who needs a dictionary

will print the syllable counts for each word in the line. When finished, type "control-d."

BUGS
Because there are minor rules and exceptions in English, not covered by the syl program, the program is
about 98% accurate.

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

420

TABS(1) General Commands Manual TABS(1)

NAME
tabs - set terminal tabs

SYNOPSIS
tabs [+num] [-Tterm]

DESCRIPTION
Tabs sets the tabs on a variety of terminals. Term is a name given in term(6). The name may also be sup-
plied by the environment variable TERM.

The +num option offsets the left margin num positions.

SEE ALSO
stty(1), term(6), tset(A)

421

TAIL(1) General Commands Manual TAIL(1)

NAME
tail, readslow, head - print the last part of a file

SYNOPSIS
tail [otion ... number[lbc][rf]] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place, normally 10 lines from
the end. If no file is named, the standard input is used. The options are

number[lbc][rf]
Copying begins at position +number measured from the beginning, or -number from the end of
the input. Number is counted in lines, 1K blocks or characters, according to the appended flag l
(default), b, or c. Further flags r and f have the effect of options -r and -l .

-r Print lines from the end of the file in reverse order. Default line count is unbounded.

-f Follow. After printing to the end, keep watch and print further data as it appears.

-c number
-n number

Number may be signed, with sign - assumed by default. The effect is the same as numberc or
numberl [sic] respectively.

EXAMPLES
tail file

Print the last 10 lines of a file.

tail +0f file
Print a file, and continue to watch data accumulate as it grows. A similar function is sometimes
called readslow.

sed 10q file
Print the first 10 lines of a file. A similar function is sometimes called head.

SEE ALSO
dd(1)

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length, even under
option -r.
According to custom, option +number counts lines from 1, and counts blocks and characters from 0.

422

TALK (1) General Commands Manual TALK (1)

NAME
talk - talk to another user

SYNOPSIS
talk user [ttyname]

DESCRIPTION
Talk is identical to write(1) except that transmission takes place one character at a time, without waiting
for the newline at the end of each line. Talk copies characters from your terminal to that of another user.
When first called, it sends the message

yourname yourttyname talking...

The recipient of the message should talk back at this point. Communication continues until an interrupt
(DEL) or EOT (CTRL-d) is sent. At that point talk writes ‘EOT’ on the other terminal and exits.

If you want to talk to a user who is logged in more than once, the ttyname argument may be used to indi-
cate the appropriate terminal name.

Permission to talk may be denied or granted by use of the mesg command. At the outset talking is al-
lowed. Certain commands, in particular nroff and pr(1) disallow messages in order to prevent messy out-
put.

If the character ‘!’ is found at the beginning of a line, talk calls the shell to execute the rest of the line as a
command.

The following protocol is suggested for using talk: when you first talk to another user, wait for her to talk
back before starting to send. Each party should end each message with a distinctive signal — (o) for
‘over’ is conventional — so that the other may reply. (oo) for ‘over and out’ is suggested when conversa-
tion is about to be terminated.

FILES
/etc/utmp to find user
/bin/sh to execute ‘!’

SEE ALSO
write(1), mesg(1), who(1), mail(1)

local 423

TAPE(1) General Commands Manual TAPE(1)

NAME
tape, mt - identify and manipulate magnetic tape

SYNOPSIS
tape

mt [-t tapename] command [count]

DESCRIPTION
Tape experiments with the magnetic tape drive and reports under which device name the tape mounted
there can be read, how many files and records there are, and how big the records are. Mt applies a com-
mand to the named tape drive (default count times (default 1). The commands are

eof write end-of -file mark
fsf forward space file
fsr forward space record
bsf backspace file
bsr backspace record
rewind

rewind
offline

rewind and take off line

FILES
/dev/nrmt1

SEE ALSO
mt(4), dd(1)

424

TAR(1) General Commands Manual TAR(1)

NAME
tar - tape archiver

SYNOPSIS
tar key [file ...]

DESCRIPTION
Tar saves and restores files, normally on magnetic on tape. The key is a string that contains at most one
function letter plus optional modifiers. Other arguments to the command are names of files or directories
to be dumped or restored. A directory name implies all the contained files and subdirectories (recur-
sively).

The function is one of the following letters:

r The named files are written on the end of the tape.

x Extract the named files from the tape. If a file is a directory, the directory is extracted recur-
sively. Owners and modes are restored if possible. If no file argument is given, extract the entire
tape. If the tape contains multiple entries for a file, the latest one wins.

t List all occurrences of each file on tape, or of all files if there are no file arguments.

u Add the named files if they are not on the tape or are newer than the tape version.

c Create a new tape; writing begins at the beginning of the tape instead of after the last file.

o Omit owner and modes of directories, for compatibility with old versions of tar.

p Restore files to their original modes, ignoring the present umask(2). Setuid and sticky informa-
tion will be restored when tar is executed by the super-user.

The modifiers are:

0,...,7 Select a tape drive. The default is 1. Incompatible with modifier f.

v (verbose) Print the name of each file treated preceded by the function letter. With t, give more
details about the tape entries.

w Print the action to be taken followed by file name, then wait for user confirmation. If the answer
begins with y, the action is performed. Any other input means don’t do it.

f Use the next argument as the name of the archive instead of the default /dev/rmt1 If the name
of the file is -, tar writes to standard output or reads from standard input, whichever is appropri-
ate. Tar can be used to move hierarchies thus:

(cd fromdir; tar cf - .) | (cd todir; tar xf -)

b Write output in n× 512-byte blocks, where n is the next argument, default 20, maximum 40. Use-
ful for raw magnetic tape archives (see f above); destructive for disk archives.

l Complain if links cannot be resolved. If l is not specified, no error messages are printed.

L Write information needed to re-create symbolic links on the tape instead of following the links.
Tapes thus written cannot be read on older versions of tar .

FILES
/dev/rmt?
/tmp/tar∗

SEE ALSO
cpio(1), bundle(1), mt(4)

BUGS
There is no way to ask for any but the last occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow, and works only with archives on disk files.
File names are limited to 100 characters.

425

TBL(1) General Commands Manual TBL(1)

NAME
tbl - format tables for nroff or troff

SYNOPSIS
tbl [file ...]

DESCRIPTION
Tbl is a preprocessor for formatting tables for nroff or troff(1). The input files are copied to the standard
output, except for segments of the form

.TS
options ;
format .
data
.T&
format .
data
. . .
.TE

which describe tables and are replaced by troff requests to lay out the tables. If no arguments are given,
tbl reads the standard input.

The (optional) options line is terminated by a semicolon and contains one or more of

center
center the table; default is left-adjust

expand
make table as wide as current line length

box

doublebox
enclose the table in a box or double box

allbox
enclose every item in a box

tab(x)
use x to separate input items; default is tab

linesize(n)
set rules in n-point type

delim(xy)
recognize x and y as eqn(1) delimiters

Each line, except the last, of the obligatory format describes one row of the table. The last line describes
all rows until the next .T&, where the format changes, or the end of the table at .TE. A format is speci-
fied by key letters, one per column, upper or lower case

L
Left justify: the default for columns without format keys.
R
Right justify.
C
Center.
N
Numeric: align at decimal point (inferred for integers) or at \&.
S
Span: extend previous column across this one.
A
Alphabetic: left-aligned within column, widest item centered, indented relative to L rows.

426

TBL(1) General Commands Manual TBL(1)

ˆ
Vertical span: continue item from previous row into this row.
-
Draw a horizontal rule in this column.
_
Draw a double horizontal rule in this column.

Key letters may be followed by modifiers, also either case:

| Draw vertical rule between columns.
|| Draw a double vertical rule between columns.
n Gap between column is n ens wide. Default is 3.
F font Use specified font. B and I mean FB and FI.
T Begin vertically-spanned item at top row of range; default is vertical centering (with ˆ).
Pn Use point size n.
Vn Use n-point vertical spacing in text block; signed n means relative change.
W(n) Column width as a troff width specification. Parens are optional if n is a simple integer.
E Equalize the widths of all columns marked E.

Each line of data becomes one row of the table; tabs separate items. Lines beginning with . are troff
requests. Certain special data items are recognized:

_ Draw a horizontal rule in this column.
= Draw a double horizontal rule in this column. A data line consisting of a single _ or =

draws the rule across the whole table.
_ Draw a rule only as wide as the contents of the column.
\Rx Repeat character x across the column.
\ˆ Span the previous item in this column down into this row.
T{ The item is a text block to be separately formatted by troff and placed in the table. The

block continues to the next line beginning with T}. The remainder of the data line fol-
lows at that point.

When it is used in a pipeline with eqn, the tbl command should be first, to minimize the volume of data
passed through pipes.

EXAMPLES
Let <tab> represent a tab (which should be typed as a genuine tab).
.TS
c s s
c c s
c c c
l n n.
Household Population
Town<tab>Households
<tab>Number<tab>Size
Bedminster<tab>789<tab>3.26
Bernards Twp.<tab>3087<tab>3.74
Bernardsville<tab>2018<tab>3.30
.TE

Household Population
Town Households

Number Size
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
address.fc

427

TBL(1) General Commands Manual TBL(1)

SEE ALSO
troff(1), eqn(1), doctype(1)
M. E. Lesk and L. L. Cherry, ‘TBL—a Program to Format Tables’, this manual, Volume 2

428

TDC(1) General Commands Manual TDC(1)

NAME
tdc - fill out TDC form

SYNOPSIS
tdc

tdc [-b]

tdc bill-info [card-info]

DESCRIPTION
This command will prepare a PostScript job that will produce a standard Telephone Discount Concession
form (ATT363) when printed. With no arguments it simply gives usage information on the standard error
output. Option -b causes PostScript for a blank form to be generated. To have the form filled in, bill-info
and, optionally, card-info should be supplied. Each of these consists of five arguments, with the first set
corresponding to the telephone bill and the second set corresponding to AT&T Universal Card calls. The
five arguments are as follows, and must appear in the order shown:

month Billing month for the bill. This can be a month abbreviation or a month number. There is not
room on the form for the full month name.

day Billing day for the bill.

year Billing year for the bill.

amount
Total Inter-LATA Toll Charges, including taxes (note that this is not quite the same as section 1
of the form—it’s just the total amount as it appears on the bill).

exclusions
Total non-eligible charges as defined in section 2 of the form. The simplest way to compute this
is to add the actual charges for all ineligible calls.

By default, the information for filling in the form is gleaned from the file $HOME/.tdc. If this file does
not exist, tdc will prompt you for the name of an alternate tdc profile residing in your $HOME directory.
This profile should consist of a number of lines, each giving one piece of information for the form. The
format of the lines is an item name followed by the information. The names and the expected information
are:

firstname
Your first name.

homephone
Your home phone number (the one for which you are vouchering the calls). The format is three
numbers, giving area code, exchange and line number, with no extra characters like parenthesis
or dashes.

last8cardno
The last 8 digits of your AT&T Universal Card number.

lastname
Your last name.

middleinitial
Your middle initial.

officephone
Your office phone number; see the description of homephone for the format of this entry.

payment
How you are paid. This can be weekly, bi-weekly, or monthly (the default).

program
The program you are in (see item 6 of the form). The possibilities are management (the de-
fault), occupational1, or occupational2.

429

TDC(1) General Commands Manual TDC(1)

ssnumber
Your Social Security number, with internal dashes, xxx-xx-xxxx .

title Your title. The default is MTS.

Some of these have default values, as indicated. The others will not appear on the form if you don’t spec-
ify them. In addition to these values there are five others that are location-specific whose default values
are built into tdc but which may be overridden in $HOME/.tdc. These values are:

location1

location2

location3
Three lines of address information for your BL location.

paycode
Your Payroll Unit Code Number.

tax The tax rate (as a percentage) used on your phone bill. In New Jersey this is 9 (for 9%).

EXAMPLES
If you prepare TDC forms for more than one person, you should keep each person’s data in separate .tdc
files. For example, one file might be called $HOME/.tdcSmith, and another might be called
$HOME/.tdcJones. Then, if tdc cannot find $HOME/.tdc, it will prompt for the profile to be used:

Enter profile suffix: Smith

A typical .tdc file might look like this:

firstname Joe
middleinitial Q.
lastname Schlabotnik
ssnumber 123-45-6789
officephone 908 582 0000
homephone 908 999 0000

If you are paid weekly and are in the second occupational category of part 6 of the form, you would add
these two lines:

payment weekly
program occupational2

A typical usage of tdc might be:

tdc Dec 26 1992 134.28 15.44 | lp

FILES
$HOME/.tdc∗ tdc data profiles

430

TEE(1) General Commands Manual TEE(1)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i] [-a] [file ...]

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the files. The options are

-i Ignore interrupts.

-a Append the output to the files rather than rewriting them.

431

TELNET (1) General Commands Manual TELNET (1)

NAME
telnet - user interface to the telnet protocol

SYNOPSIS
telnet [host [port]]

DESCRIPTION
Telnet communicates with another host using the TELNET protocol. If telnet is invoked without argu-
ments, it prompts telnet>. In this mode it accepts the commands listed below. If it is invoked with
arguments, it performs an open command (see below) with those arguments.

Once a connection has been opened, telnet sends typed text to the remote host. To issue telnet commands
when in input mode, precede them with the telnet escape character, initially control-].

The following commands are available. Only a unique prefix of the command need be typed.

open host [port]
Open a connection to the named host. A missing port number defaults to a TELNET server. The
host may be a host name or an Internet address specified in the ‘dot notation’.

close Close a TELNET session and return to command mode.

quit Close any open TELNET session and exit telnet.

escape [escape-char]
Set the telnet escape character. Control characters may be specified as ˆ followed by a single
letter.

status Show the current status of telnet.

options
Toggle viewing of TELNET options processing. When viewing is on, all TELNET option nego-
tiations will be displayed. Options sent by telnet are displayed as SENT, options received as
RCVD.

crmod
Toggle carriage return mode. When this mode is on, carriage return characters received from the
remote host map into a carriage return and a line feed.

? [command]
Get help. With no arguments, print a help summary. With a command specified, print informa-
tion about that command only.

FILES
/usr/inet/lib/∗

SEE ALSO
dcon(1), netstat(8)

research 432

TEST (1) General Commands Manual TEST (1)

NAME
test, [, newer - condition commands

SYNOPSIS
test expr

[expr]

newer file1 file2

DESCRIPTION
Test evaluates the expression expr. If the value is true the exit status is 0; otherwise the exit status is
nonzero. If there are no arguments the exit status is nonzero.

The following primitives are used to construct expr.

-r file True if the file exists (is accessible) and is readable.
-w file True if the file exists and is writable.
-x file True if the file exists and has execute permission.
-e file True if the file exists.
-f file True if the file exists and is a plain file.
-d file True if the file exists and is a directory.
-c file True if the file exists and is a character special file.
-b file True if the file exists and is a block special file.
-L file True if the file is a symbolic link.
-u file True if the file exists and has set userid permission.
-g file True if the file exists and has set groupid permission.
-s file True if the file exists and has a size greater than zero.
-t fildes True if the open file whose file descriptor number is fildes (1 by default) is associated with a

terminal device.
-S True if the effective userid is zero.
s1 = s2 True if the strings s1 and s2 are identical.
s1 != s2 True if the strings s1 and s2 are not identical.
s1 True if s1 is not the null string. (Deprecated.)
-z s1 True if the length of string s1 is zero.
n1 -eq n2 True if the integers n1 and n2 are arithmetically equal. Any of the comparisons -ne, -gt, -ge,

-lt, or -le may be used in place of -eq. The (nonstandard) construct -l string, meaning the
length of string, may be used in place of an integer.

These primaries may be combined with the following operators:

! unary negation operator
-o binary or operator
-a binary and operator; higher precedence than -o
(expr)

parentheses for grouping.

Notice that all the operators and flags are separate arguments to test. Notice also that parentheses are
meaningful to the Shell and must be escaped.

[is a synonym for test, except that [requires a closing].

Newer returns a zero exit code if file1 exists and file2 does not, or if file1 and file2 both exist and file1 was
modified at least as recently as file2. It returns a non-zero return code otherwise.

EXAMPLES
Test is a dubious way to check for specific character strings: it uses a process to do what a shell case state-
ment can do. The first example is not only inefficient but wrong, because test understands the purported
string "-c" as an option. Furthermore $1 might be empty.

if test $1 = "-c" # wrong!
then echo OK
fi

A correct way is

433

TEST (1) General Commands Manual TEST (1)

case "$1" in
-c) echo OK
esac

Test whether abc is in the current directory.

test -e abc -o -L abc

SEE ALSO
sh(1), find(1)

434

TEX(1) General Commands Manual TEX(1)

NAME
tex, dvips, dvit, dvicat - text formatting and typesetting

SYNOPSIS
tex [first-line]

dvips [option ...] dvifile

dvit [option ...] dvifile

dvicat dvifile ...

DESCRIPTION
Tex formats interspersed text and commands and outputs a .dvi (‘device independent’) file.

An argument given on the command line behaves as the first input line. That line should begin with a
(possibly truncated) file name or a \controlsequence. Thus tex processes the file paper.tex.
The basename of paper becomes the jobname, and is used in forming output file names. If no file is
named, the jobname is texput. The default .tex extension can be overridden by specifying an exten-
sion explicitly.

The output is written on jobname.dvi, which can be printed using lp(1). A log of error messages goes
into jobname.log.

As well as the standard TeX fonts, many Postscript fonts can be used (see the contents of The file
testfont.tex (in the standard macro directory) will print a table of any font.

These environment variables adjust the behavior of tex:

TEXINPUTS
Search path for \input and \openin files. It should be colon-separated, and start with dot.
Default: .:/usr/lib/tex/macros

TEXFONTS
Search path for font metric files. Default: /usr/lib/tex/fonts/tfm

TEXFORMATS
Search path for format files. Default: /usr/lib/tex/macros

TEXPOOL
Search path for strings. Default: /usr/lib/tex

TEXEDIT
Template for the switch-to-editor-on-error option, with %s for the filename and %d for the line
number. Default: /bin/ed

Dvips and dvit convert .dvi files to Postscript and troff output format, respectively, writing the result on
standard output. They are invoked by lp(1) and accept a subset of lp options that make sense for .dvi
files. In the -opagelist option for only printing selected pages, the numbers refer to TeX page numbers.
In addition, there is a -Tdev option, where dev is one of laserwriter (default for dvips), jerq
(default for dvit), gnot, fax, or lino (the computer center’s high resolution Postscript service). The
-Tjerq or -Tgnot options should be used for preparing output for proof(9) or psi(9)

When converting a number of short .dvi files to Postscript or using lp to print them, it is much more
efficient first to combine them via dvicat. Simply concatinating .dvi files would not work, but dvicat
achieves this effect and sends the result to standard output. Since the output is in binary, it must be
directed to a file or piped into lp.

The following environment variables affect dvips:

TEXPKS
Search path for font bitmaps (PK files).

TEXVFONTS
Search path for ‘virtual font’ descriptions.

Dvips and dvit understand some extended graphics commands that can be output using tpic specials in the
TeX source. Many of them work by building up a path of x,y pairs, and then doing something with the
path. The tpic coordinate system has its origin at the current dvi position when a drawing special is

435

TEX(1) General Commands Manual TEX(1)

emitted; all length arguments are in units of milli-inches, and the y-axis goes positive downward.

\special{pa x y}
Add x,y to the current path.

\special{fp}
Flush the current path: draw it as a polygonal line and reset the path to be empty.

\special{da dlen}
Like fp but draw dashed line, with dashes dlen milli-inches long.

\special{dt slen}
Like fp but draw a dotted line, with dots slen apart.

\special{sp}
Like fp but draw a quadratic spline. The spline goes through the midpoints of the segments of
the path, and straight pieces extend it to the endpoints.

\special{ar x y xr yr s e}
Draw a circular or elliptical arc with center at x,y and radii xr and yr. The arc goes clockwise
from angle s to angle e (angles measured clockwise from the positive x-axis).

\special{pn n}
Set line width (pen diameter) to nmilli-inches.

\special{bk}
Set shading to black (will fill the next object drawn with black).

\special{sh}
Set shading to grey.

\special{wh}
Set shading to white.

\special{psfile=file options}
(Only dvips). Include file, which should be a Postscript illustration, making its origin be the cur-
rent dvi position. The default Postscript transformation matrix will be in effect, but it can be
modified by the options, a list of key=value assignments. Allowed keys are: hoffset, voffset,
hscale, vscale, and rotate. If supplied, these values are supplied to Postscript translate,scale, and
rotate" commands, in that order. Also, keys hsize and vsize may be supplied, to cause clipping
to those sizes.

\special{include horg yorg file}
(Only dvit). Include the troff(1) output file at the current place on TeX’s page. The included file
should have only one page. The horg and yorg distances give the origin of the included file; that
point will be superimposed on the current position.

All of the specials leave TeX at the same position on the page that it started in.

FILES
/usr/lib/tex/macros/∗

macros and preloaded format files

/usr/lib/tex/macros/doc/∗
more TeX-related documentation

/usr/lib/tex/fonts/tfm
font metrics

/usr/lib/tex/fonts/psvf
PostScript virtual font metrics

/usr/lib/tex/fonts/canonpk
bitmaps for canon engines (300 dpi)

/usr/lib/tex/fonts/linopk
bitmaps for Linotron (1270 dpi)

436

TEX(1) General Commands Manual TEX(1)

/usr/lib/tex/∗
miscellaneous configuration files and Postscript headers

SEE ALSO
latex(6), pic(1), lp(1), proof(9) psi(9) troff(1), monk(1)
Donald E. Knuth, The TEXbook, Addison Wesley, 1986

BUGS
It should be possible to make TeX output go on standard output.

437

TIME(1) General Commands Manual TIME(1)

NAME
time - time a command

SYNOPSIS
time [-usrtdmfio] [-v] command

DESCRIPTION
The given command is executed; after it is complete, time reports statistics about the program on its stan-
dard error output. The statistics printed are controlled by the option string; the default is -usr; -v reports
everything. The statistics are:

u User cpu time consumed by the command

s System cpu time attributed to the command

r Real (clock) time taken by the command

t Average resident text size, in Kb.

d Average resident data size, in Kb.

m Maximum total resident size, in Kb.

f Number of page faults resulting in disk I/O.

i Number of disk blocks read.

o Number of disk blocks written.

After the statistics, time prints a tab and the command, up to the fifth argument. Times are reported in
seconds. The numbers are the sum of those for command and any children it spawns and waits for.

SEE ALSO
lcomp(1), prof(1)

BUGS
Elapsed time is accurate to the second, while the CPU times are measured to 1/60 second. Thus the sum
of the CPU times can be up to a second larger than the elapsed time.

438

TK (1) General Commands Manual TK (1)

NAME
tk - paginator for the Tektronix 4014

SYNOPSIS
tk [-t] [-N] [-pL] [file]

DESCRIPTION
The output of tk is intended for a Tektronix 4014 terminal. Tk arranges for 66 lines to fit on the screen,
divides the screen into N columns, and contributes an eight space page offset in the (default) single-col-
umn case. Tabs, spaces, and backspaces are collected and plotted when necessary. Teletype Model 37
half- and reverse-line sequences are interpreted and plotted. At the end of each page tk waits for a new-
line (empty line) from the keyboard before continuing on to the next page. In this wait state, the com-
mand !command will send the command to the shell.

The command line options are:

-t Don’t wait between pages; for directing output into a file.

-N Divide the screen into N columns and wait after the last column.

-pL Set page length to L lines.

SEE ALSO
pr(1)

439

TR(1) General Commands Manual TR(1)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [string1 [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected characters. In-
put characters found in string1 are mapped into the corresponding characters of string2. When string2 is
short it is padded to the length of string1 by duplicating its last character. Any combination of the options
-cds may be used:

-c Complement string1: replace it with a lexicographically ordered list of all other 8-bit unsigned
characters.

-d Delete from input all characters in string1.

-s Squeeze repeated output characters that occur in string2 to single characters.

In either string a noninitial sequence -x, where x is any character (possibly quoted), stands for a range of
characters: a possibly empty sequence of codes running from the successor of the previous code up
through the code for x. The character \ followed by 1, 2 or 3 octal digits stands for the character whose
ASCII code is given by those digits. A \ followed by any other character stands for that character.

EXAMPLES
tr A-Z a-z <mixed >lower

Replace all upper-case letters by lower-case.
tr -cs A-Za-z ’
’ <file1 >file2
Create a list of all the words in file1 one per line in file2, where a word is taken to be a
maximal string of alphabetics. String2 is given as a quoted newline.

SEE ALSO
ed(1), ascii(6)

440

TR2TEX(1) General Commands Manual TR2TEX(1)

NAME
tr2tex - convert a document from troff to latex

SYNOPSIS
tr2tex [-m] file ...

DESCRIPTION
Tr2tex attempts to convert into latex(6) form a document contained in files written in troff(1) with ms(6)
macros, eqn(1) equations, and some simple tbl(1) specifications. The result is placed on standard output.
There is one option.

-m Convert the document from man(6) form to latex(6).

The output may need some hand polishing. Troff requests that cannot be converted are left as comments.
Some of the converted document may be in plain TeX.

FILES
/usr/lib/tex/troffms.sty tex(1) macros into which some troff constructs convert.
/usr/lib/tex/troffman.sty

BUGS
Option -m does not work with 10th edition man macros.
Commands that are not separated from their argument by a space are not properly parsed (e.g. .sp3i).
Eqn operators rpile and lpile are treated as cpile, rcol and lcol as ccol.
Eqn operators size, gsize, fat, gfont, mark, and lineup are ignored.
The closing member of a naturally bracketing pair of troff requests, such as .nf-.fi or .ft I-.ft R, is not sup-
plied automatically after each paragraph.
When local motions are converted to \raise or \lower, an \hbox must be supplied manually.
The eqn expression a sub i sub j is misconverted; use a sub { i sub j } instead.
Line spacing cannot be changed within a paragraph.
Number registers cannot be accessed via .nr.
Redefinition of some eqn operators, such as over, sub, or sup, will cause trouble.

AUTHOR
Kamal Al-Yahya, Stanford University

4th Berkeley Distribution 441

TRACK (1) General Commands Manual TRACK (1)

NAME
track - selective remote file copy

SYNOPSIS
track [-vntfd] file machine

track -r

DESCRIPTION
Track uses Datakit to copy files from another machine to the local machine. If the version of the named
file differs from that existing on the named machine, the remote file is copied. If the named file is a direc-
tory, the contents of the directory are considered recursively. Files are copied only if they exist on both
machines. Options:

-v Normally a report is given for each file copied. Giving the option causes more verbose reports,
for example about files that exist locally but not remotely. Giving the option twice generates a
report about each file considered.

-n Do no copying; just report what would have been copied.

-t Copy only if a remote file is newer than the local file.

-f Interpret the following file as a list of files and directories to be handled.

-d prefix
Normally track copies from remote files with the same names as the local files. The -d option
takes the next argument as a prefix for remote names; in constructing the remote name, the argu-
ment string that specifies the local file or directory is replaced by the prefix. directory.

-r This option causes track to act as the remote partner; it is invoked in this way on the other ma-
chine, and is not intended for use by humans.

Track has no special privileges. Files must be readable remotely and writable locally by the invoker. It at-
tempts to set the time of modification of a copied file to that of the remote original; the attempt can suc-
ceed only if the invoker of the local file owns it or is the super-user. This feature matters only when ran-
dom libraries (archives) are being copied, because the loader uses this time to determine whether the sym-
bol table is up-to-date.

EXAMPLES
track

Copy files from the remote directory /bin to the local directory. /usr/local/bin

SEE ALSO
push(1), cp(1), newer(1)

442

TROFF(1) General Commands Manual TROFF(1)

NAME
troff, nroff - text formatting and typesetting

SYNOPSIS
troff [option ...] [file ...]

nroff [option ...] [file ...]

DESCRIPTION
Troff formats text in the named files for printing on a phototypesetter; nroff for typewriter-like devices.
Their capabilities are described in the references.

If no file argument is present, the standard input is read. An argument consisting of a single minus (-) is
taken to be a file name corresponding to the standard input. The options, which may appear in any order
so long as they appear before the files, are:

-olist Print pages in the comma-separated list of numbers and ranges. A range N -M means N through
M ; initial -M means up to M; final N - means from N to the end.

-nN Number first generated page N .

-mname
Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

-raN Set register a (one character name) to N .

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

-z produce no output: diagnostics and .tm messages only

Troff only
-a Send a printable ASCII approximation of the results to the standard output.

-Tdest Prepare output for typesetter dest:
-Tpost Apple LaserWriter and other PostScript printers (default)
-T202 Mergenthaler Linotron 202
-Taps Autologic APS-5

-Fdir Take font information from directory dir.

Nroff only
-sN Halt prior to every N pages (default N=1) to allow paper loading or changing.

-Tname
Prepare output for specified terminal. Known names include 37 for the (default) Teletype model
37, lp (‘line-printer’) for any terminal without half-line capability, 450 for the DASI-450 (Diablo
Hyterm), and think (HP ThinkJet, see thinkblt(9)

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

-h Use output tabs during horizontal spacing to speed output and reduce output character count.
Tab settings are assumed to be every 8 nominal character widths.

FILES
/tmp/trtmp∗

temporary file

/usr/lib/tmac/tmac.∗
standard macro files

/usr/lib/term/∗
terminal driving tables for nroff

/usr/lib/font/∗
font width tables for troff

SEE ALSO
lp(1), d202(A), proof(9) apsend(1), reader(9)
eqn(1), tbl(1), prefer(1), pic(1), ideal(1), grap(1), dag(1), cip(9) ped(9)

443

TROFF(1) General Commands Manual TROFF(1)

doctype(1), ms(6), mpm(6), mbits(6), mpictures(6), mcs(6), font(5), monk(1), tex(1)
J. F. Ossanna and B. W. Kernighan, ‘Nroff/Troff User’s Manual’, this manual, Volume 2
B. W. Kernighan, ‘A TROFF Tutorial’, ibid.

444

TRUE(1) General Commands Manual TRUE(1)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION
True does nothing, successfully. False does nothing, unsuccessfully.

SEE ALSO
sh(1)

DIAGNOSTICS
True has exit status zero, false nonzero.

BUGS
For most purposes, true is a slow equivalent for the shell builtin command :.

445

TSET (1) General Commands Manual TSET (1)

NAME
tset - set terminal modes

SYNOPSIS
tset [options] [-m test:type (.,.)] [type]

DESCRIPTION
Tset conditionally sets erase and kill characters, tabs, delays, etc. for terminals. It is typically used in
startup profiles; see sh(1). In default of a specified terminal type (listed in the file the type is taken from
the environment variable TERM. Option -m determines the type based on source and baud rate:

-m [>baud]:type

No sources are distinguished at present. The test > may be replaced by <, =, or @ (same as =). The test
may be preceded by ! for negation. A type may be preceded by ? to cause tset to query whether the
guess is right. Tests are performed left-to-right until one is satisfied. A final default type prevails when
all tests fail. Thus

tset -m ´>1200:5620´ ´?hp´

assumes the terminal is a 5620 if the line speed exceeds 1200 baud. Otherwise it assumes an hp terminal
but asks for confirmation, giving you a chance to name another type.

The -s option causes tset to place on the standard output shell commands for setting the environment vari-
ables TERM and TERMCAP. Use this feature thus:

eval `tset -s option ...`

On terminals that can backspace but not overstrike and when the erase character is the default erase char-
acter on standard systems), the erase character is changed to a Control-H (backspace).

Other options are:

-e c set the erase character to c, or backspace if c is missing

-k c set the kill character similarly; use control-X if c is missing

-I suppress outputting terminal initialization strings

-Q suppress printing ‘Erase set to’ and ‘Kill set to’ messages

-S Outputs TERM and TERMCAP in the environment rather than in shell commands

FILES
/etc/ttytype

terminal id to type map database

/etc/termcap
terminal capability database

SEE ALSO
sh(1), stty(1), environ(5), termcap(5)

446

TSORT (1) General Commands Manual TSORT (1)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items consistent with a partial ordering of
items mentioned in the input file. If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different items indi-
cate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
lorder(1)

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

447

TTY (1) General Commands Manual TTY (1)

NAME
tty, logtty - get terminal name

SYNOPSIS
tty [-s]

logtty

DESCRIPTION
Tty prints the pathname associated with the standard input file if it can be found in the /dev directory,
nameless pipe/ and a unique string if the file is a pipe, not a tty otherwise. Option -s sup-
presses output, returning exit status only.

Logtty prints the pathname associated with the terminal on which the current session was logged in. If the
login terminal can’t be found, no login tty is printed.

In a mux(9) window, tty reports the name of the window, while logtty reports the name of the terminal.
But see BUGS.

SEE ALSO
who(1)

DIAGNOSTICS
Exit status is 0 if a real pathname was printed, 1 for not a tty or no login tty, 2 for a pipe.

BUGS
Mounting something atop the login terminal hides it from logtty. Vismon(9) does this.

Try tty </.

448

TWIG(1) General Commands Manual TWIG(1)

NAME
twig - tree-manipulation language

SYNOPSIS
twig [-wxx] file.mt

DESCRIPTION
Twig converts a tree-specification scheme consisting of pattern-action rules with associated costs into C
functions that can be called to manipulate input trees. The C functions first find a minimum-cost covering
of an input tree using a dynamic programming algorithm and then execute the actions associated with the
patterns used in the covering. The tree-specification scheme may allow several coverings for an input
tree, but the dynamic programming algorithm resolves any ambiguities by selecting a cheapest covering.

The input file containing the tree-specification scheme must have the suffix .mt. Twig produces two out-
put files: which becomes the source file for the tree matcher, and which contains the definitions for the
node and label symbols used in the source file.

To build twig uses an internal template file called where xx is the argument of the optional -w flag. If the
flag is omitted, then xx defaults to c1.

FILES
file.mt

input file

walker.c
output tree matcher

symbols.h
definitions of node and label symbols

SEE ALSO
yacc(1)
S. W. K. Tjiang, The Twig Reference Manual, Computing Science Technical Report No. 120, AT&T Bell
Laboratories, Murray Hill, N.J.
A. V. Aho, M. Ganapathi, and S. W. K. Tjiang, Code generation using tree matching and dynamic pro-
gramming.

BUGS
When tree matching fails, the debugging output is cryptic.

449

UL(1) General Commands Manual UL(1)

NAME
ul - print underlines on screen terminals

SYNOPSIS
ul [-i] [-t terminal] [file ...]

DESCRIPTION
Ul replaces backspaced, overstruck underscores by control sequences suitable for the terminal given by
the environment variable TERM or by option -t. It reads from the standard input or the named files and
writes on the standard output. Option -i represents underlining by a separate line of - characters.

SEE ALSO
column(1)

450

UNIQ(1) General Commands Manual UNIQ(1)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+-num]] [file]

DESCRIPTION
Uniq copies the input file, or the standard input, to the standard output comparing adjacent lines. In the
normal case, the second and succeeding copies of repeated lines are removed. Repeated lines must be ad-
jacent in order to be found.

-u Print unique lines.

-d Print (one copy of) duplicated lines.

-c Prefix a repetition count and a tab to each output line. Implies -u and -d.

-num The first num fields together with any blanks before each are ignored. A field is defined as a
string of non-space, non-tab characters separated by tabs and spaces from its neighbors.

+num The first num characters are ignored. Fields are skipped before characters.

EXAMPLES
cut -d: -f3 /etc/passwd | sort | uniq -d

Print duplicated userids from the password file, passwd(5). Cut picks out the userid (the third
colon-delimited field) and sort brings repetitions together.

SEE ALSO
sort(1), comm(1)

BUGS
Field-selection and comparison should be compatible with sort(1).

451

UPTIME(1) General Commands Manual UPTIME(1)

NAME
uptime - show how long system has been up

SYNOPSIS
uptime

DESCRIPTION
Uptime prints the current time, the length of time the system has been up, and the average number of jobs
in the run queue over the last 1, 5 and 15 minutes. It is, essentially, the first line of a w (1) command.

FILES
/vmunix system name list

SEE ALSO
w(1) x T aps x res 723 1 1 x init x trailer V0 x stop

3rd Berkeley Distribution 11/13/79 452

USTATS(1) General Commands Manual USTATS(1)

NAME
ustats - show bar graphs of share scheduler user usage rates

SYNOPSIS
ustats [-Kn] [-cn] [-g] [-sn] [-r] [-L] [-o[N|P|S|O]]

DESCRIPTION
Ustats prints bar graphs of user usage rates.

Invoked without arguments, ustats will print the graphs and exit. The flags affect operation as follows:-

flag meaning

-Kn Set the half-life for decaying the displayed rate to n seconds [default 4].

-cn Continuous operation, where n, if present, limits the number of cycles.

-g Don’t include scheduling groups.

-sn Delay time between updates becomes n seconds [default 4].

-r Don’t include root’s usage.

-L The bar graphs are normalised between the minimum and maximum usages found. Quite often,
one particular user (eg: idle) will dominate the usage, so this flag turns on the use of a logarith-
mic scale for normalisation.

-o f The normal ordering of users is in kernel lnode table order. This allows a continuous display to
show the least change as users log in and log out. There are alternate orders specifiable by the
value of f:

N sort by user name
P sort by user priority
S sort by usage
O default (lnode) ordering.

EXAMPLES
ustats -Lc | dis

SEE ALSO
dis(1), rates(1), shstats(1), share(5).

SHARE 453

UUCP(1) General Commands Manual UUCP(1)

NAME
uucp, uulog, uuname - unix-to-unix remote file copy

SYNOPSIS
uucp [options ...] source ... destination

uulog [option ...] [system]

uuname [-l]

DESCRIPTION
Uucp copies source files to the destination file or directory. A file name may be an ordinary path name,
or may have the form:

system-name!filename

where system-name is a computer that uucp knows about.

Quoted shell metacharacters ?, ∗ and [] appearing in a remote filename will be expanded on the remote
system.

Path names may be:

(1) a full path name;

(2) a path name preceded by user/ where user is a login name on the specified system and is re-
placed by that user’s login directory;

(3) a path name preceded by /destination where stands for The destination will be treated as a file
name unless more than one file is being transferred by this request, the destination is already a
directory, or the destination ends with /. For example, /dan/ as the destination will make the
directory /usr/spool/uucppublic/dan if it does not exist, and put the requested file(s) in
that directory.

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will fail. If the destination is a
directory, the basename of the filename is used. Uucp preserves execute permissions across the transmis-
sion and gives 0666 read and write permissions (see chmod(2)).

For obvious security reasons, the domain of remotely accessible files may be severely restricted. You will
very likely not be able to fetch files by path name; ask a responsible person on the remote system to send
them to you. Similarly you will probably not be able to send files to arbitrary path names. By default, the
only remotely accessible files are those whose names begin /usr/spool/uucppublic/ (equivalent
to /).

The options are

-C Copy files in their present state to a spool directory for later transfer. -c Do not copy to the spool
directory; send files in their state at the time of transmission (default).

-d Make all necessary directories for the file copy (default).
-f Do not make intermediate directories for the file copy.
-ggrade

Grade is a single letter/number; earlier ASCII sequence characters will cause the job to be trans-
mitted earlier during a particular conversation. The default is N.

-j Output the job identification ASCII string on the standard output. This job identification can be
used by uustat to obtain the status or terminate a job.

-m Send mail to the requester when the copy is completed.
-nuser

Notify user on the remote system that a file was sent.
-r Don’t start the file transfer, just queue the job.
-xdebug-level

Produce debugging output. The debug_level is a number between 0 and 9; higher numbers give
more detailed information.

Uulog queries a log file of uucp or uuxqt transactions, optionally limited to a given system. Its options
are

454

UUCP(1) General Commands Manual UUCP(1)

-f Print recent transactions and follow further transactions as they occur.
-x Look in the uuxqt log file for the given system.
-number

Print the last number transactions.

Uuname lists the uucp names of known systems. The -l option returns the local system name.

FILES
/usr/spool/uucp

spool directories
/usr/spool/uucppublic

public directory for receiving and sending
/usr/lib/uucp/∗

other data and program files
/usr/spool/uucp/.Log/uuxqt/system

log of uuxqt transactions with system
/usr/spool/uucp/.Log/uucico/system

log of uucp transactions with system

SEE ALSO
uuto(1), mail(1), push(1), rcp(1), uux(1), uustat(1), uucico(8)
P. Honeyman, ‘UUCP—the Program that Wouldn’t Go Away’, this manual, Volume 2

BUGS
For various reasons remote systems may decline to forward files transmitted through them.
All files received by uucp will be owned by user ‘uucp’.
Option -m works only with a single file.
Uucp may run under a daemon userid, in which case files to be sent need general read permission.

455

UUENCODE(1) General Commands Manual UUENCODE(1)

NAME
uuencode, uudecode - encode/decode a binary file for transmission via mail

SYNOPSIS
uuencode [file] remotedest
uudecode [file]

DESCRIPTION
These routines are useful for sending binary files by mail(1).

Uuencode places on the standard output an encoded version of the named file (standard input by default).
The encoding, which uses only printing ASCII characters, includes the mode of the file and a name remot-
edest into which it will be decoded.

Uudecode reads encoded data from a file or from the standard input and recreates the original data with
the mode and name given in the file. As the encoded file is ordinary text, the name or mode can be
changed by editing.

An encoded file contains noise lines, a header line, data, trailer, and more noise in that order. The header
contains begin, the octal mode, and the remote name separated by spaces. Each data line contains a
count in the range 0-63, encoded as a single byte with value offset by 040 (space), followed by the encod-
ing of that many bytes of source. 24-bit (3-byte) segments of source are coded in 4 6-bit pieces, again
represented in offset-040 code. The trailer is a data line with count 0 and then the line end. SEE ALSO
uucp(1), mail(1)

BUGS
The interface is meretricious. The remote name should be decided by the recipient, not the sender. The
command uuencode does not encode myfile but rather reads from standard input.

456

UUREC(1) General Commands Manual UUREC(1)

NAME
uurec - receive processed news articles via mail

SYNOPSIS
uurec

DESCRIPTION
uurec reads news articles on the standard input sent by sendnews(1), decodes them, and gives them to in-
ews(1) for insertion.

SEE ALSO
inews(1), readnews(1), recnews(1), sendnews(1), newscheck(1)

457

UUSTAT (1) General Commands Manual UUSTAT (1)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [option]

uustat [-ssystem] [-uuser]

DESCRIPTION
Uustat will display the status of, or cancel, previously specified uucp commands, or provide general status
on uucp connections to other systems. The options are

-a List the status of all pending uucp requests for all machines.

-k jobid Kill the uucp request whose job identification is jobid . The killed uucp request must belong
to the person issuing the uustat command unless one is the super-user.

-m Report the status of accessibility of all machines.

-p Report on the status of all processes that are in the lock files.

-q List the jobs queued for each machine. If a status file exists for the machine, its date, time
and status information are reported. A parenthesized number next to the number of C or X
files gives the age in days of the oldest file for that system. The retry field represents the
number of hours until the next possible call. The count field is the number of failure
attempts.

-r jobid Rejuvenate jobid. The files associated with jobid are touched so that their modification time
is set to the current time. This prevents the cleanup demon from deleting the job until its
modification time reaches the limit imposed by the demon.

-ssys Report the status of all uucp requests for remote system sys.

-uuser Report the status of all uucp requests issued by user.

When no options are given, uustat outputs the status of all uucp requests issued by the current user.

Requests are listed in the form

jobid date type machine stuff
date type machine stuff ...

Jobid identifies the request; it is useful for -k and -r. The remainder of the line describes a transfer
queued at date for machine. Type is S if a file is to be sent to machine, R if it is to be received. Ordinary
files are followed by the requestor’s userid, the length of the file in bytes, and the name of the spooled file;
requests for remote execution are followed by the userid and the command. If the request involves more
than one file, the remaining files are listed without a jobid .

The most common case is a mail request, which has two lines, one for the mail message itself and one for
the request to execute rmail on the remote system.

FILES
/usr/spool/uucp/∗ spool directories

SEE ALSO
uucp(1), uux(1)

458

UUTO(1) General Commands Manual UUTO(1)

NAME
uuto, uupick - simplified unix-to-unix remote file copy

SYNOPSIS
uuto [option ...] file ... recipient

uupick [-s system]

DESCRIPTION
Uuto sends the named files to a recipient on another system by means of uucp(1). The recipient is named
thus:

system!user

The options are

-p Make a copy of the files. This option allows you to delete or modify the files without worrying
about whether they have yet been sent.

-m Notify the sender by mail when the copy is complete. (The recipient is always notified.)

Uupick accepts or rejects files received from uuto. For each file currently available, it announces

from system sys-name: file file-name

followed by ?. Give one of these answers on the standard input:

<new-line>
Go on to next entry.

d Delete the entry.

m dir Move the entry to directory dir. If dir is missing, use the current directory.

a dir Like m, but move all files from the given system.

p Print the file.

<EOT> (control-d)
q Stop.

!command
Escape to sh(1) command.

anything else
Print a usage summary.

Option -s picks files only from the named system.

FILES
/usr/spool/uucppublic/receive/recipient/sendingsystem/∗ where the files go

SEE ALSO
mail(1), push(1), rcp(1), uucp(1)

459

UUX(1) General Commands Manual UUX(1)

NAME
uux - unix to unix command execution

SYNOPSIS
uux [options] command-arg ...

DESCRIPTION
Uux will execute a command on a specified system with files and standard output on specified files and
systems. For security reasons, most machines allow only selected commands to be run, perhaps only re-
ceipt of incoming mail.

The command-args make up a sh(1) command with with command and file arguments possibly written
system!file. A missing system is interpreted as the local system. Files may be prefixed by xxx/ to repre-
sent the home directory for login name xxx on the specified system.

Uux copies all files to the execution system. Files to be returned as outputs must be enclosed in (escaped)
parentheses. Files must have general read permission.

The options are

-aname
Use name as the user identification replacing the initiator user-id. (Notification will be returned
to the user.)

-b Return standard input to the command if the exit status is non-zero.

-c Don’t copy local file to the spool directory for transfer to the remote machine (default).

-C Force the copy of local files to the spool directory for transfer.

-ggrade
Grade is a single letter/number; earlier ASCII sequence characters will cause the job to be trans-
mitted earlier during a particular conversation. The default is N.

-j Place the jobid, an ASCII string, on the standard output. The jobid can be used by uustat(1) to
obtain the status or terminate a job.

-n Suppress mail notification about failures.

-p

- Take the standard input to uux as the standard input to the executed command.

-r Don’t start the file transfer, just queue the job.

-sfile Report status of the transfer in file.

-xdebug
Produce debugging output on stdout. Debug is a number between 0 and 9; higher numbers give
more detailed information.

-z Notify the user if the command succeeds.

FILES
/usr/spool/uucp

spool directory

/usr/lib/uucp/∗
other data and programs

SEE ALSO
uucp(1), uucico(8), uustat(1)

BUGS
All the commands in a shell pipeline are executed on the machine of the first command.
Because files are gathered into a common directory, two files for one command cannot have the same
basename. This won’t work: uux "a!diff b!/usr/dan/xyz c!/usr/dan/xyz > !xyz.diff".

460

VI (1) General Commands Manual VI (1)

NAME
ex, edit, vi - text editor

SYNOPSIS
ex [option ...] file ...

edit [option ...] file ...

vi [option ...] file ...

DESCRIPTION
Ex is elaborated from ed(1). Vi is the display editing aspect of ex; edit is a simplified subset of ex. The
editors work on several files simultaneously. Vi gets the terminal type from environment variable TERM.

The options are:

-r file Recover the file after a crash in the editor. If no file is specified, list all saved files.

-l Lisp indent mode; give special meaning to editor commands ()[]{}.

-wn Default window size is n lines.

-x Edit encrypted files; a key will be prompted for.

-R Read only; no files will be changed.

+cmd Execute the specified ex command upon entering the editor.

The editors begin in ‘command mode’. An ESC character typed in command mode cancels the command.
The commands a A c C i I o O R s S enter input mode, where arbitrary text may be entered. ESC or inter-
rupt returns to command mode. The commands : / ? ! take input from the last line of the screen, which is
ended by a newline, or canceled by an interrupt.

A number preceding commands z G | specifies a line. A number before almost any other command
causes it to be repeated.

In the following summary of vi commands ˆ means the ‘control’ key. Commands so marked work in input
mode; others work in command mode.

File manipulation :w write back changes :w file write file :w! file overwrite file :q quit
:q! quit, discarding changes :e file edit file :e! reedit, discarding changes :e + file edit, start-
ing at end :e + startingat line n :sh run shell, then return :! cmd run shell command :n edit next
file argument : ex-cmddo editor command

Positioning in file ˆF forward screen ˆB backward screen ˆD down half screen ˆU up
half screen G to specified line (end default) / pat next line matching pat ? pat previous line
matching n repeat last \ or ? /pat/+_ nnth line after or before pat (beginning of sentence
) end of sentence { beginning of paragraph } end of paragraph % find matching
(){}

Adjusting the screen ˆL clear and redraw ˆR retype, eliminate @ lines z redraw, current
line at window z- ... at bottom z. ... at center /pat/z- pat line at bottom z n use n-line win-
dow ˆE scroll down one line ˆY scroll up one line

Marking and returning ‘‘ move cursor to previous context ’’ ... at first nonwhite in m x mark
position with letter x ‘ x move cursor to mark ’ x ... at first nonwhite

Line positioning H top line of screen L bottom line M middle line + next line, at first
nonwhite - previous line, at first nonwhite <newline>same as + j next line, same column
k previous line, same column

Character positioning ˆ first nonwhite (not CTRL) 0 beginning of line $ end of line
l forward h backward ˆL ˆH same as l h <space>same as l f x find x forward F
x find backward t x upto x forward T x back upto x ; repeat last f F t , opposite of
; | to specified column % find matching (){}

Words, sentences, paragraphs w word forward b word backward e end of word
) next sentence (previous sentence } next paragraph { previous paragraph
W blank-delimited word B backward to ... E to end of ...

461

VI (1) General Commands Manual VI (1)

Corrections ˆH erase last character ˆW erase last word erase your erase, same as ˆH kill your
kill, erase this line \ quotes your erase or kill ESC return to command mode ˆ? interrupt, re-
turn to command mode ˆD backtab over autoindent ˆV quote nonprinting character

Insert and replace a append after cursor A append at end of line i insert before cursor
I insert before first non-blank o open below line O open above r x replace one char-
acter R text replace characters

Operators

Operators are followed by cursor motion and affect all text that would have been moved over: dw deletes
a word. Double the operator, e.g. dd, to affect whole lines. d delete c change y yank
lines to buffer < left shift > right shift ! filter through command = Lisp indent

Miscellaneous operators C change rest of line (c$) D delete rest of line (d$) s substitute
characters (cd) S substitute lines (cc) J join lines x delete characters (dl) X ... be-
fore cursor (dh) Y yank lines (yy)

Yank and put p put buffer after cursor P put buffer before cursor " x p put from buffer x x
y yank to buffer x x d delete to buffer x

Undo, redo, retrieve u undo last change U restore current line . repeat last change " n
p retrieve n-th last delete

Special ex commands

Ex understands most ed commands, plus the commands indicated with : in the vi summary, plus the fol-
lowing, shown with their shortest possible spellings: abbrev args copy map mark next number preserve
put read recover rewind set shell source stop unabbrev undo unmap version visual xit yank z window
< lshift > rshift ˆD scroll The set command controls various options; set shows the list.

EXAMPLES
←↓-→

arrow keys move the cursor
hjkl same as arrow keys
itext<ESC>

insert text
cwnew<ESC>

change word to new
3dw delete 3 words
ZZ exit, saving changes
/text<newline>

search for text
ˆU ˆD scroll up or down

FILES
/usr/lib/ex?.?recover

recover command

/usr/lib/ex?.?preserve
preserve command

/etc/termcap
describes capabilities of terminals

$HOME/.exrc
editor startup file

/tmp/Ex∗
editor temporary

/tmp/Rx∗
named buffer temporary

/usr/preserve
preservation directory

462

VI (1) General Commands Manual VI (1)

SEE ALSO
ed(1), sam(9) sed(1)
W. Joy and M. Horton, ‘An Introduction to Display Editing with Vi’, in Unix Programmer’s Manual, Sev-
enth Edition, Virtual VAX-11 Version, 1980, Vol 2C (Berkeley)

463

VIEW2D(1) General Commands Manual VIEW2D(1)

NAME
view2d, regrid, vdata - movie of a function f(x, y, t)

SYNOPSIS
view2d [option ...] file

regrid [option ...] file

vdata [option ...] file

DESCRIPTION
View2d displays a sequence of functional surfaces on a Teletype 5620 or frame buffer. On the 5620, the
surface is ruled with a square mesh and projected isometrically; on a frame buffer, the surface is viewed
from above, with height indicated by color. The options are

-T5 Output on the 5620;

-Tc Output on frame buffer (default); -Tc is assumed when TERM is not 5620.

-Tp Produce input for plot(1) to produce contour plots.

-cn Use n colors (n=32 by default) or contours (6 by default).

-ps Run movie for s seconds (s=5 by default).

There are two supported ways to generate input for view2d . Vdata takes ASCII input and allows scattered
data; view2d(3) can be called from a program that already has data on a grid.

Regrid changes the grid sizes in view2d binary files, with options:

-b Add a bar at the bottom of the image to indicate time.

-nNX ,NY
Output grid is NX×NY ; ,NY may be omitted.

-fNF Output will have NF frames.

-r The plane of closest fit to the first frame is subtracted from all the frames.

-m fmin, fmax
Clip the data to the range fmin,fmax.

One option applies to both view2d and regrid:

-tTS,TE
Display frames from TS (default first frame time) to TE (may be omitted, default last frame
time).

Vdata takes input in the following format and converts to input for view2d . The first line of each frame
has the number of data points in the frame (an integer) and the time (a floating point value). The rest of
the lines in the frame consist of blank-separated x y z triples. The order of points is irrelevant. The
options are:

-nNX ,NY
Output grid is NX×NY ; ,NY may be omitted.

-c Use piecewise constant rather than linear interpolation.

-s Scatterplot the data on a black background.

-i The data is already on a square grid, in the order x and y ascending with x varying fastest.

FILES
/usr/lib/view2d/∗

SEE ALSO
view2d(3), view2d(5), plot(1)
/n/bowell/usr/lib/view2d/howto for more options and how to run equipment.

464

VIS(1) General Commands Manual VIS(1)

NAME
vis - show invisible characters

SYNOPSIS
vis [-t] [-s] [file ...]

DESCRIPTION
Vis reads each file in sequence and writes it on the standard output. Non-printing characters are translated
on output as in the l command of ed(1). If no file is given vis reads from the standard input. The options
are

-t Do not translate tabs.

-s Strip invisible characters; same effect as tr -cd ’<tab><newline><space>- ’.

SEE ALSO
cat(1), ed(1), xd(1)

465

VISI (1) General Commands Manual VISI (1)

NAME
visi - mathematical spreadsheet

SYNOPSIS
visi [file]

DESCRIPTION
Visi is a tabular mathematical worksheet for data analysis. If a file is specified, commands are read from
that file when visi first starts.

Visi works only on cursor-controlled terminals such as the HP2621, and requires the environment variable
TERM (see environ(7)) to be set appropriately.

Visi prompts for input at the top of the screen with ‘>>’. Input has one of the forms,

command parameters

variable = expression

variable = "string"

where a variable is a letter and number sequence, for example: ‘A2, B10, BB23.’ These variables repre-
sent locations on the worksheet; A2 is column A, row 2. If you type, in any order,

A1 = A2 + 5
A2 = 10

the values 15 and 10 will appear on the screen. If you later type

A2 = 20

the values will be updated to 25 and 20. Visi treats upper and lower case letters as identical.

Expressions are parsed, and standard mathematical precedence is retained. The operators +, -, ∗ , /, ∗∗ (or
ˆ) can be used in expressions.

Commands
copy [file]

Copy the screen image to the file. If a file is not specified, visi will prompt for one.

debug Toggle a flag to give yacc(1) debugging output, very unreadable.

duplicate p1 thru p2 at p3
Duplicate a block of definitions in another portion of the screen. P1 and p2 are the upper left
corner and the lower right corner of the block to be duplicated. P3 is the upper left corner of
the destination.

edit Edit the commands list. If the environment variable ‘ED’ is set, it is used as the name of the
editor. Otherwise, ed(1). is called.

help Display a brief synopsis of the commands.

list List the current definitions on the terminal.

quit Quit the program.

read [file]
Read input lines from the file. If a file is not specified, visi will prompt for one.

redraw Redraw the screen in the event the terminal output was corrupted.

replicate p1 at p2 thru p3
Replicate the single definition at p1 throughout the block from p2 in the upper left corner
thru p3 in the lower right.

scale [column] nnn
Change the scale of the specified column, or of the entire tableau if a column is not specified.
The scale nnn is the number of decimal places that are displayed to the right of the decimal
point. Calculations are done in double precision regardless of scale.

466

VISI (1) General Commands Manual VISI (1)

shift direction [nnn]
Shift the current screen in any direction. The screen is only a window on the tableau. To see
other portions of the tableau, the screen must be shifted. Valid directions are: up, down, left,
right. Nnn is the number of positions to shift the screen (default 1).

shell Invoke /bin/sh as an inferior process to visi.

ver Print the current version number of visi.

width column nnn
Change the width of a column on the display, or of the entire tableau if no column is speci-
fied.

write [file]
Write commands to a file. If a file is not specified, visi will prompt for one.

Built-in Functions
abs(e) Absolute value of e.
acos(e) Arc cosine of e.
asin(e) Arc sine of e.
atan(e) Arc tangent of e.
atan2(e1,e2)

Arc tangent of e1/e2.
cos(e) Cosine of e.
exp(e) Exponential function of e.
gamma(e) Log of the gamma function of e.
hypot(e1,e2)

Square root of the sum of the squares of e1 and e2.
int(e) The integer part of e (truncated toward zero.)
log(e) Natural log of e.
pi The constant 3.14159265358979....
pow(e1,e2)

Same as e1ˆe2.
sin(e) Sine of e.
sqrt(e) Square root of e.

Other Special Definitions
position[e1,e2]

The quantity at row e1, column e2 of the tableau. Numbering for the columns is A = 1, B =
2, ..., AA = 27, and so on.

ROW The row number of this entry.

COL The column number of this entry.

SEE ALSO
ed(1), exp(3), sin(3)

FILES
/usr/lib/visi.help

BUGS
A circular list of variable declarations can cause visi to hang in a loop.
Scale does truncation, not rounding.

467

VSW (1) General Commands Manual VSW (1)

NAME
vsw - video switcher

SYNOPSIS
vsw [option] [iopair ...]

DESCRIPTION
Vsw controls Dynair (System 10 and Dynasty) video switches. There is a composite video switch and a 3
channel (rgb) switch. Each switch has ten or more inputs and outputs. Inputs may be attached to one or
more outputs (fanout). Outputs may not be attached to more than one input (no mixing).

The optional iopair arguments are two letters io which mean attach input letter i to output channel letter
o. The options are

-c Use the composite video switch. Exactly one of -c and -r must be specified.
-d Describe the input and output channels.
-i Initialize the switch to a default setting.
-p Print the current switch configuration suitable for processing with vsw.
-r Use the rgb video switch. Exactly one of -c and -r must be specified.
-v Be more verbose.

By convention, video switch access to monitors is for ‘INPUT B’, which is normally selected by a button
on the front. The Barco monitor is an exception; use ‘COMP VIDEO 1’.

EXAMPLES
x=‘vsw -cp‘

Save the current configuration.

vsw $x
Restore the configuration.

SEE ALSO
2500(1)

BUGS
For timing reasons, vsw only works from fast or unloaded machines.
The input/output names are a little terse.
To power-cycle the rgb switch, look for the blue ribbon cable that daisy chains the three boxes. The box
at one end of the chain has a coax cable connected to ‘comm’; start power cycling at the other end of the
daisy chain.
The switch may need to be reset after prolonged power outages (in this case, vsw will complain) by
cd /n/bowell/usr/src/cmd/vsw; mk init.vsw

468

W (1) General Commands Manual W (1)

NAME
w - who is on and what they are doing

SYNOPSIS
w [-h] [-s] [user]

DESCRIPTION
W prints a summary of the current activity on the system, including what each user is doing. The heading
line shows the current time of day, how long the system has been up, the number of users logged into the
system, and the load averages. The load average numbers give the number of jobs in the run queue aver-
aged over 1, 5 and 15 minutes.

The fields output are: the users login name, the name of the tty the user is on, the time of day the user
logged on, the number of minutes since the user last typed anything, the total CPU time, the percentage of
the CPU, the percentage of the total virtual memory, the percentage of the the total virtual memory
loaded, and the name and arguments of the current process. The CPU and virtual memory items are based
on all processes and their children associated with that terminal.

The -h flag suppresses the heading. The -s flag asks for a short form of output. In the short form, the tty
is abbreviated, the login time and cpu times are left off, as are the arguments to commands. -l gives the
long output, which is the default.

If a user name is included, the output will be restricted to that user.

FILES
/etc/utmp
/dev/kmem
/dev/drum

SEE ALSO
who(1), ps(1)

AUTHOR
Mark Horton

BUGS
The notion of the ‘‘current process’’ is muddy. The current algorithm is ‘‘the highest numbered process
on the terminal that is not ignoring interrupts, or, if there is none, the highest numbered process on the ter-
minal’’. This fails, for example, in critical sections of programs like the shell and editor, or when faulty
programs running in the background fork and fail to ignore interrupts. (In cases where no process can be
found, w prints ‘‘-’’.)

The CPU time is only an estimate, in particular, if someone leaves a background process running after
logging out, the person currently on that terminal is ‘‘charged’’ with the time.

Background processes are not shown, even though they account for much of the load on the system.

Sometimes processes, typically those in the background, are printed with null or garbaged arguments. In
these cases, the name of the command is printed in parentheses.

W does not know about the new conventions for detection of background jobs. It will sometimes find a
background job instead of the right one.

4th Berkeley Distribution 8/15/80 469

WC(1) General Commands Manual WC(1)

NAME
wc - word count

SYNOPSIS
wc [-lwc] [file ...]

DESCRIPTION
Wc counts lines, words and characters in the named files, or in the standard input if no file is named. A
word is a maximal string of characters delimited by spaces, tabs or newlines.

If the optional argument is present, just the specified counts (lines, words or characters) are selected by
the letters l, w, or c.

470

WHO(1) General Commands Manual WHO(1)

NAME
who, whois, last - who is or was on the system

SYNOPSIS
who [-i] [who-file]

who am i

whois username

last [-f who-file] [userid ...] [terminal]

DESCRIPTION
Who, without an argument, lists the login name, terminal name, and login time for each current user. With
the -i option, the report includes the number of minutes that the user’s terminal has been idle.

With two arguments, as in who am i, who tells who you are logged in as.

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is given, that
file is examined. Typically the given file will be which contains a record of all the logins since it was cre-
ated. Then who lists logins, logouts, and crashes since the creation of the wtmp file. Each login is listed
with user name, terminal name (with /dev/ suppressed), and date and time. When an argument is given,
logouts produce a similar line without a user name. Reboots produce a line with x in the place of the
device name, and a fossil time indicative of when the system went down.

Whois consults administrative files to identify the username. (Actually, whois uses grep and can locate
information by any useful key, such as real name or telephone number.)

Last reports logins and logouts in reverse chronological order. Optional arguments restrict attention to
selected userids or terminals. Terminals tty0, tty1, ... may be abbreviated 0, 1, ...

By default, last examines the list of logins and logouts in option -f specifies a different file.

Last reports userid, terminal, time on, and time off for all users, or for selected userids. A pseudo-user,
reboot, is logged in at reboots of the system.

Upon interrupt, last tells how far back it has looked; upon quit (control-\) it tells how far and keeps on
looking.

EXAMPLES
last reboot

Report recent system outages.

FILES
/etc/utmp
/usr/adm/wtmp
/usr/adm/usrlist
/etc/passwd

SEE ALSO
getuid(1), getuid(2), utmp(5), ac(8), tty(1), vwhois in vismon(9)

471

WORDUSE(1) General Commands Manual WORDUSE(1)

NAME
worduse - print information about correct usage of words

SYNOPSIS
worduse [-flags][-ver] [word1 | "phrase 1" ...]

worduse (carriage return)
>word1 or phrase1
(program response)
>word2 or phrase2
(program response)
>q

DESCRIPTION
Worduse searches a list of commonly confused and misused English words and phrases for the user’s
word or phrase. It describes the correct use of the word or phrase (if any), and compares it to any similar
words or phrases.

When worduse is typed on a line with the input word(s) or phrase(s), it will print the explanation(s) and
then exit. In this mode phrases of more than one word must be enclosed in double quotes.

When worduse is typed on a line by itself it acts as an interactive program, first printing brief instructions,
then prompting with ">" for more words or phrases. To quit, type "q" after the prompt.

Worduse may be used as a supplement to diction(1), dictplus(1), or proofr(1), to learn why words were
flagged by diction.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

EXAMPLES
1. The command:

worduse affect

will print:

AFFECT: EFFECT: Affect is normally only a verb; effect is most often a noun...

2. The command:

worduse "one of the"

will print:

ONE OF THE: THE ONLY ONE OF THE: "One of the" is followed by a plural verb...

and then exit.

3. The command:

worduse

will first print instructions, then

>alright

will print:

ALL RIGHT: ALRIGHT: The only acceptable spelling is "all right."

and will then prompt the user for another word.

4. The command:

worduse

will first print instructions, then

472

WORDUSE(1) General Commands Manual WORDUSE(1)

>one of the

will print:

ONE OF THE: THE ONLY ONE OF THE: "One of the" is followed by a plural verb...

and will then prompt the user for another word.

FILES
wwb/lib/wordlist contains the list of words and descriptions

SEE ALSO
diction(1), dictplus(1), proofr(1), wwb(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

473

WRITE(1) General Commands Manual WRITE(1)

NAME
write, mesg - write to other users, allow or forbid messages

SYNOPSIS
write person ...

mesg [n] [y]

DESCRIPTION
Write copies lines from your terminal to terminals of other persons designated either by login name or (to
circumvent occasional ambiguities) by terminal name as given by who(1). It announces to each person
your login name, your terminal, and the other persons. To respond, each recipient should execute a corre-
sponding write to the persons he wants to talk to.

When you are writing to more than one person, your messages are identified to the recipients. Writing
ceases upon end of file or interrupt, and the message EOF is sent to the others.

Write recognizes certain commands during a conversation:

!cmd Execute a shell on the string cmd and then return to write.

:a person
Add person to the list of people to whom you are talking, and send an appropriate announcement
to all parties. They must do :a for themselves if they want to include the new person.

:d person
Drop person from your list and make appropriate announcements.

:l Print a list of people to whom you are talking.

The following protocol is suggested for using write. When you invoke write, wait for the other user to
write back before starting to send. Each party should end each message with a distinctive signal that the
other may reply - the customary convention is (o) for ‘over’; (oo) for ‘over and out’ is suggested when
conversation is about to be terminated.

Mesg with argument n forbids messages via write(1) by revoking non-user write permission on the user’s
terminal. Mesg with argument y reinstates permission. All by itself, mesg reports the current state with-
out changing it.

Certain commands, in particular nroff and pr(1) disallow messages in order to prevent messy output.

FILES
/etc/utmp

to find user

/bin/sh
to execute !

SEE ALSO
who(1), mail(1), vismon(9)

DIAGNOSTICS
Mesg yields exit status 0 if messages are receivable, 1 if not, 2 on error.

BUGS
Mux(9) generally prevents the receipt of write messages, but vismon(9) permits them.
Messages ought to be identified when the recipient is receiving from more than one writer, rather than
when a writer is sending to more than one recipient, but that requires cooperating processes and isn’t
worth the effort.

474

WWB(1) General Commands Manual WWB(1)

NAME
wwb - Writer’s Workbench

SYNOPSIS
wwb [-flags][-ver] [-mm | -ms][-li | +li][-tm | -t | -c | -x standards-file][-s][file ...]

DESCRIPTION
The Writer’s Workbench is a set of programs designed to aid writers and editors in editing documents.
The command wwb runs modified versions of 2 major programs, which in turn run other programs.

The two major programs are:

proofr(1) - automatic proofreading system that searches for spelling and punctuation errors, con-
secutive occurrences of words, wordy or misused phrases, and split infinitives.

prose(1) - describes the writing style of a document, namely, readability and sentence character-
istics, and suggests improvements.

Prose compares a document with standards for one of several document types, according to the following
flags:

-tm Compare input text to good Bell Laboratories Technical Memoranda. (this is the default.)

-t Compare input text with good training documents.

-c Evaluate text for craft suitability.

-x standards-file
Compare input text with standards contained in user-specified standards-file. See mk-
stand(1) to set up the standards-file.

Other options are:

-s Produce short versions of proofr and prose.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

Wwb runs deroff(1) before looking at the text. Four options affect deroff :

-mm eliminate mm(1) macros, and associated text that is not part of sentences (e.g. headings),
from the analysis. This is the default.

-ms eliminate ms(1) macros, and associated text that is not part of sentences from the analysis.
The -ms flag overrides the default, -mm.

-li eliminate list items, as defined by mm macros, from the analysis. This is the default.

+li Include list items in the analysis. This flag should be used if the text contains lists of sen-
tences, but not if the text contains many lists of non-sentences.

FILES
/tmp/$$∗ temporary files

SEE ALSO
prose(1), proofr(1), style(1), spellwwb(1), punct(1), double(1), diction(1), splitinf(1), deroff(1), mk-
stand(1), wwbstand(1), spelltell(1), worduse(1), wwbinfo(1), wwbhelp(1), wwbmail(1).

BUGS
Split infinitives in lists will not be found unless the +li option is used. See other manual pages for bugs in
individual commands.

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard

475

WWB(1) General Commands Manual WWB(1)

SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

476

WWBHELP(1) General Commands Manual WWBHELP(1)

NAME
wwbhelp - print Writer’s Workbench commands for a topic

SYNOPSIS
wwbhelp [-flags][-ver] [word or part of word ...]

DESCRIPTION
Wwbhelp searches a file of descriptive topics covered by Writer’s Workbench programs. It prints the topi-
cal descriptors followed by commands and options that can be used to get topically related information.

When wwbhelp is typed on a line with the input topic(s), it will print the commands and options and then
exit. When wwbhelp is typed on a line by itself, the program prompts with ">" for a topic. To quit, type
"q" after the prompt.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

EXAMPLE
The command:

wwbhelp syl

returns:

syllable counts for words....syl file
syllables greater than N.....syl -N file

FILES
/wwb/lib/helpfile contains the list of topics and programs

SEE ALSO
wwbinfo(1), wwb(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

477

WWBINFO(1) General Commands Manual WWBINFO(1)

NAME
wwbinfo - print table of WWB commands and functions

SYNOPSIS
wwbinfo [-ver][-flags]

DESCRIPTION
Wwbinfo prints a table listing the Writer’s Workbench (WWB) commands and their functions. Some
commands run other commands. Subordinate commands are indented.

The table is divided into four parts: general commands, commands that give explanations, environmental
tailoring commands, and user-specified dictionaries.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing the command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

478

WWBMAIL(1) General Commands Manual WWBMAIL(1)

NAME
wwbmail - send mail to Writer’s Workbench development group

SYNOPSIS
wwbmail [-p] [-flags][-ver]

DESCRIPTION
Wwbmail sends a user’s comments or requests for help directly to the Writer’s Workbench (WWB) devel-
opment group.

The -p option allows the user to bypass the default (inter-system mail) and go directly to the procedure
for obtaining a paper copy of the message.

The program prints instructions if the user needs them. The instructions are written at a level a casual user
can understand.

If wwbmail knows of no electronic mail link between the user’s system and that of the WWB group, it
gives instructions on how to print a pre-addressed paper copy of the message to send via regular mail.

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

FILES
/tmp/$$∗ temporary files

wwbmailtmp output file containing address and message for paper copy

SEE ALSO
wwbhelp(1), wwbinfo(1), wwb(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733

479

WWBSTAND(1) General Commands Manual WWBSTAND(1)

NAME
wwbstand - print standards used by prose(1)

SYNOPSIS
wwbstand [-flags][-ver][-tm | -t | -c | -x standards-file]

DESCRIPTION
Wwbstand reads the standards files that are used by prose(1), and prints the average ranges of 12 style(1)
scores for documents of certain kinds. Prose considers scores that fall within these ranges to be good.

Four options to wwbstand tell it what standards file to read:

-tm print average ranges of style scores for Bell Labs Technical Memoranda judged good by
department heads in the research area. This is the default.

-t print average ranges of style scores for Bell Labs training documents from Department
45272.

-c print suggested ranges of style scores for craft documents based on the research of E.
Coke, department 11222.

-x standards-file
print average ranges of style scores contained in standards-file. The standards-file can be
made using mkstand(1).

Two options give information about the program:

-flags
print the command synopsis line (see above) showing command flags and options, then
exit.

-ver print the Writer’s Workbench version number of the command, then exit.

SEE ALSO
mkstand(1), prose(1), style(1), wwb(1).

SUPPORT
COMPONENT NAME: Writer’s Workbench
APPROVAL AUTHORITY: Div 452
STATUS: Standard
SUPPLIER: Dept 45271
USER INTERFACE: Stacey Keenan, Dept 45271, PY x3733
SUPPORT LEVEL: Class B - unqualified support other than Div 452

480

WWV (1) General Commands Manual WWV (1)

NAME
wwv - print or set the date from accurate clock

SYNOPSIS
wwv [option ...]

DESCRIPTION
Wwv connects to a clock synchronized with a time standard. With no argument it prints the time obtained.
It accepts these options:

-b Print both the WWV time and the system’s current idea of the time.

-s Set the system’s time to agree with WWV. Only the super-user can do this. The system time can-
not be changed by more than 20 minutes.

-f With -s, force the time to be set by WWV even if the local time disagrees by more than 20 min-
utes.

-u Report time in GMT rather than local time.

FILES
/usr/adm/wtmp to record time-setting; see utmp(5)

SEE ALSO
date(1), time(2), stime(2)

481

XARGS(1) General Commands Manual XARGS(1)

NAME
xargs - construct argument lists and execute command

SYNOPSIS
xargs [option] [command [initial-arguments]]

DESCRIPTION
Xargs combines the fixed initial-arguments with arguments read from standard input to execute the speci-
fied command one or more times. Command by default) is located according to environment variable
PATH.

Arguments read from standard input are delimited by white space (blanks, tabs, or new-lines). However,
single or double quotes may be used to surround arguments that contain blanks or tabs, and backslash \
may be used to quote single characters outside of quotes.

Normally the initial-arguments are followed by arguments read from standard input until an internal
buffer is full, whereupon command is executed with the accumulated arguments. This process is repeated
until there are no more arguments. Options modify this rule:

-ln Command is executed upon reading each n (default 1) nonempty lines from standard input.
Newlines preceded by blank or tab are not counted. Option -x is implied.

-is Insert mode: command is executed for each line from standard input, taking the entire line as a
single arg, inserting it in initial-arguments for each occurrence of s, { } by default. Blanks and
tabs at the beginning of each line are thrown away. Constructed arguments may not exceed 255
characters. Option -x is implied.

-nn Execute command using as many standard input arguments as possible, up to n arguments maxi-
mum.

-t Trace mode: The command and each constructed argument list are echoed to file descriptor 2 just
prior to their execution.

-p Prompt about whether to execute command. Trace mode (-t) is turned on to print the command
instance to be executed, followed by ?. . .. The command will be executed if and only if the reply
begins with y.

-x Terminate if any argument list would be greater than size characters.

-ssize The maximum total size of each argument list is size characters, 470 by default.

-eeofstr
Eofstr (_ by default) is the logical end-of-file string. Normally xargs reads standard input up to
a logical or an actual end-of-file. Option -e with no eofstr turns off logical end-of-file testing.

Xargs will terminate if it receives a return code of -1 from, or cannot execute, command .

EXAMPLES
ls $1 | xargs -i -t mv $1/{ } $2/{ } Move all files from directory $1 to directory $2, and echo
each move command just before doing it.

(logname; date; echo $0 $∗) | xargs >>log Combine the output of the parenthesized commands
onto one line, which is then echoed to the end of file log.

ls | xargs -p -l ar r arch Ask which files in the current directory are to be archived and archive
them one at a time.

ls | xargs -p -l | xargs ar r arch Same, but archive many at a time.

echo $∗∗ | xargs -n2 diff Execute diff(1) with successive pairs of arguments originally typed as
shell arguments.

SEE ALSO
sh(1), apply(1)

482

XD(1) General Commands Manual XD(1)

NAME
xd, od − hex, octal, decimal, or ASCII dump

SYNOPSIS
xd [option ...] [- format ...] [file ...]

od [-bcdox] [file] [+offset]

DESCRIPTION
Xd concatenates and dumps the files (standard input by default) in one or more formats. Groups of 16
bytes are printed in each of the named formats, one format per line. Each line of output is prefixed by its
address (byte offset) in the input file. The first line of output for each group is zero-padded; subsequent
are blank-padded.

Formats other than -c are specified by pairs of characters telling size and style, 4x by default. The sizes
are

1 or b
1-byte units.

2 or w
2-byte units.

4 or l 4-byte units.

The styles are

o Octal.
x Hexadecimal.
d Decimal.

Other options are

-c Format as 1x but print ASCII representations or C escape sequences where possible.

-astyle
Print file addresses in the given style (and size 4).

-s Reverse (swab) the order of bytes in each group of 4 before printing.

-r Print repeating groups of identical 16-byte sequences as the first group followed by an asterisk.

Od dumps a file or the standard input in one or more formats as selected by the first argument, octal by
default.

The format characters mean

b Bytes in octal.
c Bytes in ASCII with C escapes and 3-digit octal for other characters.
d 16-bit words in decimal.
o 16-bit words in octal.
x 16-bit words in hex.
The offset argument tells where in the file to begin dumping. The offset, normally interpreted in octal, is
interpreted in hexadecimal if it begins with x or 0x, and in decimal if it ends with . or .b. If it ends in
b, it is multiplied by 512. The preceding + may be omitted if file is present.

SEE ALSO
adb(1), strings(1), vis(1)

BUGS
The various output formats don’t line up properly in the output of xd.
A spurious zero byte reported by od at the end of odd-length files is betrayed by the correctly printed final
address.
The offset is ineffectual if lseek(2) won’t work on the file.
On some raw devices offsets must be a multiple of the natural block size.

483

YACC(1) General Commands Manual YACC(1)

NAME
yacc, eyacc - yet another compiler-compiler

SYNOPSIS
yacc [option ...] grammar

eyacc [-v] [grammar]

DESCRIPTION
Yacc converts a context-free grammar and translation code into a set of tables for an LR(1) parser and
translator. The grammar may be ambiguous; specified precedence rules are used to break ambiguities.

The output file, must be compiled by the C compiler to produce a program yyparse. This program must
be loaded with a lexical analyzer function, yylex() (often generated by lex(1)), with a main() program, and
with an error handling routine, yyerror(). Simple default versions of the last two are loaded by option -ly
of ld(1).

The options are

-o output
Direct output to the specified file instead of

-D Create file containing diagnostic messages. To incorporate them in the parser, compile it with
preprocessor symbol YYDEBUG defined. The amount of diagnostic output from the parser is
regulated by values of an external variable yydebug:

Report errors.

1 Also report reductions.

2 Also report the name of each token returned by yylex.

-v Create file containing a description of the parsing tables and of conflicts arising from ambiguities
in the grammar.

-d Create file containing #define statements that associate yacc-assigned ‘token codes’ with user-
declared ‘token names’. Include it in source files other than y.tab.c to give access to the
token codes.

-s stem
Change the prefix y of the file names and y.output to stem.

Eyacc is a special version of yacc, with systematic error recovery. It is used to compile pascal(A)

FILES
y.output

y.tab.c

y.tab.h

y.debug

y.tmp.∗
temporary file

y.acts.∗
temporary file

/usr/lib/yaccpar
parser prototype for C programs

/usr/lib/liby.a
library -ly

SEE ALSO
lex(1)
S. C. Johnson and R. Sethi, this manual, Volume 2

484

YACC(1) General Commands Manual YACC(1)

BUGS
The parser may not have full information when it writes to y.debug so that the names of the tokens
returned by yylex may be missing.

485

YES(1) General Commands Manual YES(1)

NAME
yes - be repetitively affirmative

SYNOPSIS
yes [expletive]

DESCRIPTION
Yes repeatedly outputs “y”, or if expletive is given, that is output repeatedly. Termination is by rubout.

BUGS
Boring.

4th Berkeley Distribution 486

DATE(1) General Commands Manual DATE(1)

NAME
zero - emit constant bytes

SYNOPSIS
zero [byte[nbytes]]

DESCRIPTION
Zero emits nbytes bytes, each with value byte. A missing nbytes is taken to be infinite. A missing byte is
taken to be zero. Both arguments may be specified C-style.

487

UUCLEAN (1C) UUCLEAN (1C)

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
uuclean [option] ...

DESCRIPTION
Uuclean will scan the spool directory for files with the specified prefix and delete all those which are
older than the specified number of hours.

The following options are available.

-ppre Scan for files with pre as the file prefix. Up to 10 -p arguments may be specified. A -p with-
out any pre following will cause all files older than the specified time to be deleted.

-ntime Files whose age is more than time hours will be deleted if the prefix test is satisfied. (default
time is 72 hours)

-m Send mail to the owner of the file when it is deleted.

This program will typically be started by cron(8).

FILES
/usr/lib/uucp directory with commands used by uuclean internally

/usr/lib/uucp/spool spool directory

SEE ALSO
uucp(1C), uux(1C)

488

UUDIFF(1C) UUDIFF(1C)

NAME
uudiff - directory comparison between machines

SYNOPSIS
uudiff [-d] local-name remote-name

DESCRIPTION
Uudiff compares the files in the directory local-name and the directory remote-name, (where remote-name
may be of the form system-name!directory-name and system-name is a uucp Unix name). It reports (via
mail) which files are added, deleted, or changed, and provides a diff(1) of altered printable files.

If a part of remote-name is omitted (either the system or the directory) the corresponding part of local-
name is used. If local-name is a file, rather than a directory, remote-name is also assumed to be a file and
the program degenerates into diff(1).

The option -d does not diff altered files; only the summary by file names is prepared.

FILES
Lots. Files zz[abcdeglmn]????? are used for scratch space; files brought back from the remote machine
for diffing are stored (and left around) as name.????? and the final report is left in uudiff.????? (the ex-
act name is reported by mail).

SEE ALSO
diff(1), uucp(1)

DIAGNOSTICS
Almost none. Anything more serious than misspelling local-name causes unpredictable and obscure re-
sults.

BUGS
In addition to the standard uucp requirements a hook is needed at the remote system, and at present is
only installed on the systems "research" and "inter".
This program is written in shell and should be translated to C so it could give diagnostics.
Even if "remote-system" is the local system, uudiff is subject to delays in uucp traffic.
It should probably write the standard output, instead of insisting on going into the background.
Since checksums are used there is a probability of 1 in 2∗∗ 32 of missing differences between files.
The userid syntax is not recognized.

489

UUENCODE(1C) UUENCODE(1C)

NAME
uuencode,uudecode - encode/decode a binary file for tranmission via mail

SYNOPSIS
uuencode [source] remotedest | mail sys1!sys2!..!decode
uudecode [file]

DESCRIPTION
Uuencode and uudecode are used to send a binary file via uucp (or other) mail. This combination can be
used over indirect mail links even when uusend(1) is not available.

Uuencode takes the named source file (default standard input) and produces an encoded version on the
standard output. The encoding uses only printing ASCII characters, and includes the mode of the file and
the remotedest for recreation on the remote system.

Uudecode reads an encoded file, strips off any leading and trailing lines added by mailers, and recreates
the original file with the specified mode and name.

The intent is that all mail to the user ‘‘decode’’ should be filtered through the uudecode program. This
way the file is created automatically without human intervention. This is possible on the uucp network by
either using delivermail or by making rmail be a link to Mail instead of mail. In each case, an alias must
be created in a master file to get the automatic invocation of uudecode.

If these facilities are not available, the file can be sent to a user on the remote machine who can uudecode
it manually.

The encode file has an ordinary text form and can be edited by any text editor to change the mode or re-
mote name.

SEE ALSO
uuencode(5), uusend(1), uucp(1), uux(1), mail(1)

AUTHOR
Mark Horton

BUGS
The file is expanded by 35% (3 bytes become 4 plus control information) causing it to take longer to
transmit.

The user on the remote system who is invoking uudecode (often uucp) must have write permission on the
specified file.

4th Berkeley Distribution 6/1/80 490

UUSEND(1C) UUSEND(1C)

NAME
uusend - send a file to a remote host

SYNOPSIS
uusend [-m mode] sourcefile sys1!sys2!..!remotefile

DESCRIPTION
Uusend sends a file to a given location on a remote system. The system need not be directly connected to
the local system, but a chain of uucp(1) links needs to connect the two systems.

If the -m option is specified, the mode of the file on the remote end will be taken from the octal number
given. Otherwise, the mode of the input file will be used.

The sourcefile can be ‘‘-’’, meaning to use the standard input. Both of these options are primarily in-
tended for internal use of uusend.

The remotefile can include the userid syntax.

DIAGNOSTICS
If anything goes wrong any further away than the first system down the line, you will never hear about it.

SEE ALSO
uux(1), uucp(1), uuencode(1)

AUTHOR
Mark Horton

BUGS
This command shouldn’t exist, since uucp should handle it.

All systems along the line must have the uusend command available and allow remote execution of it.

Some uucp systems have a bug where binary files cannot be the input to a uux command. If this bug ex-
ists in any system along the line, the file will show up severly munged.

4th Berkeley Distribution 6/1/80 491

GPLOT (1G) GPLOT (1G)

NAME
gplot - send a job to GCOS to plot draw files

SYNOPSIS
gplot [option] [file] ...

DESCRIPTION
The following options are used to print drawing files. The input to gplot may be generated using draw
-g or plot -g. If the drawing contains a border and the -b flag is used the output will include the stan-
dard border used on 2S graph paper.

-- The output is not sent to GCOS but printed on the standard output instead.

-c Produce Calcomp output, via the Honeywell 6000.

-f Produce microfilm output through the FR80 at Holmdel.

-s Produce output on Stare, via the Murray Hill Computer Center.

-v Produce a VU-Graph using the FR80 at Holmdel. There is no border with VU-Graph out-
put.

The following variables from the environment(V) are used. user user name for $IDENT card
acct murray hill gcos account number bin btl bin number sgrade service grade for gcos job If
any of these variables is not set its value is obtained using getuid(I).

492

PINS(1G) PINS(1G)

NAME
pins - look up pin names

SYNOPSIS
pins pattern ...

DESCRIPTION
pins prints the description of the chip type pattern from the file /usr/lib/cda/lib/pins. pattern is in a
form suitable for grep(I)If the name matched is a synonym for another part, both type names will be
printed. The pin names and pin numbers are used by the circuit macro expander cdm.

Naming Conventions
A set of pin naming conventions is used, based on the traditional naming found in, for example, the Texas
Instruments TTL Data Book. Function inputs and outputs are usually given as a single capital letter. Spe-
cial inputs and outputs are given a short mnemonic name, such as CLR for clear. Lowercase letters are
used where a subscript might normally be used. Where multiple gates exist within a single package, they
are distinguished by appending a zero based numeric index. Pins which are active when low are indicated
by adding a minus sign as the last character of the name.

General inputs are labeled with a single letter starting with the letter A. Functions with single inputs use
the letter D with indices, as well as memories and flip-flops. When the outputs of logic elements are not
synchronous with respect to another input they are named Y. Synchronous outputs, such as with flip-
flops are called Q. Clock lines are called CK, clear lines are called CLR, preset lines are called PR. Se-
lect lines for multiplexors and data selectors are called S. The letter G is used for enable, chip enable,
chip select, and output enable. The use of OE for output enable is used for tri-state devices where there is
a separate enabling of the chip and its outputs (such as 74S373). Memories use the letter A for address
lines, WE for write enable and Y for outputs.

493

prtx(1G) prtx(1G)

NAME
prtx - graphics mode output filter for matrix printers

SYNOPSIS
prtx [-i p] [-o device] [-n font] [-w width] [-Ocxf] files

prtx [-i t] [-o device] [-n font] [-w width] [-Ocxf] [-s charsize] files

prtx [-i g] [-o device] [-n font] [-Ocxuf] [-r region] files

DESCRIPTION
prtx reads commands from the specified files and constructs pictures. printronix matrix printer. If no
files are specified it reads from the standard input. The file name "-" also specifies the standard input.

The options are:

-o device
Output appropriate for the designated device. Currently supported devices are:

prtx
A printronix matrix printer. This is the default assumed if the -i option is omitted.

hrprtx
High resolution printronix. Some printronix printers have twice the horizontal resolu-
tion of the standard printer. This option produces output for such printers.

tty Any ascii terminal. The output in this mode is crude and it is intented only for preview-
ing command files whose output is ultimately intended for another device.

trilog. A trilog color printer.

-i format
This option specifies the format of the command file. The possible values are:

prtx
"Prtx" format. Ascii commands suitable for hand construction described in prtx(5).
(This is the default format.)

tplot
"Tplot" format. Commands usually given to tplot(1) as described in plot(5). The -s op-
tion specifies the size of characters as an integer multiple of the normal height. (The
default is 1.)

troff
"troff" format. Output from newtroff.

gps Gps(5) format. Normally used for display on Tektronix terminals. Produced by the
stat(1) commands. The -r and -u options are as for ged(1).

-n font Font is a file that describes an alternate character set. If it starts with a ’/’ it is interpreted
as a full path name. If it starts with ’./’ it is relative to the current directory. Otherwise it is
relative to the font library. If this option is omitted "DEVICE.font" is assumed. Where DE-
VICE is the -o option.

-w width Width is the width (in inches) of the paper. It is a floating point number. It overrides the
default width for the device.

-O Overlays all files into one picture. (Normally each file goes on a separate page.)

-x Exchange rows and columns. That is, turn picture on its side.

-c Let output continue vertically across page boundaries. This permits pictures of any height to be
drawn.

-f Fit the output the to a page. I.e. rescale the locations of points so that the picture fits exactly on the
page. The original picture may have been bigger or smaller than a page.

EXAMPLES
Typical use is:

MARX WH 494

prtx(1G) prtx(1G)

prtx <sample | lpr -uk -o

The "-o" is necessary so that lpr doesn’t complain about unprintable characters. Another example is

graph <numbers | prtx -t | lpr -uk -o

SEE ALSO
prtx(5), prtxfont(5), graphics(1), graph(1), plot(5), gps(5).

FILES
The font library is /usr/marx/lib.

DIAGNOSTICS
Many diagnostics are printed on the standard error output. In general an attempt is made to continue.

BUGS
The boxit prefix cannot always determine the boundary of the prefixed command.

This command is a descendant of one that only produced output for the printronix, hence its name.

The printronix, and trilog are slow devices in graphics mode.

Small narrow ellipses do not work.

Large input files can result in very poor performance because of a problem with malloc.

The "a" (arc) command for troff input is not yet implemented.

Many characters expected by troff users are not in the current font.

AUTHOR
Jerry Schwarz (harpo!jerry)

MARX WH 495

INTRO(2) System Calls Manual INTRO(2)

NAME
intro, errno − introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
Section 2 describes the entries into the operating system.

File I/O
Files are opened for input or output by open(2) or creat. These calls return a integer called a file descrip-
tor which identifies the file to subsequent I/O calls, notably read(2) and write. File descriptors range
from 0 to 127 in the current system. The system gets to pick the numbers, but they may be reassigned by
dup(2) and dup2.

By agreement among user programs, file descriptor 0 is the standard input, 1 is the standard output, 2 is
for error messages, and 3 is the controlling terminal if any. The operating system is unaware of these con-
ventions; it is permissible to close file 0, or even to replace it by a file open only for writing, but many
programs will be confused by such chicanery.

Files are normally read or written in sequential order. Lseek(2) addresses arbitrary locations.

Files have associated status, consisting of ownerships, permission modes, access dates, and so on. The
status is retrieved by stat(2); the calls in chmod(2) alter parts of it.

New files are made with creat (in open(2)). An existing file may be given an additional name by link(2)
or symlink; names are removed by unlink(2). Directories are created and removed by mkdir(2) and rmdir.

Device files and communication channels (streams) admit a plethora of special operations, most specific
to the device in question; see ioctl(2) and the device writeups in section 4, especially ttyld(4) for terminals
and stream(4) for communications. Pipe(2) creates nameless streams, useful for local communication.
Several streams may be monitored in parallel by select(2).

Process execution and control
A new process is created when an existing one calls fork(2). The new (child) process starts out with
copies of the address space and most other attributes of the old (parent) process. In particular, the child
starts out running the same program as the parent; exec(2) will bring in a different one.

Each process has an integer process id, unique among all currently active processes; a process group id,
used to distribute signals among processes in the same session or window; a userid and groupid, which de-
termine access permissions; and a character-string login name for the current user (not the same as per-
missions). The calls in getuid(2) retrieve and change these values.

Various events cause software traps (signals): program errors like addressing violations, software events
like the interrupt key on the terminal, the alarm clock set by alarm(2), calls to kill (in signal(2)). Most
signals terminate the process by default; signal(2) will arrange to trap or ignore them instead.

A process terminates on receiving a signal or by calling exit(2). A parent process may call wait (in
exit(2)) to wait for some child to terminate. A single byte of status information may be passed from exit
to wait.

Timekeeping
Time(2) and ftime return the time of day and related information. Times(2) returns runtime accounting for
this process and its children. Profil arranges to increment various locations in memory whenever the
clock ticks; it is useful for execution profiling.

Times, profil, and a few other calls measure time in clock ticks. The clock frequency is given by the con-
stant HZ in <sys/param.h>; 60 ticks per second in this system.

SEE ALSO
intro(3), perror(3)

DIAGNOSTICS
A ‘Diagnostics’ paragraph appears in the page for each system call that has an error return. Unless other-
wise stated, the error value is the integer -1, and the success value is 0. When an error occurs, an error
number is assigned to the external variable errno. Errno is not cleared on successful calls, so it should be
tested only after an error has occurred.

496

INTRO(2) System Calls Manual INTRO(2)

There is a table of messages that describe the errors and a routine for printing them; see perror(3). The
list below gives the number, the name (as defined in <errno.h>), and the perror message for each error
type. The reasons for error returns are explained in general terms; further explanations for less obvious
error returns appear in the writeups of individual system calls.

0 [CB] Error 0
No error has occurred.

1 [CB]EPERM Not owner
An attempt was made to modify a file in some way forbidden except to its owner or the super-
user, or an ordinary user attempted to do something allowed only to the super-user.

2 [CB]ENOENT No such file or directory
A file name was specified and the file should exist but didn’t, or one of the directories in a path
name did not exist.

3 [CB]ESRCH No such process
The process whose number was given to kill did not exist, or was already dead.

4 [CB]EINTR Interrupted system call
A signal which the user has elected to catch occurred during a system call. If execution is re-
sumed after processing the signal, it will appear as if the interrupted system call returned this er-
ror condition.

5 [CB]EIO I/O error
A physical I/O error or timeout occurred, usually in read , write, or ioctl. This error may in some
cases be returned on a call following the one to which it actually applies.

6 [CB]ENXIO No such device or address
I/O on a special file referred to a device which does not exist or is off line, or beyond the limits of
the device.

7 [CB]E2BIG Arg list too long
An argument list longer than 16384 bytes was presented to exec.

8 [CB]ENOEXEC Exec format error
A request was made to execute a file which, although it had the appropriate permissions, did not
start with a valid magic number, see a.out(5).

9 [CB]EBADF Bad file number
A file descriptor referred to no open file, or a read (resp. /IR write) a file which was open only
for writing (resp. reading).

10 [CB]ECHILD No children
In wait, the process had no living or unwaited-for children.

11 [CB]EAGAIN No more processes
In fork, the system’s process table was full or the user was not allowed to create any more
processes.

12 [CB]ENOMEM Not enough memory
During exec or brk, a program asked for more memory or swap space than the system was able to
supply.

13 [CB]EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 [CB]EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a system call.

15 [CB]EHASF Directory not empty
An attempt was made to remove a nonempty directory.

16 [CB]EBUSY In use
An attempt was made to mount a device that was already mounted (or crashed or was copied in
mounted state), to dismount a device on which there was an active file (open file, current direc-
tory, mounted-on file, active text segment), or to remove the current directory of some process.

497

INTRO(2) System Calls Manual INTRO(2)

17 [CB]EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

18 [CB]EXDEV Cross-device link
A link to a file on another device was attempted.

19 [CB]ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a write-only de-
vice.

20 [CB]ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as an
argument to chdir.

21 [CB]EISDIR Is a directory
An attempt to write on a directory.

22 [CB]EINVAL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unknown signal in
signal, reading or writing a file for which lseek has generated a negative pointer. Also set by
math functions, see intro(3).

23 [CB]ENFILE File table overflow
The system’s table of open files was full, and temporarily no more opens could be accepted.

24 [CB]EMFILE Too many open files
The limit is 128 per process.

25 [CB]ENOTTY Illegal ioctl
The function code mentioned in ioctl does not apply to the file or device.

26 [CB]ETXTBSY Text file busy
An attempt to execute a pure-procedure program which was open for writing, or to open for writ-
ing a pure-procedure program that was being executed.

27 [CB]EFBIG File too large
The size of a file exceeded the maximum (about 109 bytes).

28 [CB]ENOSPC No space left on device
During a write to an ordinary file, there was no free space left on the device.

29 [CB]ESPIPE Illegal seek
Lseek was issued to a stream device.

30 [CB]EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 [CB]EMLINK Too many links
An attempt to make more than 32767 links to a file.

32 [CB]EPIPE Broken pipe
Write to a stream that has been hung up, usually a pipe with no process to read the data. This
condition normally generates a signal; the error is returned if the signal is ignored.

33 [CB]EDOM Math argument
The argument of a function in the math package (3M) was out of the domain of the function.

34 [CB]ERANGE Result too large
The value of a function in the math package (3M) was unrepresentable within machine precision.

35 [CB]ELOOP Link loop
An endless cycle of symbolic links was encountered.

36 [CB]ECONC Concurrency violation
An open or creat was in violation of the concurrent access specified for the file.

37 [CB]EGREG It’s all Greg’s fault
Something went wrong.

498

INTRO(2) System Calls Manual INTRO(2)

BUGS
Device and file system drivers may use error codes in unexpected or unconventional ways; it is infeasible
to list them all. The writeups in section 4 list some such special cases.

499

ACCESS(2) System Calls Manual ACCESS(2)

NAME
access − determine accessibility of file

SYNOPSIS
int access(name, mode)
char ∗name;

DESCRIPTION
Access checks the given file name for accessibility. If mode[CB]&4 is nonzero, read access is checked.
If mode[CB]&2 is nonzero, write access is checked. If mode[CB]&1 is nonzero, execute access is
checked. If mode[CB]==0, the file merely need exist. In any case all directories leading to the file must
permit searches. 0 is returned if the access is permitted,, -1 if not.

Permission is checked against the real userid and groupid of the process; this call is most useful in set-
userid and set-groupid programs.

Only access bits are checked. A directory may be announced as writable by access, but an attempt to
open it for writing will fail (although files may be created there); a file may look executable, but exec(2)
will fail unless it is in proper format.

If the userid of the process is the owner of the file access is determined by the three owner bits (0700).
Otherwise, if the groupid of the process is the group of the file access is determined by the three group
bits (0070). Otherwise access is determined by the three other bits (0007).

SEE ALSO
stat(2)

DIAGNOSTICS
EACCES, EFAULT, EIO, ELOOP, ENOENT, ENOTDIR, EROFS, ETXTBSY

BUGS
On symbolic links permissions are irrelevant and access returns nonsense.

500

ACCT (2) System Calls Manual ACCT (2)

NAME
acct − turn accounting on or off

SYNOPSIS
int acct(file)
char ∗file;

DESCRIPTION
Acct, with a null-terminated string naming an existing file as argument, turns on accounting; records for
each terminating process are appended to file. An argument of (char ∗)0 causes accounting to be turned
off.

Acct may only be invoked by the super-user.

The accounting file format is given in acct(5).

SEE ALSO
acct(5), sa(8)

DIAGNOSTICS
EACCES (file not a regular file), EBUSY (accounting already turned on), EFAULT, EIO, ELOOP,
ENOENT, ENOTDIR, EPERM, EROFS, ETXTBSY

BUGS
No accounting is produced for programs running when a crash occurs. In particular nonterminating pro-
grams are never accounted for.

501

ALARM(2) System Calls Manual ALARM(2)

NAME
alarm, nap, pause − schedule timing delays

SYNOPSIS
unsigned alarm(seconds)
unsigned seconds;

void nap(ticks)

void pause()

DESCRIPTION
Alarm causes signal SIGALRM, see signal(2), to be sent to the invoking process in the number of sec-
onds given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any alarm re-
quest is canceled. Because the clock has a one second resolution, the signal may occur up to one second
early; because of scheduling delays, resumption of execution of when the signal is caught may be delayed
an arbitrary amount.

The return value is the amount of time previously remaining in the alarm clock.

Nap suspends execution of the current process for the specified number of clock ticks. If ticks is negative,
it is taken to be zero; if it is greater than two seconds, it is taken to be two seconds.

Pause only returns upon termination of a signal handler started during the pause. It is used to give up
control while waiting for a signal, usually from kill (see signal(2)), alarm(2), or the terminal driver
ttyld(4).

SEE ALSO
kill(1), signal(2), setjmp(3), sleep(3)

BUGS
If the argument to alarm is greater than 65535, it is treated as 65535.
If the alarm clock expires during a call to alarm, the return value will be 0, and the signal will be deliv-
ered immediately after the system call returns. If the routine calling alarm saves the return value and later
restores it, it will disable any alarm set by the signal handler.

502

BRK (2) System Calls Manual BRK (2)

NAME
brk, sbrk − change core allocation

SYNOPSIS
int brk(addr)
char ∗addr;

char ∗sbrk(incr)

DESCRIPTION
Brk sets the system’s idea of the lowest location not used by the program (called the break) to addr
rounded up to the next multiple of 1024 bytes. Locations not less than addr and below the stack pointer
may cause a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program’s data space and a pointer to the
start of the new area is returned. Rounding occurs as with brk, but a nominal break is remembered, so
rounding does not accumulate.

When a program begins execution via exec the break is set at the highest location defined by the program
and data storage areas. Ordinarily, therefore, only programs with growing data areas need to use brk.

The error return from sbrk is (char ∗)-1.

SEE ALSO
exec(2), end(3), malloc(3)

DIAGNOSTICS
ENOMEM

503

CHDIR(2) System Calls Manual CHDIR(2)

NAME
chdir, chroot − change working or root directory

SYNOPSIS
int chdir(dirname)
char ∗dirname;

int chroot(dirname)
char ∗dirname;

DESCRIPTION
Chdir changes the working directory of the invoking process to dirname; chroot changes its root direc-
tory.

The root directory is the starting point when searching for pathnames beginning with /. The working
directory is the starting point for pathnames that don’t. The root directory normally points to the system
root. Login(8) initially sets the working directory as specified in the password file.

After chroot, it is impossible to name a file outside the subtree rooted at the current root, provided that the
current directory is located within the subtree and there are no links pointing outside the subtree (except
for the entry .. in the root directory).

Chroot may only be used by the super-user.

SEE ALSO
sh(1), passwd(5)

DIAGNOSTICS
EACCES, EFAULT, EIO, ELOOP, ENOENT, ENOTDIR, EPERM (chroot only)

BUGS
Using chroot, it is quite easy to fool set-userid programs about the contents of the password file (for
example).

504

CHMOD(2) System Calls Manual CHMOD(2)

NAME
chmod, fchmod, chown, fchown, utime − change file mode, owner, group, or times

SYNOPSIS
int chmod(file, mode)
char ∗name;

int fchmod(fildes, mode)

int chown(file, uid, gid)
char ∗name;

int fchown(fildes, uid, gid)

#include <sys/types.h>

int utime(file, timep)
char ∗file;
time_t timep[2];

DESCRIPTION
These functions change inode information for the file named by a null-terminated string or associated with
file descriptor fildes.

Chmod and fchmod change file permissions and other mode bits to mode. Mode values are defined in
stat(2). Only the 07777 bits of mode are significant. Only the owner of a file (or super-user) may change
the mode. Only a process in the file’s group (or super-user) may set the set-group-id bit, S_ISGID.

Chown and fchown change the owner, uid, and the group, gid, of a file. Only the super-user may change
a file’s owner. The owner of a file may change its group to match the current effective groupid. Other
changes are restricted to the super-user.

Utime sets the st_atime (access time) and st_mtime (modify time) fields for file to timep[0] and timep[1]
respectively. The st_ctime (inode change time) field for file is set to the current time.

The caller must be the owner of the file or the super-user.

SEE ALSO
stat(2), time(2)

DIAGNOSTICS
all: EIO, EPERM
chmod, chown, utime: ELOOP, ENOENT, ENOTDIR, EACCES, EFAULT
fchmod, fchown: EBADF

BUGS
An attempt to change the inode data for a file on a read-only file system is quietly ignored.

505

DEPRECATED(2) System Calls Manual DEPRECATED(2)

NAME
reboot, vadvise, vlimit, vswapon, getgroups, setgroups − system calls to be avoided

SYNOPSIS
int reboot(how)

int vadvise(how)

int vlimit(what, limit)

int vswapon(special)
char ∗special;

#include <sys/param.h>

int getgroups(ngroups, gidset)
short ∗gidset;

setgroups(ngroups, gidset)
short ∗gidset;

DESCRIPTION
These calls are hangovers from prior versions of the system. Some exist only for system maintenance
purposes; some depend on the virtual memory implementation. None should be used except as a last re-
sort. Most are not included in /lib/libc.a.

Reboot finishes any pending I/O and reboots the system (if how is 0) or puts the system into a tight loop
with interrupts disabled (if how is 8). It is restricted to the super-user.

Vadvise gives the virtual memory system hints about the paging behavior of the current process.

Vlimit sets various resource limits, such as the amount of memory allowed for text and data, and the maxi-
mum size of core images.

Vswapon adds the block device special to the pool of swap space. The device must be listed in a table
compiled into the operating system; vswapon merely enables it.

Getgroups stores at most ngroups elements of the group access list of the current process in the array gid-
set.

Setgroups sets the group access list of the current user process from gidset. Ngroups gives the number of
entries; it must not exceed NGROUPS, defined in <param.h>. Only the super-user may add groups to
the list.

SEE ALSO
Unix Programmer’s Manual, Seventh Edition, Virtual VAX-11 Version, Volume 1, 1980 (Berkeley)

506

DIRREAD(2) System Calls Manual DIRREAD(2)

NAME
dirread − read from directory, hiding format

SYNOPSIS
int dirread(fildes, buffer, nbytes)
char ∗buffer;

DESCRIPTION
Dirread reads at most nbytes bytes of directory information from the file pointer location in the directory
associated with fildes into memory at buffer. The information is converted into a canonical form, inde-
pendent of the format used by the file system in which the directory resides.

Each canonicalized entry consists of a decimal ASCII inode number, a tab character, a file name, and an
ASCII NUL. Buffer is filled with as many entries as will fit; the number of bytes used is returned. 0 is
returned when there are no more entries.

The file pointer is advanced by the number of bytes passed over in the directory, not the number of bytes
placed in buffer. Ask lseek for the new pointer; don’t try to compute it.

SEE ALSO
open(2), read(2), directory(3), dir(5)

DIAGNOSTICS
EBADF, ENOSPC (buffer too small), ENOTDIR, EFAULT, EINVAL

BUGS
Not all file system types support dirread . The routines in directory(3) know how to cope.
Seeking in directories is dangerous, because the contents often change under foot.

507

DUP(2) System Calls Manual DUP(2)

NAME
dup, dup2 − duplicate an open file descriptor

SYNOPSIS
int dup(fildes)
int fildes;

int dup2(fildes, fildes2)
int fildes, fildes2;

DESCRIPTION
Given a file descriptor dup allocates another file descriptor synonymous with the original. The new file
descriptor is returned.

In dup2, fildes is a file descriptor referring to an open file, and fildes2 is an integer in the range of legal
file descriptors. Dup2 causes fildes2 to refer to the same file and returns fildes2. If fildes2 already re-
ferred to another open file, it is closed first.

SEE ALSO
open(2), pipe(2), fd(4)

DIAGNOSTICS
EBADF, EMFILE

BUGS
Dup of a file descriptor greater than 63 turns into a dup2 with a random second argument.

508

EXEC(2) System Calls Manual EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp, exect − execute a file

SYNOPSIS
int execl(name, arg0, arg1, ..., argn, (char ∗)0)
char ∗name, ∗arg0, ∗ arg1, ..., ∗argn;

int execv(name, argv)
char ∗name, ∗argv[];

int execle(name, arg0, arg1, ..., argn, (char ∗)0, envp)
char ∗name, ∗arg0, ∗ arg1, ..., ∗argn, ∗envp[];

int execve(name, argv, envp)
char ∗name, ∗argv[], ∗envp[];

int execlp(name, arg0, arg1, ..., argn, (char ∗)0)
char ∗name, ∗arg0, ∗ arg1, ..., ∗argn;

int execvp(name, argv)
char ∗name, ∗argv[];

int exect(name, argv, envp)
char ∗name, ∗argv[], ∗envp[];

DESCRIPTION
Exec in all its forms overlays the calling process with the named file, then transfers to the entry point of
the image of the file. There can be no return from a successful exec; the calling image is lost.

Files remain open across exec unless explicit arrangement has been made; see ioctl(2). Signals that are
caught (see signal(2)) are reset to their default values. Other signal settings are unchanged.

Each user has a real userid and groupid and an effective userid and groupid. The real userid (groupid)
identifies the person using the system; the effective userid (groupid) determines access privileges. Exec
changes the effective userid and groupid to the owner of the executed file if the file has the set-userid or
set-groupid modes. The real userid is not affected.

Name points to the name of the file to be executed. It must be a regular file (type S_IFREG, see stat(2))
and its permissions must allow execution. Arg0, arg1, ... or the pointers in argv address null-terminated
argument strings to be made available when the new image starts. Argv must end with a 0 pointer. Con-
ventionally argument 0 is the name of the program.

In execle, execve, and exect, the envp array contains pointers to a set of null-terminated strings composing
the environment of the process. Envp must end with a 0 pointer. The other calls copy the present environ-
ment from the global cell environ; see environ(5).

The execl and execv forms differ only in argument syntax; one is more convenient when the number of ar-
guments is known in advance, the other when arguments are assembled on the fly.

If the first two bytes of the file are the characters #!, subsequent text up to a newline is examined. The
first word, up to a blank or tab, names an interpreter program; anything left over is a single supplemental
argument. The original name, preceded by the supplemental argument if any, is inserted in the argument
list between arg0 and arg1 (or between the first pair of argv pointers). The interpreter is executed with
the modified argument list.

If the file doesn’t start with #!, a standard header for a binary image is expected; see a.out(5). If the file
doesn’t begin with a valid header either, ENOEXEC is returned. The shell sh(1) takes this to mean that
the file contains shell commands.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char ∗∗argv, ∗∗envp;

Argv is the array of argument pointers passed to exec; argc is the number of arguments. Argv is directly
usable in a subsequent execv because argv[argc]==0. Envp is the environment array; the same value has
already been stored in environ.

509

EXEC(2) System Calls Manual EXEC(2)

Execlp and execvp take the same arguments as execl and execv, but search the directories listed in the
PATH environment variable for an executable file called name, mimicking the shell’s path search.

Exect is the same as execve, except that it arranges for the process to stop just before the first instruction
of the new image; see proc(4).

FILES
/bin/sh

shell, invoked if command file found by execlp or execvp

EXAMPLES
This file, if created with execute permissions and run by exec, calls awk(1) to count the lines in all the
files named in its arguments:
#!/usr/bin/awk -f
END { print NR }

SEE ALSO
sh(1), fork(2), ioctl(2), signal(2), proc(4), environ(5)

DIAGNOSTICS
E2BIG, EACCES, EFAULT, EIO, ELOOP, ENOENT, ENOEXEC, ENOMEM, ENOTDIR,
ENXIO, ETXTBSY

BUGS
If execvp is called to execute a file that turns out to be a shell command file, and the shell cannot be exe-
cuted, some of the values in argv may be modified before return.
Neither the shell’s path search nor that of execlp and execvp extends to the interpreter named after #!.
The interpreter file may not itself begin with #!. The text after #! may be no more than 30 characters
long, including the newline.

510

EXIT (2) System Calls Manual EXIT (2)

NAME
_exit, wait wait3 − terminate process, wait for child to terminate

SYNOPSIS
void _exit(status)
int status;

int wait(status)
int ∗status;

int wait((int ∗)0)

#include <sys/vtimes.h>

wait3(status, options, ch_vt)
int ∗status;
struct vtimes ∗ch_vt;

DESCRIPTION
_exit closes all the process’s files and notifies the parent process when the parent executes wait. The low-
order 8 bits of status are available to the parent process. The call never returns.

The function exit(3), which is the normal means of terminating a process, may cause cleanup actions be-
fore finally calling _exit. Therefore, _exit should be called to terminate a child process after a fork(2) to
avoid flushing buffered output twice.

Wait delays until a signal is received or until a child processes terminates or receives signal SIGSTOP.
There is no delay if any child has died since the last wait, or if there are no extant children. The normal
return yields the process id and status of one terminated child. The status of other children may be
learned from further wait calls.

If status is nonzero, wait sets ∗status = (s<<8)+t where s is the low 8 bits of status from the child’s exit,
if any, and t is the termination status of the child. See signal(2) for a list of termination statuses (signals);
status 0 indicates normal termination, 0177 a (restartable) process stopped on SIGSTOP. If the 0200 bit
of the termination status is set, a core image of the process was produced by the system.

Wait3 is similar to wait. An option value of 1 prevents waiting for extant, non-stopped children and
causes 0 to be returned if children exist but none have reportable status. If ch_vt is nonzero, resource us-
age data for the child are reported as by vtimes(2).

If the parent process terminates without waiting on its children, they are inherited by process 1 (the initial-
ization process, init(8)).

SEE ALSO
fork(2), exit(3), signal(2), sh(1)

DIAGNOSTICS
wait, wait3: ECHILD

BUGS
If the argument to wait is bogus, the user program gets a memory fault rather than an EFAULT.
The 0 third argument to wait3 is a required historical dreg.

511

FMOUNT (2) System Calls Manual FMOUNT (2)

NAME
fmount, funmount - mount or remove file system

SYNOPSIS
int fmount(type, fildes, name, flag)
char ∗name;

int funmount(name)
char ∗name;

DESCRIPTION
Fmount mounts a file system of the named type described by the file descriptor fildes on pathname name.
Henceforth, references to name (the mount point) will refer to the root file on the newly mounted file sys-
tem.

Name must already exist. Its old contents are inaccessible while the file system is mounted.

The meaning of flag varies with the file system type.

Allowed types are

0 Regular (block device) file system. Fildes must be a block special file. If flag is nonzero, the
file system may not be written on; this must be used with physically write-protected media or er-
rors will occur when access times are updated, even if no explicit write is attempted.

2 Process file system, proc(4). Fildes is ignored.

3 Mounted stream. Fildes must refer to a stream; future calls to open(2) on name will reopen that
stream. The mount is undone if the other end of the stream is closed or hung up.

4 Stream (network) file system. Fildes is a stream connected to a file system server, netfs(8).

Types 5 and 6 are used internally to close off errors and for pipes; these types may not be mounted.

Funmount removes knowledge of the file system mounted at name. The mount point reverts to its previ-
ous interpretation.

The userid owning name may mount or unmount file systems of type 3 or 4. For other types, these calls
are restricted to the super-user.

SEE ALSO
mount(8), netfs(8), proc(4), stream(4)

DIAGNOSTICS
EBADF, EBUSY, EINVAL, EIO, ENODEV

BUGS
Although fildes for type 2 file systems is ignored, it must be a valid file descriptor.

512

FORK (2) System Calls Manual FORK (2)

NAME
fork − spawn new process

SYNOPSIS
int fork()

DESCRIPTION
Fork is the only way new processes are created. The new process’s image is a copy of that of the caller of
fork. The only distinction is that the value returned in the old (parent) process is the process id of the new
(child) process, while the value returned in the child is 0. Process ids range from 1 to 30,000. The
process id is used by wait (see exit(2)) and kill (see signal(2)).

Files open before the fork are shared, and have a common read-write pointer. This is the way that sh(1)
passes standard input and output files and sets up pipes.

SEE ALSO
exit(2), signal(2), sh(1)

DIAGNOSTICS
EAGAIN, ENOMEM

513

GETUID(2) System Calls Manual GETUID(2)

NAME
getuid, getgid, geteuid, getegid, getlogname, getpid, getppid, getpgrp, setuid, setgid, setruid, setlogname,
setpgrp − get or set user, group, or process identity

SYNOPSIS
int getuid()

int geteuid()

int getgid()

int getegid()

int getlogname(buf)
char ∗buf;

int getpid()

int getppid()

int getpgrp(pid)
int pid;

int setuid(uid)

int setgid(gid)

int setruid(uid)

int setlogname(buf)
char buf[8];

int setpgrp(pid, pgrp)
int pid, pgrp;

DESCRIPTION
Getuid returns the real userid of the current process, geteuid the effective userid. The real userid identi-
fies the person who is logged in, rather than the effective userid, which determines access permission at
the moment. It is thus useful to set-userid programs to find out who invoked them.

Getgid returns the real groupid, getegid the effective groupid.

Getlogname copies the login name of the current process into the buffer pointed to by buf , which must be
at least eight characters long.

Getpid returns the process id of the current process, getppid that of its parent process.

Getpgrp returns the process group id of process pid; means the current process.

Setuid (setgid) sets the effective and real userid (groupid) of the current process to uid (gid). Both the ef-
fective and the real userid (groupid) are set. These calls are permitted only if the process is super-user or
if the argument is the real or effective userid (groupid).

Setruid sets the real userid only. It may only be used by the super-user.

Setlogname sets the login name returned by getlogname. It may only be used by the super-user.

Setpgrp sets the process group id of process pid to pgrp. Pid 0 is the current process. Only the super-
user may set the process group of processes with other userids or set a process group to 0.

SEE ALSO
getuid(1), getlogin(3)

DIAGNOSTICS
getlogname: EFAULT
setlogname: EFAULT, EPERM
setuid , setgid , setruid , setpgrp: EPERM

514

GETUID(2) System Calls Manual GETUID(2)

BUGS
Non-super-user processes may set the process group of descendant processes; only certain unsupported
shells use this, and the facility may vanish presently.

515

IOCTL(2) System Calls Manual IOCTL(2)

NAME
ioctl − miscellaneous control operations

SYNOPSIS
#include <sys/filio.h>

int ioctl(fildes, request, param)
void ∗param;

DESCRIPTION
Ioctl performs a variety of requests on open files, most applying only to particular device files. The write-
ups of various devices in section 4 discuss how ioctl applies to them; see stream(4) in particular for opera-
tions applying to communication devices.

Param points to a parameter buffer. Some requests read data from the buffer; others write data to the
buffer; some do both. The buffer’s size varies according to the request. A few provide meaningful data in
the return value from ioctl as well; others return a conventional value of 0 for success, -1 for failure.

Requests for different drivers are defined in different header files. Two standard calls, defined in
<sys/filio.h>, apply to any open file:

ioctl(fildes, FIOCLEX, (void ∗)0);
ioctl(fildes, FIONCLEX, (void ∗)0);

The first causes the file to be closed automatically upon a successful exec(2); the second causes the file to
be left open.

SEE ALSO
exec(2), stream(4)

DIAGNOSTICS
EBADF, EFAULT, EIO, ENODEV, ENOTTY

BUGS
Ioctl requests vary among UNIX systems; undisciplined use is likely to compromise portability.
The size of the parameter buffer should be an explicit argument.

516

LIMITS(2) System Calls Manual LIMITS(2)

NAME
limits - return or set limits structure

SYNOPSIS
#include <sys/types.h>
#include <sys/lnode.h>
#include <sys/retlim.h>
#include <sys/share.h>

limits(address, function)
struct lnode ∗address;
int function;

DESCRIPTION
This system call manipulates a kernel limits structure according to the value of function. Except where
indicated below, address points to an lnode or an array of lnodes.

Function Value Meaning
L_MYLIM 0 Get user’s own limits structure.
L_OTHLIM 1 Get limits associated with uid in lnode.
L_ALLLIM 2 All active limits structures are returned.
L_SETLIM 3∗ Connect to a new limits structure.
L_DEADLIM 4 Wait for dead limits belonging to child.
L_CHNGLIM 5∗ Changes limits fields in existing limits.
L_DEADGROUP 6∗ Pick up a dead limits structure.
L_GETCOSTS 7 Get contents of system ‘‘shconsts’’ table.
L_SETCOSTS 8∗ Set contents of system ‘‘shconsts’’ table.
L_MYKN 9 Get user’s own ‘‘kern_lnode’’ structure.
L_OTHKN 10 Get structure associated with uid.
L_ALLKN 11 All active structures are returned.

The starred functions in the list are super-user only.

For L_MYKN, L_OTHKN, and L_ALLKN address should point to a ‘‘struct kern_lnode’’ defined in <sys/ln-
ode.h>. For L_SETCOSTS and L_GETCOSTS address should point to a ‘‘struct shconsts’’ defined in
<sys/share.h>. For L_DEADLIM address should point to a ‘‘struct retlim’’ defined in <sys/retlim.h>.

L_OTHLIM and L_CHNGLIM require that the lnode pointed to by address contains the correct uid.
L_OTHKN requires that the kern_lnode pointed to by address contains the correct uid. L_MYLIM,
L_MYKN, L_OTHLIM, and L_OTHKN all return the number of processes currently attached to the node.
L_ALLLIM and L_ALLKN both return the number of active nodes returned.

L_SETLIM initialises a new limits structure with the passed lnode, and attaches the calling process to it.
All children of that process will inherit the new structure.

L_DEADGROUP looks for a dead limits structure, removes it from the list of active limits, and returns the
lnode.

L_DEADLIM performs a wait(2) system call, then returns a structure containing both the limits and
process zombie structures. The value returned is the number of processes still attached to the node.

L_SETCOST and L_GETCOST deal with the constants structure for the scheduling algorithm.

Any other function is illegal, and will return an error of EINVAL. Unless otherwise specified the call re-
turns the number of limits structures returned.

DIAGNOSTICS
ESRCH can be returned in errno by functions L_DEADGROUP, L_OTHKN, L_OTHLIM and L_CHNGLIM
to indicate that the desired limits structure does not exist. ESRCH can also be returned by L_SETLIM to
indicate that this lnode’s group has not been set-up.

ETOOMANYU is returned in errno for L_SETLIM if there is no space left in the kernel limits table.

Any error causes a -1 to be returned.

SHARE-deprecated 517

LIMITS(2) System Calls Manual LIMITS(2)

SEE ALSO
setlimits(3), lnode(5), share(5).

SHARE-deprecated 518

LINK (2) System Calls Manual LINK (2)

NAME
link, symlink, readlink − link to a file

SYNOPSIS
int link(name1, name2)
char ∗name1, ∗name2;

int symlink(name1, name2)
char ∗name1, ∗name2;

int readlink(name, buf, size)
char ∗name, ∗buf;

DESCRIPTION
Link and symlink create a link to file name1 with new name name2. Either name may be an arbitrary path
name.

After link, name2 is entirely equivalent to name1; it is a directory entry referring to the same file as
name1. Only the super-user can make the link if name1 is a directory.

After symlink, name2 is a new symbolic link; when it is encountered in any path name, name1 is substi-
tuted for name2, and path name parsing continues. If name1 begins with the / character, it is interpreted
with respect to the root directory; if not, it is interpreted with respect to the directory in which name2
resides.

Symbolic links are slightly slower than normal links but may span file systems; normal links are confined
to a single file system.

Readlink copies the pathname inside symbolic link name into memory at buf . No more than size bytes
are copied; the actual number of bytes read is returned. The contents of buf will not be null-terminated.
An error is returned if name is not a symbolic link.

SEE ALSO
cp(1), unlink(2), stat(2)

DIAGNOSTICS
all: EIO, ELOOP, ENOENT, ENOTDIR
link: EEXIST, EROFS, EXDEV
symlink: EEXIST, EROFS
readlink: ENXIO

519

LSEEK (2) System Calls Manual LSEEK (2)

NAME
lseek, llseek − seek, move read/write pointer

SYNOPSIS
long lseek(fildes, offset, whence)
long offset;

Long llseek(fildes, offset, whence)
Long offset;

DESCRIPTION
Lseek and llseek set the file pointer for the file associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

The new file pointer value is returned.

Type Long is a 64-bit quantity.

Seeking far beyond the end of a file, then writing, creates a gap or ‘hole,’ which occupies no physical
space and reads as zeros.

SEE ALSO
open(2), fseek(3)

DIAGNOSTICS
EBADF, ESPIPE

BUGS
Lseek doesn’t affect some special files.

520

MKDIR(2) System Calls Manual MKDIR(2)

NAME
mkdir, rmdir − make or remove a directory

SYNOPSIS
int mkdir(name, mode)
char ∗name;

int rmdir(name)
char ∗name;

DESCRIPTION
Mkdir creates a new directory whose name is the null-terminated string pointed to by name. The mode of
the directory is set to mode, as modified by the process’s mode mask; see stat(2) and umask(2). The di-
rectory initially contains two entries: . (a link to the directory itself) and .. (a link to the parent directory).

Rmdir removes the directory name, which must have only . and .. entries.

SEE ALSO
mkdir(1), rm(1), mknod(2), stat(2), umask(2)

DIAGNOSTICS
mkdir: EEXIST, EFAULT, EIO, ELOOP, ENOENT, ENOTDIR, EROFS
rmdir: EFAULT, EHASF, EINVAL, EIO, ELOOP, ENOENT, ENOTDIR, EROFS

521

MKNOD(2) System Calls Manual MKNOD(2)

NAME
mknod − make a directory or a special file

SYNOPSIS
int mknod(name, mode, addr)
char ∗name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to by name. The mode of the
new file (including directory and special file bits) is initialized from mode. (The protection part of the
mode is modified by the process’s mode mask; see stat(2) and umask(2)). The first block pointer of the
inode is initialized from addr. For ordinary files and directories addr is normally zero. For a special file,
addr is the device number; see mknod(8) and the writeups in section 4.

Mknod may be invoked only by the super-user.

SEE ALSO
open(2) for creat, mkdir(2), stat(2), umask(2), filsys(5), mknod(8)

DIAGNOSTICS
EEXIST, EFAULT, EIO, ELOOP, ENOENT, ENOTDIR, EPERM, EROFS

522

MPX(2) System Calls Manual MPX(2)

NAME
mpx - create and manipulate multiplexed files

SYNOPSIS
mpx(name, access)
char ∗name;

join(fd, xd)

chan(xd)

extract(i, xd)

attach(i, xd)

detach(i, xd)

connect(fd, cd, end)

npgrp(i, xd, pgrp)

ckill(i, xd, signal)

#include <sys/mx.h>
mpxcall(cmd, vec)
int ∗vec;

DESCRIPTION
mpxcall(cmd, vec) is the system call shared by the library routines described below. Cmd selects a com-
mand using values defined in <sys/mx.h>. Vec is the address of a structure containing the arguments for
the command.

mpx(name, access)

Mpx creates and opens the file name with access permission access (see creat(2)) and returns a file de-
scriptor available for reading and writing. A -1 is returned if the file cannot be created, if name already
exists, or if the file table or other operating system data structures are full. The file descriptor is required
for use with other routines.

If name is 0, a file descriptor is returned as described but no entry is created in the file system.

Once created an mpx file may be opened (see open(2)) by any process. This provides a form of inter-
process communication whereby a process B can ‘call’ process A by opening an mpx file created by A.
To B, the file is ordinary with one exception: the connect primitive could be applied to it. Otherwise the
functions described below are used only in process A and descendants that inherit the open mpx file.

When a process opens an mpx file, the owner of the file receives a control message when the file is next
read. The method for ‘answering’ this kind of call involves using attach and detach as described in more
detail below.

Once B has opened A’s mpx file it is said to have a channel to A. A channel is a pair of data streams: in
this case, one from B to A and the other from A to B. Several processes may open the same mpx file
yielding multiple channels within the one mpx file. By accessing the appropriate channel, A can commu-
nicate with B and any others. When A reads (see read(2)) from the mpx file data written to A by the other
processes appears in A’s buffer using a record format described in mpxio(5). When A writes (see
write(2)) on its mpx file the data must be formatted in a similar way.

The following commands are used to manipulate mpx files and channels.

join- adds a new channel on an mpx file to an open file F. I/O on the new channel is I/O on F.
chan- creates a new channel.
extract- file descriptor maintenance.
connect- similar to join except that the open file F is connected to an existing channel.
attach and detach- used with call protocol.
npgrp- manipulates process group numbers so that a channel can act as a control terminal (see
tty(4)).
ckill- send signal (see signal(2)) to process group through channel.

A maximum of 15 channels may be connected to an mpx file. They are numbered 0 through 14. Join

4th Berkeley Distribution 523

MPX(2) System Calls Manual MPX(2)

may be used to make one mpx file appear as a channel on another mpx file. A hierarchy or tree of mpx
files may be set up in this way. In this case one of the mpx files must be the root of a tree where the other
mpx files are interior nodes. The maximum depth of such a tree is 4.

An index is a 16-bit value that denotes a location in an mpx tree other than the root: the path through mpx
‘nodes’ from the root to the location is expressed as a sequence of 4-bit nibbles. The branch taken at the
root is represented by the low-order 4-bits of an index. Each succeeding branch is specified by the next
higher-order nibble. If the length of a path to be expressed is less than 4, then the illegal channel number,
15, must be used to terminate the sequence. This is not strictly necessary for the simple case of a tree
consisting of only a root node: its channels can be expressed by the numbers 0 through 14. An index i and
file descriptor xd for the root of an mpx tree are required as arguments to most of the commands de-
scribed below. Indices also serve as channel identifiers in the record formats given in mpxio(5). Since -1
is not a valid index, it can be returned as a error indication by subroutines that normally return indices.

The operating system informs the process managing an mpx file of changes in the status of channels at-
tached to the file by generating messages that are read along with data from the channels. The form and
content of these messages is described in mpxio(5).

join(fd, xd) establishes a connection (channel) between an mpx file and another object. Fd is an open file
descriptor for a character device or an mpx file and xd is the file descriptor of an mpx file. Join returns
the index for the new channel if the operation succeeds and -1 if it does not.

Following join, fd may still be used in any system call that would have been meaningful before the join
operation. Thus a process can read and write directly to fd as well as access it via xd. If the number of
channels required for a tree of mpx files exceeds the number of open files permitted a process by the oper-
ating system, some of the file descriptors can be released using the standard close(2) call. Following a
close on an active file descriptor for a channel or internal mpx node, that object may still be accessed
through the root of the tree.

chan(xd) allocates a channel and connects one end of it to the mpx file represented by file descriptor xd.
Chan returns the index of the new channel or a -1 indicating failure. The extract primitive can be used to
get a non-multiplexed file descriptor for the free end of a channel created by chan.

Both chan and join operate on the mpx file specified by xd . File descriptors for interior nodes of an mpx
tree must be preserved or reconstructed with extract for use with join or chan. For the remaining com-
mands described here, xd denotes the file descriptor for the root of an mpx tree.

extract(i, xd) returns a file descriptor for the object with index i on the mpx tree with root file descriptor
xd. A -1 is returned by extract if a file descriptor is not available or if the arguments do not refer to an ex-
isting channel and mpx file.

attach(i, xd)
detach(i, xd). If a process A has created an mpx file represented by file descriptor xd, then a process B
can open (see open(2)) the mpx file. The purpose is to establish a channel between A and B through the
mpx file. Attach and Detach are used by A to respond to such opens.

An open request by B fails immediately if a new channel cannot be allocated on the mpx file, if the mpx
file does not exist, or if it does exist but there is no process (A) with a multiplexed file descriptor for the
mpx file (i.e. xd as returned by mpx(2)). Otherwise a channel with index number i is allocated. The next
time A reads on file descriptor xd , the WATCH control message (see mpxio(5)) will be delivered on chan-
nel i. A responds to this message with attach or detach. The former causes the open to complete and re-
turn a file descriptor to B. The latter deallocates channel i and causes the open to fail.

One mpx file may be placed in ‘listener’ mode. This is done by writing ioctl(xd, MXLSTN, 0) where xd is
an mpx file descriptor and MXLSTN is defined in /usr/include/sgtty.h. The semantics of listener mode
are that all file names discovered by open(2) to have the syntax system!pathname (see uucp(1)) are treated
as opens on the mpx file. The operating system sends the listener process an OPEN message (see
mpxio(5)) which includes the file name being opened. Attach and detach then apply as described above.

Detach has two other uses: it closes and releases the resources of any active channel it is applied to, and
should be used to respond to a CLOSE message (see mpxio(5)) on a channel so the channel may be
reused.

connect(fd, cd, end). Fd is a character file descriptor and cd is a file descriptor for a channel, such as

4th Berkeley Distribution 524

MPX(2) System Calls Manual MPX(2)

might be obtained via extract(chan(xd), xd) or by open(2) followed by attach. Connect splices the two
streams together. If end is negative, only the output of fd is spliced to the input of cd. If end is positive,
the output of cd is spliced to the input of fd. If end is zero, then both splices are made.

npgrp(i, xd, pgrp). If xd is negative npgrp applies to the process executing it, otherwise i and xd are in-
terpreted as a channel index and mpx file descriptor and npgrp is applied to the process on the non-multi-
plexed end of the channel. If pgrp is zero, the process group number of the indicated process is set to the
process number of that process, otherwise the value of pgrp is used as the process group number.

Npgrp normally returns the new process group number. If i and xd specify a nonexistent channel, npgrp
returns -1.

ckill(i, xd, signal) sends the specified signal (see signal(2)) through the channel specified by i and xd. If
the channel is connected to anything other than a process, ckill is a null operation. If there is a process at
the other end of the channel, the process group will be interrupted (see signal(2), kill(2)). Ckill normally
returns signal. If ch and xd specify a nonexistent channel, ckill returns -1.

FILES
/usr/include/sys/mx.h
/usr/include/sgtty.h

SEE ALSO
mpxio(5)

BUGS
Mpx files are an experimental part of the operating system more subject to change and prone to bugs than
other parts.

Maintenance programs, e.g. icheck(1), diagnose mpx files as an illegal mode.

Channels may only be connected to objects in the operating system that are accessible through the line
discipline mechanism.

Higher performance line disciplines are needed.

The maximum tree depth restriction is not really checked.

A non-destructive disconnect primitive (inverse of connect) is not provided.

A non-blocking flow control strategy based on messages defined in mpxio(5) should not be attempted by
novices; the enabling ioctl command should be protected.

The join operation could be subsumed by connect. A mechanism is needed for moving a channel from
one location in an mpx tree to another.

4th Berkeley Distribution 525

NICE(2) System Calls Manual NICE(2)

NAME
nice − set program priority

SYNOPSIS
void nice(incr)

DESCRIPTION
The scheduling priority of the process is augmented by incr. Positive priorities get less service than nor-
mal. Priority 10 is recommended to users who wish to execute long-running programs without flak from
the administration. Priority 19 is recommended for programs that should only execute in ‘‘idle’’ time.

Only the super-user can effect negative increments. Priorities less than -20 (most urgent) are treated as
-20. Priorities greater than 19 are treated as 19.

The priority of a process is passed to a child process by fork(2). For a privileged process to return to nor-
mal priority from an unknown state, nice should be called successively with arguments -40 (goes to prior-
ity -20 because of truncation), then 20 (to get to 0).

SEE ALSO
nice(1), fork(2)

526

OPEN (2) System Calls Manual OPEN (2)

NAME
open, creat, close − open a file for reading or writing, create file

SYNOPSIS
int open(file, rwmode)
char ∗file;

int creat(file, mode)
char ∗file;

int close(fildes)

DESCRIPTION
Open opens the file, for reading if rwmode is 0, for writing if rwmode is 1, or for both if rwmode is 2, and
returns an associated file descriptor. File is a null-terminated string representing a path name. The file
pointer is set to 0.

Creat creates a new file or prepares to rewrite an existing file, opens it for writing, and returns an associ-
ated file descriptor. If the file is new, the owner is set to the effective userid of the creating process; the
group to that of the containing directory; the mode to mode as modified by the mode mask of the creating
process; see umask(2). Mode need not allow writing. If the file already exists, it is truncated to 0 length;
the mode, owner, and group remain unchanged, and must permit writing.

A program may reserve a filename for exclusive use by calling creat with a mode that forbids writing. If
the file does not exist, creat will succeed; further attempts to creat the same file will be denied. More so-
phisticated (but less portable) concurrent access control may be obtained by setting the S_ICCTYP field
in the mode; see stat(2).

Close closes the file associated with a file descriptor. Files are closed upon termination of a process, but
since there is a limit on the number of open files per process, close is necessary for programs which deal
with many files. It is possible to arrange for files to be closed by exec(2); see FIOCLEX in ioctl(2).

SEE ALSO
dup(2), pipe(2), read(2), exec(2), ioctl(2), stat(2), unlink(2)

DIAGNOSTICS
open, creat: EACCES, EBUSY, ECONC, EFAULT, EINTR, EIO, EISDIR, ELOOP, EMFILE, EN-
FILE, ENOENT, ENOTDIR, EROFS, ETXTBSY
creat: ENOSPC
close: EBADF

BUGS
It should be possible to call open without waiting for carrier on communication lines.
The group of a newly-created file should (once again) be the effective groupid of the creating process.
The trick of creating a file with an unwritable mode fails for the super-user.

527

PIPE(2) System Calls Manual PIPE(2)

NAME
pipe − create an interprocess channel

SYNOPSIS
int pipe(fildes)
int fildes[2];

DESCRIPTION
Pipe creates a buffered channel for interprocess I/O communication. Two file descriptors returned in
fildes are the ends of pair of cross-connected streams; see stream(4). Data written via fildes[1] is avail-
able for reading via fildes[0] and vice versa.

After the pipe has been set up, cooperating processes created by subsequent fork(2) calls may pass data
through the pipe with read and write calls. The bytes placed on a pipe by one write are contiguous even
if many process are writing. Writes induce a record structure: a read will not return bytes from more than
one write; see read(2).

Write calls on a one-ended pipe raise signal SIGPIPE. Read calls on a one-ended pipe with no data in it
return an end-of-file for the first several attempts, then raise SIGPIPE, and eventually SIGKILL.

SEE ALSO
sh(1), fork(2), read(2), select(2), stream(4)

DIAGNOSTICS
EIO, EMFILE, ENFILE, ENXIO

BUGS
Buffering in pipes connecting multiple processes may cause deadlocks.

Some line discipline modules discard the record delimiters inserted by write.

On many other versions of the system, only fildes[0] may be read and only fildes[1] may be written.

528

PROFIL(2) System Calls Manual PROFIL(2)

NAME
profil − execution time profile

SYNOPSIS
void profil(buff, bufsiz, offset, scale)
unsigned short ∗buff;
int bufsiz, offset;
unsigned scale;

DESCRIPTION
Buff points to an area of core whose length in bytes is given by bufsiz. After this call, the user’s program
counter is examined each clock tick; offset is subtracted from it, and the result multiplied by scale, di-
vided by 65536 and then rounded up to a multiple of two. If the resulting number (n) is less than bufsiz,
then buff[n/2] is incremented.

Profiling is turned off by giving a scale of 0. It is rendered ineffective by giving a bufsiz of 0. Profiling is
turned off when an exec is executed, but remains on in child and parent both after a fork. Profiling is
turned off if an update in buff would cause a memory fault.

SEE ALSO
prof(1), monitor(3)

BUGS
Because of the rounding up, single byte instructions cannot be exactly profiled.

529

READ(2) System Calls Manual READ(2)

NAME
read, write − read or write file

SYNOPSIS
int read(fildes, buffer, nbytes)
char ∗buffer;

int write(fildes, buffer, nbytes)
char ∗buffer;

DESCRIPTION
Read reads nbytes bytes of data from the file pointer location in the file associated with fildes into mem-
ory at buffer. The file pointer is advanced by the number of bytes read. It is not guaranteed that all nbytes
bytes will be read; for example if the file refers to a terminal at most one line will be returned. In any
event the number of characters read is returned. A return value of 0 is conventionally interpreted as end of
file.

Write writes nbytes bytes of data starting at buffer to the file associated with fildes at the file pointer loca-
tion. The file pointer is advanced by the number of bytes written. The number of characters actually writ-
ten is returned. It should be regarded as an error if this is not the same as requested.

Reads and writes which are aligned with file system blocks are more efficient than others; see filsys(5).

SEE ALSO
open(2), dup(2), pipe(2), select(2), dirread(2)

DIAGNOSTICS
read: EBADF, EFAULT, EINTR, EINVAL, ENXIO
write: EBADF, EFAULT, EINTR, EINVAL, EIO, ENXIO, EPIPE, EROFS

BUGS
A read or a write call may fail because of a prior call to lseek(2).

530

SELECT (2) System Calls Manual SELECT (2)

NAME
select − synchronous input/output multiplexing

SYNOPSIS
#include <sys/types.h>

int select(nfds, readfds, writefds, milli);
fd_set ∗readfds, ∗writefds;

DESCRIPTION
Select examines a set of file descriptors to see if they will block if read or written. Readfds points to an
object of type fd_set, which contains a set of descriptors to be checked for reading; writefds similarly for
writing. Only descriptors 0 through nfds-1 are considered. The number of ready descriptors is returned,
and the fd_set pointed to by readfds (writefds) is overwritten with a set of descriptors ready to be read
(written). The call waits until at least one descriptor is ready, or until milli milliseconds have passed.

Either readfds or writefds may be 0 if no descriptors are interesting.

The fd_set type looks like
typedef struct {

unsigned int fds_bits[FDWORDS];
} fd_set;

FDWORDS is sufficient to contain as many file descriptors as the system will allow (currently 128). If
there are B bits in an unsigned int, file descriptor n is represented by 1<<((n%B)-1) in word
fds_bits[n/B].

These macros should be used to manipulate the contents of an fd_set:

FD_ZERO(s)
clear all bits in set s

FD_SET(n, s)
set bit for file descriptor n in set s

FD_CLR(n, s)
clear bit for file descriptor n in s

FD_ISSET(n, s)
return a value of 1 if bit for file descriptor n is set in s, 0 otherwise

EXAMPLES
int p[2];
fd_set wfs;
pipe(p);
do {

FD_SET(p[1], wfs);
write(p[1], ".", 1);
i++;

} while(select(p[1]+1, (fd_set∗)0, wfs, 0) == 1);
printf("Pipe capacity = %d\n", i);

SEE ALSO
read(2)

DIAGNOSTICS
EBADF, EFAULT, EINTR

BUGS
Milli is rounded up to the nearest second.
Select is intended for use with streams; file descriptors referring to ordinary files or to non-stream special
files always appear ready. This is a lie for some special files.

531

SIGNAL(2) System Calls Manual SIGNAL(2)

NAME
signal, kill − receive and send signals

SYNOPSIS
#include <signal.h>

SIG_TYP signal(sig, func)
SIG_TYP func;

int kill(pid, sig)

DESCRIPTION
A signal is generated by some abnormal event initiated by a user at a terminal (quit, interrupt), by a pro-
gram error (bus error, etc.), or by kill in another process. Normally, most signals cause termination of the
receiving process, but signal allows them either to be ignored or to be caught by interrupting to a speci-
fied function. The following signal names are defined in

[CB]SIGHUP 1hangup
[CB]SIGINT 2 interrupt
[CB]SIGQUIT 3∗quit
[CB]SIGILL 4∗ illegal instruction (not reset when caught)
[CB]SIGTRAP 5∗ trace trap (not reset when caught)
[CB]SIGIOT 6∗ IOT instruction
[CB]SIGEMT 7∗ EMT instruction
[CB]SIGFPE8∗ floating point exception
[CB]SIGKILL 9kill (cannot be caught or ignored)
[CB]SIGBUS 10∗ bus error
[CB]SIGSEGV 11∗ segmentation violation
[CB]SIGSYS 12∗ bad argument to system call
[CB]SIGPIPE 13write on a pipe with no one to read it
[CB]SIGALRM 14alarm clock
[CB]SIGTERM 15software termination signal

16 unassigned
[CB]SIGSTOP 17+stop (cannot be caught or ignored)
[CB]SIGCONT 19#continue a stopped process
[CB]SIGCHLD 20#child has stopped or exited

∗ places core image in file core if not caught or ignored
+ suspends process until SIGCONT or PIOCRUN; see proc(4)
ignored if not caught

Signals 1 through NSIG-1, defined in the include file, exist. Those not listed above have no conventional
meaning in this system. (Berkeley systems use 1-15 and 17-25.)

Signal specifies how signal sig will be handled. If func is SIG_DFL, the default action listed above is re-
instated. If func is SIG_IGN, the signal will be ignored. Otherwise, when the signal occurs, it will be
caught and a function, pointed to by func, will be called. The type of pointer func is SIG_TYP:

typedef int (∗SIG_TYP)();

It must point to a function such as,

int catcher(sig) { ... }
which will be called with a signal number as argument. A return from the catcher function will continue
the process at the point it was interrupted.

Except as indicated, a signal is reset to SIG_DFL after being caught. Thus if it is desired to catch every
such signal, the catching routine must issue another signal call.

When a caught signal occurs during certain system calls, the call terminates prematurely. In particular
this can occur during read(2) or write on a slow device (like a typewriter, but not a disk), and during
pause and wait; see alarm(2) and exit(2). The interrupted system call will return error EINTR. The
user’s program may then, if it wishes, re-execute the call.

532

SIGNAL(2) System Calls Manual SIGNAL(2)

Signal returns the previous (or initial) value of func for the particular signal.

After a fork(2) the child inherits all signal settings. Exec(2) resets all caught signals to default action.

Kill sends signal sig to the process specified by process id pid. Signal 0 has no effect on the target
process and may be used to test the existence of a process. The success of sending a signal is independent
of how the receiving process treats the signal.

The effective userid of the sending process must be either 0 or the effective userid of the receiving
process.

If pid is 0, the signal is sent to all other processes in the sender’s process group; see stream(4).

If pid is -1, and the user is the super-user, the signal is broadcast universally except to processes 0 (sched-
uler), 1 (initialization) and 2 (pageout); see init(8). If pid is less than -1, it is negated and taken as a
process group whose members should receive the signal.

Processes may send signals to themselves.

FILES
core

SEE ALSO
kill(1), setjmp(3), stream(4)

DIAGNOSTICS
signal: EINVAL
kill: EINVAL, EPERM, ESRCH

BUGS
The reason for a trap should be distinguishable by extra arguments to the signal handler.
If a repeated signal arrives before the last one can be reset, there is no chance to catch it.
For historical reasons, the return value of a catcher function is int; it is void in ANSI standard C.

533

STAT (2) System Calls Manual STAT (2)

NAME
stat, lstat, fstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int stat(name, buf)
char ∗name;
struct stat ∗buf;

int lstat(name, buf)
char ∗name;
struct stat ∗buf;

int fstat(fildes, buf)
struct stat ∗buf;

DESCRIPTION
Stat puts detailed information about the file name in a structure whose address is buf . Lstat does the
same except that when name is a symbolic link (see link(2)), it supplies information about the link itself.
Fstat does what stat does for the file open on descriptor fildes.

It is unnecessary to have any permissions at all with respect to name, but all directories leading to the file
must be searchable.
[CB]struct stat
{

[CB]dev_t st_dev; device number for this file system
[CB]ino_t st_ino; inode number
[CB]unsigned short st_mode; file mode encoded as below
[CB]short st_nlink; number of links (not symbolic links)
[CB]short st_uid; uid of owner
[CB]short st_gid; gid of owner
[CB]dev_t st_rdev; if device file, the device number
[CB]off_t st_size; size in bytes
[CB]time_t st_atime; time file was last read or created
[CB]time_t st_mtime; time file was last written or created
[CB]time_t st_ctime; time file or inode was last written or created

[CB]};

The bits in st_mode are defined by
[CB]S_IFMT 0170000file type
[CB]S_IFDIR 0040000directory
[CB]S_IFCHR 0020000character device
[CB]S_IFBLK 0060000block device
[CB]S_IFREG 0100000regular file
[CB]S_IFLNK 0120000symbolic link
[CB]S_ISUID 0004000set userid on execution
[CB]S_ISGID 0002000set groupid on execution
[CB]S_ICCTYP 0007000type of concurrency control
[CB]S_ISYNC 00010001 writer and n readers (synchronized access)
[CB]S_IEXCL 00030001 writer or n readers (exclusive access)
[CB] 0000400 read permission by owner
[CB] 0000200 write permission by owner
[CB] 0000100 execute permission (search on directory) by owner
[CB] 0000070 read, write, execute (search) by group
[CB] 0000007 read, write, execute (search) by others

S_IFMT and S_ICCTYP are field masks; the other constants encode modes. Codes contained in the
S_IFMT field are mutually exclusive. If bit 01000 is set, the concurrency modes contained in S_ICC-
TYP are in effect; otherwise the set-id flags S_ISUID and S_ISGID apply.

534

STAT (2) System Calls Manual STAT (2)

The concurrency modes affect open and creat calls. Synchronized access, S_ISYNC, guards against
inconsistent updates by forbidding concurrent opens for writing. Exclusive access, S_IEXCL, guards
against inconsistent views by forbidding concurrent opens if one is for writing.

SEE ALSO
chmod(1), ls(1), chmod(2), filsys(5)

DIAGNOSTICS
stat, lstat: EACCES, EFAULT, EIO, ELOOP, ENOENT, ENOTDIR
fstat: EBADF, EFAULT, EIO

BUGS
For efficiency, st_atime is not set when a directory is searched, although this might be more logical.

535

STIME(2) System Calls Manual STIME(2)

NAME
stime, biasclock − set time

SYNOPSIS
int stime(tp)
long ∗tp;

biasclock(milli)
long milli;

DESCRIPTION
Stime sets the system’s idea of the time and date. Time, pointed to by tp, is measured in seconds from
00:00:00 GMT Jan 1, 1970.

Biasclock informs the system that its idea of the time should be incremented by milli milliseconds. The
system will make the adjustment gradually and without causing time to run backwards.

Only the super-user may use these calls.

SEE ALSO
date(1), wwv(1), time(2), ctime(3)

DIAGNOSTICS
EPERM

536

SYNC(2) System Calls Manual SYNC(2)

NAME
sync - force writing of system buffers

SYNOPSIS
void sync()

DESCRIPTION
Sync schedules all information in memory that should be on disk or other block media to be written out.
This includes modified super-blocks, modified inodes, and delayed block I/O.

It should be used by programs which examine a file system, for example icheck(8). It is highly recom-
mended before a shutdown or reboot.

SEE ALSO
sync(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

537

SYSCALL(2) System Calls Manual SYSCALL(2)

NAME
syscall − indirect system call

SYNOPSIS
int syscall(number, arg, ...)

DESCRIPTION
Syscall performs the system call with the specified number and arguments and returns its result. The
numbers may be found in the system source.

BUGS
The simulation fails for system calls such as pipe(2), which return multiple values.

538

TIME(2) System Calls Manual TIME(2)

NAME
time, ftime − get date and time

SYNOPSIS
long time((long ∗)0)

long time(tloc)
long ∗tloc;

#include <sys/types.h>
#include <sys/timeb.h>
ftime(tp)
struct timeb ∗tp;

DESCRIPTION
Time returns the time since the epoch 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tloc is nonnull, the return value is also stored in the place to which tloc points.

Ftime stores a more accurate time and other horological data in the structure pointed to by tb:

[CB]struct timeb
{

[CB]time_t time; time since the epoch in seconds
[CB]unsigned short millitm; up to 1000 milliseconds of more-precise interval
[CB]short timezone; local time zone measured in minutes of time

westward from Greenwich
[CB]short dstflag; if nonzero, daylight saving time applies locally

during the appropriate part of the year
[CB]};

SEE ALSO
date(1), stime(2), ctime(3)

DIAGNOSTICS
ftime: EFAULT

BUGS
If the argument to time is bogus, the user program gets a memory fault rather than an EFAULT.

539

TIMES(2) System Calls Manual TIMES(2)

NAME
times − get process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

int times(buffer)
struct tms ∗buffer;

DESCRIPTION
Times delivers time-accounting information for the current process and for the terminated child processes
of the current process. All times are in clock ticks.

[CB]struct tms
{

[CB]time_t tms_utime; user time for this process
[CB]time_t tms_stime; system time for this process
[CB]time_t tms_cutime; user time for all child processes
[CB]time_t tms_cstime; system time for all child processes

[CB]};

The children times are the sum of the children’s process times and their children’s times.

SEE ALSO
time(1), time(2)

DIAGNOSTICS
EFAULT

540

UMASK (2) System Calls Manual UMASK (2)

NAME
umask − set file creation mode mask

SYNOPSIS
int umask(complmode)

DESCRIPTION
Umask sets the process mode mask. The mask modifies the mode argument of creat (see open(2)),
mkdir(2), and mknod(2) thus:

mode &= (07777 & (complmode & 0777))
In other words, the mask specifies permission bits to be turned off when files are created.

The previous value of the mask is returned by the call. The initial value is set by login(8), and may be
modified by the umask command of sh(1). The mask is inherited by child processes.

SEE ALSO
open(2), mkdir(2), mknod(2), stat(2)

541

UNLINK (2) System Calls Manual UNLINK (2)

NAME
unlink − remove directory entry

SYNOPSIS
int unlink(name)
char ∗name;

DESCRIPTION
Unlink removes the entry for the file pointed to by name from its directory. If this entry was the last link
to the file, the contents of the file are freed and the file is destroyed. If, however, the file was open in any
process, the actual destruction is delayed until it is closed, even though the directory entry has disap-
peared.

Only the super-user can unlink a directory, but see rmdir in mkdir(2).

SEE ALSO
rm(1), link(2), mkdir(2)

DIAGNOSTICS
EFAULT, EIO, ELOOP, ENOENT, ENOTDIR, EROFS

542

VTIMES(2) System Calls Manual VTIMES(2)

NAME
vtimes - get usage of time, space, and paging resources

SYNOPSIS
#include <sys/vtimes.h>

vtimes(par_vm, ch_vm)
struct vtimes ∗par_vm, ∗ch_vm;

DESCRIPTION
Vtimes places accounting information for the current process in the area pointed to by par_vm and for its
terminated children in the area pointed to by ch_vm. If either pointer is 0, the corresponding information
is omitted.

After the call, each area contains information in the form

struct vtimes {
int vm_utime; /∗ user time ∗/
int vm_stime; /∗ system time ∗/

/∗ rss = resident storage size in 512-byte pages ∗/
unsigned vm_idsrss; /∗ rss time integral, data+stack ∗/
unsigned vm_ixrss; /∗ rss time integral, text ∗/
int vm_maxrss; /∗ maximum rss ∗/
int vm_majflt; /∗ major page faults ∗/
int vm_minflt; /∗ minor page faults ∗/
int vm_nswap; /∗ number of swaps ∗/
int vm_inblk; /∗ block reads ∗/
int vm_oublk; /∗ block writes ∗/

};

Times are expressed in clock ticks of 1/60 (or 1/50) second. The time integrals are computed by cumulat-
ing the number of 512-byte pages in use at each clock tick.

A major page fault involves a disk transfer; a minor fault gathers page-reference information. Block reads
and writes are file system disk transfers; blocks found in the buffer pool are not counted.

SEE ALSO
time(2), exit(2)

543

KILLPG(2J) KILLPG(2J)

NAME
killpg - send signal to a process or a process group

SYNOPSIS
killpg(pgrp, sig)

cc ... -ljobs

DESCRIPTION
Killpg sends the signal sig to the specified process group. See sigsys(2) for a list of signals; see jobs(3)
for an explanation of process groups.

The sending process and members of the process group must have the same effective user ID, otherwise
this call is restricted to the super-user. As a single special case the continue signal SIGCONT may be sent
to any process which is a descendant of the current process. This allows a command interpreter such as
csh(1) to restart set-user-id processes stopped from the keyboard with a stop signal.

The calls

killpg(0, sig)

and

kill(0, sig)

have identical effects, sending the signal to all members of the invoker’s process group (including the
process itself). It is preferable to use the call involving kill in this case, as it is portable to other UNIX
systems.

SEE ALSO
jobs(3), kill(2), sigsys(2), signal(2), csh(1), kill(1)

DIAGNOSTICS
Zero is returned if the processes are sent the signals; -1 is returned if any process in the process group
cannot be sent the signal, or if there are no members in the process group.

BUGS
The job control facilities are not available in standard version 7 UNIX. These facilities are still under de-
velopment and may change in future releases of the system as better inter-process communication facili-
ties and support for virtual terminals become available. The options and specifications of this system call
and even the call itself are thus subject to change.

4th Berkeley Distribution 544

SETPGRP(2J) SETPGRP(2J)

NAME
setpgrp, getpgrp - set/get process group

SYNOPSIS
int getpgrp(pid)

setpgrp(pid, pgrp)

cc ... -ljobs

DESCRIPTION
The process group of the specified process is returned by getpgrp. Setpgrp sets the process group of the
specified process pid to the specified pgrp. If pid is zero, then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective user-id as the
invoker or be a descendant of the invoking process.

This call is used by csh(1) to create process groups in implementing job control. The TIOCGPGRP and
TIOCSPGRP calls described in tty(4) are used to get/set the process group of the control terminal.

See jobs(3) for a general discussion of job control.

SEE ALSO
jobs(3), getuid(2), tty(4)

BUGS
The job control facilities are not available in standard version 7 UNIX. These facilities are still under de-
velopment and may change in future releases of the system as better inter-process communication facili-
ties and support for virtual terminals become available. The options and specifications of these system
calls and even the calls themselves are thus subject to change.

A system call setpgrp has been implemented in other versions of UNIX which are not widely used outside
of Bell Laboratories; these implementations have, in general, slightly different semantics.

4th Berkeley Distribution 545

SIGSYS(2J) SIGSYS(2J)

NAME
sigsys - catch or ignore signals

SYNOPSIS
#include <signal.h>

(∗ sigsys(sig, func))()
void (∗func)();

cc ... -ljobs

DESCRIPTION
N.B.: The system currently supports two signal implementations. The one described in signal(2) is stan-
dard in version 7 UNIX systems, and retained for backward compatibility as it is different in a number of
ways. The one described here (with the interface in sigset(3)) provides for the needs of the job control
mechanisms (see jobs(3)) used by csh(1), and corrects the bugs in the standard implementation of signals,
allowing programs which process interrupts to be written reliably.

The routine sigsys is not normally called directly; rather the routines of sigset(3) should be used. These
routines are kept in the ‘‘jobs’’ library, accessible by giving the loader option -ljobs. The features de-
scribed here are less portable then those of signal(2) and should not be used in programs which are to be
moved to other versions of UNIX.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt, stop), by a
program error (bus error, etc.), by request of another program (kill), or when a process is stopped because
it wishes to access its control terminal while in the background (see tty(4)). Signals are optionally gener-
ated when a process resumes after being stopped, when the status of child processes changes, or when in-
put is ready at the control terminal. Most signals cause termination of the receiving process if no action is
taken; some signals instead cause the process receiving them to be stopped, or are simply discarded if the
process has not requested otherwise. Except for the SIGKILL and SIGSTOP signals which cannot be
blocked, the sigsys call allows signals either to be ignored, held until a later time (protecting critical sec-
tions in the process), or to cause an interrupt to a specified location. Here is the list of all signals with
names as in the include file.

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3∗ quit
SIGILL 4∗ illegal instruction (not reset when caught)
SIGTRAP 5∗ trace trap (not reset when caught)
SIGIOT 6∗ IOT instruction
SIGEMT 7∗ EMT instruction
SIGFPE 8∗ floating point exception
SIGKILL 9 kill (cannot be caught, held or ignored)
SIGBUS 10∗ bus error
SIGSEGV 11∗ segmentation violation
SIGSYS 12∗ bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal

16 unassigned
SIGSTOP 17† stop (cannot be caught, held or ignored)
SIGTSTP 18† stop signal generated from keyboard
SIGCONT 19• continue after stop
SIGCHLD 20• child status has changed
SIGTTIN 21† background read attempted from control terminal
SIGTTOU 22† background write attempted to control terminal
SIGTINT 23• input record is available at control terminal
SIGXCPU 24 cpu time limit exceeded (see vlimit(2))
SIGXFSZ 25 file size limit exceeded (see vlimit(2))

The starred signals in the list above cause a core image if not caught, held or ignored.

4th Berkeley Distribution 546

SIGSYS(2J) SIGSYS(2J)

If func is SIG_DFL, the default action for signal sig is reinstated; this default is termination (with a core
image for starred signals) except for signals marked with • or †. Signals marked with • are discarded if
the action is SIG_DFL; signals marked with † cause the process to stop. If func is SIG_HOLD the signal
is remembered if it occurs, but not presented to the process; it may be presented later if the process
changes the action for the signal. If func is SIG_IGN the signal is subsequently ignored, and pending in-
stances of the signal are discarded (i.e. if the action was previously SIG_HOLD.) Otherwise when the
signal occurs func will be called.

A return from the function will continue the process at the point it was interrupted. Except as indicated, a
signal, set with sigsys, is reset to SIG_DFL after being caught. However by specifying DEFERSIG(func)
as the last argument to sigsys, one causes the action to be set to SIG_HOLD before the interrupt is taken,
so that recursive instances of the signal cannot occur during handling of the signal.

When a caught signal occurs during certain system calls, the call terminates prematurely. In particular
this can occur during a read or write(2) on a slow device (like a terminal; but not a file) and during a
pause or wait(2)When a signal occurs during one of these calls, the saved user status is arranged in such a
way that, when return from the signal-catching takes place, it will appear that the system call returned an
error status. The user’s program may then, if it wishes, re-execute the call. Read and write calls which
have done no I/O, ioctls blocked with SIGTTOU, and wait3 calls are restarted.

The value of sigsys is the previous (or initial) value of func for the particular signal.

The system provides two other functions by oring bits into the signal number: SIGDOPAUSE causes the
process to pause after changing the signal action. It can be used to atomically re-enable a held signal
which was being processed and wait for another instance of the signal. SIGDORTI causes the system to
simulate an rei instruction clearing the mark the system placed on the stack at the point of interrupt before
checking for further signals to be presented due to the specified change in signal actions. This allows a
signal package such as sigset(3) to dismiss from interrupts cleanly removing the old state from the stack
before another instance of the interrupt is presented.

After a fork(2) or vfork(2) the child inherits all signals. Exec(2) resets all caught signals to default action;
held signals remain held and ignored signals remain ignored.

SEE ALSO
kill(1), ptrace(2), kill(2), jobs(3), sigset(3), setjmp(3), tty(4)

DIAGNOSTICS
The value BADSIG is returned if the given signal is out of range.

BUGS
The job control facilities are not available in standard version 7 UNIX. These facilities are still under de-
velopment and may change in future releases of the system as better inter-process communication facili-
ties and support for virtual terminals become available. The options and specifications of this facility and
the system calls supporting it are thus subject to change.

Since only one signal action can be changed at a time, it is not possible to get the effect of SIGDOPAUSE
for more than one signal at a time.

The traps (listed below) should be distinguishable by extra arguments to the signal handler, and all hard-
ware supplied parameters should be made available to the signal routine.

ASSEMBLER (PDP-11)
(signal = 48.)
sys signal; sig; label
(old label in r0)

If label is 0, default action is reinstated. If label is 1, the signal is ignored. If label is 3, the signal is held.
Any other even label specifies an address in the process where an interrupt is simulated. If label is other-
wise odd, the signal is sent to the function whose address is the label with the low bit cleared with the ac-
tion set to SIG_HOLD. (Thus DEFERSIG is indicated by the low bit of a signal catch address. An RTI
or RTT instruction will return from the interrupt.)

NOTES (VAX-11)
The following defines the mapping of hardware traps to signals:

4th Berkeley Distribution 547

SIGSYS(2J) SIGSYS(2J)

Arithmetic traps:
Integer overflow SIGFPE
Integer division by zero SIGFPE
Floating overflow SIGFPE
Floating underflow SIGFPE
Floating/decimal division by zero SIGFPE
Decimal overflow SIGFPE
Subscript-range SIGFPE

Length access control SIGSEGV
Protection violation SIGBUS
Reserved instruction SIGILL
Customer-reserved instr. SIGEMT
Reserved operand SIGILL
Reserved addressing SIGILL
Trace pending SIGTRAP
Bpt instruction SIGTRAP
Compatibility-mode SIGEMT
Chme SIGILL
Chms SIGILL
Chmu SIGILL

4th Berkeley Distribution 548

WAIT3(2J) WAIT3(2J)

NAME
wait3 - wait for process to terminate

SYNOPSIS
#include <wait.h>
#include <sys/vtimes.h>

wait3(status, options, vtimep)
union wait status;
int options;
struct vtimes ∗vtimep;

cc ... -ljobs

DESCRIPTION
The status and option words are described by definitions and macros in the file <wait.h>; the union and
its bitfield definitions and associated macros given there provide convenient and mnemonic access to the
word of status returned by a wait3 call. See this file for more information.

There are two options, which may be combined by oring them together. The first is WNOHANG which
causes the wait3 to not hang if there are no processes which wish to report status, rather returning a pid of
0 in this case as the result of the wait3. The second option is WUNTRACED which causes wait3 to re-
turn information when children of the current process which are stopped but not traced (with ptrace(2))
because they received a SIGTTIN, SIGTTOU, SIGTSTP or SIGSTOP signal. See sigsys(2)) for a de-
scription of these signals.

The vtimep pointer is an optional structure where a vtimes structure is returned describing the resources
used by the terminated process and all its children. This may be given as “0” if the information is not de-
sired. Currently this information is not available for stopped processes.

SEE ALSO
wait(2), exit(2), fork(2), sigsys(2)

DIAGNOSTICS
Returns -1 if there are no children not previously waited for, or 0 if the WNOHANG option is given and
there are no stopped or exited children.

BUGS
This call is peculiar to this version of UNIX. The options and specifications of this system call and even
the call itself are subject to change. It may be replaced by other facilities in future versions of the system.

4th Berkeley Distribution 549

REBOOT (2V) REBOOT (2V)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#include <sys/reboot.h>

reboot(howto)
int howto;

DESCRIPTION
Reboot is used to cause a system reboot, and is invoked automatically in the event of unrecoverable sys-
tem failures. Howto is a mask of options passed to the bootstrap program; some of the information in
howto is interpreted by this program, and the information is further passed to the initialization process
init(8) in the new system. When none of these options (e.g. RB_AUTOBOOT) is given, the system is re-
booted from file “vmunix” in the root file system of unit 0 of the drive with the same disk controller as the
current root file system. An automatic consistency check of the disks is then normally performed.

The bits of howto are:

RB_HALT
the processor is simply halted; no reboot takes place. This should be used with caution.

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file should be booted.
Normally, the system is booted from the file “xx(0,0)vmunix” without asking, where xx is deter-
mined by a code in register r10 (which is known as devtype) at entry to the bootstrap program.
The code corresponds to the major device number of the root file system, i.e. “major(rootdev)”.
Currently, the following values of devtype are understood:

0 hp rm03/rm05/rp06 massbus disk
1 -- unused
2 up emulex sc21 unibus controller; ampex 9300 disks
3 rk rk07 unibus disks

Thus if r10 contained a 2, the system

up(0,0)vmunix.

would be booted.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and then multi-user
operations. This prevents the consistency check, rather simply booting the system with a single-
user shell on the console, from the file system specified by r10.

SEE ALSO
crash(8), halt(8), init(8), reboot(8)

BUGS

4th Berkeley Distribution VAX/11 550

VADVISE(2V) VADVISE(2V)

NAME
vadvise - give advice to paging system

SYNOPSIS
vadvise(param)

DESCRIPTION
Vadvise is used to inform the system that process paging behavior merits special consideration. Parame-
ters to vadvise are defined in the file <vadvise.h> . Currently, two calls to vadvise are implemented:

The call

vadvise(VA_ANOM);

advises that the paging behavior is not likely to be well handled by the system’s default algorithm, since
reference information collected over macroscopic intervals (e.g. 10-20 seconds) will not serve to indicate
future page references. The system in this case will choose to replace pages with little emphasis placed
on recent usage, and more emphasis on referenceless circular behavior. It is essential that processes
which have very random paging behavior (such as LISP during garbage collection of very large address
spaces) call vadvise, as otherwise the system has great difficulty dealing with their page-consumptive de-
mands.

The call

vadvise(VA_NORM);

restores default paging replacement behavior after a call to

vadvise(VA_ANOM);

BUGS
This call is peculiar to this version of UNIX. The options and specifications of this system call and even
the call itself are expected to change. It is expected to be extended with additional facilities in future ver-
sions of the system. In particular it is expected that this call will be particular to a segment, and that other
behaviors such as sequential behavior will be specifiable.

4th Berkeley Distribution 551

VFORK (2V) VFORK (2V)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
vfork()

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old process,
which is horrendously inefficient in a paged environment. It is useful when the purpose of fork(2) would
have been to create a new system context for an exec. Vfork differs from fork in that the child borrows the
parents memory and thread of control until a call to exec(2) or an exit (either by a call to exit(2) or abnor-
mally.) The parent process is suspended while the child is using its resources.

Vfork returns 0 in the child’s context and (later) the pid of the child in the parents context.

Vfork can normally be used just like fork. It does not work, however, to return while running in the childs
context from the procedure which called vfork since the eventual return from vfork would then return to a
no longer existent stack frame. Be careful, also, to call _exit rather than exit if you can’t exec, since exit
will flush and close standard I/O channels, and thereby mess up the parent processes standard I/O data
structures. (Even with fork it is wrong to call exit since buffered data would then be flushed twice.)

Similarly when using the new signal mechanism of sigset(3) mechanism be sure to call sigsys rather than
signal(2).

SEE ALSO
fork(2), exec(2), sigsys(2), wait(2),

DIAGNOSTICS
Same as for fork.

BUGS
This system call may be unnecessary if the system sharing mechanisms allow fork to be implemented
more efficiently; users should not depend on the memory sharing semantics of vfork as it could, in that
case, be made synonymous to fork.

To avoid a possible deadlock situation, processes which are children in the middle of a vfork are never
sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input attempts result in an
end-of-file indication.

This call is peculiar to this version of UNIX.

4th Berkeley Distribution 552

VHANGUP(2V) VHANGUP(2V)

NAME
vhangup - virtually ‘‘hangup’’ the current control terminal

SYNOPSIS
vhangup()

DESCRIPTION
Vhangup is used by the initialization process init(8) to arrange that users are given “clean”’ terminals at
login, by revoking access of the previous users’ processes to the terminal. To effect this, vhangup
searches the system tables for references to the control terminal of the invoking process, revoking access
permissions on each instance of the terminal which it finds. Further attempts to access the terminal by the
affected processes will yield i/o errors (EBADF). Finally, a hangup signal (SIGHUP) is sent to the
process group of the control terminal.

SEE ALSO
init (8)

BUGS
Access to the control terminal via /dev/tty is still possible.

This call is peculiar to this version of UNIX. The options and specifications of this system call and even
the call itself are subject to change.

4th Berkeley Distribution 553

VLIMIT (2V) VLIMIT (2V)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/vlimit.h>

vlimit(resource, value)

DESCRIPTION
Limits the consumption by the current process and each process it creates to not individually exceed value
on the specified resource. If value is specified as -1, then the current limit is returned and the limit is un-
changed. The resources which are currently controllable are:

LIM_NORAISE
A pseudo-limit; if set non-zero then the limits may not be raised. Only the super-user
may remove the noraise restriction.

LIM_CPU the maximum number of cpu-seconds to be used by each process

LIM_FSIZE the largest single file which can be created

LIM_DATA the maximum growth of the data+stack region via sbrk(2) beyond the end of the pro-
gram text

LIM_STACK the maximum size of the automatically-extended stack region

LIM_CORE the size of the largest core dump that will be created.

Because this information is stored in the per-process information this system call must be executed di-
rectly by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command
to csh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal
way; a break call fails if the data space limit is reached, or the process is killed when the stack limit is
reaches (since the stack cannot be extended, there is no way to send a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to be gener-
ated, this normally terminates the process, but may be caught. When the cpu time limit is exceeded, a sig-
nal SIGXCPU is sent to the offending process; to allow it time to process the signal it is given 5 seconds
grace by raising the cpu time limit.

SEE ALSO
csh(1)

BUGS
If LIM_NORAISE is set, then no grace should be given when the cpu time limit is exceeded.

There should be limit and unlimit commands in sh(1) as well as in csh.

This call is peculiar to this version of UNIX. The options and specifications of this system call and even
the call itself are subject to change. It may be extended or replaced by other facilities in future versions of
the system.

4th Berkeley Distribution 554

VREAD(2V) VREAD(2V)

NAME
vread - read virtually

SYNOPSIS
vread(fildes, buffer, nbytes)
char ∗buffer;

DESCRIPTION
N.B.: This call is likely to be replaced by more general virtual memory facilities in the near future.

A file descriptor is a word returned from a successful open, creat, dup or pipe call. Buffer is the location
of nbytes contiguous bytes into which the input will be placed. It is not guaranteed that all nbytes will be
read (see read(2)). In particular, if the returned value is 0, then end-of-file has been reached.

Unlike read(2), vread does not necessarily or immediately fetch the data requested from fildes, but merely
insures that the data will be fetched from the file descriptor sometime before the first reference to the data,
at the system’s discretion. Thus vread allows the system, among other possibilities, to choose to read data
on demand, with whatever granularity is allowed by the memory management hardware, or to just read it
in immediately as with read. A companion vwrite(2) call may be used with vread to provide an efficient
mechanism for updating large files. The behavior of vread if other processes are writing to fildes is not
defined.

Both the address of buffer and the current offset in fildes (as told by tell(2)) must be aligned to a multiple
of VALSIZ (defined in <valign.h>). The library routine valloc(3) allocates properly aligned blocks from
the free list.

Note for non-virtual systems: the vread system call can be simulated (exactly, if less efficiently) by read.
If the unit on which a vread is done is not capable of supporting efficient demand initialization (e.g. a ter-
minal or a pipe), then the system may choose to treat a call to vread as if it were a call to read at its dis-
cretion.

SEE ALSO
read(2), write(2), vwrite (2), valloc(3)

DIAGNOSTICS
A 0 is returned at end-of-file. If the read was otherwise unsuccessful, a -1 is returned. Physical I/O er-
rors, non-aligned or bad buffer addresses, preposterous nbytes, file descriptor not that of an input file, and
file offset not properly aligned can all generate errors.

BUGS
You can’t close a file descriptor which you have vread from while there are still pages in the file which
haven’t been fetched by the system into your address space. In no case can a file descriptor which had
such pages at the point of a vfork be closed during the vfork.

The system refuses to truncate a file to which any process has a pending vread.

There is no primitive inverting vread to release the binding vread sets up so that the file may be closed.
This can be only be done, clumsily, by reading another (plain) file onto the buffer area, or pulling the
break back with break(2) to completely release the pages.

This call is peculiar to this version of UNIX. It will be superseded by more general virtual memory facili-
ties in future versions of the system.

4th Berkeley Distribution deprecated 555

VSWAPON (2V) VSWAPON (2V)

NAME
vswapon - add a swap device for interleaved paging/swapping

SYNOPSIS
vswapon(name)
char ∗name;

DESCRIPTION
Vswapon makes the argument block device available to the system for allocation for paging and swapping.
The number of blocks to be made available, as well as the names of all potentially available devices are
known to the system, and are present in the system configuration file (e.g. /usr/src/sys/conf/confhp.c).

SEE ALSO
swapon(8)

BUGS
There is no way to stop swapping on a disk so that the pack may be dismounted.

This call is peculiar to this version of UNIX.

4th Berkeley Distribution 556

VTIMES(2) System Calls Manual VTIMES(2)

NAME
vtimes - get usage of time, space, and paging resources

SYNOPSIS
#include <sys/vtimes.h>

vtimes(par_vm, ch_vm)
struct vtimes ∗par_vm, ∗ch_vm;

DESCRIPTION
Vtimes places accounting information for the current process in the area pointed to by par_vm and for its
terminated children in the area pointed to by ch_vm. If either pointer is 0, the corresponding information
is omitted.

After the call, each area contains information in the form

intvm_utime;/∗ user time ∗/
intvm_stime;/∗ system time ∗/
/∗ rss = resident storage size in 512-byte pages ∗/
unsignedvm_idsrss;/∗ time integral - data+stack rss ∗/
unsignedvm_ixrss;/∗ time integral - text rss ∗/
intvm_maxrss;/∗ maximum rss ∗/
intvm_majflt;/∗ major page faults ∗/
intvm_minflt;/∗ minor page faults ∗/
intvm_nswap;/∗ number of swaps ∗/
intvm_inblk;/∗ block reads ∗/
intvm_oublk;/∗ block writes ∗/

};

Times are expressed in clock ticks of 1/60 (or 1/50) second. The time integrals are computed by cumulat-
ing the number of 512-byte pages in use at each clock tick.

A major page fault results in disk activity; a minor fault gathers page-reference information. Block reads
and writes are file system disk transfers; blocks found in the buffer pool are not counted.

SEE ALSO
time(2), wait(2)

557

VWRITE(2V) VWRITE(2V)

NAME
vwrite - write (virtually) to file

SYNOPSIS
vwrite(filedes, buffer, nbytes)
char ∗buffer;

DESCRIPTION
N.B.: This call is likely to be replaced by more general virtual memory facilities in the near future.

The vwrite system call is used in conjunction with vread to perform efficient updating of large files. After
a call to vread and updating of the data in the buffer which was given to vread, a vwrite of the same buffer
to the same filedes at the same offset in the file will cause data which has been modified since it was
vread from (or vwritten to) the file to be returned to the file.

SEE ALSO
vread(2)

DIAGNOSTICS
Returns -1 on error: bad descriptor, buffer address, count or alignment as well as on physical I/O errors.

BUGS
The result of vwrite is defined only when no other vread’s have occurred on buffer since the one matching
the vwrite.

This call is peculiar to this version of UNIX. It will be superseded by more general virtual memory facili-
ties in future versions of the system.

4th Berkeley Distribution deprecated 558

INTRO(3) Library Functions Manual INTRO(3)

NAME
intro − introduction to library functions

SYNOPSIS
#include <libc.h>

#include <stdio.h>

#include <math.h>

DESCRIPTION
This section describes functions that may be found in various libraries, other than the system calls de-
scribed in section 2. Functions are divided into various libraries distinguished by the section number at
the top of the page:

(3) These functions, together with those of section 2 and those marked (3S) and (3M), constitute li-
brary libc, which is automatically loaded by the C compiler cc(1) and the Fortran compiler
f77(1). The same functions appear also in libC, which is automatically loaded by the C++ com-
piler; see c++(1). The link editor ld(1) searches this library under option -lc (-lC for libC). De-
clarations for some of these functions may be obtained from include files indicated on the appro-
priate pages. Other declarations can be found in

(3F) These functions are in the Fortran library, libF77, automatically loaded by the Fortran compiler,
and searched under option -lF77 of the link editor.

(3M) These functions constitute the math library, part of libc. (On some other systems they must be
loaded by -lm). Declarations for these functions may be obtained from the include file

(3S) These functions constitute the ‘standard IO package’ (see stdio(3)) part of libc already men-
tioned. Declarations for these functions may be obtained from the include file

(3X) Various specialized libraries have not been given distinctive captions. Files in which such li-
braries are found are named on appropriate pages.

(3+) C++ functions in libC that are not in libc.

FILES
/lib/libc.a

SEE ALSO
stdio(3), nm(1), ld(1), cc(1), c++(1), f77(1), intro(2)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when the function is undefined for the
given arguments or when the value is not representable. In these cases the external variable errno (see
intro(2)) is set to the value EDOM or ERANGE, defined in the include file

559

ABORT (3) Library Functions Manual ABORT (3)

NAME
abort - generate a fault

SYNOPSIS
int abort()

DESCRIPTION
Abort sends the current process a SIGIOT signal, which normally terminates the process with a core
dump.

SEE ALSO
adb(1), signal(2), exit(2)

DIAGNOSTICS
Usually ‘abort - core dumped’ from the shell.

560

ARITH(3) Library Functions Manual ARITH(3)

NAME
abs, sgn, gcd, lcm, min, max, labs − integer arithmetic functions: absolute value, sign, greatest common
divisor, least common multiple, minimum, maximum

SYNOPSIS
int abs(a)

int sgn(a)

int gcd(a, b)

long lcm(a, b)

int min(a, b)

int max(a, b)

long labs(a)
long a;

DESCRIPTION
Abs returns the absolute value of a.

Sgn returns -1, 0, 1, if a<0, a=0, a>0, respectively.

Gcd returns the greatest common divisor of a and b. More precisely, gcd returns the largest machine-rep-
resentable generator of the ideal generated by a and b. This means that gcd(0,0) = 0, and gcd(N,0) =
gcd(N,N) = N, where N is the most negative integer.

Lcm returns the least common multiple of a and b. When the result is representable, it satisfies
abs(a∗ b)== lcm(a,b)∗gcd(a,b).

Min (max) returns the minimum (maximum) of a and b.

SEE ALSO
floor(3) for fabs

DIAGNOSTICS
Abs returns the most negative integer when the true result is unrepresentable.

There are no guarantees about the value of lcm when the true value is unrepresentable.

BUGS
The result of lcm is undefined when it doesn’t fit in a long.
Labs, provided for ANSI compatibility, is lonely; there is no lsign, lmax, etc.

561

ASSERT (3X) ASSERT (3X)

NAME
assert − assertion checking

SYNOPSIS
#include <assert.h>

void assert(expression);

DESCRIPTION
Assert is a macro that indicates expression is expected to be nonzero at this point in the program. It
causes an abort(3) with a diagnostic comment on the standard output when expression is zero. Compiling
with the cc(1) option -DNDEBUG effectively makes the expression always nonzero.

DIAGNOSTICS
‘Assertion failed: file f line n’, where f is the source file and n the source line number of the assert state-
ment.

562

ATOF(3) Library Functions Manual ATOF(3)

NAME
atof, atoi, atol, strtod, strtol, strtoul − convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char ∗nptr;

int atoi(nptr)
char ∗nptr;

long atol(nptr)
char ∗nptr;

double strtod(nptr, rptr)
char ∗nptr, ∗∗rptr;

long strtol(nptr, rptr, base)
char ∗nptr, ∗∗rptr;

unsigned long strtoul(nptr, rptr, base)
char ∗nptr, ∗∗rptr;

DESCRIPTION
Atof , atoi, and atol convert a string pointed to by nptr to floating, integer, and long integer representation
respectively. The first unrecognized character ends the string.

Atof recognizes an optional string of tabs and spaces, then an optional sign, then a string of digits option-
ally containing a decimal point, then an optional e or E followed by an optionally signed integer.

Atoi and atol recognize an optional string of tabs and spaces, then an optional sign, then a string of deci-
mal digits.

Strtod, strtol, and strtoul, behave similarly to atof, and atol and, if rptr is not zero, set ∗rptr to point to
the input character immediately after the string converted.

Strtol and strtoul interpret the digit string in the specified base, from 2 to 36, each digit being less than
the base. Digits with value over 9 are represented by letters, a-z or A-Z. If base is 0, the input is inter-
preted as an integral constant in the style of C (with no suffixed type indicators): numbers are octal if they
begin with 0, hexadecimal if they begin with 0x or 0X, otherwise decimal. Strtoul does not recognize
signs.

SEE ALSO
scanf(3)

DIAGNOSTICS
Zero is returned if the begining of the input string is not interpretable as a number.

If overflow is detected by atof, strtod, strtol, or strtoul, a maximum value of the correct sign is returned
and errno is set to ERANGE.

BUGS
Atoi and atol have no provisions for overflow.

563

BESSEL(3M) BESSEL(3M)

NAME
besj0, besj1, besjn, besy0, besy1, besyn − bessel functions

SYNOPSIS
#include <math.h>

double besj0(x)
double x;

double besj1(x)
double x;

double besjn(n, x)
double x;

double besy0(x)
double x;

double besy1(x)
double x;

double besyn(n, x)
double x;

DESCRIPTION
These functions calculate Bessel functions of the first and second kinds for real arguments and integer or-
ders.

DIAGNOSTICS
Negative arguments cause besy0, besy1, and besyn to return a huge negative value and set errno to
EDOM.

564

BITS(3+) BITS(3+)

NAME
bits - variable length bit strings

SYNOPSIS
#include <Bits.h>

typedef unsigned long Bits_chunk;

struct Bits {
Bits() { }
Bits(Bits_chunk, unsigned = 1);
Bits(const Bits&)
Bits();
Bits& operator= (const Bits&); // also = &= |= ˆ=
Bits& operator<<= (int); // also >>=
int operator[] (unsigned);
operator Bits_chunk();
unsigned size();
unsigned size(unsigned);
Bits& compl();
Bits& concat(const Bits&);
Bits& set(unsigned, unsigned long = 1);
Bits& reset(unsigned);
Bits& compl(unsigned);
unsigned count();
unsigned signif();
unsigned trim();

};

Bits operator (const Bits&);
Bits operator& (const Bits&, const Bits&); // also | ˆ
Bits operator<< (const Bits&, int); // also >>
int operator< (const Bits&, const Bits&); // also > <= >= == !=

DESCRIPTION
A Bits object contains a variable-length bit string. The bits of a Bits object b are numbered from 0
through b.size()-1, with the rightmost bit numbered 0.

Bits_chunk is the largest unsigned integral type acceptable for conversion to and from Bits, unsigned
long in this implementation.

Constructors
Bits() An empty bit string.

Bits(n) The bits are copied from the binary representation of n with the ones-digit of n be-
coming bit 0. Leading zero-bits are removed, except that Bits(0) is a one-bit string.

Bits(n,m) The same, but padded with leading zeros to size m if necessary.

Operators
Bit strings have value semantics; assigning a Bits object or passing it to or returning it from a function
creates a copy of its value. The meanings of operators are mostly predictable from C.

Under binary and comparison operators, the shorter operand is considered to be padded on the left with
zeros to the length of the longer. If, after padding, two strings of different length compare equal, the
shorter is deemed the smaller.

Negative shift amounts reverse the sense of shift operators.

Under conversion (or assignment) to a Bits_chunk, a Bits is interpreted as an unsigned integer. If it has a
value small enough to fit, that value is assigned. Otherwise, a non-zero value is assigned. Thus a Bits is
considered ‘true’ in an if test if it contains any one-bit, ‘false’ otherwise.

565

BITS(3+) BITS(3+)

a[s] Bit number s of a; 0 if s is out of bounds.

Other functions
a.size(s) Set the size of a to s by truncating or padding with zeros on the left as necessary.

Return the new size.

a.compl() Complement the bits of a. Return a.

a.set(s)
a.reset(s)
a.compl(s) Set, reset, or complement bit s of a. No effect if a.size()<=s. Return a.

a.set(s,n) If n is 0, reset bit s of a, otherwise set bit s. Equivalent to n? a.set(s): a.reset(s).

a.count() Return the number of one-bits in a.

a.signif() Return the number of significant bits in a: one more than the number of the leftmost
one-bit, or zero if there is no one-bit.

a.trim() Discard high-order zero-bits. Equivalent to a.size(a.signif()).

a.concat(b) Concatenate the value of b to the right (low-order) end of a. Return a.

concat(a,b) Return a newly created concatenated object.

DIAGNOSTICS
An operation that runs out of memory sets the length of the affected Bits to zero.

BUGS
Too bad C++ can’t support a[s] = n.
Things would be more consistent if Bits(0).size() were zero.

566

BLOCK (3+) BLOCK (3+)

NAME
block - adjustable arrays

SYNOPSIS
#include <Block.h>

Blockdeclare(T)
Blockimplement(T)

struct Block(T) {
Block(T)(unsigned = 0);
Block(T)(const Block(T&);
Block(T);
Block(T)& operator= (const Block(T)&);
T& operator[] (int);
operator T∗ ();
unsigned size();
unsigned size(unsigned);
T∗ end();
void swap(const Block(T)&);

}

DESCRIPTION
A Block(T) is an array of zero or more elements of type T, where T is a type name. T must have assign-
ment (operator=) and initialization (T(T&)) operations.

The macro call Blockdeclare(T) declares the class Block(T). It must appear once in every source file that
uses type Block(T). The macro call Blockimplement(T) defines the functions that implement the block
class. It must appear exactly once in the entire program.

New elements are initialized to the value of an otherwise uninitialized static object of type T.

Constructors
Block(T) An empty block.

Block(T)(n) A block of n elements.

Block(T)(b) A new block whose elements are copies of the elements of b.

Operations
Assignment copies elements and size.

b[k] A reference to element k of block b; undefined if k is out of bounds.

(T∗)b A pointer to the first element of block b.

Other functions
b.size() Return the number of elements in b.

b.size(n) Set the size of b to n. If the new size is greater than the old. Otherwise, n old
elements are kept. Return the new size.

b.reserve(n) The size of b is increased, if necessary, to some value greater than n. If b
already has room, b is not changed. Return zero if memory could not be allo-
cated and non-zero otherwise.

b.end() Returns a pointer to just past the last element in b. Equivalent to
(T∗)b+b.size().

a.swap(b) The memory associated with blocks a and b is exchanged.

Performance
Most operations are implemented by the obvious uses of the new and delete operators. Reserve checks
the size inline. If it isn’t big enough, the size is increased by multiplying by 3/2 (and adding one) enough
times to increase it beyond n .

567

BLOCK (3+) BLOCK (3+)

EXAMPLES
Blockdeclare(long)
unsigned n = 0;
Block(long) b;
long x;
while (cin >> x) {

b.reserve(n);
b[n++] = x;

}

SEE ALSO
malloc(3), map(3)

DIAGNOSTICS
The only error detected is running out of memory; this is indicated in all cases by setting the size of the
block for which allocation failed to zero.

BUGS
Elements are copied during reallocation by using T::operator= instead of T(T&).
Because the ‘type parameter’ T is implemented by the C preprocessor, white space is forbidden inside the
parentheses of Block(T).

568

CBT (3X) CBT (3X)

NAME
bopen, bclose, bseek, bfirst, bkey, breclen, bread, bdelete, bwrite − compressed B-tree subroutines

SYNOPSIS
#include <cbt.h>

bfile ∗ bopen(name, typ) char ∗name;

void bclose(b) bfile ∗b;

bseek(b, key) bfile ∗ b; mbuf key;

bfirst(b) bfile ∗b;

mbuf bkey(b) bfile ∗b;

breclen(b) bfile ∗b;

bread(b, key, val) bfile ∗ b; mbuf ∗key, ∗val;

bdelete(b, key) bfile ∗ b; mbuf key;

bwrite(b, key, val) bfile ∗ b; mbuf key, val;

DESCRIPTION
These functions manipulate files of key/value records. Such files are created by cbt creat; see cbt(1). To
load the functions use the ld(1) option -lcbt.

The records occur sorted (increasing lexicographical order) by their keys, which must be distinct. Both
keys and values are arrays of characters accessed through the structure
[CB]typedef struct {

[CB]char ∗mdata;address of data bytes
[CB]short mlen;number of data bytes

[CB]} mbuf;

Bopen attempts to open a named B-tree, and if successful establishes a read pointer pointing to the begin-
ning of the file and returns a pointer to be used in calling the other routines. Typ is 0 for read-only or 2 for
read-write. Bopen returns a descriptor that identifies the file to the other functions.

Bclose closes a B-tree.

Bseek positions the read pointer of the file to the record whose key is the first not less than key. The rou-
tine returns 1 if key is in the file, EOF if key is greater than any key in the file, and 0 otherwise.

Bfirst sets the read pointer to the beginning of the file. It has the same error return as bseek.

Bkey returns the current key. The element mdata of the returned structure is 0 on errors, otherwise it
points to a static buffer.

Breclen returns the length of the value part of the current record.

Bread reads the value at the read pointer into the space pointed to by val->mdata, places its length in
val->mlen, and advances the read pointer to the record with the next greater key. If key is not 0 the key
of the record is read into the space pointed to by key->mdata and its length is placed in key->mlen.
Bread returns 0 if successful.

Bdelete removes the record with the given key, returning 1 if the record was found, -1 if there was an
error, and 0 otherwise, The read pointer is left undefined.

Bwrite writes the given value with the given key. An existing record with that key will be replaced. The
read pointer is left undefined.

FILES
name.T
name.F

SEE ALSO
cbt(1), dbm(3)

569

CBT (3X) CBT (3X)

DIAGNOSTICS
Routines which return pointers return 0 on errors, routines which return integers return -1.

BUGS
The length of any key is limited to 255.
The mbuf arguments are passed inconsistently to the routines, sometimes by value and sometimes by ref-
erence.
Cbt files are not directly portable between big-endian and little-endian machines.

570

CHRTAB(3) Library Functions Manual CHRTAB(3)

NAME
chrtab − simple character bitmaps

SYNOPSIS
extern char chrtab[95][16];

DESCRIPTION
Chrtab contains 8-by-16 bitmaps for ASCII printing characters. The 16 bytes pointed to by chrtab[c-’ ’]
are the 16 rows of character c from top to bottom. The most significant bit is the leftmost bit. The bottom
row is always empty (has all bits 0).

SEE ALSO
font(9)

BUGS
The bitmaps of chrtab are intended for use with line printers, not bitmap devices.

571

CLOSESHARES(3) Library Functions Manual CLOSESHARES(3)

NAME
closeshares - close shares file

SYNOPSIS
int closeshares()

DESCRIPTION
Closeshares closes the shares file (if open) which otherwise remains open across shares file routine calls.

FILES
/etc/shares Shares data-base.

SEE ALSO
getshares(3), getshput(3), openshares(3), putshares(3), sharesfile(3).

SHARE 572

CRYPT (3) Library Functions Manual CRYPT (3)

NAME
crypt, setkey, encrypt − DES encryption

SYNOPSIS
char ∗ crypt(key, salt)
char ∗key, ∗salt;

setkey(key)
char ∗key;

encrypt(block, edflag)
char ∗block;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard, with varia-
tions intended (among other things) to frustrate use of hardware implementations of the DES for key
search.

The first argument to crypt is a user’s typed password. The second is a 2-character string chosen from the
set [a-zA-Z0-9./]. The salt string is used to perturb the DES algorithm in one of 4096 different ways, af-
ter which the password is used as the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password, in the same alphabet as the salt. The first two characters are the salt it-
self.

The other functions provide (rather primitive) access to the actual DES algorithm. The argument of setkey
is a character array of length 64 containing only the characters with numerical value 0 and 1. If this string
is divided into groups of 8, the low-order bit in each group is ignored, leading to a 56-bit key which is set
into the machine.

The argument to encrypt is also a character array of length 64 containing 0’s and 1’s. The 64 argument
‘bits’ are encrypted in place by the DES algorithm using the key previously set by setkey. If edflag is 0,
the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
crypt(1), passwd(1), passwd(5), getpass(3)

BUGS
The return value points to static data whose content is overwritten by each call.
Encrypt is not available outside the United States and Canada.

573

CTIME(3) Library Functions Manual CTIME(3)

NAME
ctime, localtime, gmtime, asctime, timezone − convert date and time to ASCII

SYNOPSIS
#include <time.h>

char ∗ctime(clock)
long ∗clock;

struct tm ∗localtime(clock)
long ∗clock;

struct tm ∗gmtime(clock)
long ∗clock;

char ∗asctime(tm)
struct tm ∗tm;

char ∗ timezone(zone, dst)

DESCRIPTION
Ctime converts a time pointed to by clock such as returned by time(2) into ASCII and returns a pointer to
a 26-character string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-down time. Localtime corrects
for the time zone and possible daylight savings time; gmtime converts directly to GMT, which is the time
UNIX uses. Asctime converts a broken-down time to ASCII and returns a pointer to a 26-character string.

[CB]struct tm {
[CB]int tm_sec; seconds (range 0..59)
[CB]int tm_min; minutes (0..59)
[CB]int tm_hour; hours (0..23)
[CB]int tm_mday; day of the month (1..31)
[CB]int tm_mon; month of the year (0..11)
[CB]int tm_year; year A.D. - 1900
[CB]int tm_wday; day of week (0..6, Sunday = 0)
[CB]int tm_yday; day of year (0..365)
[CB]int tm_isdst; zero means normal time, nonzero means daylight saving time

[CB]};

When local time is called for, the program consults the system to determine the time zone and whether the
standard U.S.A. daylight saving time adjustment is appropriate. The peculiarities of this conversion are
read from the file which contains lines of the form

y0 y1 bmon bday boff emon eday eoff

meaning that for years between y0 and y1 inclusive, daylight saving time begins (ends) boff (eoff) days
after the first Sunday after the day bmon/bday (emon/eday).

Timezone returns the name of the time zone associated with its first argument, which is measured in min-
utes westward from Greenwich. If the second argument is 0, the standard name is used, otherwise the
Daylight Saving version. If the required name does not appear in a table built into the routine, the differ-
ence from GMT is produced. Thus, as Afghanistan is 4:30 ahead of GMT, timezone(-(60∗4+30), 0)
returns[CB] "GMT+4:30".

SEE ALSO
time(2), timec(3)

BUGS
The return values point to static data whose content is overwritten by each call.

574

CTYPE(3) Library Functions Manual CTYPE(3)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii − char-
acter classification

SYNOPSIS
#include <ctype.h>

isalpha(c)

isupper(c)

islower(c)

isdigit(c)

isxdigit(c)

isalnum(c)

isspace(c)

ispunct(c)

isprint(c)

isgraph(c)

iscntrl(c)

isascii(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning nonzero
for true, zero for false. Isascii is defined on all integer values; the rest are defined only where isascii is
true and on the single non-ASCII value EOF; stdio(3).

isalpha
c is a letter, a-z or A-Z

isupper
c is an upper case letter, A-Z

islower
c is a lower case letter, a-z

isdigit c is a digit, 0-9

isxdigit
c is a hexadecimal digit, 0-9 or a-f or A-F

isalnum
c is an alphanumeric character, a-z or A-Z or 0-9

isspace
c is a space, horizontal tab, vertical tab, carriage return, newline, or formfeed (040, 011, 012,
013, 014, 015)

ispunct
c is a punctuation character (one of !"#$%&’()∗+,-./:;<=>?@[\]ˆ_‘{|})

isprint
c is a printing character, 040 (space) through 0176 (tilde)

isgraph
c is a visible printing character, 041 (exclamation) through 0176 (tilde)

iscntrl c is a delete character, 0177, or ordinary control character, 000 through 037

isascii c is an ASCII character, 000 through 0177

SEE ALSO
tolower(3), ascii(6)

575

CURSES(3X) CURSES(3X)

NAME
curses − screen functions with ‘optimal’ cursor motion

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. They keep an
image of the current screen, and the user sets up an image of a new one. Then refresh() tells the routines
to make the current screen look like the new one. The initialization routine initscr() must be called before
any other routines that deal with windows and screens. The routine endwin() should be called before exit-
ing.

To load the functions use the ld(1) options -lcurses -ltermcap.

SEE ALSO
ioctl(2), termcap(5)
Ken Arnold, ‘Screen Updating and Cursor Movement Optimization: A Library Package’, UNIX Program-
mer’s Manual, Seventh Edition, Virtual VAX-11 Version, 1980 (Berkeley)

FUNCTIONS
[CB]addch(ch) add a character to stdscr
[CB]addstr(str) add a string to stdscr
[CB]box(win,vert,hor) draw a box around a window
[CB]crmode() set cbreak mode
[CB]clear() clear stdscr
[CB]clearok(scr,boolf) set clear flag for scr
[CB]clrtobot() clear to bottom on stdscr
[CB]clrtoeol() clear to end of line on stdscr
[CB]delwin(win) delete win
[CB]echo() set echo mode
[CB]endwin() end window modes
[CB]erase() erase stdscr
[CB]getch() get a char through stdscr
[CB]getstr(str) get a string through stdscr
[CB]gettmode() get tty modes
[CB]getyx(win,y,x) get (y,x) co-ordinates
[CB]inch() get char at current (y,x) co-ordinates
[CB]initscr() initialize screens
[CB]leaveok(win,boolf) set leave flag for win
[CB]longname(termbuf,name) get long name from termbuf
[CB]move(y,x) move to (y,x) on stdscr
[CB]mvcur(lasty,lastx,newy,newx) actually move cursor
[CB]newwin(lines,cols,begin_y,begin_x) create a new window
[CB]nl() set newline mapping
[CB]nocrmode() unset cbreak mode
[CB]noecho() unset echo mode
[CB]nonl() unset newline mapping
[CB]noraw() unset raw mode
[CB]overlay(win1,win2) overlay win1 on win2
[CB]overwrite(win1,win2) overwrite win1 on top of win2
[CB]printw(fmt,arg1,arg2,...) printf on stdscr
[CB]raw() set raw mode
[CB]refresh() make current screen look like stdscr
[CB]resetty() reset tty flags to stored value
[CB]savetty() stored current tty flags
[CB]scanw(fmt,arg1,arg2,...) scanf through stdscr
[CB]scroll(win) scroll win one line
[CB]scrollok(win,boolf) set scroll flag
[CB]setterm(name) set term variables for name
[CB]standend() end standout mode
[CB]standout() start standout mode

576

CURSES(3X) CURSES(3X)

[CB]subwin(win,lines,cols,begin_y,begin_x) create a subwindow
[CB]touchwin(win) ‘change’ all of win
[CB]unctrl(ch) printable version of ch
[CB]waddch(win,ch) add char to win
[CB]waddstr(win,str) add string to win
[CB]wclear(win) clear win
[CB]wclrtobot(win) clear to bottom of win
[CB]wclrtoeol(win) clear to end of line on win
[CB]werase(win) erase win
[CB]wgetch(win) get a char through win
[CB]wgetstr(win,str) get a string through win
[CB]winch(win) get char at current (y,x) in win
[CB]wmove(win,y,x) set current (y,x) co-ordinates on win
[CB]wprintw(win,fmt,arg1,arg2,...) printf on win
[CB]wrefresh(win) make screen look like win
[CB]wscanw(win,fmt,arg1,arg2,...) scanf through win
[CB]wstandend(win) end standout mode on win
[CB]wstandout(win) start standout mode on win

577

DBM(3X) DBM(3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey − database subroutines

SYNOPSIS
dbminit(file)
char ∗file;

datum fetch(key)
datum key;

store(key, value)
datum key, value;

delete(key)
datum key;

datum firstkey()

datum nextkey(key)
datum key;

DESCRIPTION
These functions maintain key/value pairs (each pair is a datum) in a data base. The functions will handle
very large databases in one or two file system accesses per key. The functions are loaded with ld(1) op-
tion -ldbm. A datum is defined as

typedef struct {
char ∗dptr;
int dsize;

} datum;

A datum object specifies a string of dsize bytes pointed to by dptr. Arbitrary binary data, as well as nor-
mal ASCII strings, are allowed. The data base is stored in two files. One file is a directory containing a
bit map and has .dir as its suffix. The second file contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the files file.dir
and file.pag must exist. (An empty database has empty .dir and .pag files.)

The value associated with a key is retrieved by fetch and assigned by store. A key and its associated
value are deleted by delete. A linear pass through all keys in a database may be made, in random order,
by use of firstkey and nextkey. Firstkey will return the first key in the database. With any key nextkey will
return the next key in the database. This code will traverse the data base:

for(key = firstkey(); key.dptr != NULL; key = nextkey(key))

SEE ALSO
cbt(3)

DIAGNOSTICS
All functions that return integers indicate errors with negative values. A zero return indicates success.
Routines that return a datum indicate errors with zero dptr.

BUGS
The .pag file contains holes; its apparent size is about four times its actual content. These files cannot
be copied by normal means (cat(1), tar(1), cpio(1), ar(1)) without filling in the holes.
Pointers returned by these subroutines refer to static data that is changed by subsequent calls.
The sum of the sizes of a key/value pair must not exceed a fixed internal block size. Moreover all
key/value pairs that hash together must fit on a single block. Store will return an error in the event that a
disk block fills with inseparable data.
Delete does not physically reclaim file space, although it does make it available for reuse.

578

DIALOUT (3) Library Functions Manual DIALOUT (3)

NAME
dialout − place call on ACU

SYNOPSIS
int dialout(telno, class)
char ∗telno, ∗class;

DESCRIPTION
Dialout places a data call via an automatic calling unit directly attached to the calling computer. To use
an ACU on Datakit see the example in ipc(3).

Dialout searches for an ACU of the appropriate service class and places a data call on the associated line,
using the given telephone number. If successful, it returns an open file descriptor for the line. The file is
in raw mode, and has exclusive-use and hangup-on-close modes set. It returns -1 if all ACUs of the given
class are busy, -3 if carrier could not be set, and -9 if the service class is unidentifiable.

The routine consults a data file /etc/aculist that consists of lines containing six blank- or tab-sepa-
rated fields.

service class
Each line with a service class matching the one specified is tried in turn until an unoccupied
one is found. Service classes specify a switching office and a baud rate.

Defined service classes at the ‘research’ site are 300 and 1200, for 300- and 1200-baud calls
on 665- phone lines, with synonyms D300 and D1200. Internal calls on these lines require 5
digits. Service classes C300 and C1200 use 582- phone lines. Internal calls on these lines
require 4 digits and reach only other 582- lines.

file The file name of the associated special file for the telephone line.

acu The file name of the associated ACU. If specified as none, no ACU is used and the tele-
phone number is ignored. This is for hardwired connections.

speed The bit rate of the interface, chosen from the numbers given in ttyld(4).

prefix A string to be prefixed to the number. This is handy for shared ACUs in which the first digit
specifies a line. The prefix - is taken to be an empty prefix.

postfix A string to be postfixed to the number to be dialed. Some ACUs require an ‘end of number’
code; it should be specified here.

FILES
/etc/aculist

SEE ALSO
ttyld(4), cu(1), ipc(3)

579

DIRECTORY (3) Library Functions Manual DIRECTORY (3)

NAME
opendir, readdir, telldir, seekdir, closedir − directory operations

SYNOPSIS
#include <sys/types.h>
#include <ndir.h>

DIR ∗opendir(filename)
char ∗filename;

struct direct ∗readdir(dirp)
DIR ∗dirp;

long telldir(dirp)
DIR ∗dirp;

seekdir(dirp, loc)
DIR ∗dirp;
long loc;

closedir(dirp)
DIR ∗dirp;

DESCRIPTION
Opendir opens the directory named by filename and associates a ‘directory stream’ with it. Opendir re-
turns a pointer to be used to identify the directory stream in subsequent operations. The pointer value 0 is
returned if filename cannot be accessed or is not a directory.

Readdir returns a pointer to the next directory entry. It returns 0 upon reaching the end of the directory or
detecting an invalid seekdir operation.

Telldir returns the current location associated with the named directory stream.

Seekdir sets the position of the next readdir operation on the directory stream. The new position reverts
to the one associated with the directory stream when the telldir operation was performed. Values returned
by telldir are good only for the lifetime of the DIR pointer from which they are derived.

Closedir causes the named directory stream to be closed, and the structure associated with the DIR
pointer to be freed.

struct direct {
[CB]u_long d_ino;inode for the entry
[CB]short d_reclen; don’t use
[CB]short d_namlen;equivalent to [CB]strlen(d_name)
[CB]char d_name[MAXNAMLEN+1];null-terminated entry name

[CB]};

The preferred way to search the current directory is:
DIR ∗dirp;
dirp = opendir(".");
for(dp = readdir(dirp); dp != 0; dp = readdir(dir))

if(strcmp(dp->d_name, name) == 0)
break;

closedir(dirp);
/∗ found name if dp != 0 ∗/

SEE ALSO
dir(5), open(2), dirread(2), read(2), lseek(2), ftw(3)

BUGS
The return values point to static data whose content is overwritten by each call.

580

ECVT (3) Library Functions Manual ECVT (3)

NAME
ecvt, fcvt, gcvt - convert numbers to ascii

SYNOPSIS
char ∗ ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, ∗decpt, ∗sign;

char ∗ fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, ∗decpt, ∗sign;

char ∗ gcvt(value, ndigit, buf)
double value;
char ∗buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer thereto.
The position of the decimal point relative to the beginning of the string is stored indirectly through decpt
(negative means to the left of the returned digits). If the sign of the result is negative, the word pointed to
by sign is non-zero, otherwise it is zero. The low-order digit is rounded.

Fcvt is similar to ecvt and produces output for the Fortran format F∗.ndigit. If decpt≤-ndigit, then the re-
turned string is null. Otherwise, decpt+ndigit+1 characters (including terminating null) are returned.

Gcvt converts the value to a null-terminated ASCII string in buf and returns a pointer to buf. It attempts
to produce ndigit significant digits in Fortran F format if possible, otherwise E format, ready for printing.
Trailing zeros may be suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content is overwritten by each call.

581

END(3) Library Functions Manual END(3)

NAME
end, etext, edata − last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of etext is
the first address above the program text, edata above the initialized data region, and end above the unini-
tialized data region.

When execution begins, the program break coincides with end, but it is reset by the routines brk(2), mal-
loc(3), standard input/output (stdio(3)), the profile (-p) option of cc(1), etc. The current value of the pro-
gram break is reliably returned by sbrk(0); see brk(2).

SEE ALSO
brk(2), malloc(3), stdio(3), cc(1)

582

ERF(3M) ERF(3M)

NAME
erf, erfc − error function

SYNOPSIS
#include <math.h>

double erf(x)
double x;

double erfc(x)
double x;

DESCRIPTION

These functions calculate the error function erf(x) = 2π−1/2
x

0
∫ e−t2

dt (.).if t .ig = (2/sqrt(pi)) integral from

0 to x exp(tˆ2) dt (.)and the complementary error function erfc(x) = 1 - erf(x). The error criterion for
both erf and erfc is relative.

DIAGNOSTICS
There are no error returns.

583

EXIT (3) Library Functions Manual EXIT (3)

NAME
exit, atexit, onexit − terminate process

SYNOPSIS
void exit(status)
int status;

int atexit(fn)
int (∗fn)();

DESCRIPTION
Exit is the conventional way to terminate a process. Before calling _exit (see exit(2)) with status as an ar-
gument, it calls in reverse order all the functions recorded by atexit.

Exit can never return.

Atexit records fn as a function to be called by exit. It returns zero if it failed, nonzero otherwise. Typical
uses include cleanup routines for stdio(3) and profiling; see monitor(3).

Calling atexit twice (or more) with the same function argument causes exit to invoke the function twice
(or more).

The function fn should be declared as
int fn()

The function onexit is an obsolescent synonym for atexit. The constant NONEXIT defined in <libc.h>
determines how many functions can be recorded.

SEE ALSO
exit(2)

584

EXP(3M) EXP(3M)

NAME
exp, log, log10, pow, sqrt − exponential, logarithm, power, square root

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double log10(x)
double x;

double pow(x, y)
double x, y;

double sqrt(x)
double x;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x; log10 returns the base 10 logarithm.

Pow returns xy0.

Sqrt returns the square root of x.

SEE ALSO
hypot(3), sinh(3), intro(2)

DIAGNOSTICS
Exp and pow return a huge value when the correct value would overflow; errno is set to ERANGE. Pow
returns 0 and sets errno to EDOM when the second argument is negative and non-integral and when both
arguments are 0.

Log returns a huge negative value when x is zero or negative; errno is set to EDOM.

Sqrt returns 0 when x is negative; errno is set to EDOM.

585

FERROR(3S) FERROR(3S)

NAME
feof, ferror, clearerr, fileno − stream status inquiries

SYNOPSIS
#include <stdio.h>

int feof(stream)
FILE ∗ stream;

int ferror(stream)
FILE ∗ stream

int clearerr(stream)
FILE ∗ stream

int fileno(stream)
FILE ∗ stream;

DESCRIPTION
Feof returns non-zero if end of file has been encountered on the named input stream, otherwise zero. Af-
ter returning EOF, stdio(3) functions will not necessarily return EOF again; feof provides a lasting indi-
cation.

Ferror returns non-zero when an error has occurred reading or writing the named stream, otherwise zero.
Unless cleared by clearerr, the error indication lasts until the stream is closed.

Clearerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open(2).

These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
stdio(3)

586

FGETS(3S) FGETS(3S)

NAME
fgets, puts, fputs, gets − string input/out on streams

SYNOPSIS
#include <stdio.h>

char ∗ fgets(s, n, stream)
char ∗s;
FILE ∗stream;

int puts(s)
char ∗s;

int fputs(s, stream)
char ∗s;
FILE ∗stream;

DESCRIPTION
Fgets reads n-1 characters, or up to a newline character, whichever comes first, from the stream into the
string s. The last character read into s is followed by a null character. Fgets returns its first argument.

Puts copies the null-terminated string s to the standard output stream stdout and appends a newline char-
acter.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminal null character. Both return the result of calling putc with the last char-
acter written; see getc(3).

SEE ALSO
getc(3) stdio(3)

DIAGNOSTICS
Fgets returns a null pointer upon end of file or error. Puts and fputs return the constant on write error.

BUGS
For safety reasons the ANSI standard function char ∗gets(s), which reads from standard input up to a new-
line and discards the newline, is not supported.
Puts appends a newline, fputs does not, all in the name of backward compatibility.

587

FILEBUF(3I+) FILEBUF(3I+)

NAME
filebuf - buffer for file input/output

SYNOPSIS
#include <iostream.h>
typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app } ;
// and lots of other stuff ...
} ;

#include <fstream.h>
class filebuf : streambuf {
public:

filebuf() ;
filebuf(int d);
filebuf(int d, char∗ p, int len) ;

filebuf∗ attach(int d) ;
int close();
int fd();
int is_open();
filebuf∗ open(char ∗ name, open_mode om, int prot=0664) ;
streampos seekoff(streamoff o, seek_dir d, open_mode m) ;
streampos seekpos(strempos p, open_mode m) ;
streambuf∗ setbuf(char∗ p, int len) ;
int sync() ;

};

DESCRIPTION
filebufs specialize streambufs to use a file as source or sink of characters. Characters are con-
sumed by doing writes to the file, and are produced by doing reads. When the file is seekable, a file-
buf allows seeks. At least 4 characters of putback are guaranteed. When the file permits reading and
writing the buffer permits both storing and fetching. No special action is required between gets and puts.
A filebufs that is connected to a file descriptor is said to be open.

Assume:
— f is a filebuf.
— pfb is a filebuf∗.
— psb is a streambuf∗.
— i, d, len, and prot are int
— name and ptr are char∗.
— m is open_mode.
— off is streamoff.
— p and pos are streampos.
— dir is seek_dir.

Constructors:

filebuf()
Constructs an initially closed filebuf.

filebuf(d)
Constructs a filebuf connected to d.

filebuf(d,p,len)
Constructs a filebuf connected to d and initialized to use the reserve area starting at p and
containing len bytes. If p is null or len is zero or less, the filebuf will be unbuffered.

Members:

C++ Stream Library 588

FILEBUF(3I+) FILEBUF(3I+)

pfb=f.attach(d)
Connects f to an open file descriptor, d. pfb is normally &f but is 0 if f is already open.

i=f.close()
Flushes any waiting output, closes the file descriptor, and disconnects f. Unless an error occurs,
f’s error state will be cleared. i is 0 unless errors occur in which case it is EOF . Even if errors
occur attach leaves the file descriptor and f closed.

i=f.fd()
Returns i, the file descriptor f is connected to. If f is closed i is EOF.

i=f.is_open()
Returns non-zero when f is connected to a file descriptor, and zero otherwise.

pfb=f.open(name,m,prot)
Opens a file with the specified pathname, mode, and protection, and connects f to it.
open_modes may be or’ed together to form m. in and out translate to corresponding UNIX
modes. ate and app both cause the file to be positioned at its end during the open. app im-
plies output. In addition, app causes all subsequent writes to occur at the end of a file. (In
some systems this is supported directly by the kernel, in other instances the desired effect is ap-
proximated by seeking to the end of the file before each write.) out may be specified even if
prot does not permit output. Normally pfb is &f but if an error occurs it is 0.

p=f.seekoff(off,dir,m)
Moves the get/put pointer as designated by off and dir. It fails if the file that f is attached to does
not support seeking, or if the attempted motion is otherwise invalid (such as attempting to seek to
a position before the beginning of file). off is interpreted as a count relative to the place in the
file specified by dir as described in sbuf.pub(3C++). m is ignored. p is the position after move-
ment, or EOF if a failure occurs. The position of the file after a failure is undefined.

p=f.seekpos(pos,m)
Moves the file to a position pos as described in sbuf.pub(3C++). m is ignored. Normally p is
pos, but on failure it is EOF.

psb=f.setbuf(ptr,len)
Sets up the reserve area as len bytes beginning at p. If ptr is null or len is less than or equal to 0,
the f will be unbuffered. Normally psb is &f, but it is 0 if f is open, and in the latter case no
changes are made to the reserve area or buffering status.

i=f.sync()
Attempts to force the state of get/put pointers of f to agree (be synchronized) with the state of the
file f.fd(). This means it may write characters to the file if some have been buffered for output or
attempt to reposition (seek) the file if characters have been read and buffered for input. Normally
i is 0, but it is EOF if synchronization is not possible. Sometimes it is neccessary to guarantee
that certain characters are written together. To do this, the program should use setbuf (or a con-
structor) to guarantee that the reserve area is at least as large as the number of characters that
must be written together. It can then do a sync, followed by storing the characters, followed by
another sync.

CAVEATS
attach and the constructors should test if the file descriptor they are given is open, but I can’t figure out a
portable way to do that.

There is no way to force atomic reads.

Unix does usually report failures of seek (e.g. on a tty) and so a filebuf does not either.

SEE ALSO
sbuf.pub(3C++) sbuf.prot(3C++) fstream(3C++)

C++ Stream Library 589

FIO(3) Library Functions Manual FIO(3)

NAME
Finit, Frdline, Fgetc, Fread, Fseek, Fundo, Fputc, Fprint, Fwrite, Fflush, Ftie, Fclose, Fexit − fast buffered
input/output

SYNOPSIS
#include <fio.h>

void Finit(fd, buf)
char ∗buf;

int Fclose(fd);

int Fprint(fildes, format [, arg ...])
int fildes;
char ∗format;

char ∗Frdline(fd)

int FIOLINELEN(fd)

long FIOSEEK(fd)

int Fgetc(fd)

void Fundo(fd)

long Fseek(fd, offset, ptr)
long offset;

int Fputc(fd, c)

long Fread(fd, addr, nbytes)
char ∗addr;
long nbytes;

long Fwrite(fd, addr, nbytes)
char ∗addr;
long nbytes;

int Fflush(fd)

void Ftie(ifd, ofd)

Fexit(type)

DESCRIPTION
These routines provide buffered I/O, faster than, and incompatible with stdio(3). The routines can be
called in any order. I/O on different file descriptors is independent.

Finit initializes a buffer (whose type is Fbuffer) associated with the file descriptor fd . Any buffered input
associated with fd will be lost. The buffer can be supplied by the user (it should be at least
sizeof(Fbuffer) bytes) or if buf is (char ∗)0, Finit will use malloc(3). Finit must be called after a stretch
of non-fio activity, such as close or lseek(2), between fio calls on the same file descriptor number; it is un-
necessary, but harmless, before the first fio activity on a given file descriptor number.

Fclose flushes the buffer for fd , frees the buffer if it was allocated by Finit, and then closes fd .

Frdline reads a line from the file associated with the file descriptor fd . The newline at the end of the line
is replaced by a 0 byte. Frdline returns a pointer to the start of the line or (char on end of file or read
error. The macro FIOLINELEN returns the length (not including the 0 byte) of the most recent line
returned by Frdline. The value is undefined after a call to any other fio routine.

Fgetc returns the next character from the file descriptor fd , or a negative value at end of file.

Fread reads nbytes of data from the file descriptor fd into memory starting at addr. The number of bytes
read is returned on success and a negative value is returned if a read error occurred.

Fseek applies lseek(2) to fd taking buffering into account. It returns the new file offset. The macro
FIOSEEK returns the file offset of the next character to be processed.

Fundo makes the characters returned by the last call to Frdline or Fgetc available for reading again.

590

FIO(3) Library Functions Manual FIO(3)

There is only one level of undo.

Fputc outputs the low order 8 bits of c on the file associated with file descriptor fd . If this causes a write
(see read(2)) to occur and there is an error, a negative value is returned. Otherwise, zero is returned.

Fprint is a buffered interface to print(3). If this causes a write to occur and there is an error, a negative
value is returned. Otherwise, the number of chars output is returned.

Fwrite outputs nbytes bytes of data starting at addr to the file associated with file descriptor fd . If this
causes a write to occur and there is an error, a negative value is returned. Otherwise, the number of bytes
written is returned.

Fflush causes any buffered output associated with fd to be written; it must precede a call of close on fd.
The return is as for Fputc.

Ftie links together two file descriptors such that any fio-initiated read(2) on ifd causes a Fflush of ofd (if
it has been initialized). It is appropriate for most programs used as filters to do Ftie(0,1). The tie may be
broken by Ftie(ifd, -1).

Fexit is used to clean up all fio buffers. If type is zero, the buffers are Fflushed, otherwise they are
Fclosed. Fexit(0) is automatically called at exit(3).

SEE ALSO
open(2), print(3), stdio(3)

DIAGNOSTICS
Fio routines that return integers yield -1 if fd is not the descriptor of an open file or if the operation is
inapplicable to fd.

BUGS
Frdline deletes characters from lines longer than 4095 characters, ignores characters after the last newline
in a file, and will read past and end-of-file indication on a stream.
The data returned by Frdline may be overwritten by calls to any other fio routine.
Fgetc is much slower than access through a pointer returned by Frdline.
There is no scanf(3) analogue.

591

FLOOR(3M) FLOOR(3M)

NAME
fabs, fmod, floor, ceil − absolute value, remainder, floor, ceiling functions

SYNOPSIS
#include <math.h>

double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double x;

double fmod(x,y)
double x, y;

DESCRIPTION
Fabs returns the absolute value | x |.

Floor returns the largest integer not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns x if y is zero, otherwise the number f with the same sign as x, such that x = iy + f for
some integer i, and | f | < | y |.

SEE ALSO
arith(3), frexp(3)

592

FOPEN (3S) FOPEN (3S)

NAME
fopen, freopen, fdopen, fclose, fflush − open, close, or flush a stream

SYNOPSIS
#include <stdio.h>

FILE ∗ fopen(filename, type)
char ∗filename, ∗type;

FILE ∗ freopen(filename, type, stream)
char ∗filename, ∗type;
FILE ∗stream;

FILE ∗ fdopen(fildes, type)
char ∗type;

int fclose(stream)
FILE ∗stream;

int fflush(stream)
FILE ∗stream;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer to be
used to identify the stream in subsequent operations.

Type is a character string having one of the following values:
[CB]"r" open for reading
[CB]"w" create for writing
[CB]"r+w"
[CB]"w+r"open for reading and writing
[CB]"a" append: open for writing at end of file, or create for writing

Freopen substitutes the named file in place of the open stream. It returns the original value of stream.
The original stream is closed. Freopen is typically used to attach the preopened constant names stdin,
stdout and stderr to specified files.

Fdopen associates a stream with a file descriptor. The type of the stream must agree with the mode of the
open file.

Fclose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers allocated
by the standard input/output system are freed.

Fclose is performed automatically upon calling exit(3).

Fflush causes any buffered data for the named output stream to be written to that file. The stream remains
open.

SEE ALSO
open(2), popen(3), stdio(3), ferror(3)

DIAGNOSTICS
Fopen and freopen return NULL if filename cannot be accessed.

Fclose and fflush return EOF if stream is not associated with a file, or if buffered data cannot be trans-
ferred to that file.

593

FREAD(3S) FREAD(3S)

NAME
fread, fwrite − buffered binary input/output

SYNOPSIS
#include <stdio.h>

int fread(ptr, sizeof(∗ ptr), nitems, stream)
FILE ∗ stream;

int fwrite(ptr, sizeof(∗ ptr), nitems, stream)
FILE ∗ stream;

DESCRIPTION
Fread reads from the named input stream at most nitems of data of the type of ∗ptr into a block beginning
at ptr. It returns the number of items actually read.

Fwrite appends to the named output stream at most nitems of data of the type of ∗ptr from a block begin-
ning at ptr. It returns the number of items actually written.

SEE ALSO
read(2), stdio(3)

DIAGNOSTICS
Fread and fwrite return a short count upon end of file or error.

BUGS
Write errors from fwrite may be delayed until a subsequent stdio(3) writing, seeking, or file-closing call.
These routines are much slower than you might imagine.

594

FREXP(3) Library Functions Manual FREXP(3)

NAME
frexp, ldexp, modf − split into mantissa and exponent

SYNOPSIS
#include <math.h>

double frexp(value, eptr)
double value;
int ∗eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, ∗iptr;

DESCRIPTION
Frexp returns the mantissa of value and stores the exponent indirectly through eptr. If 1/2≤|X|<1, then x =
frexp(x×2∗eptr, eptr).

Ldexp returns the quantity value×2exp.

Modf returns the positive fractional part of value and stores the integer part indirectly through iptr.

DIAGNOSTICS
On underflow ldexp returns 0; on overflow it returns a properly signed largest value. In both cases it sets
errno to ERANGE.

595

FSEEK (3S) FSEEK (3S)

NAME
fseek, ftell, rewind − reposition a stream

SYNOPSIS
#include <stdio.h>

int fseek(stream, offset, ptrname)
FILE ∗stream;
long offset;

long ftell(stream)
FILE ∗stream;

int rewind(stream)

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new position is at the
signed distance offset bytes from the beginning, the current position, or the end of the file, as ptrname has
the value 0, 1 or 2 respectively.

Ftell returns the current value of the file pointer for the file associated with the named stream.

Rewind(stream) is equivalent to fseek(stream, 0L, 0).

SEE ALSO
lseek(2), stdio(3)

DIAGNOSTICS
Fseek returns -1 for improper seeks. Ftell returns -1 if seeking is impossible.

BUGS
The interaction of fseek and ungetc(3) is undefined.

596

FSTREAM(3I+) FSTREAM(3I+)

NAME
fstream - iostream and streambuf specialized to files

SYNOPSIS
#include <fstream.h>
typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app } ;
// and lots of other stuff ...
} ;

class ofstream : ostream {
ofstream() ;
ofstream(char∗ name, open_mode mode, int prot=0664) ;
ofstream(int fd);
ofstream(int fd, char∗ p, int l) ;

void attach(int fd);
void close();
void open(char∗ name, open_mode, int=0664) ;
filebuf∗ rdbuf();

};
class ifstream : istream { same as ofstream };
class fstream : iostream { same as ofstream };

DESCRIPTION
ifstreams, ofstream and fstream specialize istream, ostream and iostream (respectively)
to files. That is, the associated streambuf will be a filebuf.

Assume
— f any of ifstream, ofstream or fstream.
— pfb is a filebuf∗.
— psb is a streambuf∗.
— name and ptr are char∗.
— i, fd, len and prot are int.
— mode is an open_mode.

The constructors for xstream, where x is either if, of or f, are:

xstream()
Constructs an unopened xstream.

xstream()(name,mode,prot)
Constructs an xstream and tries to opens it using name, mode, and prot. The status of the
constructed xstream will indicate failure in case the open fails.

xstream()
Constructs an xstream connected to file descriptor d, which must be previously opened.

xstream(d,ptr,len)
Constructs an xstream connected to file descriptor fd and in addition initializes the associated
filebuf to use the len bytes at ptr as the reserve area. If ptr is null or len is 0, the filebuf
will be unbuffered.

Member functions:

f.attach(d)
Connects f to the file descriptor d. A failure occurs when f is already connected to a file. A fail-
ure sets failbit in f’s error state.

f.close()
Closes any associated filebuf and thereby breaks the connection of the f to a file. \fBf’s error
state is cleared except on failure. A failure occurs when the call to f.rdbuf()->close fails.

C++ Stream Library 597

FSTREAM(3I+) FSTREAM(3I+)

f.open(name,mode,prot)
Opens file name and connects f to it. If the file is created, it is created with protection mode
prot. open normally returns 0, but it returns EOF on failure. Failure occurs if f is already open,
or the call to f.rdbuf()->open fails. failbit is set in f’s error status on failure. The members
of open_mode are bits that may be or’ed together. The meaning of these bits in mode is

app A seek to the end of file is performed. Subsequent data written to the file is always
added (appended) at the end of file. On some systems this is implemented in the kernel.
In others it is implemented by seeking to the end of the file before each write. app im-
plies output.

ate A seek to the end of the file is performed during the open. ate does not imply out-
put.

in Implied by construction and opens of ifstreams. For fstreams it indicates that in-
put operations should be allowed possible. Is is legal to include in in the modes of an
ostream in which case it implies that the original file (if it exists) should not be trun-
cated.

out Implied by construction and opens of ofstreams. For fstream it says that output
operations are to be allowed.

pfb=f.rdbuf()
Returns a pointer to the associated filebuf. fstream::rdbuf has the same meaning as
iostream::rdbuf but is typed differently.

psb=f.setbuf(p,len)
Has the usual effect of a setbuf, offering space for a reserve area or requesting unbuffered I/O.
Normally the returned psb is f.rdbuf(), but it is 0 on failure. A failure occurs if f is open or the
call to f.rdbuf()->setbuf fails.

SEE ALSO
filebuf(3C++) istream(3C++) ios(3C++) ostream(3C++) sbuf.pub(3C++)

C++ Stream Library 598

FTW (3) Library Functions Manual FTW (3)

NAME
ftw - file tree walk

SYNOPSIS
#include <ftw.h>

int ftw(path, fn, depth)
char ∗path;
int (∗fn)();
int depth;

#include <sys/types.h>
#include <sys/stat.h>

fn(name, statb, code, S)
char ∗name;
struct stat ∗statb;
struct FTW ∗S;

DESCRIPTION
Ftw recursively descends the directory hierarchy rooted in path. For each entry in the hierarchy, ftw calls
fn, passing it information about the entry: a pointer to a null-terminated pathname string, a pointer to a
stat structure (see stat(2)), and a pointer to the following structure.

struct FTW {
int quit; see below
int base; &name[base] points to basename
int level; recursion level (initially 0)

};

Possible values of code, defined in are
FTW_D

Entry is a directory (before visiting descendants).
FTW_DP

Entry is a directory (after visiting descendants).
FTW_SL

Entry is a symbolic link.
FTW_F

Entry is some other kind of file.
FTW_DNR

Entry is a directory that cannot be read; no descendants will be visited.
FTW_NS

Lstat (see stat(2)) failed on name; contents of statb are undefined
FTW_NSL

Lstat succeeded, but stat failed; contents of statb are undefined.

The tree traversal continues until the tree is exhausted or fn returns a nonzero value. When the tree is ex-
hausted, ftw returns zero. When fn returns a nonzero value, ftw stops and returns that value.

Normally symbolic links are not followed. But if on a symbolic link (FTW_SL) fn sets S->quit to
FTW_FOLLOW, ftw will next attempt to follow the link.

Ftw normally visits a readable directory twice, before and after visiting its descendants. But if on a pre-
visit (FTW_D) fn sets S->quit to FTW_SKD, ftw will skip the descendants and the postvisit
(FTW_DP).

Ftw uses one file descriptor for each level in the tree up to a maximum of depth (or 1, if depth<1) descrip-
tors. Depth must not exceed the number of available file descriptors; small values of depth may cause ftw
to run slowly, but will not change its effect.

SEE ALSO
stat(2), directory(3)

599

FTW (3) Library Functions Manual FTW (3)

DIAGNOSTICS
Ftw returns -1 with errno set to ENOMEM when malloc(3) fails.

Errno is set appropriately when ftw calls fn with code FTW_DNR, FTW_NS, or FTW_NSL.

600

GALLOC(3) Library Functions Manual GALLOC(3)

NAME
galloc, gfree, garbage − storage allocation with garbage collection

SYNOPSIS
char ∗galloc(n)
unsigned n;

void gfree(p)
char ∗p;

void garbage()

DESCRIPTION
These functions perform heap storage allocation with garbage collection.

Galloc allocates a block of at least n bytes and returns a pointer to it. Gfree frees a block previously allo-
cated by galloc.

When space gets tight, garbage blocks are freed automatically. A block allocated by galloc is deemed to
be garbage unless it is reachable. A reachable block is one whose first byte is pointed to by a declared C
variable or by a pointer in a reachable block.

The frequency of garbage collection is controlled by external variables declared

long gcmax = 5000, gcmin = 50;

No more than gcmax allocations may intervene between automatic collections; this feature will help con-
tain the growth of virtual address space. At least gcmin allocations must intervene, otherwise garbage col-
lection will be abandoned as fruitless. Garbage may be called to do garbage collection at an arbitrary
time.

Malloc(3) and galloc allocate from the same arena, but garbage collection affects only galloc blocks.
Free (see malloc(3)) must not be used on blocks allocated with galloc.

SEE ALSO
malloc(3)

DIAGNOSTICS
Galloc returns 0 when space cannot be found.

BUGS
Garbage collection is conservative; blocks that appear to be pointed to from within declared storage will
not be freed, regardless of whether the apparent ‘pointers’ were declared as such.

601

GAMMA(3M) GAMMA(3M)

NAME
gamma − log gamma function

SYNOPSIS
#include <math.h>

double gamma(x)
double x;

extern int signgam;

DESCRIPTION
Gamma returns ln |Γ(x)|. The sign of Γ(x) is returned in the external integer signgam.

EXAMPLES
Computation of the gamma function:

errno = 0;
y = gamma(x);
if(errno || (y > 88.0))

error();
y = signgam∗exp(y);

DIAGNOSTICS
A large value is returned for negative integer arguments and errno is set to EDOM.

BUGS
There should be a positive indication of error.
The name should indicate the answer is a logarithm, perhaps lgamma.

602

GETARG(3F) GETARG(3F)

NAME
getarg, iargc − command arguments to Fortran

SYNOPSIS
subroutine getarg(argno, string)
integer argno
character ∗(∗) string

iargc()

DESCRIPTION
These procedures permit Fortran programs to access the command arguments. The integer function iargc
returns the number of command arguments. The subroutine getarg stores the argnoth command argument
in its second argument. The string is truncated or padded with blanks, in accord with the rules of Fortran
character assignment.

EXAMPLES
a.out arg1 arg2 In a program invoked this way iargc will return 2.

character∗ 4 s
call getarg(2, s) Place arg2 in s.

SEE ALSO
exec(2)

603

GETC(3S) GETC(3S)

NAME
getc, getchar, fgetc, getw, putc, putchar, fputc, putw − character- or word-at-a-time stream input/output

SYNOPSIS
#include <stdio.h>

int getc(stream)
FILE ∗stream;

int getchar()

int getw(stream)
FILE ∗stream;

int fgetc(stream)
FILE ∗stream;

int putc(c, stream)
char c;
FILE ∗stream;

putchar(c)

putw(w, stream)
FILE ∗stream;

fputc(c, stream)
FILE ∗stream;

DESCRIPTION
Getc returns the next character from the named input stream.

Getchar() is identical to getc(stdin)

Getw returns the next word (32-bit integer on a VAX) from the named input stream. Getw assumes no
special alignment in the file.

Putc appends the character c to the named output stream. It returns the character written.

Putchar(c) is identical to putc(c, stdout)

Putw appends word (i.e. int) w to the output stream. It returns the word written. Putw neither assumes
nor causes special alignment in the file.

Fgetc and fputc behave like getc and putc, but are genuine functions, not macros; they may be used to
save object text.

The standard output stream stdout is normally buffered, but is flushed whenever getc causes a buffer to be
refilled from stdin. The standard error stream stderr is normally unbuffered. These defaults may be
changed by setbuf(3). When an output stream is unbuffered, information appears on the destination file or
terminal as soon as written. When an output stream is buffered, many characters are saved up and written
as a block. Fflush may be used to force the block out early; see fopen(3).

SEE ALSO
fopen(3), ungetc(3), stdio(3)

DIAGNOSTICS
These functions return the integer constant EOF at end of file or error. For getw or putw this indication is
ambiguous; ferror(3) may be used to distinguish.

BUGS
Because they are implemented as macros, getc and putc treat stream arguments with side effects incor-
rectly. For example, getc(∗f++) is wrong.
The routines in printf(3) provide temporary buffering even when buffering has been turned off.
Write errors may be delayed until a subsequent stdio (3) writing, seeking, or file-closing call.

604

GETDATE(3) Library Functions Manual GETDATE(3)

NAME
getdate - convert time and date from ASCII

SYNOPSIS
#include <sys/types.h>
#include <sys/timeb.h>

time_t getdate(buf, now)
char ∗buf;
struct timeb ∗now;

DESCRIPTION
Getdate converts common time specifications to standard UNIX format. Buf is a character string contain-
ing the time and date. Now is the assumed current time (used for relative specifications); if the pointer is
null (0) ftime (see time(2)) is used to obtain the current time and timezone.

The character string consists of 0 or more specifications of the following form:

tod A tod is a time of day, in the form hh:mm[:ss] (or hhmm) [meridian] [zone]. If no meridian -
am or pm - is specified, a 24-hour clock is used. A tod may be specified as just hh followed by
a meridian.

date A date is a specific month and day, and possibly a year. Acceptable formats are mm/dd[/yy] and
monthname dd[, yy] If omitted, the year defaults to the current year; if a year is specified as a
number less than 100, 1900 is added. If a number not followed by a day or relative time unit oc-
curs, it will be interpreted as a year if a tod , monthname, and dd have already been specified;
otherwise, it will be treated as a tod . This rule allows the output from date(1) or ctime(3) to be
passed as input to getdate.

day A day of the week may be specified; the current day will be used if appropriate. A day may
be preceeded by a number, indicating which instance of that day is desired; the default is 1.
Negative numbers indicate times past. Some symbolic numbers are accepted: last, next, and
the ordinals first through twelfth (second is ambiguous, and is not accepted as an ordinal
number). The symbolic number next is equivalent to 2; thus, next monday refers not to the
immediately coming Monday, but to the one a week later.

relative time
Specifications relative to the current time are also accepted. The format is [number] unit;
acceptable units are year, month, fortnight, week, day, hour, minute, and second.

The actual date is formed as follows: first, any absolute date and/or time is processed and converted. Us-
ing that time as the base, day-of-week specifications are added; last, relative specifications are used. If a
date or day is specified, and no absolute or relative time is given, midnight is used. Finally, a correction is
applied so that the correct hour of the day is produced after allowing for daylight savings time differences.

Getdate accepts most common abbreviations for days, months, etc.; in particular, it will recognize them
with upper or lower case first letter, and will recognize three-letter abbreviations for any of them, with or
without a trailing period. Units, such as weeks, may be specified in the singular or plural. Timezone and
meridian values may be in upper or lower case, and with or without periods.

FILES
/usr/lib/libu.a

SEE ALSO
ctime(3), time(2)

AUTHOR
Steven M. Bellovin (unc!smb)
Dept. of Computer Science
University of North Carolina at Chapel Hill

BUGS
Because yacc(1) is used to parse the date, getdate cannot be used a subroutine to any program that also
needs yacc.
The grammar and scanner are rather primitive; certain desirable and unambiguous constructions are not

unc 605

GETDATE(3) Library Functions Manual GETDATE(3)

accepted. Worse yet, the meaning of some legal phrases is not what is expected; next week is identical to
2 weeks.
The daylight savings time correction is not perfect, and can get confused if handed times between mid-
night and 2:00 am on the days that the reckoning changes.
Because localtime(2) accepts an old-style time format without zone information, attempting to pass get-
date a current time containing a different zone will probably fail.

unc 606

GETENV (3) Library Functions Manual GETENV (3)

NAME
getenv − value for environment name

SYNOPSIS
char ∗getenv(name)
char ∗name;

DESCRIPTION
Getenv searches the environment list (see environ(5)) for a string starting with name[CB]=. If no such a
string is found, 0 is returned. Otherwise, the address of the character following the = is returned.

SEE ALSO
printenv(1), environ(5), exec(2)

BUGS
Getenv ignores shell functions; see sh(1).

607

GETFIELDS(3) Library Functions Manual GETFIELDS(3)

NAME
getfields, getmfields, setfields − break a string into fields

SYNOPSIS
int getfields(str, ptrs, nptrs)
char ∗str, ∗∗ptrs;

int getmfields(str, ptrs, nptrs)
char ∗str, ∗∗ptrs;

char ∗setfields(fielddelim)
char ∗fielddelim;

DESCRIPTION
Getfields breaks the null-terminated string str into at most nptrs null-terminated fields and places pointers
to the start of these fields in the array ptrs. It returns the number of fields and terminates the list of point-
ers with a zero pointer. It overwrites some of the bytes in str. If there are nptr or more fields, the list will
not end with zero and the last ‘field’ will extend to the end of the input string and may contain delimiters.

A field is defined as a maximal sequence of characters not in a set of field delimiters. Adjacent fields are
separated by exactly one delimiter. No field follows a delimiter at the end of string. Thus a string of just
two delimiter characters contains two empty fields, and a nonempty string with no delimiters contains one
field.

Getmfields is the same as getfields except that fields are separated by maximal strings of field delimiters
rather than just one.

Setfields makes the field delimiters (space and tab by default) be the characters of the string fielddelim and
returns a pointer to a string of the previous delimiters.

EXAMPLES
Print the words in a string, where words are non-whitespace strings. There is no bound on the number of
words.
printwords(string)
char ∗string;
{

char ∗ptrs[2];
int n;
setfields(" \t\n");
for(n=2; n>=2; string=ptrs[1]) {

n = getmfields(string, ptrs, 2);
if(n == 0)

break;
if(ptrs[0][0] != 0) /∗ skip initial blanks ∗/

printf("%s\n", ptrs[0]);
}

}

SEE ALSO
string(3)

608

GETFLAGS(3) Library Functions Manual GETFLAGS(3)

NAME
getflags − process flag arguments in argv

SYNOPSIS
#include </usr/include/getflags.h>

int getflags(argc, argv, flags)
char ∗∗argv, ∗flags;

usage(tail)
char ∗tail;

extern char ∗∗ flag[], cmdline[], ∗cmdname, ∗flagset[];

DESCRIPTION
Getflags digests an argument vector argv, finding flag arguments listed in flags. Flags is a string of flag
letters. A letter followed by a colon and a number is expected to have the given number of parameters. A
flag argument starts with ‘-’ and is followed by any number of flag letters. A flag with one or more para-
meters must be the last flag in an argument. If any characters follow it, they are the flag’s first parameter.
Otherwise the following argument is the first parameter. Subsequent parameters are taken from subse-
quent arguments.

The global array flag is set to point to an array of parameters for each flag found. Thus, if flag -x was
seen, flag[’x’] is non-zero, and flag[’x’][i] is the flag’s ith parameter. If flag -x has no parameters
flag[’x’]==flagset. Flags not found are marked with a zero. Flags and their parameters are deleted from
argv. Getflags returns the adjusted argument count.

Getflags stops scanning for flags upon encountering a non-flag argument, or the argument --, which is
deleted.

Getflags places a pointer to argv[0] in the external variable cmdname. It also concatenates the original
members of argv, separated by spaces, and places the result in the external array cmdline.

Usage constructs a usage message, prints it on the standard error file, and exits with status 1. The com-
mand name printed is argv[0]. Appropriate flag usage syntax is generated from flags. As an aid, ex-
planatory information about flag parameters may be included in flags in square brackets as in the exam-
ple. Tail is printed at the end of the message. If getflags encountered an error, usage tries to indicate the
cause.

EXAMPLES
main(argc, argv)
char ∗argv[];
{

if((argc=getflags(argc, argv, "vinclbhse:1[expr]", 1))==-1)
usage("[file ...]");

}
might print:

Illegal flag -u
Usage: grep [-vinclbhs] [-e expr] [file ...]

SEE ALSO
getopt(3)

DIAGNOSTICS
Getflags returns -1 on error: a syntax error in flags, setting a flag more than once, setting a flag not men-
tioned in flags, or running out of argv while collecting a flag’s parameters.

609

GETFLDS(3S) GETFLDS(3S)

NAME
getflds − read a line from a file and break it into fields

SYNOPSIS
#include <stdio.h>

char ∗∗getflds(stream)
FILE ∗stream;

DESCRIPTION
Getflds reads a line from the stream given as argument, breaks it into fields, and returns a pointer to a
null-terminated array of character pointers, each of which points to a null-terminated string representing
one field. These strings, and the array that points to them, persist until the next call to getflds. On end of
file, a null pointer is returned.

If the first character of a line is a #, that line is considered to be a comment and ignored.

Fields are separated by white space (spaces or tabs). Leading and trailing white space on a line is ignored.
White space may appear inside a field in one of three ways: each space or tab may be preceded by a back-
slash, the white space may be enclosed in single or double quotes, or characters may described in octal, as
detailed below.

A field, or any parts of a field, may be enclosed in single or double quotes. Within quotes, white space
and quotes of the other sort are treated as ordinary characters, but a closing quote is silently inserted
before a newline.

Inside or outside quotes, a backslash and the character(s) after it are changed as follows:
[CB]\b backspace
[CB]\f form feed
[CB]\n newline
[CB]\r return
[CB]\t horizontal tab
[CB]\v vertical tab
[CB]\\ \
[CB]\´ ´
[CB]\" "
[CB]\# #
[CB]\space space
[CB]\tab tab
[CB]\newlinecompletely ignored; this allows a logical line to span any number of physical lines.
[CB]\digits the one, two, or three octal digits are the value of the character to be used.

If any other character follows the \, both characters lose their special interpretation.

DIAGNOSTICS
If getflds detects an error, it returns 0, just as it does at end of file. However, the error will have changed
errno (see intro(2)). To distinguish between error and end of file set errno to zero before calling getflds
and test it afterwards.

BUGS
Getflds provides no way to distinguish a null character within a field from the end of the field.

610

GETFSENT (3) Library Functions Manual GETFSENT (3)

NAME
getfsent, getfsspec, getfsfile, setfsent, endfsent − get file system description file entry

SYNOPSIS
#include <fstab.h>

struct fstab ∗getfsent()

struct fstab ∗getfsspec(name)
char ∗name;

struct fstab ∗getfsfile(name)
char ∗name;

int setfsent()

int endfsent()

DESCRIPTION
Getfsent, getfsspec and getfsfile each return a pointer to a structure containing the broken-out fields of a
line in fstab(5), which describes mountable file systems.

struct fstab {
char fs_spec[FSNMLG]; block device name
char fs_file[FSNMLG]; file system mount point
int fs_ftype; file system type
int fs_flags; file system flags
int fs_passno; pass number for parallel fsck(8)

};

Type numbers and flags are listed in fmount(2). Entries that aren’t file systems (should not be mounted)
have negative values for fs_ftype:

FSNONE (-1) Ignore this entry.
FSSWAP (-2) fs_spec is a device available for swapping.

Getfsent reads the next line of the file, opening the file if necessary.

Setfsent opens and rewinds the file.

Endfsent closes the file.

Getfsspec and getfsfile sequentially search from the beginning of the file until a matching special file
name or file system file name is found, or until EOF is encountered.

FILES
/etc/fstab

SEE ALSO
fmount(2), fstab(5)

DIAGNOSTICS
Zero is returned on EOF or error.

BUGS
The return values point to static data whose content is overwritten by each call.

611

GETGRENT (3) Library Functions Manual GETGRENT (3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent − get group file entry

SYNOPSIS
#include <grp.h>

struct group ∗getgrent();

struct group ∗getgrgid(gid)

struct group ∗getgrnam(name)
char ∗name;

int setgrent();

int endgrent();

DESCRIPTION
Getgrent, getgrgid and getgrnam each return pointers to a structure containing the broken-out fields of a
line in
struct group {

[CB]char ∗gr_name;the group name
[CB]char ∗gr_passwd;the encrypted group passwd
[CB]int gr_gid;the numeric groupid
[CB]char ∗∗gr_mem;null-terminated vector of pointers to the individual member names

[CB]};

Getgrent simply reads the next line while getgrgid and getgrnam search until a matching gid or name is
found (or until EOF is encountered). Each routine picks up where the others leave off so successive calls
may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent may be
called to close the group file when processing is complete.

FILES
/etc/group

SEE ALSO
getlogin(3), getpwent(3), passwd(5)

DIAGNOSTICS
Zero is returned on EOF or error.

BUGS
The return values point to static data whose content is overwritten by each call.

612

GETLOGIN (3) Library Functions Manual GETLOGIN (3)

NAME
getlogin − get login name

SYNOPSIS
char ∗getlogin()

DESCRIPTION
Getlogin returns a pointer to the login name as set by setlogname; see getuid(2).

It is preferable, but less portable, to call getlogname; see getuid(2).

FILES
/etc/utmp

SEE ALSO
getpwent(3), getgrent(3), utmp(5), getuid(2)

DIAGNOSTICS
Zero is returned if the name could not be found.

BUGS
The return values point to static data whose content is overwritten by each call.

613

GETOPT (3) Library Functions Manual GETOPT (3)

NAME
getopt − get option letter from argv

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char ∗∗argv;
char ∗optstring;

extern char ∗optarg;
extern int optind;
extern int opterr;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in optstring. Optstring is a string of rec-
ognized option letters; if a letter is followed by a colon, the option is expected to have an argument, which
may or may not be separated from it by white space. Optarg is set to point to the start of the option argu-
ment, if any.

Optind, initially 1, holds the index in argv of the next argument to be processed. When opterr is nonzero
(the default state), errors cause diagnostic messages.

Option letters appear in nonempty clusters preceded by -. The special option -- may be used to mark the
end of the options.

EXAMPLES
This fragment processes arguments for a command that can take option a and option f, which requires an
argument.

main (argc, argv) char ∗∗argv;
{

int c, errflg = 0;
extern int optind;
extern char ∗optarg, ∗ifile;
while((c = getopt(argc, argv, "af:")) != -1)

switch (c){
case ’a’: aflg=1; break;
case ’f’: ifile = optarg; break;
case ’?’: errflg=1; break;
}

if(errflg){
fprintf(stderr, "usage: . . . ");
exit(2);

}
for(; optind < argc; optind++){

if(access(argv[optind], 4)){
...
}

}
...

}

SEE ALSO
getflags(3)

DIAGNOSTICS
When all options have been processed, -1 is returned; optind refers to the first non-option argument.
When getopt encounters an option letter not included in optstring or finds an option argument missing, it
prints a diagnostic on stderr under control of opterr and returns a question mark ?.

614

GETPASS(3) Library Functions Manual GETPASS(3)

NAME
getpass − read a password

SYNOPSIS
char ∗getpass(prompt)
char ∗prompt;

DESCRIPTION
Getpass reads a password from the file or if that cannot be opened, from the standard input, after prompt-
ing with the null-terminated string prompt and disabling echoing. A pointer is returned to a null-termi-
nated string of at most 8 characters.

FILES
/dev/tty

SEE ALSO
crypt(3)

BUGS
The return value points to static data whose content is overwritten by each call.

615

GETPWENT (3) Library Functions Manual GETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, pwdecode − get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd ∗getpwent()

struct passwd ∗getpwuid(uid)
int uid;

struct passwd ∗getpwnam(name)
char ∗name;

int setpwent()

int endpwent()

struct passwd ∗pwdecode(p)
char ∗p;

DESCRIPTION
Getpwent, getpwuid and getpwnam each return a pointer to a structure containing the broken-out fields of
a line in
struct passwd {

[CB]char ∗pw_name;login name
[CB]char ∗pw_passwd;encrypted password
[CB]int pw_uid;numeric userid
[CB]int pw_gid;numeric groupid
[CB]int pw_quota;unused
[CB]char ∗pw_comment;unused
[CB]char ∗pw_gecos;field for local use
[CB]char ∗pw_dir;login directory
[CB]char ∗pw_shell;program to use as Shell

[CB]};

Getpwent reads the next line (opening the file if necessary); setpwent rewinds the file; endpwent closes it.

Getpwuid and getpwnam search from the beginning until a matching uid or name is found (or until end-
of-file is encountered).

Pwdecode breaks out a null-terminated character string p containing a password file entry. The input
string is modified by the call and the output structure contains pointers into it.

FILES
/etc/passwd

SEE ALSO
getlogin(3), getgrent(3), passwd(5)

DIAGNOSTICS
These routines return 0 for end of file or error.

BUGS
The return values point to static data whose content is overwritten by each call.

616

GETSHARES(3) Library Functions Manual GETSHARES(3)

NAME
getshares - get shares file entry given uid

SYNOPSIS
#include <shares.h>

unsigned long getshares(lp, uid, lock)
struct lnode ∗ lp;
int uid;
int lock;

DESCRIPTION
Getshares finds the shares entry with the same uid as uid and reads it into an area pointed to by lp. lock
should be non-zero if the shares data-base should be opened for writing. Returns zero if no entry exists,
(in which case all non-uid fields of ∗lp will have been cleared), or the ‘‘last used’’ time of the entry.
lp->l_uid will always have been set to uid on return.

SEE ALSO
closeshares(3), getshput(3), openshares(3), putshares(3), sharesfile(3).

DIAGNOSTICS
Getshares returns 0 if entry can’t be found, or on error.

SHARE 617

GETSHPUT (3) Library Functions Manual GETSHPUT (3)

NAME
getshput - read, modify, and write shares file entry

SYNOPSIS
#include <shares.h>

unsigned long getshput(lp, func)
struct lnode ∗ lp;
unsigned long (∗func)();

DESCRIPTION
Getshput finds the shares entry with the same uid as lp->l_uid and reads it into an internal lnode struc-
ture. The function pointed to by func is then called with two arguments, the first pointing to the original
lnode structure, and the second pointing to the internal lnode structure. If func returns with a value other
than 0 the (presumably modified) second structure is written back to the shares file, with the ‘‘extime’’
field in the shares record filled with the value returned by func. Otherwise getshput simply returns. Get-
shput returns the value returned by func.

SEE ALSO
closeshares(3), getshares(3), openshares(3), putshares(3), sharesfile(3).

DIAGNOSTICS
Getshput returns 0 if the entry can’t be modified.

SHARE 618

GETWD(3) Library Functions Manual GETWD(3)

NAME
getwd, getcwd − get current directory

SYNOPSIS
char ∗getwd(buf)
char ∗buf;

char ∗ getcwd(buf, size)
char ∗buf;

DESCRIPTION
Getwd and getcwd fill buf with a null-terminated string representing the current directory and return buf .

Getwd is in the style of BSD systems and getcwd in that of System V. If buf is 0, getcwd will call mal-
loc(3) to allocate size bytes for the buffer.

SEE ALSO
pwd(1)

DIAGNOSTICS
On error, zero is returned and buf is filled with a diagnostic message.

619

HUFF(3) Library Functions Manual HUFF(3)

NAME
huff − huffman codebook/tree generator

SYNOPSIS
#include <huff.h>

NODE ∗huff(inrout)
int (∗inrout)();

DESCRIPTION
Huff generates a binary Huffman codebook. It obtains a list of messages one at a time from an input rou-
tine, inrout, declared as

int inrout(str, p)
char ∗∗ str;
float ∗p;

Inrout makes ∗str point to a null-terminated string identifying a message, and places in ∗p the (arbitrarily
normalized) frequency of the message. Inrout returns non-zero when data is returned and zero when there
is no more data.

Huff returns a pointer to a root of type NODE:

typedef struct node {
char ∗datump;
struct node ∗to;
struct node ∗from;
struct node ∗ldad;
struct node ∗rdad;
struct node ∗kid;
float prob;

} NODE;

The root heads a linked list and the Huffman tree. The doubly linked list, connected via from and to, is
ordered as the codebook was generated. The tree is connected via kid, ldad, and rdad, with null pointers
at the various ends. The kid field points towards the root, ldad and rdad point away:
node->ldad->kid==node and node->rdad->kid==node. the datump field is null or points to a message
identifier.

The codeword for a message may be read off from the path from the root to the node containing the mes-
sage identifier, counting ldad branches as 0 and rdad branches as 1.

BUGS
A code with only one message dumps core.

620

HYPOT (3M) HYPOT (3M)

NAME
hypot, cabs − euclidean distance

SYNOPSIS
#include <math.h>

double hypot(x, y)
double x, y;

double cabs(z)
struct { double x, y; } z;

DESCRIPTION
Hypot and cabs return sqrt(x∗ x + y∗y), taking precautions against unwarranted overflows.

SEE ALSO
exp(3)

621

INTERNET (3X) INTERNET (3X)

NAME
in_host, in_ntoa, in_address, in_service - internet networking functions

SYNOPSIS
#include <sys/inet/in.h>

char ∗in_host(hostaddr)
in_addr hostaddr;

char ∗in_ntoa(hostaddr)
in_addr hostaddr;

in_addr in_address(hostname)
char ∗hostname;

struct in_service ∗ in_service(name, proto, port)
char ∗name, ∗proto;
unsigned long port;

DESCRIPTION
These routines are loaded by the -lin option of ld(1).

Internet addresses, type in_addr, are 32-bit quantities global to the network. The ASCII representation of
an in_addr can be either a host name or of the form b1.b2.b3.b4, where each ‘bx’ is the value of the x’th
byte of the address in decimal. Since host names are considered local ‘aliases’ for internet addresses, the
host-to-address mapping is subjective.

In_address maps an internet host name to an address and returns 0 if the name is not found in the host ta-
ble.

In_host maps an internet address into a host name. If the host is not found in the host table, the ASCII
representation of the address is returned.

In_ntoa maps an internet address to its ASCII numeric format.

In_service returns the closest match to name in the services file. If either name or port are 0, they will
match any name or port. If proto is (char ∗)0, the tcp protocol is assumed.

FILES
[CB]/usr/inet/lib/hosts mapping between host names and addresses
[CB]/usr/inet/lib/networks mapping between network names and addresses
[CB]/usr/inet/lib/services database of services
[CB]/usr/inet/lib/hosts.equiv machines with common administration

SEE ALSO
ipc(3), tcp(3), udp(3)

BUGS
The mappings between internet addresses and names is arbitrary at best. The hosts file may contain many
addresses for each name and/or many names for each address. In_address and in_host each start at the
beginning of the file and search sequentially for a match. Therefore, in_addr(in_host(addr)) == addr is
not necessarily true.

622

IOSTREAM(3I+) IOSTREAM(3I+)

NAME
ios - input/output formatting

SYNOPSIS
#include <iostream.h>
struct fmtinfo {

ostream∗ tie;
short convbase;
short width;
short precision;
char fill;
char ladjust;
char showbase;
char skip;
char floatfmt;

};
class ios {
public:

enum io_state { goodbit=0, eofbit, failbit, badbit };
enum open_mode { in, out, ate, app };
enum seek_dir { beg, cur, end };

public:
ios(streambuf∗ b);

int bad();
void clear(state_value i = _good);
int convbase();
void convbase(int i);
int eof();
int fail();
char fill();
void fill(char c);
char floatfmt();
void floatfmt(char c);
fmtinfo fmt();
void fmt(fmtinfo& info);
int ladjust();
void ladjust(int a);
int good();
int operator!();

operator int();
int popfmt();
int precision();
void precision(int i);
void pushfmt();
streambuf∗ rdbuf();
int rdstate();
int showbase();
void showbase(int i);
int skip();
int skip(int i);
void sync_with_stdio();
streampos tellg();
ostream∗ tie();
ostream∗ tie(ostream∗ iosp);
int width();
void width(int i);
ios& operator<<(ios& (∗)(ios&));
ios& operator>>(ios& (∗)(ios&));

C++ Stream Library 623

IOSTREAM(3I+) IOSTREAM(3I+)

private:
iostream(iostream&) ;

iostream& operator=(iostream&);
};
class ios_withassign : ios {

ios_withassign();
ios& operator=(ios&);
ios& operator=(streambuf∗);

} ;
ios& dec(ios& i) ;
ios& hex(ios& i) ;
ios& oct(ios& i) ;
ios& popfmt(ios& i) ;
ios& pushfmt(ios& i) ;

DESCRIPTION
The stream classes derived from ioss provide a high level interface that supports transferring formatted
and unformatted information into and out of streambufs.

In the following assume:
— s is an ios.
— swa is an ios_withassign.
— sp is a ios∗.
— i and n are int.
— c is a char.
— osp is an ostream∗.
— sb is a streambuf∗.
— pos is a streampos.
— off is a streamoff.
— info is a formatinfo.
— dir is a seek_dir.
— mode is a seek_dir.
— fct is a function with type ios& (∗)(ios&).

Constructors and assignment:

ios(sb)
sb becomes the streambuf associated with the constructed ios. This association is fixed for
the life of the ios. If sb is null the effect is undefined.

ios_withassign()
Uninitialized variable.

ios(ios&)
ios=ios

Copying of ios’s is not in general well defined and the constructor and assignment operators are
made private so that the compiler will complain about attempts to do so. Usually what is desired
is copying of pointers to iostreams.

swa=sb
Associates sb with swa and initializes the entire state of swa.

swa=s Associates s->rdbuf() with swa and initializes the entire state of swa.

An ios has an internal error state (which is a collection of the bits declared as io_states). Members re-
lated to the error state:

i=s.rdstate()
Returns the current error state.

s.clear(i)
Stores i as the error state. If i is zero this clears all bits. To set a bit without clearing
previously set bits requires something like s.clear(badbit|s.rdstate()).

C++ Stream Library 624

IOSTREAM(3I+) IOSTREAM(3I+)

i=s The int conversion operator is non-zero if badbit or failbit is set in the error
state.

i=s.good()
Non-zero if the error state has no bits set.

i=s.eof()
Non-zero if eofbit is set in the error state. Normally this bit is set when an end of file
has been encountered doing extraction.

i=s.fail()
Non-zero if either badbit or failbit are set in the error state. Normally this indi-
cates that some operation has failed.

i=s.bad()
Non-zero if badbit is set in the error state. Normally this indicates that some operation
on s.rdbuf() has failed.

An ios has a collection of format state variables that are used by input and output operations to control
the details of formatting operations. Otherwise their values have no particular effect and they may be set
and examined arbitrarily by user code.

s.convbase(i)
Sets the "conversion base" format state variable to i.

i=s.convbase()
Returns the "conversion base" format state variable.

s.fill(c)
Sets the "fill character" format state variable to c.

c=s.fill()
Returns the "fill character" format state variable.

s.fill(c)
Sets the "fill character" format state variable to c.

c=s.fill()
Returns the "fill character" format state variable.

s.floatfmt(c)
Sets the "floating format" format state variable to c.

c=s.floatfmt()
Returns the "floating format" format state variable.

s.ladjust(i)
Sets the "left adjustment" format state variable to i.

i=s.ladjust()
Returns the "left adjustment" format state variable.

s.precision(i)
Sets the "precision" format state variable to i.

i=s.precision()
Returns the "precision" format state variable.

s.showbase(i)
Sets the "show explicit base" format state variable to i.

i=s.showbase()
Returns the "show explicit base" format state variable.

sp=s.skip(sp)
Sets the "skip whitespace" format state variable to sp.

sp=s.skip()
Returns the "skip whitespace" format state variable.

C++ Stream Library 625

IOSTREAM(3I+) IOSTREAM(3I+)

osp=s.tie(osp)
Sets the "tie" format state variable sp.

osp=s.tie()
Returns the "tie" format state variable.

s.width(i)
Sets the "field width" format state variable to i.

i=s.width()
Returns the "field width" format state variable.

s.fmt(info)
Sets the collection of all format state variables to info in a single operation.

info=s.fmt()
Returns the collection of all format state variables in a single operation.

s.pushfmt()
Pushes a formatinfo structure onto a (dynamically allocated) stack associated with
s. This copies the current values of format state variables without changing them.

i=s.popfmt()
Pops the topmost formatinfo from the stack associated with s and sets the format
state variables accordingly. Normally i is non-zero, but it will be zero if the stack is
empty (i.e., more popfmt than pushfmt operations have been performed.

Other members:

sb=s.rdbuf()
Returns a pointer to the streambuf associated with s when s was constructed.

((ios∗)0)->sync_with_stdio()
Solves problems that arise when mixing stdio and iostreams. The first time it is called it will re-
set the standard iostreams (instream, outstream, errstream, logstream) to be
streams using stdiobufs. After that input and output using these streams may be mixed with
input and output using the corresponding FILEs and will be properly synchronized.

Convenient manipulators (functions that take an ios& and return their argument).

ios<<dec
ios<<dec
ios>>dec

Sets the convbase to 10.

ios<<hex
ios>>hex

Sets the convbase to 16.

ios<<oct
ios>>oct

Sets the convbase to 8.

ios<<popfmt
ios>>popfmt

Does s.popfmt()

ios<<pushfmt
ios>>pushfmt

Does s.pushfmt()

The streambuf associated with an ios may be manipulated by other methods than through ios. For
example, characters may be stored in a queuelike streambuf through an ostream while they are be-
ing fetched through an istream. Or for efficiency some part of a program may choose to do stream-
buf gets directly rather than through the ios. In most cases the program does not have to worry about

C++ Stream Library 626

IOSTREAM(3I+) IOSTREAM(3I+)

this possibility, because an ios never saves information about the internal state of a streambuf. For
example if the streambuf is repostitioned between extraction operations the extraction (input) will pro-
ceed normally.

CAVEATS
The effect of ios.sync_with_stdio() does not depend on ios. sync_with_stdio ought to be a global func-
tion but it is a member of iostream to avoid name space pollution. The need for sync_with_stdio is a
wart. The old stream package did this as a default, but in the iostream package unbuffered stdiobufs
are too inefficient to be the default.

The stream package had a constructor that took a FILE∗ argument. This is now replaced by
stdiostream. It is not declared even as an obsolete form to avoid having iostream.h depend on
stdio.h.

The old stream package allowed copying of streams. This is disallowed by the iostream package. Old
code using copying can usually be rewritten to use pointers and copy pointers.

For compatibility with the old stream package, the versions of tie and skip that set the state variables also
return the old value.

SEE ALSO
IOS.INTRO(3C++) streambuf(3C++) istream(3C++) ostream(3C++)

C++ Stream Library 627

IPC(3X) IPC(3X)

NAME
ipccreat, ipcopen, ipclisten, ipcaccept, ipcreject, ipcexec, ipcpath , ipclogin, ipcrogin − set up connections
between processes or machines

SYNOPSIS
#include <ipc.h>

char ∗ ipcpath(name, network, service)
char ∗name;
char ∗network;
char ∗service;

int ipcopen(name, param)
char ∗name;
char ∗param;

int ipccreat(name, param)
char ∗name;
char ∗param;

ipcinfo ∗ipclisten(fd)
int fd;

int ipcaccept(ip)
ipcinfo ∗ip;

int ipcreject(ip, no, str)
ipcinfo ∗ip;
int no;
char ∗str;

int ipcexec(name, param, cmd)
char ∗name;
char ∗param;
char ∗cmd;

int ipclogin(fd)
int fd;

int ipcrogin(fd, opt)
int fd;
char ∗opt;

extern char ∗errstr;

DESCRIPTION
These routines establish communication between unrelated processes, often for networking purposes.
They are loaded by the -lipc option of ld(1).

End points in the network are identified by names of the form: element[!element]... . The name is trans-
lated element by element relative to the name space selected by the previous element. The first element is
always a name in the local file system. By convention, all network interfaces and services mount them-
selves in For example:

/cs/exec
refers to a local process which has mounted itself (via ipccreat) on

/cs/dk!nj/astro/voice
refers to a voice synthesizer attached to Datakit; process /cs/dk is the Datakit interface.

/cs/dk!dutoit!exec
is the process that has mounted itself on /cs/exec in machine ‘dutoit’.

Ipcpath, forms a network name from its arguments and returns a pointer to it. It takes three arguments:
the destination name, the default network, and the default service. It assumes that name is a three part
name of the form: network!host!service. If either network or service is missing from name, ipcpath sup-
plies them from the default arguments. It then tacks a /cs on the front and returns a pointer to that.

628

IPC(3X) IPC(3X)

Thus,

ipcpath("dutoit", "dk", "dcon")

returns a pointer to the string /cs/dk!dutoit!dcon.

Ipcopen places a call to a named network end point and returns a file descriptor for the resulting connec-
tion. Param, a whitespace-delimited string of values, specifies properties which the connection must
have. At present four parameter values are defined:

heavy
light Heavy (usually computer-to-computer) or light (computer-to-terminal) traffic is expected.

delim The connection must support delimiters; see stream(4).

hup SIGHUP must be generated at end of file; see signal(2).

Ipccreat attaches a process to a name space. It returns a file descriptor representing the attachment.
Name and param mean the same as for ipcopen.

Ipclisten waits for calls (from ipcopen in other processes) appearing on file descriptor fd (obtained from
ipccreat). When a call arrives, it returns an ipcinfo structure, defined in

typedef struct {
int reserved[5];
char ∗name; that being dialed
char ∗param; parameters used to set up call
char ∗machine; machine id of caller
char ∗user; user name of caller
int uid, gid; uid, gid of caller

} ipcinfo;

The call may be accepted by ipcaccept or rejected by ipcreject. Ipcaccept returns a file descriptor for the
connection. Ipcreject takes an integer error number and an error message string, which will be passed
back to the caller as errno and errstr.

A higher-level routine, ipcexec, executes the command, cmd, on a named machine. The file descriptor
returned by ipcexec is the standard input, standard output, and standard error of the command. As in
ipcopen, param lists properties required of the channel.

Once a connection is established using ipcopen it is often necessary to authenticate yourself to the desti-
nation. This is done using ipclogin and ipcrogin. Ipclogin runs the client side of the authentication proto-
col described in svcmgr(8) for the v9auth action. The supplied fd is the descriptor returned by ipcopen.
Until the authentication is accepted, ipclogin will prompt the user (using for a login id and password to be
sent over fd.

Ipcrogin runs the client side of the authentication protocol used by BSD’s rlogin and rsh services. Unlike
ipclogin, it will not prompt the user if the authentication fails. Ipcrogin takes a second argument that is
written to fd after the authentication is accepted.

EXAMPLES
To connect to the voice synthesizer attached to the Datakit:
#include <ipc.h>
main() {

int fd;
fd = ipcopen(ipcpath("voice", "dk", 0), "light");
if(fd<0){

printf("can’t connect: %s\n", errstr);
exit(1);

}
...
close(fd);

}

To place a Dataphone call via Datakit; the service name is derived in an obvious way from the ACU ser-
vice class; see dialout(3).

629

IPC(3X) IPC(3X)

fd = ipcopen(ipcpath("9-1-201-582-0000", "dk", "dial1200"), "light");

To announce as a local service and wait for incoming calls:
#include <ipc.h>
main() {

int fd;
ipcinfo ∗ip;
fd = ipccreat("/tmp/service", 0);
if(fd<0){

printf("can’t announce: %s\n", errstr);
exit(1);

}
while(ip = ipclisten(fd)){

int nfd;
if(i_hate_this_user(ip->machine, ip->user)) {

ipcreject(ip, EACCES, "i hate you");
continue;

}
nfd = ipcaccept(ip);
...
close(nfd);

}
printf("lost the announced connection somehow\n");
exit(1);

}

FILES
/cs/dk

the announce point for the Datakit dialer

/cs/tcp
the announce point for the internet dialer

SEE ALSO
dialout(3), connld(4), dkmgr(8), svcmgr(8), tcpmgr(8)
D. L. Presotto, ‘Interprocess Communication in the Eighth Edition UNIX System’, this manual, Volume 2

DIAGNOSTICS
Integer return values of -1 and pointer return values of 0 denote error. Errno contains an error code (see
intro(2)) and errstr points to an explanatory string.

BUGS
Files created by ipccreat in the local name space are not removed when the file descriptor returned by ipc-
creat is closed.
Information in ipcinfo is no more trustworthy than its origin. Information, such as user name, sent by for-
eign machines may be suspect. On Ethernet or dialup connections (but not on Datakit) machine names
can be forged. Let’s not even think about wire-swappers and wiretappers.

630

IREAD(3) Library Functions Manual IREAD(3)

NAME
iread - insistent read

SYNOPSIS
read(fildes, buf, n) char ∗buf;

DESCRIPTION
Iread, like read(1), reads n bytes from the file associated with the given file descriptor into the block of
store beginning at buf. Iread, however, always places exactly n bytes in buf, unless read would return 0.

Iread returns the number of bytes placed in buf, which is an integer in the range 0-n.

DIAGNOSTICS
Iread returns -1 for an error; see read(1)

SEE ALSO
read(2)

631

ISTREAM(3I+) ISTREAM(3I+)

NAME
istream - formatted and unformatted input

SYNOPSIS
#include <iostream.h>
typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app } ;
// and lots of other stuff ...
} ;

class istream : ios {
public:

int gcount();
istream& get(char∗ ptr, int len, char delim=’\n’);
istream& get(unsigned char∗ ptr,int len, char delim=’\n’);
istream& get(unsigned char& c);
istream& get(char& c);
istream& get(streambuf&, char delim =’\n’);
int get();
istream& getline(char∗ ptr, int len, char delim=’\n’);
istream& getline(unsigned char∗ ptr, int len, char delim=’\n’);
istream& getline(streambuf& sb, int len, char delim=’\n’);
istream& ignore(int len=1,int delim=EOF);
int ipfx(int need=0);
int peek();
istream& putback(char c);
istream& read(char∗ s,int n);
istream& read(unsigned char∗ s,int n);
istream& seekg(streampos pos);
istream& seekg(streamoff off, seek_dir d);
streampos tellg();
istream& operator>>(char∗);
istream& operator>>(unsigned char∗);
istream& operator>>(unsigned char&);
istream& operator>>(char&);
istream& operator>>(short&);
istream& operator>>(int&);
istream& operator>>(long&);
istream& operator>>(unsigned short&);
istream& operator>>(unsigned int&);
istream& operator>>(unsigned long&);
istream& operator>>(float&);
istream& operator>>(double&);
istream& operator>>(streambuf&);
istream& operator>>(istream& (∗)(istream&));

};
class istream_withassign {

istream_withassign();
istream& operator=(istream&);
istream& operator=(streambuf∗);

};
extern istream_withassign cin;
istream& ws(iostream& i) ;

C++ Stream Library 632

ISTREAM(3I+) ISTREAM(3I+)

DESCRIPTION
istreams support interpretation of characters fetched from an associated streambuf. These are com-
monly refered to as input operations.

Assume that
— ins has type istream.
— inwa has type istream_withassign.
— insp has type istream∗.
— c has type char&
— delim has type char.
— ptr has type char∗ or unsigned char∗.
— sb has type streambuf&.
— i, len, d, and need have type int.
— pos is a streampos.
— off is a streamoff.
— dir is a seek_dir.
— manip is a function with type istream& (∗)(istream&).

Constructors and assignment:

istream(sb)
Initializes ios state variables and associates stream with buffer sb. istream_withassign() Does
no initialization. This allows a file static variable of this type (cin for example) to be used before
it is constructed provided it is assigned to first.

inswa=sb
Associates sb with swa and initializes the entire state of inswa.

inswa=ins
Associates ins->rdbuf() with swa and initializes the entire state of inswa.

Input prefix function:

ins.ipfx(need)
If ins’s error state is non-zero return immediately. If neccessary (and it is non-null) f.tie is
flushed. Flushing is neccessary if either need==0 or there are less than need characters immedi-
ately available. If f.skip() is non-zero and need is zero then leading whitespace characters are
extracted from ins. Return zero or an error occurs while skipping whitespace. Otherwise it re-
turns non-zero.

Formatted input functions:

ins>>x
Calls ipfx(0) and if that returns non-zero extracts characters from ins and converts them accord-
ing to the type of x. It stores the converted value in x. Errors are indicated by setting the error
state of ins. failbit means that characters in ins were not a representation of the required
type. badbit indicates that attempts to extract characters failed. ins is always returned.

The details of conversion depend on the values of ins’s format state variable (see ios(3C++)) and
the type of x. Except as noted, the extraction operators do not change the value of the format
state variables.

char∗, unsigned char∗
Characters are stored in the array pointed at by x until a whitespace character is found in
ins. The terminating whitespace is left in ins. If ins.width() is non-zero it is taken to be
the size of the array, and no more than ins.width()-1 characters are extracted. A termi-
nating null character (0) is always stored (even when nothing else is done because of
ins’s status). ins.width() is reset to 0.

char&, unsigned char&
A character is extracted and stored in x.

short&, unsigned short&, int&, unsigned int&, long&, unsigned long&
Characters are extracted and converted to an integral value according to the conversion
specified by ins.convbase(). The first character may be a sign (+ or -). After that, if

C++ Stream Library 633

ISTREAM(3I+) ISTREAM(3I+)

ins.convbase() is 8, 10, or 16 the conversion is octal, decimal, or hexadecimal respec-
tively. Conversion is terminated by the first "non-digit," which is left in ins. Octal digits
are the characters ’0’ to ’7’. Decimal digits are the octal digits plus ’8’ and ’9’. Hexa-
decimal digits are the decimal digits plus the letters ’a’ through ’f’ (in either upper or
lower case). If ins.convbase() is 0 then the number is interpreted according to C lexical
conventions. That is, if the first characters (after the optional sign) are 0x or 0X a hexa-
decimal conversion is performed on following hexadecimal digits. Otherwise if the first
character is a 0 an octal conversion is performed and in all other cases a decimal conver-
sion is performed. failbit is set if there are no digits (not counting the 0 in 0x or
0X) during hex conversion) available.

float&, double&
Converts the characters according to C++ syntax for a float or double, and stores the re-
sult in x. failbit is set if there are no digits available in ins or if it does not begin
with a well formed floating point number.

The type and name(operator>>) of the extraction operations are chosen to give a convenient syntax for
sequences of input operations. The operator overloading of C++ permits extraction functions to be de-
clared for user defined classes. These operations can then be used with the same syntax as the member
functions described here.

Unformatted input functions, which call ipfx(1) and proceed only if it returns non-zero:

insp=&ins.get(ptr,len,delim)
Extracts characters and stores them in the byte array beginning at ptr and extending for len
bytes. Extraction stops when delim is encountered (delim is left in ins and not stored), when ins
has no more characters, or when the array has only one byte left. get always stores a terminating
null, even if it doesn’t extract any characters from ins because of its error status. failbit is set
only if get encounters an end of file before it stores any characters.

insp=&ins.get(c)
Extracts a single character and stores it in c.

insp=&ins.get(sb,delim)
Extracts characters from ins.rdbuf() and stores them into sb. It stops if it encounters end of file
or if a store into sb fails or if it encounters delim (which it leaves in ins). failbit is set if it
stops because the store into sb fails

i=ins.get().
Extracts a character and returns it. i is EOF if extraction encounters end of file. failbit is
never set.

insp=&ins.getline(ptr,len,delim)
Does the same thing as ins.get(ptr,len,delim) with the exception that it extracts a terminating de-
lim character from ins. In case delim occurs when exactly len characters have been extracted,
termination is treated as being due to the array being filled, and this delim is left in ins.

insp=&ins.ignore(n,d)
Extracts and throws away up to n characters. Extraction stops prematurely if d is extracted or
end of file is reached. If d is EOF it can never cause termination.

insp=&ins.read(ptr,n)
Extracts n characters and stores them in the array beginning at ptr If end of file is reached before
n characters have been extracted, read stores whatever it can extract and sets failbit. The
number of characters extracted can be determined via ins.gcount().

Other members are:

i=ins.gcount()
Returns the number of characters extracted by the last unformatted input function. Formatted in-
put functions may call unformatted input functions and thereby reset this number.

i=ins.peek()
Begins by calling ins.ipfx(1). If that call returns zero or if ins is at end of file, it returns EOF.
Otherwise it returns (without extracting it) the next character.

C++ Stream Library 634

ISTREAM(3I+) ISTREAM(3I+)

insp=&ins.putback(c)
Attempts to back up ins.rdbuf(). c must be the character before ins.rdbuf()’s get pointer. (Un-
less other activity is modifying ins.rdbuf() this is the last character extracted from ins.) If it is
not, the effect is undefined. putback may fail (and set the error state). Although it is a member
of istream, putback never extracts characters, so it does not call ipfx. It will, however, return
without doing anything if the error state is non-zero.

ins>>manip
Equivalent to manip(ins). Syntactically this looks like an extractor operation, but semantically it
does an arbitrary operations rather than converting a sequence of characters and storing the result
in manip.

Member functions related to positioning.

insp=&ins.seekg(off,dir)
Repositions ins.rdbuf()’s get pointer. See sbuf.pub(3C++) for a discussion of positioning.

insp=&ins.seekg(pos)
Repositions ins.rdbuf()’s get pointer. See sbuf.pub(3C++) for a discussion of positioning.

pos=ins.tellg()
The current position of ios.rdbuf()’s get pointer. See sbuf.pub(3C++) for a discussion of posi-
tioning.

Manipulator:

ins>>ws
Extracts whitespace characters.

CAVEATS
There is no overflow detection on conversion of integers. There should be, and overflow should cause the
error state to be set.

There should be a way to input an arbitrary length string without knowing a maximum size beforehand.

SEE ALSO
ios(3C++) sbuf.pub(3C++) manip(3C++)

C++ Stream Library 635

L3TOL(3) Library Functions Manual L3TOL(3)

NAME
l3tol, ltol3 − convert between 3-byte integers and long integers

SYNOPSIS
l3tol(lp, cp, n)
long ∗lp;
char ∗cp;

ltol3(cp, lp, n)
char ∗cp;
long ∗lp;

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character string pointed to by cp into a list of
long integers pointed to by lp.

Ltol3 performs the reverse conversion from long integers (lp) to three-byte integers (cp).

These functions are useful for file-system maintenance where the block numbers are three bytes long.

SEE ALSO
filsys(5)

636

MALLOC(3) Library Functions Manual MALLOC(3)

NAME
malloc, free, realloc, calloc, cfree - memory allocator

SYNOPSIS
char ∗malloc(size)
unsigned size;

free(ptr)
char ∗ptr;

char ∗ realloc(ptr, size)
char ∗ptr;
unsigned size;

char ∗ calloc(nelem, elsize)
unsigned nelem, elsize;

cfree(ptr)
char ∗ptr;

DESCRIPTION
Malloc and free provide a simple memory allocation package. Malloc returns a pointer to a new block of
at least size bytes. The block is suitably aligned for storage of any type of object. No two active pointers
from malloc will have the same value.

The argument to free is a pointer to a block previously allocated by malloc; this space is made available
for further allocation.

Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the (possibly
moved) block. The contents will be unchanged up to the lesser of the new and old sizes. The call real-
loc((char∗)0, size) means the same as malloc(size).

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to zeros.
Cfree frees such a block.

SEE ALSO
galloc(3), brk(2), pool(3), block(3)

DIAGNOSTICS
Malloc, realloc and calloc return 0 if there is no available memory or if the arena has been detectably cor-
rupted.

BUGS
When realloc returns 0, the block pointed to by ptr may have been destroyed.

User errors can corrupt the storage arena. The most common gaffes are (1) freeing an already freed block,
(2) storing beyond the bounds of an allocated block, and (3) freeing data that was not obtained from the
allocator. To help find such errors, a diagnosing allocator may be loaded; use flag -ldmalloc of cc(1). An
even more stringently checking version may be created by recompilation; see the source.

637

MANIP(3I+) MANIP(3I+)

NAME
manipulators - iostream out of band manipulations

SYNOPSIS
#include <iostream.h>
#include <iomanip.h>
IOMANIPdeclare(T) ;
class SMANIP(T) {

SMANIP(T)(ios& (∗)(ios&,T), T);
};
class SAPP(T) {

SAPP(T)(ios& (∗)(ios&,T));
SMANIP(T) operator()(T);

};
ios& SMANIP(T)::operator<<(ios&);
ios& SMANIP(T)::operator>>(ios&);
istream& SMANIP(T)::operator>>(istream&);
ostream& SMANIP(T)::operator<<(ostream&);
iostream& SMANIP(T)::operator<<(iostream&);
iostream& SMANIP(T)::operator>>(iostream&);
class IMANIP(T) {

IMANIP(T)(istream& (∗)(istream&,T), T);
};
class IAPP(T) {

IAPP(T)(istream& (∗)(istream&,T));
IMANIP(T) operator()(T);

};
istream& operator>>(IMANIP(T), istream&);
class OMANIP(T) {

OMANIP(T)(ostream& (∗)(ostream&,T), T);
};
class OAPP(T) {

OAPP(T)(ostream& (∗)(ostream&,T));
OMANIP(T) operator()(T);

};
ostream& operator<<(OMANIP(T), ostream&);
class IOMANIP(T) {

IOMANIP(T)(ios& (∗)(ios&,T), T);
};
class IOAPP(T) {

IOAPP(T)(ios& (∗)(ios&,T));
IOMANIP(T) operator()(T);

};
iostream& operator<<(SMANIP(T), iostream&);
iostream& operator>>(SMANIP(T), iostream&);
IOMANIPdeclare(int) ;
IOMANIP(int) setbase(int b) ;
IOMANIP(int) setw(int w) ;

DESCRIPTION
Manipulators are values that may be "inserted into" or "extracted from" streams in order to achieve some
effect (other than to insert a representation of their value). Ideally the types relating to manipulators
would be parameterized as "templates". The macros defined in iomanip.h are used to simulate a tem-
plates. 0P(T) declares the various classes and operators. (All code is declared as inlines so that no sepa-
rate definitions are required.) Each of the other T is used to construct the real names and therefore must
be a single identifer. Each of the other macros also requires an identifier and expands to a name.
— t is a T.
— s is an ios.

C++ Stream Library 638

MANIP(3I+) MANIP(3I+)

— i is an istream.
— o is an ostream.
— io is an iostream.
— f is an ios& (∗)(ios&).
— if is an istream& (∗)(istream&).
— of is an ostream& (∗)(ostream&).
— iof is an iostream& (∗)(iostream&).

s<<SMANIP(T)(f,t)
s<<SMANIP(T)(f,t)
s>>SMANIP(T)(f,t)
s<<SAPP(T)(f)(t)
s>>SAPP(T)(f)(t)
i>>SMANIP(T)(if,t)
i>>SAPP(T)(if)(t)
o<<SMANIP(T)(of,t)
o<<SAPP(T)(of)(t)
io<<SMANIP(T)(iof,t)
io>>SMANIP(T)(iof,t)
io<<SAPP(T)(iof)(t)
io>>SAPP(T)(iof)(t)

Returns fct(s,t), where s is the left operand of the insertion or extractor operator and fct is f, ifr
iof.

i>>IMANIP(T)(if,t)
i>>IAPP(T)(if)(t)

Return if(i,t).

o<<OMANIP(T)(of,t)
o<<OAPP(T)(of)(t)

Return of(i,t).

io<<IOMANIP(T)(iof,t)
io>>IOMANIP(T)(iof,t)
io<<IOAPP(T)(iof)(t)
io>>IOAPP(T)(iof)(t)

Return iof(s,t).

iomanip.h contains a declaration, IOMANIPdeclare(int) and some functions:

o<<setbase(n)
i>>setbase(n)
io<<setbase(n)
io>>setbase(n)

Sets the conversion base of the stream (left hand operand) to n.

o<<setw(n)
i>>setw(n)
io<<setw(n)
io>>setw(n)

Sets the width format state variable the stream (left hand operand) to n.

CAVEATS
Syntax errors will be reported if IOMANIP(T) occurs more than once in a file with the same T.

SEE ALSO
ios(3C++) istream(3C++) ostream(3C++)

C++ Stream Library 639

MAP(3+) MAP(3+)

NAME
map - associative array classes

SYNOPSIS
#include <Map.h>

Mapdeclare(S,T)
Mapimplement(S,T)

struct Map(S,T) {
Map(S,T)();
Map(S,T)(const T&);
Map(S,T)(const Map(S,T)&);
Map(S,T);
Map(S,T)& operator= (const Map(S,T)&);
T& operator[] (int);
int size();
Mapiter(S,T) element(const S&);
Mapiter(S,T) first();
Mapiter(S,T) last();

};

struct Mapiter(S,T) {
Mapiter(S,T) (const Map(S,T)&);
Mapiter(S,T);
operator int();
S key();
T value();
Mapiter(S,T)& operator++ (Mapiter(S,T)&);
Mapiter(S,T)& operator-- (Mapiter(S,T)&);

};

DESCRIPTION
A map is a collection of elements, each of which contains a key part of type S and a value part of type T,
where S and T are type names. Both S and T must have value semantics: assignment or initialization
have the effect of copying. (It is unlikely for S and T to be pointers.)

Map elements are ordered by key: type S must have a transitive boolean operator<.

The macro call Mapdeclare(S,T) declares the classes Map(S,T) and Mapiter(S,T). It must appear
once in every source file that uses either. The macro call Mapimplement(S,T) defines the functions that
implement the map classes. It must appear exactly once in the entire program.

Map constructors
Map(S,T)() An empty map. The value part of future elements is the value of an otherwise uninitial-

ized static object of type T .

Map(S,T)(x) An empty map whose future elements have default value x .

Map(S,T)(m) A copy of map m obtained by copying the elements and default value of m.

Map operators
n = m All the elements of map n are deleted and and copies of the elements of m are added.

The default value of n does not change. Running time is O(log(|m|) + log(|n|)), where
|m| means m.size().

m[k] A reference to the value part of the element of map m with key k. If the element does
not exist, it is created. Running time is O(log(|m|)) .

Other Map functions
m.size() The number of elements in m. Running time is O(1)

m.element(k) A map iterator referring to the element of m with key k if such an element exists. Oth-
erwise the result is vacuous. Running time is O(log(|m|)) .

640

MAP(3+) MAP(3+)

m.first()
m.last() A map iterator referring to the element of m with the smallest (or largest) key. If m has

no elements, the result is vacuous. Running time is O(log(|m|)) .

Map iterators
For every class Map(S,T) there is a class Mapiter(S,T). A map iterator identifies a map object and possi-
bly an element in that map. An iterator that does not identify an element is vacuous.

Mapiter constructors
Mapiter(S,T)(m)

A vacuous iterator referring to map m. Running time is O(1)

Mapiter operators
i = j Make iterator i refer (for now) to the same map as does j.

(int)i Zero if iterator i is vacuous, otherwise nonzero.

++i
--i If iterator i is vacuous, make it refer to the map element with the smallest (or largest)

key Otherwise, make it refer to the map element with the next key greater (or less) than
the key of the current element. If no such element exists, i becomes vacuous. The run-
ning time of a single increment operation for map m is O(log(|m|)). However an itera-
tor takes only time O(|m|) to sequence through the whole map.

Other mapiter functions
i.key()
i.value() The key (or value) part of the element referred to by i . If i is vacuous, return the value

of an otherwise uninitialized static object of appropriate type. Running time is O(1)

EXAMPLES
struct city { char name[100]; };
typedef int population;
int operator< (const city&, const city&);

Mapdeclare(name,population)

Map(name,population) gazetteer;

// Print big cities; set populations of others to zero.

for(Mapiter(name,population) i = gazetteer.first(); i; i++)
if(i.value() > 1000000)

printf("%s\n", i.key().name);
else

gazetteer[i.key()] = 0;

BUGS
A ‘type name’ Map(S,T) or Mapiter(S,T) that contains spaces will be mangled by cpp(8).
There is no way to delete a single element.
Ambiguities can occur if the type name S contains an underscore.
No precautions are taken against running out of memory.

641

MEMORY (3) Library Functions Manual MEMORY (3)

NAME
memccpy, memchr, memcmp, memcpy, memmove, memset − memory operations

SYNOPSIS
char ∗ memccpy(s1, s2, c, n)
char ∗s1, ∗s2;
int c, n;

char ∗ memchr(s, c, n)
char ∗s;
int c, n;

int memcmp(s1, s2, n)
char ∗s1, ∗s2;
int n;

char ∗ memcpy(s1, s2, n)
char ∗s1, ∗s2;
int n;

char ∗ memmove(s1, s2, n)
char ∗s1, ∗s2;
int n;

char ∗ memset(s, c, n)
char ∗s;
int c, n;

DESCRIPTION
These functions operate efficiently on memory areas (arrays of characters bounded by a count, not termi-
nated by a null character). They do not check for the overflow of any receiving memory area.

Memccpy copies characters from memory area s2 into s1, stopping after the first occurrence of character c
has been copied, or after n characters have been copied, whichever comes first. It returns a pointer to the
character after the copy of c in s1, or zero if c was not found in the first n characters of s2.

Memchr returns a pointer to the first occurrence of character c in the first n characters of memory area s,
or zero if c does not occur.

Memcmp compares its arguments, looking at the first n characters only, and returns an integer less than,
equal to, or greater than 0, according as s1 is lexicographically less than, equal to, or greater than s2.

Memcpy copies n characters from memory area s2 to s1. It returns s1.

Memmove is the same as memcpy, except it is guaranteed to handle overlapping strings as if the move had
been made to a temporary and then to the destination.

Memset sets the first n characters in memory area s to the value of character c. It returns s.

SEE ALSO
string(3)

BUGS
Memcmp uses native character comparison, which is signed on some machines, unsigned on others; thus
the sign of the value returned when a character has its high-order bit set is implementation-dependent.
Thanks to ANSI X3J11 for the memcpy/memmove distinction.

642

MKTEMP(3) Library Functions Manual MKTEMP(3)

NAME
mktemp, tmpnam − make a unique file name

SYNOPSIS
char ∗mktemp(template)
char ∗template;

#include <tmpnam.h>

char ∗tmpnam(s)
char s[L_tmpnam];

DESCRIPTION
Mktemp replaces template by a unique file name, and returns the address of the template. The template
should look like a file name with six trailing Xs, which will be replaced with the current process id and a
unique letter.

Tmpnam places in the string pointed to by s a unique file name referring to the standard /tmp directory
for temporary files and returns s. If s is 0, tmpnam returns the address of a fixed internal buffer that con-
tains the name. (Note: it is bad form to leave files in the temporary directory.)

SEE ALSO
getpid in getuid(2)

BUGS
After many calls to tmpnam, the resulting filenames may have strange characters.

643

MONITOR(3) Library Functions Manual MONITOR(3)

NAME
monitor − prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize, nfunc)
int (∗ lowpc)(), (∗highpc)();
short buffer[];

DESCRIPTION
An executable program created by cc -p automatically includes calls for monitor with default parameters;
monitor needn’t be called explicitly except to gain fine control over profiling.

Monitor is an interface to profil(2). Lowpc and highpc are the addresses of two functions; buffer is the
address of a (user supplied) array of bufsize bytes. Monitor arranges to record a histogram of periodically
sampled values of the program counter, and of counts of calls of certain functions, in the buffer. The low-
est address sampled is that of lowpc and the highest is just below highpc. At most nfunc call counts can
be kept; only calls of functions compiled with the profiling option -p of cc(1) are recorded. For the results
to be significant, especially where there are small, heavily used routines, it is suggested that the buffer be
no more than a few times smaller than the range of locations sampled. The default values for bufsize and
nfunc are (highpc-lowpc)/8 and 300 respectively.

To profile the entire program, use

extern etext();
. . .
monitor((int (∗)())2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text, see end(3). For the highest resolution profiling on the VAX, use
bufsize = ((int)highpc)-((int)lowpc)+12+8∗nfunc.

To stop execution monitoring and write the results on the file mon.out, use

monitor((int (∗)())0);

then prof(1) can be used to examine the results.

FILES
mon.out

SEE ALSO
prof(1), profil(2), cc(1)

644

MP(3X) MP(3X)

NAME
itom, mfree, madd, msub, mult, mdiv, sdiv, msqrt, mgcd, min, mout, fmin, fmout, move, mcmp, rpow,
mpow − multiple precision integer arithmetic

SYNOPSIS
#include <mp.h>
#include <stdio.h>

mint ∗itom(n)
short n;

mfree(a)
mint ∗a;

madd(a, b, c)
mint ∗a, ∗b, ∗c;

msub(a, b, c)
mint ∗a, ∗b, ∗c;

mult(a, b, c)
mint ∗a, ∗b, ∗c;

mgcd(a, b, c)
mint ∗a, ∗b, ∗c;

mdiv(a, b, q, r)
mint ∗a, ∗b, ∗q, ∗r;

sdiv(a, n, q, r)
mint ∗a, ∗q;
short n, ∗r;

msqrt(a, b, r)
mint ∗a, ∗b, ∗r;

rpow(a, n, c)
mint ∗a, ∗c;

mpow(a, b, m, c)
mint ∗a, ∗b, ∗m, ∗c;

move(a, b)
mint ∗a, ∗b;

mcmp(a, b)
mint ∗a, ∗b;

int min(a)
mint ∗a;

mout(a)
mint ∗a;

int fmin(a, f)
mint ∗a;
FILE ∗f;

fmout(a, f)
mint ∗a;
FILE ∗f;

DESCRIPTION
These routines perform arithmetic on arbitrary-length integers of defined type mint. The functions are ob-
tained with the ld(1) option -lmp.

Pointers to mint must be initialized using the function itom, which sets the initial value to n. Thereafter
space is managed automatically. The space may be freed by mfree, making the variable uninitialized.

645

MP(3X) MP(3X)

Madd, msub, mult, and mgcd assign to their third arguments the sum, difference, product, and greatest
common divisor, respectively, of their first two arguments.

Mdiv assigns the quotient and remainder, respectively, to its third and fourth arguments. The remainder is
nonnegative and less than the divisor in magnitude. Sdiv is like mdiv except that the divisor is an ordinary
integer.

Msqrt assigns the square root and remainder to its second and third arguments, respectively.

Rpow calculates a raised to the power n; mpow calculates this reduced modulo m.

Move assigns (by copying) the value of its first argument to its second argument.

Mcmp returns a negative, zero, or positive integer if the value of its first argument is less than, equal to, or
greater than, respectively, the value of its second argument.

Min and mout do decimal conversion from stdin and to stdout, fmin and fmout use file f ; see stdio(3).
Min and fmin return EOF on end of file.

DIAGNOSTICS
Illegal operations and running out of memory produce messages and core images.

BUGS
Itom and sdiv fail if n is the most negative short integer.

646

NLIST (3) Library Functions Manual NLIST (3)

NAME
nlist − get entries from name list

SYNOPSIS
#include <nlist.h>
nlist(filename, nl)
char ∗filename;
struct nlist nl[];

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of values.
The list is terminated with a null name.
struct nlist {

[CB]char ∗n_name; symbol name
[CB]unsigned char n_type; type flag
[CB]char n_other; unused
[CB]short n_desc; unused
[CB]unsigned long n_value; value (or offset) of this symbol

[CB]};
Each name is looked up in the name list of the file. If the name is
found, the type and value of the name are inserted in n_type and n_value
respectively. If the name is not found, both entries are set to 0.

This subroutine is useful for examining the system name list kept in In this way programs can obtain sys-
tem addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

BUGS
On some UNIX systems you must include <a.out.h> rather than This is unfortunate, but <a.out.h>
can’t be used on the VAX because it contains a union, which can’t be initialized.

647

OPENSHARES(3) Library Functions Manual OPENSHARES(3)

NAME
openshares - open shares file

SYNOPSIS
int openshares(lock)
int lock;

DESCRIPTION
Openshares attempts to open the shares file for writing, otherwise, if lock is 0, it attempts to open it for
reading. If one of the opens succeeds, it returns 1, otherwise it returns 0.

If the shares file is already open, this routine does nothing.

FILES
/etc/shares Shares data-base.

SEE ALSO
closeshares(3), getshares(3), getshput(3), putshares(3), sharesfile(3).

SHARE 648

IOS.OUT (3I+) IOS.OUT (3I+)

NAME
ostream - formatted and unformatted output

SYNOPSIS
#include <iostream.h>
typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app } ;
// and lots of other stuff ...
} ;

class ostream : ios {
public:

ostream& flush();
int opfx();
ostream& put(char c);
ostream& seekp(streampos pos);
ostream& seekp(streamoff off, seek_dir d);
streampos tellp();
ostream& write(const char∗ ptr,int n);
ostream& write(const unsigned char∗ ptr, int n);
ostream& operator<<(const char∗);
ostream& operator<<(char);
ostream& operator<<(short);
ostream& operator<<(int a);
ostream& operator<<(long);
ostream& operator<<(double);
ostream& operator<<(unsigned char);
ostream& operator<<(unsigned short);
ostream& operator<<(unsigned int);
ostream& operator<<(unsigned long);
ostream& operator<<(void∗);
ostream& operator<<(const streambuf&);
ostream& operator<<(ostream& (∗)(ostream&));

};
class ostream_withassign {

ostream_withassign();
istream& operator=(istream&);
istream& operator=(streambuf∗);

};
extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;
ostream& endl(ostream& i) ;
ostream& ends(ostream& i) ;
ostream& flush(ostream& i) ;

DESCRIPTION
istreams support insertion (storing) into an streambuf. These are commonly refered to as output
operations.

Assume:
— outs is an ostream.
— outswa is an ostream_withassign.
— outsp is an ostream∗.
— c is a char.
— ptr is a char∗ or unsigned char∗.
— sb is a streambuf∗

C++ Stream Library 649

IOS.OUT (3I+) IOS.OUT (3I+)

— i and n are int.
— pos is a streampos.
— off is a streamoff.
— dir is a seek_dir.
— manip is a function with type ostream& (∗)(ostream&).

Constructors and assignment:

ostream(sb)
Initializes ios state variables and associates stream with buffer sb. ostream_withassign() Does
no initialization. This allows a file static variable of this type (cout for example) to be used be-
fore it is constructed provided it is assigned to first.

outswa=sb
Associates sb with swa and initializes the entire state of outswa.

inswa=ins
Associates ins->rdbuf() with swa and initializes the entire state of outswa. The inserters:

outs<<x
First call outs.opfx(). If that returns 0 do nothing. Otherwise insert a sequence of characters
representing x into outs.rdbuf(). Errors are indicated by setting the error state of outs. outs is
always returned.

x is converted into a sequence of characters (its representation) according to rules that depend on
x’s type and outs’s format state variables (see ios(3C++)):

char∗
The representation is the sequence of characters up to (but not including) the terminat-
ing null of the string x points at.

any integral type
If x is positive the representation contains a sequence of decimal, octal, or hexadecimal
digits with no leading zeros according to whether outs.convbase() is 10, 8, or 16 respec-
tively. If x is zero the representation is a single zero character(0). If x is negative, deci-
mal conversion converts is to a minus sign (-) followed by decimal digits. The other
conversions treat all values as unsigned. A value of 0 for outs.convbase() also causes
decimal conversion. The effect of other values of outs.convbase() is undefined. If
outs.showbase() is non-zero the hex representation contains 0x before the hex digits. If
outs.showbase() is non-zero the octal representation contains a leading 0.

void∗
Pointers are cast to integral values and then converted to hexadecimal numbers as if
outs.showbase() were set.

float, double
The arguments are converted according to the current values of outs.precision(),
outs.floatfmt(), and outs.width() using the printf formatting conventions for
"%floatfmt". The default values for outs.floatfmt() and outs.precision() are g and 6
respectively.

After the representation is determined, padding occurs. If outs.width() is greater than 0 and the
representation contains less than outs.width() characters, then enough outs.fill() characters are
added to bring the total number of characters to ios.width(). If ios.ladjust() is non-zero the se-
quence is left adjusted. That is, characters are added after the characters determined above. Oth-
erwise the padding is added before the characters determined above. ios.width() is reset to 0, but
all other format state variables are unchanged. The resulting sequence (padding plus representa-
tion) is inserted into outs.rdbuf().

outs<<sb
If outs.opfx() returns non-zero the sequence of characters that can be fetched from sb are in-
serted into outs.rdbuf. Insertion stops when no more characters can be fetcheded from sb. No
padding is performed. Always return outs.

Other members:

C++ Stream Library 650

IOS.OUT (3I+) IOS.OUT (3I+)

i=outs.opfx()
If outs’s error state is nonzero returns immediately. If outs.tie() is non-null flush it. Returns
non-zero except when outs’es error state is nonzero.

outsp=&outs.flush()
storing characters into a streambuf does not always cause them to be consumed (e.g., written to
the external file) immediately. flush causes any characters that may have been stored but not yet
consumed to be consumed by calling outs.rdbuf()->sync.

outs<<manip
Equivalent to manip(outs). Syntactically this looks like an insertion operation, but semantically
it does an arbitrary operations rather than converting manip to a sequence of characters as do the
insertion operators.

Unformatted output functions:

outsp=&outs.put(c)
Inserts c into outs.rdbuf(). Sets the error state if the insertion fails.

outsp=&outs.write(s,n)
Inserts the n characters starting at s into outs.rdbuf(). These characters may include zeros (i.e., s
need not be a null terminated string).

Positioning functions:

outsp=&ins.seekp(off,dir)
Repositions outs.rdbuf()’s put pointer. See sbuf.pub(3C++) for a discussion of positioning.

outsp=&outs.seekp(pos)
Repositions outs.rdbuf()’s put pointer. See sbuf.pub(3C++) for a discussion of positioning.

pos=outs.tellp()
The current position of outs.rdbuf()’s put pointer. See sbuf.pub(3C++) for a discussion of posi-
tioning.

Manipulators:

outs<<endl
Ends a line by inserting a newline character and flushing.

outs<<ends
Ends a string by inserting a null(0) character.

outs<<flush
Flushes outs

SEE ALSO
ios(3C++) sbuf.pub(3C++) manip(3C++)

C++ Stream Library 651

PERROR(3) Library Functions Manual PERROR(3)

NAME
perror, sys_errlist, sys_nerr − system error messages

SYNOPSIS
perror(s)
char ∗s;

int sys_nerr;
char ∗sys_errlist[];

DESCRIPTION
Perror produces a short error message on the standard error file describing the last error encountered dur-
ing a call to the system from a C program. First the argument string s is printed, then a colon, then the
message and a new-line. The error number is taken from the external variable errno (see intro(2)), which
is changed only when errors occur.

Sys_errlist is a vector of message strings. Errno can be used as an index in this table to get the message
string without the newline. Sys_nerr is the number of messages in the table.

SEE ALSO
intro(2)

652

PICFILE(3X) PICFILE(3X)

NAME
picopen_r, picopen_w, picread, picwrite, picclose, picputprop, picgetprop, picunpack, picpack, picerror -
picture file I/O

SYNOPSIS
#include <picfile.h>

PICFILE ∗picopen_r(name)
char ∗name;

PICFILE ∗ picopen_w(name, type, x0, y0, w, h, chan, argv, cmap)
char ∗name, ∗type, ∗chan, ∗argv[], ∗cmap;

int picread(pf, buf)
PICFILE ∗pf;
char ∗buf;

int picwrite(pf, buf)
PICFILE ∗pf;
char ∗buf;

void picclose(pf)
PICFILE ∗pf;

PICFILE ∗ picputprop(pf, name, value)
PICFILE ∗pf;
char ∗name, ∗value;

char ∗ picgetprop(pf, name)
PICFILE ∗pf;
char ∗name;

void picunpack(pf, pix, fmt, arg ...)
PICFILE ∗pf;
char ∗pix, ∗fmt;

void picpack(pf, pix, fmt, arg ...)
PICFILE ∗pf;
char ∗pix, ∗fmt;

void picerror(string)
char ∗string;

DESCRIPTION
These functions read and write raster images in picfile(5) format. They are loaded by option -lpicfile of
ld(1). Open picture files are referred to by pointers of type PICFILE∗.

Picopen_r opens the named picfile for reading and returns a pointer to the open file. If name is "IN",
standard input is used.

Picopen_w similarly creates the named image file for writing. The name "OUT" refers to standard out-
put. Type is a TYPE attribute, as described in picfile(5); x0 and y0 are the upper left coordinates of the
WINDOW attribute; w and h are the image width and heigth in pixels. Chan is a string specifying the
order of channels for the CHAN attribute; the length of this string becomes the value of NCHAN. Argv,
if nonzero, is conventionally the second argument of the main program; see exec(2). It becomes a COM-
MAND attribute recording the provenance of the file.

The special call picopen_w(name, PIC_SAMEARGS(pf)) creates a file with the same attributes as an
already open picfile. PIC_SAMEARGS mentions argv by name, hence the name must be visible at the
point of call.

Picread and picwrite read or write a single row of pixels using the character array buf. The length of the
row is determined from the file’s WINDOW and NCHAN attributes. One-bit-per-pixel images (of type
bitmap or ccitt-g4, for example) are decoded to one byte per pixel, 0 for black, 255 for white, and are
encoded as 1 for pixel values less than 128 and 0 otherwise. Files of type ccir601 are decoded into con-
ventional rgb channels.

653

PICFILE(3X) PICFILE(3X)

Picclose closes a picfile and frees associated storage.

Picputprop called after picopen_w but before picwrite adds header attributes, returning a (probably
changed) value of the PICFILE pointer.

Picgetprop returns a pointer to the value of the named attribute, or 0 if the picfile does not have the
attribute. In both Picputprop and picgetprop, with multiple appearances (e.g. COMMAND) are
expressed as a sequence of values separated by newlines.

The header file defines macros to extract commonly-used attributes:

PIC_NCHAN(pf), PIC_WIDTH(pf), PIC_HEIGHT(pf),
PIC_SAMEARGS(pf) (see picopen_w)

Picunpack extracts the channels of pixel array pix into separate array args of types described by the fmt
character string. Format characters are c, s, l, f, d, for arrays of types unsigned char, short, long, float, and
double. Format character _ designates a picfile channel to be skipped. Picpack reverses the process.
These routines effect a standard machine-independent byte ordering.

Picerror prints messages for errors resulting from calls to picfile routines. (Perror(3) cannot describe
some error conditions, like malformed header lines.)

EXAMPLES
Unpack the green and z channels from a file with channels rgbz...

PICFILE ∗pf = picopen_r("file");
extern char pixels[], green[][1000];
extern float zdepth[][1000];
for(i=0; picread(pf, pixels); i)

picunpack(pf, pixels, "_c_f", green[i], zdepth[i]);

Reflect a picture about its vertical midline.
PICFILE ∗in = picopen_r("picture");
PICFILE ∗out = picopen_w("OUT", PIC_SAMEARGS(in));
int w = PIC_WIDTH(in);
int n = PIC_NCHAN(in);
char ∗buffer = malloc(w∗n), ∗temp = malloc(n);
while (picread(in, buffer)) {

char ∗left = buffer;
char ∗right = buffer + n∗(w - 1);
for(; left<right; left+=n, right-=n) {

strncpy(temp, left, n);
strncpy(left, right, n);
strncpy(right, temp, n);

}
picwrite(out, buffer);

}

SEE ALSO
picfile(5), pico(1), bcp(1)

DIAGNOSTICS
Picread returns 1 on success, 0 on end of file or error.
Picopen_r and picopen_w return 0 for unopenable files.

BUGS
Picpack and picunpack store and retrieve floating point channels (types f and d) using native floating-
point, rather than something machine independent like IEEE format.

654

PIPEBUF(3I+) PIPEBUF(3I+)

NAME
pipebuf - streambuf specialized as circular queue

SYNOPSIS
#include <iostream.h>
#include <pipestream.h>
class pipebuf : streambuf {

pipebuf();
int empty();
int full();
streambuf∗ setbuf(char∗ ptr, int len);

} ;

DESCRIPTION
A pipebuf uses its reserve area to support a circular queue of characters. In terms of the abstract notion
of buffer a pipebuf is a potentially infinite sequence in which the put pointer and get pointer move inde-
pendently. The put pointer is always at the end of the sequence, and puts extend the sequence. As long as
the get pointer remains behind the put pointer, but not too far behind, fetching and storing can continue in-
definitely. Seeks are not supported.

Assume
— pb is a pipebuf.
— ptr is a char∗.
— i and len are an int.
— sb is streambuf∗.

Constructor:

pipebuf()
Constructs an empty buffer.

Members:

i=pb.empty()
Returns non-zero if the get pointer is at the end of the sequence, and attempts to get characters
will therefore fail.

i=pb.full()
Returns non-zero if there is no more room for putting characters. In the current implementation,
the capacity of the buffer is one less than the size of the reserve area.

sb=pb.setbuf(ptr,len)
Establishes the len bytes starting at ptr as the reserve area. Normally it will return &pb. But it
will return a null pointer if it fails. Failure occurs if pb.empty() is zero, or if len is less than 2.

CAVEATS
There ought to be a version with an unbounded capacity.

SEE ALSO
streambuf(3C++) pipestream(3C++)

C++ Stream Library 655

PIPESTREAM(3I+) PIPESTREAM(3I+)

NAME
pipestream - iostream specialized as circular buffer

SYNOPSIS
#include <iostream.h>
#include <pipestream.h>
class pipestream : public iostream {
public:

pipestream();
pipestream(char∗ ptr, int len);

pipebuf∗ rdbuf();
} ;

DESCRIPTION
pipestream specializes iostream to use a circular buffer (pipebuf).

Assume
— ps is a pipestream.
— ptr is a char∗.
— len is an int.
— pb is a pipebuf∗.

Constructors:

pipestream()
Constructs a pipestream with an empty pipebuf.

pipestream(ptr,len)
Constructs a pipestream with a pipebuf that uses the len bytes at ptr as a reserve area.

Members:

pb=ps.rdbuf()
Returns the associated pipebuf. pipebuf::rdbuf has the same semantics as streambuf::rdbuf,
but the type of the result is more precise.

SEE ALSO
pipebuf(3C++) ios(3C++)

C++ Stream Library 656

PLOT (3) Library Functions Manual PLOT (3)

NAME
vec, move, etc. − plot graphics interface

SYNOPSIS
#include <plot.h>

openpl(s)
char ∗s;

closepl()

erase()

move(x, y)
double x, y;

rmove(dx, dy)
double dx, dy;

point(x, y)
double dx, dy;

vec(x, y)
double x, y;

rvec(dx, dy)
double dx, dy;

line(x1, y1, x2, y2)
double x1, y1, x2, y2;

arc(x1, y1, x2, y2, x, y, r)
double x1, y1, x2, y2, x, y, r;

circle(xc, yc, r)
double xc, yc, r;

box(x1, y1, x2, y2)
double x1, y1, x2, y2;

sbox(x1, y1, x2, y2)
double x1, y1, x2, y2;

parabola(x1, y1, x2, y2, x3, y3)
double x1, y1, x2, y2, x3, y3;

fill(n, arr) int n[];
double ∗arr[];

poly(n, arr) int n[];
double ∗arr[];

spline(n, arr)
int n[];
double ∗arr[];

cspline(n, arr)
int n[];
double ∗arr[];

fspline(n, arr)
int n[];
double ∗arr[];

lspline(n, arr)
int n[];
double ∗arr[];

dspline(n, arr)
int n[];

657

PLOT (3) Library Functions Manual PLOT (3)

double ∗arr[];

text(s)
char ∗s;

color(s)
char ∗s;

cfill(s)
char ∗s;

pen(s)
char ∗s;

range(x1, y1, x2, y2)
double x1, y1, x2, y2;

frame(x1, y1, x2, y2)
double x1, y1, x2, y2;

grade(x)
double x;

save()

restore()

ppause()

DESCRIPTION
These functions generate either a device-independent graphic stream (see plot(5)) or device-dependent
graphics commands. The include file <plot.h> is used only for device-independent output. An alternative
include file, <iplot.h>, supports device-independent output using identically named functions of integer,
instead of double, arguments.

Libraries for different devices are loaded with the following ld(1) flags:

-lplot general stream output

-l2621
HP2621 terminal

-l4014
Tektronix 4014 terminal

-ltr Troff input, tuned for the Mergenthaler Linotron 202 phototypesetter

-lpen HP7580 pen plotter

-l5620
5620 terminal running mux

String arguments are null-terminated and may not contain embedded newlines. For details on string argu-
ments, see plot(5). Poly, fill, and the various spline functions take an integer array and an array of pointers
to double floating point arrays. The integers specify the number of vertices (x-y pairs) in the floating
point array. The last integer entry should be 0.

SEE ALSO
plot(1), plot(5)

BUGS
The -ltr library should be tuned for PostScript.

658

POLY (3) Library Functions Manual POLY (3)

NAME
poly_lk, poly_read − polyhedron database routines

SYNOPSIS
#include <poly.h>

int poly_lk(name)
char ∗name;

int poly_read(p, dir, n)
Polyhedron ∗p;
char ∗dir;

DESCRIPTION
These routines access the poly(7) database of polyhedra.

Poly_lk tries to interpret name as a polyhedron reference. If it is a number, it returns that number. Other-
wise, it returns the number of the first polyhedron for which name is a prefix of the polyhedron’s name.

Poly_read forms an in-core description of the polyhedron number n in the directory dir. If dir is 0, the
normal directory (/usr/lib/polyhedra) is used.

SEE ALSO
poly(5), poly(7)

DIAGNOSTICS
Poly returns -1 on unknown names.

Poly_read returns zero on success, nonzero on error.

659

POOL(3+) POOL(3+)

NAME
pool - fast memory allocation

SYNOPSIS
#include <Pool.h>

struct Pool {
Pool(unsigned);
Pool();
void∗ alloc();
void free(void∗)

};

DESCRIPTION
Every Pool is a collection of elements, each of which is an array of bytes. All elements of a pool are the
same size. Pool functions are

Pool(n) Construct a pool whose elements are of size n.

p.alloc() Allocate a new element in pool p. Return a pointer to the element.

p.free(ep) Free the element of p pointed to by ep. The element must have been allocated from
p.

Destroying a pool frees all the memory occupied by its elements.

The memory in a pool element is aligned on the same boundary as memory returned by malloc(3) so that
it may be used to contain an object of any type. In typical use, there would be one pool per class, with the
pool known only to the new and delete operators of that class.

Performance
Pool memory is allocated in chunks that are typically about 1,000 bytes each. Once a chunk is allocated
to a particular pool, that chunk is only released when the pool itself is destroyed.

Elements are allocated inline except when a new chunk must be added to the pool. Elements are always
freed inline.

EXAMPLES
#include <Pool.h>

struct Mytype {
static Pool mypool;
// constructors and members
void∗ operator new(unsigned) { return mypool.alloc(); }
void operator delete(void∗ p) { mypool.free(p); }

};

Pool Mytype::mypool(sizeof(Mytype));

SEE ALSO
malloc(3)

660

POPEN (3S) POPEN (3S)

NAME
popen, ppopen, vepopen, pclose − open a pipe to/from a process

SYNOPSIS
#include <stdio.h>

FILE ∗ popen(command, type)
char ∗command, ∗type;

FILE ∗ ppopen(command, type)
char ∗command, ∗type;

FILE ∗ vepopen(command, type, args, env)
char ∗command, ∗type, ∗∗args, ∗∗env;

int pclose(stream)
FILE ∗stream;

DESCRIPTION
The first argument to popen is a pointer to a null-terminated string containing a command line for sh(1).
Type is as in fopen(3). Popen creates a pipe between the calling process and the command and returns a
stream pointer that can be used to write to the standard input of the command or to read from the standard
output.

Ppopen uses the -p shell flag to restrict the environment of the shell. Both popen and ppopen set the ef-
fective userid to the real userid before calling the shell.

Vepopen has arguments akin to those of execve (see exec(2)): a file to be executed, a mode as above, a
null-terminated vector of argument strings, and a null-terminated vector of environment strings. The shell
is not called, and the effective userid is preserved.

A stream opened by these routines should be closed by pclose, which waits for the associated process to
terminate and returns the exit status of the command.

Because the command inherits open files, in particular standard input and output, a type "r" call may be
used to insert a filter in the input, and type "w" in the output.

SEE ALSO
exec(2), pipe(2), fopen(3), stdio(3), system(3)

DIAGNOSTICS
Popen returns a null pointer if files or processes cannot be created, or the Shell cannot be accessed.

Pclose returns -1 if there is no process to wait for.

BUGS
Buffered reading before opening an input filter may leave the standard input of that filter mispositioned.
Similar problems with an output filter may be forestalled by calling fflush; see fopen(3).
The resetting of the userid is probably gratuitous; it is there as a defense against incautious use of the rou-
tine by set-uid programs.
I/O type "r+w" exists but is not useful.

661

PORT (3X) PORT (3X)

NAME
port − mathematical library for Fortran

DESCRIPTION
The Port library of hundreds of scientific subroutines covers approximation, ordinary differential equa-
tions, partial differential equations, linear algebra, optimization and mathematical programming, quadra-
ture, differentiation, roots, special functions, and transforms. It is built upon a framework of service rou-
tines for error handling, stack management, and machine constant parameterization.

The routines are loaded by the ld(1) option -lport.

The manual describes the software and gives examples.

SEE ALSO
P. A. Fox, The PORT Mathematical Subroutine Library, AT&T Bell Laboratories, May 8, 1984.
P. A. Fox, The PORT Mathematical Subroutine Library Installation Manual, AT&T Bell Laboratories,
September, 1984.

662

PRINT (3) Library Functions Manual PRINT (3)

NAME
print, fprint, sprint, fmtinstall − print formatted output

SYNOPSIS
int print(format [, arg] ...)
char ∗format;

int fprint(fildes, format [, arg] ...)
int fildes;
char ∗format;

int sprint(s, format [, arg] ...)
char ∗s, ∗format;

fmtinstall(c, fn)
char c;
int (∗fn)();

strconv(s, f1, f2)
char ∗s;

extern int printcol;

DESCRIPTION
Print places output on the standard output. Fprint places output on the named output file descriptor; a
buffered form is described in fio(3). Sprint places output followed by the null character (\0) in consecu-
tive bytes starting at s; it is the user’s responsibility to ensure that enough storage is available. Each func-
tion returns the number of characters transmitted (not including the \0 in the case of sprint), or a negative
value if an output error was encountered.

Each of these functions converts, formats, and prints its trailing arguments under control of a format
string. The format contains two types of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which results in fetching of zero or more arguments. The
results are undefined if there are arguments of the wrong type or too few arguments for the format. If the
format is exhausted while arguments remain, the excess are ignored.

Each conversion specification has the following format

% [flags] [[−] digits [. digits]] verb

The flags modify the meaning of the conversion verb. The first (possibly negative) number is called f1,
the second number is f2. The flags and numbers are arguments to the verb described below.

The numeric verbs d, o, and x format their arguments in decimal, octal and hex respectively. Each inter-
prets the flags h, l, u, to mean short, long, and unsigned. If neither short nor long is specified, then the arg
is an int. If unsigned is specified, then the arg is interpreted as a positive number and no sign is output.
F1 is the minimum field width and, if negative, means left justified rather than right justified; in both
cases, padding is done with blanks. The converted number is padded with 0 on the left to at least f2 char-
acters.

The floating point verbs f, e, and g take a double argument. No flags apply to floating point conversions.
F1 is the minimum field width and, if negative, means left justified. F2 is the number of digits that are
converted after the decimal place. The first unconverted digit has suffered decimal rounding. The f verb
produces output of the form [-]digits[.digits]. e conversion appends an exponent e[-]digits. The g verb
will output the arg in either e or f with the goal of producing the smallest output.

The s verb copies a string (pointer to character) to the output. The number of characters copied (n) is the
minimum of the size of the string and f2. These n characters are justified within a field of f1 characters
as described above.

The c verb copies a single character (int) justified within a field of f1 characters as described above.

Fmtinstall is used to install your own conversions and flags. Fn should be declared as
int fn(o, f1, f2, f3)
void ∗o;
int f1, f2, f3;

Fn is passed a pointer o to whatever argument appears in the list to print. Fn should return the size of the

663

PRINT (3) Library Functions Manual PRINT (3)

argument in bytes so print can skip over it. F1 and f2 are the decoded numbers in the conversion. A
missing f1 is denoted by the value zero. A missing f2 is denoted by a negative number. F3 is the logical
or of all the flags seen in the conversion. If c is a flag, fn should return a negative number that is negated
and then logically ored with any other flags and ultimately passed to a conversion routine. All interpreta-
tion of f1, f2, and f3 is left up to the conversion routine. The standard flags are h(2), l(1), and u(4).

Sprint is designed to be recursive in order to help prepare output in custom conversion routines.

The output of any conversion routine must be passed through strconv. S is the character string, f1 and f2
have the same meaning as above.

Printcol indicates the position of the next output character. Tabs, backspaces and carriage returns are
interpreted appropriately.

EXAMPLES
This adds a verb to print complex numbers.
typedef struct {

double r, i;
} complex;
complex x = { 1.5, -2.3 };
int Xconv();
main()
{

fmtinstall(’X’, Xconv);
print("x = %X\n", x);

}
Xconv(o, f1, f2, f3)

complex ∗o;
{

char str[50];
sprint(str, "(%g,%g)", o->r, o->i);
strconv(str, f1, f2);
return(sizeof(complex));

}

SEE ALSO
fio(3), printf(3)

BUGS
There are internal buffers which may overflow silently.

664

PRINTF(3S) PRINTF(3S)

NAME
printf, fprintf, sprintf, snprintf − print formatted output

SYNOPSIS
#include <stdio.h>

int printf(char ∗ format, ...);

int fprintf (FILE ∗ stream, char ∗ format, ...);

int sprintf (char ∗ s, char ∗ format, ...);

int snprintf (char ∗ s, int len, char ∗ format, ...);

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places output on the named output
stream. Sprintf places output followed by the null character (\0), in consecutive bytes starting at s; it is
the user’s responsibility to ensure that enough storage is available. Snprintf corresponds to sprintf except
that no more than len bytes are placed into s. Each function returns the number of characters transmitted
(not including the \0 in the case of sprintf), or a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its trailing arguments under control of a format
string. The format contains two types of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which results in fetching of zero or more arguments. The
results are undefined if there are arguments of the wrong type or too few arguments for the format. If the
format is exhausted while arguments remain, the excess are ignored.

Each conversion specification is introduced by the character %. After the %, the following appear in se-
quence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value has
fewer characters than the field width, it is padded to the field width. When the width specifica-
tion begins with zero, padding is with leading zeros. Otherwise padding is with leading spaces
(trailing spaces, with the left-adjustment flag -, described below) to the field width.

A precision that gives the minimum number of digits to appear for the d, o, u, x, or X conver-
sions, the number of digits to appear after the decimal point for the e and f conversions, the maxi-
mum number of significant digits for the g conversion, or the maximum number of characters to
be printed from a string in s conversion. The precision takes the form of a period (.) followed by
a decimal digit string; a null digit string is treated as zero.

An optional l (ell) specifying that a following d, o, u, x, or X conversion character applies to a
long integer arg. An l before any other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (∗) or an exclamation point (!) instead of a
digit string. In this case, an integer arg supplies the field width or precision.

The flag characters and their meanings are:
- The result of the conversion is left-justified within the field.
+ The result of a signed conversion always begins with a sign (+ or -).
blank If the first character of a signed conversion is not a sign, a blank is prefixed to the result. This

implies that if the blank and + flags both appear, the blank flag is ignored.
This flag specifies that the value is to be converted to an ‘‘alternate form.’’ For c, d, s, and u

conversions, the flag has no effect. For o conversion, it increases the precision to force the
first digit of the result to be a zero. For x or X conversion, a non-zero result has 0x or 0X
prefixed to it. For e, E, f, g, and G conversions, the result always contains a decimal point,
even if no digits follow the point (normally, a decimal point appears in the result of these con-
versions only if a digit follows it). For g and G conversions, trailing zeros are not be
removed from the result as they normally are.

The conversion characters and their meanings are:

665

PRINTF(3S) PRINTF(3S)

[CB]d,[CB]o,[CB]u,[CB]x,[CB]X
The integer arg is converted to signed decimal, unsigned octal, decimal, or hexadecimal nota-
tion (x and X), respectively; the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it is expanded with
leading zeros. (For compatibility with other versions of printf , a field width with a leading
zero results in padding with leading zeros. This does not imply an octal value for the field
width.) The default precision is 1. The result of converting a zero value with a precision of
zero is a null string.

f The float or double arg is converted to decimal notation in the style [-]d.ddd, where the num-
ber of digits after the decimal point is equal to the precision specification. If the precision is
missing, six digits are output; if the precision is explicitly 0, no decimal point appears.

e, E The float or double arg is converted in the style [-]d.ddde±dd, where there is one digit before
the decimal point and the number of digits after it is equal to the precision; when the preci-
sion is missing, six digits are produced; if the precision is zero, no decimal point appears.
The E format code produces a number with E instead of e introducing the exponent. The
exponent always contains at least two digits.

g, G The float or double arg is printed in style f or e (or in style E in the case of a G format code),
with the precision specifying the number of significant digits. The style used depends on the
value converted: style e is used only if the exponent resulting from the conversion is less than
-4 or greater than the precision. Trailing zeros are removed from the result; a decimal point
appears only if it is followed by a digit. Precision 0 yields a result with just enough signifi-
cance to round to exactly the original value when converted back to binary as by scanf(3).

c The character argument is printed.
s The argument is taken to be a string (character pointer) and characters from the string are

printed until a null character (\0) is encountered or the number of characters indicated by the
precision specification is reached. If the precision is missing, it is taken to be infinite, so all
characters up to the first null character are printed. A zero value for the argument yields
undefined results. (For compatibility with other versions of printf , a field width with a lead-
ing zero results in zero-padding the string instead of blank-padding it. This does not imply an
octal value for the field width.)

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion
is wider than the field width, the field is simply expanded to contain the conversion result. Characters
generated by printf and fprintf are printed as if putc had been called; see getc(3).

EXAMPLES
printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min); Print a date and time in the
form ‘Sunday, July 3, 10:02’, where weekday and month are pointers to null-terminated strings.

printf("pi = %.5f", 4∗ atan(1.0)); Print π to 5 decimal places.

SEE ALSO
ecvt(3), scanf(3), stdio(3), print(3)

BUGS
The ! indicator for field width is nonstandard.

666

PROJ(3X) PROJ(3X)

NAME
orient, normalize - map projections

SYNOPSIS
orient(lat, lon, rot)
double lat, lon, rot;

normalize(p)
struct place ∗p;

DESCRIPTION
Users of map(7) may skip to the description of ‘Projection generators’ below.

The functions orient and normalize plus a collection of map projection generators are loaded by option
-lmap of ld(1). Most of them calculate maps for a spherical earth. Each map projection is available in
one standard form, into which data must be normalized for transverse or nonpolar projections.

Each standard projection is displayed with the Prime Meridian (longitude 0) being a straight vertical line,
along which North is up. The orientation of nonstandard projections is specified by orient. Imagine a
transparent gridded sphere around the globe. First turn the overlay about the North Pole so that the Prime
Meridian (longitude 0) of the overlay coincides with meridian lon on the globe. Then tilt the North Pole
of the overlay along its Prime Meridian to latitude lat on the globe. Finally again turn the overlay about
its ‘North Pole’ so that its Prime Meridian coincides with the previous position of (the overlay’s) meridian
rot. Project the desired map in the standard form appropriate to the overlay, but presenting information
from the underlying globe. It is not useful to use orient without using normalize.

Normalize converts latitude-longitude coordinates on the globe to coordinates on the overlaid grid. The
coordinates and their sines and cosines are input to normalize in a place structure. Transformed coordi-
nates and their sines and cosines are returned in the same structure.

struct place {
double radianlat, sinlat, coslat;
double radianlon, sinlon, coslon;

};

The projection generators return a pointer to a function that converts normalized coordinates to x-y coor-
dinates for the desired map, or 0 if the required projection is not available. The returned function is exem-
plified by proj in this example:

struct place pt;
int (∗proj)() = mercator();
double x, y;

orient(45.0, 30.0, 180.0); /∗ set coordinate rotation ∗/

. . . /∗ fill in the pt structure ∗/
normalize(&pt); /∗ rotate coordinates ∗/
if((∗proj)(&pt, &x, &y) > 0) /∗ project onto x,y plane ∗/

plot(x, y);

The projection function (∗proj)() returns 1 for a good point, 0 for a point on a wrong sheet (e.g. the back
of the world in a perspective projection), and -1 for a point that is deemed unplottable (e.g. points near the
poles on a Mercator projection).

Scaling may be determined from the x-y coordinates of selected points. Latitudes and longitudes are mea-
sured in degrees for ease of specification for orient and the projection generators but in radians for ease of
calculation for normalize and proj. In either case latitude is measured positive north of the equator, and
longitude positive west of Greenwich. Radian longitude should be limited to the range -π≤lon<π.

Projection generators
Equatorial projections centered on the Prime Meridian (longitude 0). Parallels are straight horizontal
lines.

mercator() equally spaced straight meridians, conformal, straight compass courses
sinusoidal() equally spaced parallels, equal-area, same as bonne(0)
cylequalarea(lat0) equally spaced straight meridians, equal-area, true scale on lat0

bowell 667

PROJ(3X) PROJ(3X)

cylindrical() central projection on tangent cylinder
rectangular(lat0) equally spaced parallels, equally spaced straight meridians, true scale on lat0
gall(lat0) parallels spaced stereographically on prime meridian, equally spaced straight meridi-
ans, true scale on lat0
mollweide() (homalographic) equal-area, hemisphere is a circle

Azimuthal projections centered on the North Pole. Parallels are concentric circles. Meridians are equally
spaced radial lines.

azequidistant() equally spaced parallels, true distances from pole
azequalarea() equal-area
gnomonic() central projection on tangent plane, straight great circles
perspective(dist) viewed along earth’s axis dist earth radii from center of earth
orthographic() viewed from infinity
stereographic() conformal, projected from opposite pole
laue() radius = tan(2×colatitude), used in xray crystallography
fisheye(n) stereographic seen from just inside medium with refractive index n
newyorker(r) radius = log(colatitude/r): extreme ‘fisheye’ view from pedestal of radius r de-
grees

Polar conic projections symmetric about the Prime Meridian. Parallels are segments of concentric circles.
Except in the Bonne projection, meridians are equally spaced radial lines orthogonal to the parallels.

conic(lat0) central projection on cone tangent at lat0
simpleconic(lat0,lat1) equally spaced parallels, true scale on lat0 and lat1
lambert(lat0,lat1) conformal, true scale on lat0 and lat1
albers(lat0,lat1) equal-area, true scale on lat0 and lat1
bonne(lat0) equally spaced parallels, equal-area, parallel lat0 developed from tangent cone

Projections with bilateral symmetry about the Prime Meridian and the equator.
polyconic() parallels developed from tangent cones, equally spaced along Prime Meridian
aitoff() equal-area projection of globe onto 2-to-1 ellipse, based on azequalarea
lagrange() conformal, maps whole sphere into a circle
bicentric(lon0) points plotted at true azimuth from two centers on the equator at longitudes
±lon0, great circles are straight lines (a stretched gnomonic projection)
elliptic(lon0) points are plotted at true distance from two centers on the equator at longitudes
±lon0
globular() hemisphere is circle, circular arc meridians equally spaced on equator, circular arc
parallels equally spaced on 0- and 90-degree meridians
vandergrinten() sphere is circle, meridians as in globular, circular arc parallels resemble merca-
tor

Doubly periodic conformal projections.
guyou() W and E hemispheres are square
square() world is square with Poles at diagonally opposite corners
tetra() map on tetrahedron with edge tangent to Prime Meridian at S Pole, unfolded into equilat-
eral triangle
hex() world is hexagon centered on N Pole, N and S hemispheres are equilateral triangles

Miscellaneous projections.
harrison(dist,angle) oblique perspective from above the North Pole, dist earth radii from center
of earth, looking along the Date Line angle degrees off vertical
trapezoidal(lat0,lat1) equally spaced parallels, straight meridians equally spaced along parallels,
true scale at lat0 and lat1 on Prime Meridian

Retroazimuthal projections. At every point the angle between vertical and a straight line to ‘Mecca’, lati-
tude lat0 on the prime meridian, is the true bearing of Mecca.

mecca(lat0) equally spaced vertical meridians
homing(lat0) distances to ‘Mecca’ are true

Maps based on the spheroid. Of geodetic quality, these projections do not make sense for tilted orienta-
tions. For descriptions, see corresponding maps above.

bowell 668

PROJ(3X) PROJ(3X)

sp_mercator()
sp_albers(lat0,lat1)

SEE ALSO
map(7), map(5), plot(3)

BUGS
Only one projection and one orientation can be active at a time.
The west-longitude-positive convention betrays Yankee chauvinism.

bowell 669

PUTSHARES(3) Library Functions Manual PUTSHARES(3)

NAME
putshares - write shares file entry

SYNOPSIS
#include <shares.h>

int putshares(lp, extime)
struct lnode ∗ lp;
unsigned long extime;

DESCRIPTION
Putshares writes the shares entry with the same uid as lp->l_uid . Putshares returns -1 if any error occurs,
0 if lp->l_uid is greater than MAXUID , or the size of the entry if succesfully written.

SEE ALSO
closeshares(3), getshares(3), getshput(3), openshares(3), sharesfile(3).

DIAGNOSTICS
Putshares returns 0 if lp->l_uid is greater than MAXUID , or -1 on error.

SHARE 670

QSORT (3) Library Functions Manual QSORT (3)

NAME
qsort − quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char ∗base;
int (∗compar)();

DESCRIPTION
Qsort (quicker sort) sorts an array into nondecreasing order. The first argument is a pointer to the base of
the data; the second is the number of elements; the third is the width of an element in bytes; the last is the
name of a comparison routine to be called with pointers to elements being compared. It should be de-
clared as

compar(a, b)
char ∗a, ∗b;

The routine must return an integer less than, equal to, or greater than 0 according as the first argument is
to be considered less than, equal to, or greater than the second.

SEE ALSO
sort(1)

671

RAND(3) Library Functions Manual RAND(3)

NAME
rand, lrand, frand, nrand, srand − random number generator

SYNOPSIS
int rand()

long lrand()

double frand()

int nrand(val)
int val;

srand(seed)
int seed;

DESCRIPTION
Rand uses a linear feedback random number generator to return uniform pseudo-random numbers x,
0≤x<2150, with period about 232.

Lrand returns a uniform long x, 0≤x<2310, with period about 248.

Frand returns a uniform double x, 0.0≤x<1.0, always a multiple of 2-31.

Nrand returns a uniform integer x, 0≤x<val.

The generators are initialized by calling srand with whatever you like as argument. To get a different
starting value each time,

srand((int)time((long ∗)0));

will work as long as it is not called more often than once per second.

BUGS
Rand and lrand are quite machine-dependent. Although frand and nrand are more portable, they appear
in few versions of Unix.

672

RE(3) Library Functions Manual RE(3)

NAME
re_bm, re_cw, re_re − string and pattern matching

SYNOPSIS
#include <re.h>

re_bm ∗ re_bmcomp(b, e, map)
char ∗b, ∗e;
unsigned char map[256];

int re_bmexec(pat, rdfn, matchfn)
re_bm ∗pat;
int (∗ rdfn)(), (∗matchfn)();

void re_bmfree(pat);
re_bm ∗pat;

re_cw ∗re_cwinit(map)
unsigned char map[256];

void re_cwadd(pat, b, e)
re_cw ∗pat;
char ∗b, ∗e;

void re_cwcomp(pat)
re_cw ∗pat;

int re_cwexec(pat, rdfn, matchfn)
re_cw ∗pat;
int (∗ rdfn)(), (∗matchfn)();

void re_cwfree(pat);
re_cw ∗pat;

re_re ∗ re_recomp(b, e, map)
char ∗b, ∗e;
unsigned char map[256];

re_reexec(pat, b, e, match)
re_re ∗pat;
char ∗b, ∗e, ∗match[10][2];

void re_refree(pat);
re_re ∗pat;

void re_error(str);
char ∗str;

DESCRIPTION
These routines search for patterns in strings. The re_re routines search for general regular expressions
(defined below) using a lazily evaluated deterministic finite automaton. The more specialized and faster
re_cw routines search for multiple literal strings using the Commentz-Walter algorithm. The still more
specialized and efficient re_bm routines search for a single string using the Boyer-Moore algorithm. The
routines handle strings designated by pointers to the first character of the string and to the character fol-
lowing the string.

To use the re_bm routines, first build a recognizer by calling re_bmcomp, which takes the search string
and a character map; all characters are compared after mapping. Typically, map is initialized by a loop
similar to
for(i = 0; i < 256; i++) map[i] = i;
and its value is no longer required after the call to
re_bmcomp.
The recognizer can be run (multiple times) by calling
re_bmexec,
which stops and returns the first non-positive return from either
rdfn

673

RE(3) Library Functions Manual RE(3)

or
matchfn.
The recognizer calls the supplied function
rdfn
to obtain input and
matchfn
to report text matching the search string.

Rdfn
should be declared as

int rdfn(pb, pe)
char ∗∗pb, ∗∗pe;

where ∗pb and ∗pe delimit an as yet unprocessed text fragment (none if ∗pb==∗pe) to be saved across
the call to rdfn. On return, ∗pb and ∗pe point to the new text, including the saved fragment. Rdfn returns
0 for EOF, negative for error, and positive otherwise. The first call to rdfn from each invocation of
re_bmexec has ∗pb==0.

Matchfn should be declared as

int matchfn(pb, pe)
char ∗∗pb, ∗∗pe;

where ∗pb and ∗pe delimit the matched text. Matchfn sets ∗pb, ∗pe, and returns a value in the same way
as rdfn.

To use the re_cw routines, first build the recognizer by calling re_cwinit, then re_cwadd for each string,
and finally re_cwcomp. The recognizer is run by re_cwexec analogously to re_bmexec.

A full regular expression recognizer is compiled by re_recomp and executed by re_reexec, which returns 1
if there was a match and 0 if there wasn’t. The strings that match subexpressions are returned in array
match using the above convention. match[0] refers to the whole matched expression. If match is zero,
then no match delimiters are set.

The routine re_error prints its argument on standard error and exits. You may supply your own version
for specialized error handling. If re_error returns rather than exits, the compiling routines (e.g.
re_bmcomp) will return 0.

The recognizers that these routines construct occupy storage obtained from malloc(3). The storage can be
deallocated by re_refree.

Regular Expressions
The syntax for a regular expression e0 is
e3: literal | charclass | ’.’ | ’ˆ’ | ’$’ | ’\’n | ’(’ e0 ’)’
e2: e3

| e2 REP
REP: ’∗’ | ’+’ | ’?’ | ’\{’ RANGE ’\}’
RANGE: int | int ’,’ | int ’,’ int
e1: e2

| e1 e2
e0: e1

| e0 ALT e1
ALT: ’|’ | newline

A literal is any non-metacharacter or a metacharacter (one of .∗+?[]()|\ˆ$) preceded by \.

A charclass is a nonempty string s bracketed [s] (or [ˆs]); it matches any character in (or not in) s. In s,
the metacharacters other than] have no special meaning, and] may only appear as the first letter. A sub-
string a-b, with a and b in ascending ASCII order, stands for the inclusive range of ASCII characters
between a and b.

A \ followed by a digit n matches a copy of the string that the parenthesized subexpression beginning
with the nth (, counting from 1, matched.

674

RE(3) Library Functions Manual RE(3)

A . matches any character.

A ˆ matches the beginning of the input string; $ matches the end.

The REP operators match zero or more (∗), one or more (+), zero or one (?), exactly m (\{m\}), m or more
(\{m,\}), and any number between m and n inclusive (\{m,n\}), instances respectively of the preceding reg-
ular expression e2.

A concatenated regular expression, e1 e2, matches a match to e1 followed by a match to e2.

An alternative regular expression, e0 ALT e1, matches either a match to e0 or a match to e1.

A match to any part of a regular expression extends as far as possible without preventing a match to the
remainder of the regular expression.

SEE ALSO
regexp(3), gre(1)

DIAGNOSTICS
Routines that return pointers return 0 on error.

BUGS
Between re(3) and regexp(3) there are too many routines.

675

REGEX(3) Library Functions Manual REGEX(3)

NAME
re_comp, re_exec − regular expression handler

SYNOPSIS
char ∗re_comp(s)
char ∗s;

re_exec(s)
char ∗s;

DESCRIPTION
Re_comp compiles a regular expression into an internal form suitable for pattern matching. Re_exec
checks the argument string against the last string passed to re_comp.

Re_comp returns 0 if the string s was compiled successfully; otherwise a string containing an error mes-
sage is returned. If re_comp is passed 0 or a null string, it returns without changing the currently compiled
regular expression.

Re_exec returns 1 if the string s matches the last compiled regular expression, 0 if the string s failed to
match the last compiled regular expression, and -1 if the compiled regular expression was invalid (indi-
cating an internal error).

The strings passed to both re_comp and re_exec may have trailing or embedded newline characters; they
are terminated by nulls. The regular expressions are otherwise as described for ed(1).

SEE ALSO
ed(1), expr(1), regexp(3)

DIAGNOSTICS
Re_exec returns -1 for an internal error.

BUGS
These routines have been superseded by the more general routines of regexp(3). They have been retained
only for compatibility.

deprecated 676

REGEXP(3) Library Functions Manual REGEXP(3)

NAME
regcomp, regexec, regsub, regerror − regular expression

SYNOPSIS
#include <regexp.h>

regexp ∗regcomp(exp)
char ∗exp;

int regexec(prog, string, match, msize)
regexp ∗prog;
char ∗string;
regsubexp ∗match;
int msize;

void regsub(source, dest, match, msize)
char ∗source, ∗dest;
regsubexp ∗match;
int msize;

void regerror(msg)
char ∗msg;

DESCRIPTION
Regcomp compiles a regular expression and returns a pointer to a compiled regular expression. The space
is allocated by malloc(3) and may be released by free. Regular expressions are as in re(3) except that
newlines are not operators and back-references (with \n) are not supported.

Regexec matches a null-terminated string against the compiled regular expression in prog. If it matches,
regexec returns a non-zero value and fills in the array match with character pointers to the substrings of
string that correspond to the parenthesized subexpressions of exp: match[i].sp points to the beginning and
match[i].ep points just beyond the end of the ith substring. (Subexpression i begins at the ith left paren-
thesis, counting from 1.) Pointers in match[0] pick out the substring that corresponds to the whole regu-
lar expression. Unused elements of match are filled with zeros. Matches involving ∗, +, and ? are
extended as far as possible. The number of array elements in match is given by msize. The structure of
elements of match is:

typedef struct {
char ∗sp;
char ∗ep;

} regsubexp;

Regsub places in dest a substitution instance of source in the context of the last regexec performed using
match. Each instance of \n, where n is a digit, is replaced by the string delimited by match[n].sp and
match[n].ep. Each instance of & is replaced by the string delimited by match[0].sp and match[0].ep.

Regerror, called whenever an error is detected in regcomp, regexec, or regsub, writes the string msg on the
standard error file and exits. Regerror can be replaced to perform special error processing.

SEE ALSO
gre(1), re(3), expr(1)

DIAGNOSTICS
Regcomp returns (regexp ∗)0 for an illegal expression or other failure. Regexec returns 0 if string is not
accepted.

677

SBUF.PROT (3I+) SBUF.PROT (3I+)

NAME
streambuf - interface for derived classes

SYNOPSIS
#include <iostream.h>
typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app } ;
// and lots of other stuff ...
} ;

class streambuf {
public:

streambuf() ;
streambuf(char∗ p, int len, int i=0);

void dbp() ;
protected:

int allocate();
char∗ base();
int blen();
char∗ eback();
char∗ ebuf();
char∗ egptr();
char∗ epptr();
void gbump(int n);
char∗ gptr();
char∗ pbase();
void pbump(int n);
char∗ pptr();
void setg(char∗ eb,char∗ g, char∗ eg);
void setp(char∗ p, char∗ ep);
void setb(char∗ b, char∗ eb, int a = 0);
int unbuffered();
void unbuffered(int);
virtual int doallocate();
virtual int pbackfail(int c);
virtual streambuf() ;

public:
virtual int overflow(int c=EOF);
virtual int underflow();
virtual streambuf∗

setbuf(char∗ p, int len);
virtual streampos

seekpos(streampos,open_mode=input|output);
virtual streampos

seekoff(streamoff,seek_dir,open_mode=input|output);
virtual int sync();

};

DESCRIPTION
streambufs implement the buffer abstraction described in sbuf.pub(3C++). But the streambuf class
itself contains only basic members for manipulating the characters and normally a class derived from
streambuf will be used. This man page describes the interface needed by programmers who are cod-
ing a derived class. Broadly speaking there are two kinds of members described here. The non-virtual
functions are provided for manipulating a streambuf in ways that are appropriate in a derived class. Their
descriptions reveal details of the implementation that would be inappropriate in the public interface. The
virtual functions permit the derived class to specialize the streambuf class in ways appropriate to the

C++ Stream Library 678

SBUF.PROT (3I+) SBUF.PROT (3I+)

specific sources and sinks that it is implementing. The descriptions of virtuals explain the obligations of
the virtuals of the derived class. If the virtuals behave as specified, the streambuf will behave as speci-
fied in the public interface. However, if the virtuals do not behave as specified, then the streambuf
may not behave properly, and an iostream (or any other code) that relies on proper behavior of the
streambuf may not behave properly either.

Assume
— sb is a streambuf∗.
— i and n are int.
— ptr, b, eb, p, ep, eb, g, and eg are char∗.
— c is an int character (positive or EOF)).
— pos is a streampos. (See iostream(3C++).)
— off is a streamoff.
— dir is a seekdir.
— mode is a open_mode.

Constructors:

streambuf()
Constructs an empty buffer corresponding to an empty sequence.

streambuf(b,len,i)
Constructs an empty buffer and then sets up the reserve area to be the len bytes starting at b. (i is
present for backward compatibility with the stream package. The effect if it is not 0 is unde-
fined.)

The protected members of streambuf present an interface to derived classes organized around three ar-
eas (arrays of bytes) managed cooperatively by the base and derived classes. They are the get area, the
put area, and the reserve area. The get and the put area are normally disjoint, but they may both overlap
the reserve area, whose primary purpose is to be a a resource in which space for the put and get areas can
be allocated. The get and the put areas are changed as characters are put into and gotten from the buffer,
but the reserve area normally remains fixed. The areas are defined by a collection of char∗ values. The
buffer abstraction is described in terms of pointers that point between characters, but the char∗ values
must point at chars. To establish a correspondence the char∗ values should be thought of as pointing
just before the byte they really point at.

Functions to examine the pointers are:

ptr=sb->base()
Returns a pointer to the first byte of the reserve area.
Space between sb->base() and sb->ebase() is the reserve area.

ptr=sb->eback()
Returns a pointer to a lower bound on sb->gptr(). Space between sb->eback() and sb->gptr() is
available for putback.

ptr=sb->ebuf()
Returns a pointer to the byte after the last byte of the reserve area.

ptr=sb->egptr()
Returns a pointer to the byte after the last byte of the get area.

ptr=sb->epptr()
Returns a pointer to the byte after the last byte of the put area.

ptr=sb->gptr()
Returns a pointer to the first byte of the get area. The available characters are those between
sb->gptr() and sb->egptr(). The next character fetched will be ∗sb->gptr() unless sb->egptr() is
less than or equal to sb->gptr().

ptr=sb->pbase()
Returns a pointer to the put area base. Characters between sb->pbase() and sb->pptr() have
been storeded into the buffer and not yet consumed.

C++ Stream Library 679

SBUF.PROT (3I+) SBUF.PROT (3I+)

ptr=sb->pptr()
Returns a pointer to the first byte of the put area. The space between sb->pptr() and sb->epptr()
is the put area and characters will be storeed here.

The member functions for setting the pointers:

sb->setb(b,eb,i)
Sets base and ebase to b and eb respectively. i controls whether the area will be subject to auto-
matic deletion. If i is non zero, then delete b will be done when base is changed by another
call of setb, or when the destructor is called for ∗sb. If b and eb are both null then we say that
there is no reserve area. If b is non-null, there is a reserve area even if eb is less than b and so
the reserve area has zero length.

sb->setp(p,ep)
Sets pptr to p, pbase to p, and epptrp.

sb->setg(eb,g,eg)
Sets eback to eb, gptr to g, and egptr to eg.

Other non-virtual members:

i=sb->allocate()
Tries to set up a reserve area. If a reserve area already exists or if sb->unbuffered() is nonzero
returns 0 without doing anything. If the attempt to allocate space fails allocate returns EOF.
Otherwise (allocation succeeds) allocate returns 1. allocate is not called by any member of
streambuf except virtuals.

i=sb->blen()
Returns the current size (in chars) of the current reserve area.

dbp() Writes directly on file descriptor 1 information in ASCII about the state of the buffer. It is in-
tended for debugging and nothing is specified about the form of the output. It is considered part
of the protected interface because the information it prints can only be understood in relation to
that interface, but it is a public function so that it can be called anywhere during debugging.

sb->gbump(n)
Increments gptr by n which may be positive or negative. No checks are made on whether the
new value of gptr is in bounds.

sb->pbump(n)
Increments pptr by n which may be positive or negative. No checks are made on whether the
new value of pptr is in bounds.

sb->unbuffered(i)
i=sb->unbuffered()

There is a private variable known as sb’s buffering state. sb->unbuffered(i) sets the value of this
variable to i and sb->unbuffered() returns the current value. This state is independent of the ac-
tual allocation of a reserve area. Its primary purpose is to control whether a reserve area is allo-
cated automatically by allocate.

Virtual functions must be redefined in derived classes to specialize the behavior of streambufs:

i=sb->doallocate()
Is called when allocate determines that space is needed. doallocate is required to call setb to
provide a reserve area or to return EOF if it cannot. It is only called if sb->unbuffered() is non-
zero and sb->base() is non-zero.

i=overflow(c)
Is called to consume characters. If c is not EOF it also must either save c or consume it. Usually
it is called when the put area is full and an attempt is being made to store a new character, but it
can be called at other times. The normal action is to consume the characters between pbase and
pptr, call setp to establish a new put area, and if c!=EOF store it (using sputc). If sb->un-
buffered() is non-zero, overflow is not allowed to call setp and so must consume n sb->over-
flow should return EOF to indicate an error; otherwise it should return something else.

C++ Stream Library 680

SBUF.PROT (3I+) SBUF.PROT (3I+)

i=sb->pbackfail(c)
Is called when eback equals gptr and an attempt has been made to putback c. If this situation
can be dealt with (e.g., by repositioning an external file), pbackfail should return c; otherwise it
should return EOF.

pos=sb->seekoff(off,dir,mode)
Repositions the get and/or put pointers (i.e., the abstract get and put pointers, not pptr and
gptr). The meanings of off and dir are discussed in sbuf.pub(3C++). mode specifies whether
the put pointer (output bit set) or the get pointer (input bit set) is to be modified. Both bits may
be set in which case both pointers should be affected. A class derived from streambuf is not re-
quired to support repositioning. seekoff should return EOF if the class does not support reposi-
tioning. If the class does support repositioning, seekoff should return the new position or EOF
on error.

pos=sb->seekpos(pos,mode)
Repositions the streambuf get and/or put pointer to pos. mode specifies which pointers are af-
fected as for seekoff. Returns pos (the argument) or EOF if the class does not support reposition-
ing or an error occurs.

sb=sb->setbuf(ptr,len)
Offers the array at ptr with len bytes should be used as a reserve area. The normal interpreta-
tion is that if ptr or len are zero then this is a request to make the sb unbuffered. The derived
class may use this area or not as it chooses. If may accept or ignore the request for unbuffered
state as it chooses. setbuf should return sb if it honors the request. Otherwise it should return 0.

i=sb->sync()
Is called to give the derived class a chance to look at the state of the areas, and synchronize them
with any external representation. Normally sync should consume any characters that have been
storeed into the put area, and if possible give back to the source any characters in the get area that
have not been fetched. When sync returns there should not be any unconsumed characters, and
the get area should be empty. sync should return EOF if some kind of failure occurs.

i=sb->underflow()
Is called to supply characters for fetching, i.e., to create a condition in which the get area is not
empty. If it is called when there are characters in the get area it should return the first character.
If the get area is empty it should create a nonempty get area and return the next character (which
it should also leave in the get area). If there are no more characters available underflow should
return EOF and leave an empty put area.

The default definitions of the virtual functions:

i=sb->streambuf::doallocate()
Attempts to allocate a reserve area using operator new.

i=sb->streambuf::overflow(n)
Is compatible with the old stream package, but that behavior is not considered part of the specifi-
cation of the iostream package. So streambuf::overflow should be treated as if it had undefined
behavior. That is, derived classes should always define it.

i=sb->streambuf::pbackfail(n)
Returns EOF.

pos=sb->streambuf::seekpos(pos,mode)
Returns sb->seekoff(streamoff(pos),seek_beg,mode). Thus to define seeking in a derived class,
it is frequently only necessary to define seekoff and use the inherited streambuf::seekpos.

pos=sb->streambuf::seekoff(off,dir,mode)
Returns EOF.

sb=sb->streambuf::setbuf(ptr,len)
Will honor the request when ever there is no reserve area.

i=sb->streambuf::sync()
Returns 0 if the get area is empty and there are no unconsumed characters. Otherwise it returns
EOF.

C++ Stream Library 681

SBUF.PROT (3I+) SBUF.PROT (3I+)

i=sb->streambuf::underflow()
Is compatible with the old stream package, but that behavior is not considered part of the specifi-
cation of the iostream package. So streambuf::underflow should be treated as if it had unde-
fined behavior. That is, it should always be defined in derived classes.

CAVEATS
The constructors are public for compatibility with the old stream package. They ought to be protected.

The interface for unbuffered actions is awkward. It’s hard to write underflow and overflow virtuals that
behave properly for unbuffered streambufs without special casing. Also there is no way for the virtu-
als to react sensibly to multi character gets or puts.

Although the public interface to streambufs deals in characters and bytes, the interface to derived
classes deals in chars. Since a decision had to be made on the types of the real data pointers, it seemed
easier to reflect that choice in the types of the protected members than to duplicate all the members with
both plain and unsigned char versions. But perhaps all these uses of char∗ ought to have been with a
typedef.

The implementation contains a variant of setbuf that accepts a third argument. It is present only for com-
patibility with the old stream package.

SEE ALSO
sbuf.pub(3C++) streambuf(3C++) iostream(3C++)

C++ Stream Library 682

SBUF.PUB(3I+) SBUF.PUB(3I+)

NAME
streambuf - public interface of character buffering class

SYNOPSIS
#include <iostream.h>
typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app } ;
// and lots of other stuff ...
} ;

class streambuf {
public :

int in_avail();
int out_waiting();
int sbumpc();
streambuf∗ setbuf(char∗ ptr, int len, int count=0);
streampos seekpos(streampos,open_mode);
streampos seekoff(streamoff,seek_dir,open_mode);
int sgetc();
int sgetn(char∗ ptr,int n);
int snextc();
int sputbackc(char c);
int sputc(int c);
int sputn(const char∗ s,int n);
void stossc();
int sync();
}

DESCRIPTION
The streambuf class supports buffers into which characters can be inserted (put) or from which charac-
ters can be fetched (gotten). Abstractly such a buffer is a sequence of characters together with one or two
pointers (a get and/or a put pointer) that define the location at which characters are to be inserted or
fetched. The pointers should be thought of as pointing between characters rather than at them. This makes
it easier to understand the boundary conditions (a pointer before the first character or after the last). Some
of the effects of getting and putting are defined by this class but most of the details are left to specialized
classes derived from streambuf.

Classes derived from streambuf vary in their treatments of the get and put pointers. The simplest are
unidirectional buffers which permit only gets or only puts. Such classes serve as pure sources (producers)
or sinks (consumers) of characters. Queuelike buffers have a put and a get pointer which move indepen-
dently of each other. In such buffers characters that are stored are held (i.e., queued) until they are later
fetched. Filelike buffers permit both gets and puts but have only a single pointer. (An alternative descrip-
tion is that the get and put pointers are tied together so that when one moves so does the other.)

Most streambuf member functions are organized into two phases. As far as possible, operations are
performed inline by storing into or fetching from arrays (the get area and the put area). From time to
time, virtual functions are called to deal with collections of characters. Generally the user of a stream-
buf does not have to know anything about these details, but some the public members pass back informa-
tion about the state of the areas.

Assume:
— i, n, and len are int.
— c is an int. It always holds a "character" value or EOF. A "character" value is always positive even
when char is normally sign extended.
— sb and sb1 are streambuf∗.
— ptr is a char∗.
— off is a streamoff.
— pos is a streampos.

C++ Stream Library 683

SBUF.PUB(3I+) SBUF.PUB(3I+)

— dir is a seekdir.
— mode is a open_mode.

Public member functions:

i=sb->in_avail()
Returns the number of characters that are immediately available in the get area for fetching. That
many characters may be fetched with a guarantee that no errors will be reported.

i=sb->out_waiting()
Returns the number of characters in the put area that have not been consumed by virtuals.

c=sb->sbumpc()
Moves the get pointer forward one character and returns the character moved over. Returns EOF
if the get pointer is currently at the end of the sequence.

pos=sb->seekoff(off,dir,mode)
Repositions the get and/or put pointers. mode specifies whether the put pointer (output bit set)
or the get pointer (input bit set) is to be modified. Both bits may be set in which case both point-
ers should be affected. off is interpreted as a byte offset. (Notice that it is a signed quantity.) The
meaning of possible values of dir are

beg The beginning of the stream.

cur The current position.

end The end of the stream. (End of file.)
Not all classes derived from streambuf support repositioning. seek will return EOF if the class does not
support repositioning. If the class does support repositioning, seek will return the new position or EOF on
error.

pos=sb->seekpos(pos,mode)
Repositions the streambuf get and/or put pointer to pos. mode specifies which pointers are af-
fected as for seekoff. Returns pos (the argument) or EOF if the class does not support reposition-
ing or an error occurs. In general a streampos should be treated as a "magic cookie" and no
arithmetic should be performed on it. But two particular values have special meaning:

streampos(0)
The beginning of the file.

streampos(EOF)
Used as an error indication.

c=sb->sgetc()
Returns the character after the get pointer. Contrary to what most people expect from the name
IT DOES NOT MOVE THE GET POINTER. Returns EOF if there is no character available.

sb1=sb->setbuf(ptr,len,i)
Offers the len bytes starting at ptr. as the reserve area. If ptr is null or len is zero or less, then
an unbuffered state is requested. Whether the offered area is used, or a request for unbuffered
state is honored depends on details of the derived class. setbuf normally returns sb, but if it does
not accept the offer or honor the request, it returns 0.

i=sb->sgetn(ptr,n)
Fetches the n characters following the get pointer and copies them to the area starting at ptr.
When there are less than n characters left before the end of the sequence sgetn fetches whatever
characters remain. sgetn repositions the get pointer following the fetched characters and returns
the number of characters fetched.

c=sb->snextc()
Moves the get pointer forward one character and returns the character following the new posi-
tion. It returns EOF if the pointer is currently at the end of the sequence or is at the end of the se-
quence after moving forward.

i=sb->sputbackc(c)
Moves the get pointer back one character. c must be the current content of the sequence just be-
fore the get pointer. The underlying mechanism may simply back up the get pointer or may

C++ Stream Library 684

SBUF.PUB(3I+) SBUF.PUB(3I+)

rearrange its internal data structures so the c is saved. Thus the effect of sputbackc is undefined
if c is not the character before the get pointer. putbackc returns EOF when it fails. The condi-
tions under which it can fail depend on the details of the derived class.

i=sb->sputc(c)
Stores c after the put pointer, and moves the put pointer over the stored character. Usually this
extends the sequence. It returns EOF when an error occurs. The conditions that can cause errors
depend on the derived class.

i=sb->sputn(ptr,n)
Stores the n characters starting at ptr after the put pointer. Moves the put pointer over them. Re-
turns the number of characters stored successfully. Normally this is n, but it may be less when
errors occur.

sb->stossc()
Moves the get pointer forward one character. If the pointer started at the end of the sequence this
function has no effect.

i=sb->sync()
Establishes consistency between the internal data structures and the external source or sink. The
details of this function depend on the derived class. Usually this "flushes" any characters that
have been stored but not yet consumed, and "gives back" any characters that may have been pro-
duced but not yet fetched.

CAVEATS
setbuf does not really belong in the public interface. It is there for compatibility with the stream package.

Requiring the program to provide the previously fetched character to sputback is probably a botch.

SEE ALSO
iostream(3C++), sbuf.prot(3C++)

C++ Stream Library 685

SCANF(3S) SCANF(3S)

NAME
scanf, fscanf, sscanf − formatted input

SYNOPSIS
#include <stdio.h>

scanf(format [, pointer] ...)
char ∗format;

fscanf(stream, format [, pointer] ...)
FILE ∗stream;
char ∗format;

sscanf(s, format [, pointer] ...)
char ∗s, ∗format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the named input stream. Sscanf
reads from the character string s. Each function reads characters, interprets them according to a format,
and stores the results in its arguments. Each expects as arguments a control string format, described be-
low, and a set of arguments, normally pointers, indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpretation of in-
put sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.

2. An ordinary character (not %) which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppressing charac-
ter ∗ , an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by ∗. Conver-
sions other than c and [skip white space and consume non-white-space characters up to the next inappro-
priate character or until the field width, if specified, is exhausted. The field width is either an integer con-
stant or !. In the latter case, the width is taken from an integer argument that precedes the next pointer
argument.

The conversion character indicates the interpretation of the input field; the corresponding pointer argu-
ment must usually be of a restricted type. The following conversion characters are legal:

% A single % is expected in the input at this point; no assignment is done.

d A decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be an integer pointer.

x A hexadecimal integer is expected; the corresponding argument should be an integer pointer.

s A character string is expected; the corresponding argument should be a character pointer pointing to
an array of characters large enough to accept the string and a terminating \0, which will be added.
The input field is terminated by a space character or a newline.

c A character is expected; the corresponding argument should be a character pointer. If a field width is
given, the corresponding argument should refer to a character array, and the indicated number of
characters is read.

e
f A floating point number is expected; the next field is converted accordingly and stored through the

corresponding argument, which should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits possibly containing a decimal point, followed by an
optional exponent field consisting of an E or e followed by an optionally signed integer.

[
[ˆ A character string is expected. The left bracket (or bracket and circumflex) is followed by a set of

characters and a right bracket. When the set is introduced by [(or [ˆ), the string consists only of
characters in (or not in) the set. The corresponding argument must point to a character array.

686

SCANF(3S) SCANF(3S)

The conversion characters d, o and x may be preceded by l to indicate that a pointer to long rather than to
int is in the argument list. Similarly, the conversion characters e or f may be preceded by l to indicate a
pointer to double rather than to float. The conversion characters d, o and x may be preceded by h to indi-
cate a pointer to short.

The scanf functions return the number of successfully matched and assigned input items. This can be
used to decide how many input items were found. The constant EOF is returned upon end of input; note
that this is different from 0, which means that no conversion was done; if conversion was intended, it was
frustrated by an inappropriate character in the input.

For example, the call
int i; float x; char name[50];
scanf("%d%f%s", &i, &x, name);

with the input line

25 54.32E− 1 thompson

will assign to i the value 25, x the value 5.432, and name will contain thompson\0. Or,
int i; float x; char name[50];
scanf("%2d%f%∗d%[1234567890]", &i, &x, name);

with input

[CB]56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar
will return a.

SEE ALSO
atof(3), stdio(3), ungetc(3)

DIAGNOSTICS
The scanf functions return EOF on end of input, and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.
The input scan stops short of the end of excessively long numbers.
There is no %#.
When no maximum field width is given in a %s or %[] conversion specification, improper input can over-
run the output string and corrupt the program in arbitrarily malicious ways. The best alternative, %!s, is
nonstandard.
A deprecated usage allows upper-case conversion characters as equivalents for lower-case characters pre-
ceded by l.

687

SETBUF(3S) SETBUF(3S)

NAME
setbuf − assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbuf(stream, buf)
FILE ∗stream;
char buf[BUFSIZ];

DESCRIPTION
Setbuf is used after a stream has been opened but before it is read or written. It causes the character array
buf to be used instead of an automatically allocated buffer. If buf is the constant pointer NULL, input/out-
put will be completely unbuffered.

A buffer is normally obtained from malloc(3) upon the first getc(3) or putc on the file. Initially, the stan-
dard stream stderr is unbuffered, and the standard stream stdout is flushed automatically whenever new
data is read by getc. The latter magic may be dissolved by a call to setbuf .

SEE ALSO
stdio(3), malloc(3)

688

SETJMP(3) Library Functions Manual SETJMP(3)

NAME
setjmp, longjmp − non-local goto

SYNOPSIS
#include <setjmp.h>

setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level subroutine of a
program.

Setjmp saves its stack environment in env for later use by longjmp. It returns value 0.

Longjmp restores the environment saved by the last call of setjmp. It then causes execution to continue as
if the call of setjmp had just returned with value val. The invoker of setjmp must not itself have returned
in the interim. All accessible data have values as of the time longjmp was called.

SEE ALSO
signal(2)

689

SETLIMITS(3) Library Functions Manual SETLIMITS(3)

NAME
setlimits - set limits structure

SYNOPSIS
#include <sys/types.h>
#include <sys/lnode.h>

setlimits(limits)
struct lnode ∗limits;

DESCRIPTION
This library routine sets an in-core limits structure. If necessary, it also sets any group limits structures.
Limits points to an lnode.

The lnode pointed to by the argument limits is first examined to see if its scheduling group is root. If not,
the lnode for the group is obtained (via getshares(3)) and passed to a recursive call to setlimits. Finally
the original lnode is set with the L_SETLIM call to the limits(2) system call.

If the details for any group encountered cannot be found in the limits data-base, then the group is set to
root.

Note that the /etc/shares file may be left open by this routine.

DIAGNOSTICS
As for the limits(2) system call.

Any error cause a -1 to be returned.

SEE ALSO
limits(2), closeshares(3), getshares(3), setupshares(3).

SHARE 690

SETUPGROUPS(3) Library Functions Manual SETUPGROUPS(3)

NAME
setupgroups - set access group vector for invoker

SYNOPSIS
setupgroups(name, gid)
char ∗name;
int gid;

DESCRIPTION
This library routine sets up the invoker’s access group vector by searching the /etc/group file for groups
matching name. The invokers real group ID should be passed in gid , as there is no need to load this into
the vector.

Setgroups returns 0 for success, or -1 on error with errno set appropriately.

This routine is safe to use on systems where the multiple access groups system calls have not been in-
stalled.

SEE ALSO
setgroups(2), getgrent(3), login(8).

691

SETUPSHARES(3) Library Functions Manual SETUPSHARES(3)

NAME
setupshares - set kernel shares for a user

SYNOPSIS
setupshares(uid, efp)
int uid;
void (∗efp)();

DESCRIPTION
This library routine sets up a kernel shares structure for the user represented by uid . It extracts the share
details for the user from the shares data-base, decays the usage figure up to the current time, and uses
setlimits(3) to install the shares in the kernel.

If the system is out of lnode structures, then the structure for the default user ‘‘other’’ is used. If this also
fails, then the structure for the super-user is used.

If there are any errors, and the second argument is non-NULL, the function will be called with a printf(3)
format string and at most one extra argument. A non-zero result is returned for un-recoverable errors.
Otherwise, setupshares returns 0.

This routine is safe to use on systems where the share scheduler has not been installed, or is inactive.

DIAGNOSTICS
Setupshares returns a non-zero result if setlimits(3) returns an error other than ETOOMANYU. The op-
tional error routine is called if setlimits(3) returns any error, or if no shares have been allocated to the user.

SEE ALSO
getshares(3), closeshares(3), setlimits(3), share(5).

SHARE 692

SHARESFILE(3) Library Functions Manual SHARESFILE(3)

NAME
sharesfile - change name of shares file

SYNOPSIS
int sharesfile(s)
char ∗ s;

DESCRIPTION
This routine closes the old shares file (if open) and resets its name to the string passed.

SEE ALSO
closeshares(3), getshares(3), getshput(3), openshares(3), putshares(3).

SHARE 693

SIN (3M) SIN (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 − trigonometric functions

SYNOPSIS
#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double tan(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(y, x)
double x, y;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments. The magnitude of the argument
should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sin in the range -π/2 to π/2.

Acos returns the arc cosine in the range 0 to π.

Atan returns the arc tangent of x in the range -π/2 to π/2.

Atan2 returns the arc tangent of y/x in the range -π to π.

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and acos to return value 0; errno is set to EDOM. The
value of tan at its singular points is a huge number, and errno is set to ERANGE.

BUGS
The value of tan for arguments greater than about 231 is garbage.

694

SINH(3M) SINH(3M)

NAME
sinh, cosh, tanh − hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS
Sinh and cosh return a huge value of appropriate sign when the correct value would overflow and set er-
rno to EDOM.

695

SLEEP(3) Library Functions Manual SLEEP(3)

NAME
sleep − suspend execution for an interval

SYNOPSIS
sleep(seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the argument.
The actual suspension time may be up to one second less than that requested, because scheduled wakeups
occur at fixed second intervals, and an arbitrary amount longer because of other activity in the system.

The routine is implemented by setting an alarm clock signal and pausing until it occurs. The previous
state of this signal is saved and restored. If the sleep time exceeds the time to the alarm signal, the process
sleeps only until the signal would have occurred, and the signal is sent one second later.

SEE ALSO
alarm(2)

696

SSBUF(3I+) SSBUF(3I+)

NAME
strstreambuf - streambuf specialized to arrays

SYNOPSIS
#include <iostream.h>
#include <strstream.h>
class strstreambuf : streambuf {
public:

strstreambuf() ;
strstreambuf(char∗,int,char∗);
strstreambuf(int);
strstreambuf(unsigned char∗ , int, unsigned char∗);
strstreambuf(void∗ (∗ a)(long), void(∗f)(void∗));

void freeze(int n=1) ;
char∗ str();
streambuf∗ setbuf(char∗,int)

};

DESCRIPTION
A strstreambuf is a streambuf that uses an array of bytes (a string) to hold the sequence of char-
acters. Given the convention that a char∗ should be interpreted as pointing just before the char it really
points at, the mapping between the abstract get/put pointers and char∗ pointers is direct. Moving the
pointers corresponds exactly to incrementing and decrementing the char∗ values.

To accommodate the need for arbitrary length strings strstreambufs supports an automatic mode.
When a strstreambuf is in automatic mode, space for the character sequence is allocated as needed.
When the sequence is extended too far, it will be copied to a new array.

Assume
— ssb is a strstreambuf∗.
— n is an int.
— ptr and pstart are char∗ or unsigned char∗.
— a is void∗ (∗)(long).
— f is void∗ (∗)(void∗).

The constructors:

strstreambuf()
Constructs an empty buffer in dynamic mode. This means that space will be automatically allo-
cated to accomodate the characters that are put into the buffer (using operators new and
delete). Because this may require copying the original characters, it is recommended that
when large strings will be used that setbuf be used (as described below) to inform the
strstreambuf.

strstreambuf(a,f)
Constructs an empty buffer in dynamic mode. a is used as the allocator function in dynamic
mode. If it is null, operator new will be used. f is used to free (or delete) areas returned by
a. If it is null operator delete is used.

strstreambuf(n)
Constructs an empty buffer in dynamic mode. The initial allocation of space will be at least n
bytes.

strstreambuf(ptr,n,pstart)
Constructs a buffer to use the bytes starting at ptr. If n is positive and the n bytes starting at ptr
are used. If n is zero, ptr is assumed to point to the beginning of a null terminated strings and
the bytes of that string (not including the terminating null character) will constitute the buffer. If
n is negative the buffer is assumed to continue indefinitely. The get pointer is initialized to ptr.
The put pointer is initialized to pstart. If pstart is null then stores will be treated as errors. If
pstart is non null then the initial sequence (for fetching) consists of the bytes between ptr and
pstart. If pstart is null then the initial sequence consists of the entire array.

Member functions:

C++ Stream Library 697

SSBUF(3I+) SSBUF(3I+)

ssb->freeze(n)
Inhibits (n nonzero) or permits (n zero) automatic deletion of the current array. Deletion nor-
mally occurs when more space is needed or when ssb is being destroyed. Only space obtained
dynamic allocation is ever freed. It is an error (and the effect is undefined) to store characters
into a buffer that was in automatic allocation mode and is now frozen. It is possible, however, to
thaw (unfreeze) such a buffer and resume storing characters.

ptr=ssb->str()
Returns a pointer to the first char of the current array and freezes ssb. If ssb was constructed
with an explicit array init, ptr will point to that array. If ssb is in automatic allocation mode, but
nothing has yet been stored, ptr may be null. str freezes ssb.

0b->setbuf(0,n)
ssb remembers n and the next time it does a dynamic mode allocation, it makes sure that at least
n bytes are allocated.

SEE ALSO
sbuf.pub(3C++) strstream(3C++)

C++ Stream Library 698

STDIO(3S) STDIO(3S)

NAME
stdio − standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE ∗stdin;
FILE ∗stdout;
FILE ∗stderr;

DESCRIPTION
The functions described in Sections 3S constitute an efficient user-level buffering scheme. The in-line
macros getc(3) and putc handle characters quickly. The higher level routines fgets, scanf, fscanf, fread,
puts, fputs, printf, fprintf, fwrite all use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined type FILE.
Fopen(3) creates certain descriptive data for a stream and returns a pointer to designate the stream in all
further transactions. There are three normally open streams with constant pointers declared in the include
file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant pointer NULL designates no stream at all.

An integer constant EOF is returned upon end of file or error by integer functions that deal with streams.

Any routine that uses the standard input/output package must include the header file <stdio.h> of per-
tinent macro definitions. The functions and constants mentioned in sections labeled 3S are declared in the
include file and need no further declaration. The constants, and the following ‘functions’ are imple-
mented as macros: getc, getchar, putc, putchar, feof, ferror, fileno.

SEE ALSO
printf(3), scanf(3), fopen(3), getc(3), fgets(3), fread(3), fseek(3), ungetc(3), popen(3), setbuf(3), ferror(3)
open(2), read(2), fio(3)

DIAGNOSTICS
The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized with fopen,
input (output) has been attempted on an output (input) stream, or a FILE pointer designates corrupt or
otherwise unintelligible FILE data.

BUGS
Buffering of output can prevent output data from being seen until long after it is computed - perhaps
never, as when an abort occurs between buffer filling and flushing.
Buffering of input can cause a process to consume more input than it actually uses. This can cause trou-
ble across exec(2) or system(3) calls.
BUffering may delay the receipt of a write error until a subsequent stdio writing, seeking, or file-closing
call.

699

STDIOBUF(3I+) STDIOBUF(3I+)

NAME
stdiobuf - iostream specialized to stdio FILE

SYNOPSIS
#include <iostream.h>
#include <strstream.h>
#include <stdio.h>
class stdiobuf : streambuf {

stdiobuf(FILE∗ f);
FILE∗ stdiofile();

}

DESCRIPTION
Operations on a stdiobuf are reflected on the underlying FILE. A stdiobuf is constructed in un-
buffered mode, which causes all operations to be immediately reflected in the FILE. seeks are translated
into fseeks. setbuf has its usual meaning. If it supplies a reserve area buffering will be turned back on.

SEE ALSO
filebuf(3C++) istream(3C++) ostream(3C++) ssbuf.pub(3C++)

C++ Stream Library 700

STRING(3) Library Functions Manual STRING(3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok, strdup
− string operations

SYNOPSIS
#include <libc.h>

char ∗ strcat(s1, s2)
char ∗s1, ∗s2;

char ∗ strncat(s1, s2, n)
char ∗s1, ∗s2;
int n;

int strcmp(s1, s2)
char ∗s1, ∗s2;

int strncmp(s1, s2, n)
char ∗s1, ∗s2;
int n;

char ∗ strcpy(s1, s2)
char ∗s1, ∗s2;

char ∗ strncpy(s1, s2, n)
char ∗s1, ∗s2;
int n;

int strlen(s)
char ∗s;

char ∗ strchr(s, c)
char ∗s;
int c;

char ∗ strrchr(s, c)
char ∗s;
int c;

char ∗ strpbrk(s1, s2)
char ∗s1, ∗s2;

int strspn(s1, s2)
char ∗s1, ∗s2;

int strcspn(s1, s2)
char ∗s1, ∗s2;

char ∗ strtok(s1, s2)
char ∗s1, ∗s2;

char ∗strdup(s)
char ∗s;

DESCRIPTION
The arguments s1, s2 and s point to null-terminated strings. The functions strcat, strncat, strcpy, and
strncpy all alter s1. These functions do not check for overflow of the array pointed to by s1.

Strcat appends a copy of string s2 to the end of string s1. Strncat appends at most n characters. Each re-
turns a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer less than, equal to, or greater than 0, according as
s1 is lexicographically less than, equal to, or greater than s2. Strncmp makes the same comparison but
looks at at most n characters.

Strcpy copies string s2 to s1, stopping after the null character has been copied. Strncpy copies exactly n
characters, truncating s2 or adding null characters to s1 if necessary. The result will not be null-

701

STRING(3) Library Functions Manual STRING(3)

terminated if the length of s2 is n or more. Each function returns s1.

Strlen returns the number of characters in s, not including the terminating null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c in string s, or (char if c
does not occur in the string. The null character terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any character from string s2, (char if no
character from s2 exists in s1.

Strspn (strcspn) returns the length of the initial segment of string s1 which consists entirely of characters
from (not from) string s2.

Strtok considers the string s1 to consist of a sequence of zero or more text tokens separated by spans of
one or more characters from the separator string s2. The first call, with pointer s1 specified, returns a
pointer to the first character of the first token, having replaced the character after the token by 0. Subse-
quent calls, signified by s1 being (char ∗)0, will scan from where the preceding call left off. The sep-
arator string s2 may be different from call to call. When no token remains in s1, (char is returned.

Strdup returns a pointer to a distinct copy of the null-terminated string s in space obtained from malloc(3)
or (char if no space can be obtained.

SEE ALSO
memory(3)

BUGS
Strcmp and strncmp use native character comparison, which may be signed or unsigned.
The outcome of overlapping moves varies among implementations.

702

STRSTREAM(3I+) STRSTREAM(3I+)

NAME
strstream - iostream specialized to arrays

SYNOPSIS
#include <strstream.h>
class ios {
public:

enum open_mode { in, out, ate, app } ;
// and lots of other stuff ...
} ;

class istrstream : public istream {
public:

istrstream(char∗) ;
istrstream(char∗ , int) ;

strstreambuf∗ rdbuf() ;
} ;
class ostrstream : public ostream {
public:

ostrstream();
ostrstream(char∗ , int, open_mode = 0) ;

int pcount() ;
char∗ str();
strstreambuf∗ rdbuf() ;

};

DESCRIPTION
strstream specializes iostream for "incore" operations, that is, storing and fetching from arrays of
bytes. The streambuf associated with a strstream is a strstreambuf.

Assume
— iss is a istrstream.
— oss is a ostrstream.
— cp is a char∗.
— mode is an open_mode.
— i and len are int.
— ssb is a strstreambuf∗.
— a is a void∗ (∗)(long).
— f is a void (∗)(void∗).

The constructors:

istrsteam(cp)
Characters will be fetched from the (null terminated) string cperminating null character will
not be part of the sequence. Seeks are allowed within that space.

istrstream(cp,len)
Characters will be fetched from the array beginning at cp and extending for len bytes. Seeks are
allowed anywhere within that array.

ostrstream()
Space will be dynamically allocated to hold stored characters.

ostrstream(cp,n,mode)
Characters will be stored into the array starting at cp and continuing for n bytes. If ios::ate
or ios::append is set in mode, cp is assumed to be a null terminated string and storing will
begin at the null character. Otherwise storing will begin at cp. Seeks are allowed anywhere in
the array. Members:

cp=oss.str()
Returns a pointer to the array being used. If oss was constructed with an explicit array, cp is just
a pointer to the array. Otherwise, cp points to a dynamically allocated area. Until str is called,
deleting the dynamically allocated area is the responsibility of ss. After str returns, the array

C++ Stream Library 703

STRSTREAM(3I+) STRSTREAM(3I+)

becomes the responsibility of the user program. Once str has been called the effect of storing
more characters into ss is undefined.

i=ss.pcount()
The number of bytes that have been stored into the buffer. This is mainly of use when binary
data has been stored and ss.str() does not point to a null terminated string.

SEE ALSO
strstreambuf(3C++), iostream(3C++)

C++ Stream Library 704

SWAB(3) Library Functions Manual SWAB(3)

NAME
swab − swap bytes

SYNOPSIS
swab(from, to, nbytes)
char ∗from, ∗to;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adjacent even
and odd bytes. It is useful for carrying binary data between machines with different byte orders. Nbytes
should be even.

705

SYSTEM(3) Library Functions Manual SYSTEM(3)

NAME
system − issue a shell command

SYNOPSIS
system(string)
char ∗string;

DESCRIPTION
System causes the command [CB]sh -c string to be executed. The current process waits until the shell has
completed, then returns the exit status of the shell.

SEE ALSO
popen(3), exec(2), fork(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn’t be executed.

706

TCP(3X) TCP(3X)

NAME
tcp_sock, tcp_connect, tcp_listen, tcp_accept, tcp_rcmd − tcp networking functions

SYNOPSIS
#include <sys/inet/tcp_user.h>

int tcp_sock();

int tcp_connect(fd, tp)
int fd;
struct tcpuser ∗tp;

int tcp_listen(fd, tp)
int fd;
struct tcpuser ∗tp;

int tcp_accept(fd, tp)
int fd;
struct tcpuser ∗tp;

int tcp_rcmd(host, port, locuser, remuser, cmd, fd2p)
char ∗host, ∗port, ∗locuser, ∗remuser, ∗cmd;
int ∗fd2p;

DESCRIPTION
These routines are loaded by the -lin option of ld(1).

TCP is a protocol layered upon IP (internet protocol). It provides full-duplex byte stream connections be-
tween end points called sockets. The address of a socket is composed of the internet address of its host
and the port number to which the socket is bound.

Tcp_sock returns the file descriptor of an unbound socket. Once opened, a socket may be bound to a port
number within the host and set up as the active or passive end of a connection.

Addresses and parameters are passed in tcpuser structures:

struct tcpuser {
int code;
tcp_port lport, fport;
in_addr laddr, faddr;
int param;

};

Lport and laddr refer to the port and address numbers of the local end of a connection. Fport and faddr
refer to the port and address numbers of the foreign end of a connection.

Tcp_connect binds socket fd to port tp->lport and attempts to set up a connection to the socket bound to
port tp->fport on host tp->faddr. If tp->lport is 0, a local port number is automatically chosen.
Tcp_connect returns 0 if the connection is established, -1 otherwise. Tp->lport and tp->laddr are filled
in to reflect the local port and address numbers for the connection. Communication proceeds by perform-
ing read(2) and write on fd . If tp->param is non-zero, it specifies options to set for the connection. The
only option supported is SO_KEEPALIVE which causes empty messages to be sent periodically to de-
tect dead connections.

Tcp_listen binds socket fd to port tp->lport and configures the socket to listen for connection requests to
that port. If tp->faddr and tp->fport are non-zero, only connections coming from sockets on machine
faddr and bound to port fport are listened for. Tcp_listen returns 0 on success, -1 otherwise. tp->laddr
is filled in to reflect the local address number for the connection. Select(2) can be used with a listening
socket to provide asynchronous polling of connection requests by selecting for pending input on the
socket.

Tcp_accept waits for and accepts a connection request sent to the listening socket fd. When a connection
arrives, tcp_accept returns a new file descriptor over which communications can proceed. Tp->faddr,
tp->fport, tp->laddr, and tp->lport are filled in to identify the two ends of the connection. Tp->param is
filled in with the minor device number of the tcp device used for the new connection. Fd is left open and
continues listening for connections.

707

TCP(3X) TCP(3X)

Tcp_rcmd remotely executes a cmd on host as user remuser. Standard input is attached to cmd’s standard
input and cmd’s standard output is attached to standard output. If fd2p is non-zero, it is filled with the file
descriptor of a new TCP connection attached to cmd’s standard error. Otherwise, cmd’s standard error is
attached to its standard output.

FILES
/dev/tcp∗

the socket devices

SEE ALSO
ipc(3), internet(3), udp(3)

DIAGNOSTICS
Tcp_sock returns -1 if no sockets are available.

708

TERMCAP(3X) TERMCAP(3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs − device-independent terminal screen control

SYNOPSIS
char PC;
char ∗BC;
char ∗UP;
short ospeed;

tgetent(bp, name)
char bp[1024], ∗name;

tgetnum(id)
char ∗id;

tgetflag(id)
char ∗id;

char ∗
tgetstr(id, area)
char ∗id, ∗∗area;

char ∗
tgoto(cm, destcol, destline)
char ∗cm;

tputs(cp, affcnt, outc)
char ∗cp;
int (∗outc)();

DESCRIPTION
These functions are loaded by option -ltermcap of ld(1). They extract and use capabilities from the ter-
minal capability data base termcap(5). These are low level routines; see curses(3) for a higher level pack-
age.

Tgetent extracts the entry for terminal name into the buffer at bp. Bp should be a character buffer of size
1024 and must be retained through all subsequent calls to tgetnum, tgetflag, and tgetstr. Tgetent returns
-1 if it cannot open the termcap file, if the terminal name given does not have an entry, and 1 if all goes
well. It will look in the environment for a TERMCAP variable. If found, and the value does not begin with
a slash, and the terminal type name is the same as the value of the environment variable TERM, the
TERMCAP string is used instead of reading the termcap file. If it does begin with a slash, the string is
used as a path name rather than

Tgetnum gets the numeric value of capability id, returning -1 if is not given for the terminal. Tgetflag
returns 1 if the specified capability is present in the terminal’s entry, if it is not. Tgetstr gets the string
value of capability id, placing it in the buffer at ∗area, advancing the area pointer. It decodes the abbrevi-
ations for this field described in termcap(5), except for cursor addressing and padding information.

Tgoto returns a cursor addressing string decoded from cm to go to column destcol in line destline. It uses
the external variables UP (from the up capability) and BC (if bc is given rather than bs) if necessary to
avoid placing en, ˆD, or ˆ@ in the returned string. (Programs which call tgoto should be sure to turn off
the XTABS bit(s), since tgoto may now output a tab. Note that programs using termcap should in general
turn off XTABS anyway since some terminals use [CB]ˆI for other functions, such as nondestructive
space.) If a % sequence is given which is not understood, then tgoto returns ‘OOPS’.

Tputs decodes the leading padding information of the string cp; affcnt gives the number of lines affected
by the operation, or 1 if this is not applicable; outc is a routine which is called with each character in turn.
The external variable ospeed should contain the output speed of the terminal as in tty(4). The external
variable PC should contain a pad character to be used (from the pc capability) if a null (ˆ@) is inappro-
priate.

FILES
/etc/termcap

709

TERMCAP(3X) TERMCAP(3X)

SEE ALSO
vi(1), curses(3), termcap(5)

710

TIMEC(3) Library Functions Manual TIMEC(3)

NAME
timec, timegm, timelocal - convert ASCII to time

SYNOPSIS
#include <time.h>

long timec(string)
char ∗string;

long timegm(timep)
struct tm ∗timep;

long timelocal(timep, zone)
struct tm ∗timep;
char ∗zone;

DESCRIPTION
These routines are inverse to ctime(3) and its relatives. See ctime(3) for data layouts.

Timec converts to system format a date string as produced by ctime, date(1), or ls(1). An optional day of
the week is ignored. A month name and day are required. A missing hour:min[:sec] field is taken to be
00:00:00. An optional time zone (local time by default) may appear before or after the year. A missing
year is assumed to be the past 12-month interval.

Timegm returns the system-format time corresponding to the broken-down GMT time pointed to by timep.
In a copy of the broken-down time tm_mon is reduced mod 12 by carrying (positively or negatively) to
tm_year. Next tm_mon and tm_mday are added to tm_yday appropriately for tm_year. Then tm_sec,
tm_min, tm_hour, tm_yday, and tm_year are adjusted by carrying. Finally the system-format date is
calculated from these 5 fields.

Timelocal is like timegm, except that the broken-down time belongs to the specified time zone, or is local
time if zone is zero.

Time zones and months are recognized by the first three characters, regardless of case. Strings for ctime
may contain names longer than three characters and may contain extra white space and commas.

EXAMPLES
Set a date ahead one month:

struct tm brk_out = ∗localtime(&date);
brk_out.tm_yday = 0;
brk_out.tm_mon++;
date = timelocal(&brk_out,0);

Convert a date(1) string to system format:
date = timec("Sat Sep 27 20:59:11 EDT 1986");

SEE ALSO
ctime(3), time(2)

BUGS
Unknown time zone names are taken to be GMT.
Times before the epoch yield nonsense.

711

TOLOWER(3) Library Functions Manual TOLOWER(3)

NAME
tolower, toupper − force upper or lower case

SYNOPSIS
tolower(character)

toupper(character)

DESCRIPTION
If character is an upper case letter, tolower returns the same lower case letter, otherwise it returns the
original character.

Toupper does the reverse.

SEE ALSO
ctype(3)

712

TTYNAME(3) Library Functions Manual TTYNAME(3)

NAME
ttyname, isatty, nametty − find or set name of a terminal

SYNOPSIS
char ∗ttyname(fildes)

isatty(fildes)

nametty(fildes, file)
char ∗file;

DESCRIPTION
Ttyname returns a pointer to the null-terminated path name of the terminal device associated with file de-
scriptor fildes.

Isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.

Nametty arranges that future opens of file will refer to the stream opened on fildes. File must exist before
nametty is called. The arrangement is terminated when the other end of the stream is closed or hung up.

FILES
/lib/ttydevs list of tty directories for ttyname

SEE ALSO
fmount(2), ioctl(2)

DIAGNOSTICS
Ttyname returns NULL if fildes does not describe an entry in any of the directories listed in

Nametty returns 1 for success, 0 for failure (file does not exist, fildes is not a stream).

BUGS
The return value of ttyname points to static data whose content is overwritten by each call.
If fildes is a network connection, isatty may produce answers having more to do with the network than to
the file to which network data is copied. In particular, it always returns no for connections set up by rx,
and always returns yes for connections arranged by dcon; see con(1).

713

UDP(3X) UDP(3X)

NAME
udp_connect, udp_listen, udp_datagram − udp networking functions

SYNOPSIS
#include <sys/inet/udp_user.h>

int udp_connect(sport, dhost, dport)
in_addr dhost;
udp_port sport, dport;

int udp_listen(sport, reply)
udp_port sport;
struct udpreply ∗reply;

int udp_datagram(sport)
udp_port sport;

DESCRIPTION
These routines are loaded by the -lin option of ld(1).

UDP (universal datagram protocol) is a protocol layered upon IP (internet protocol). It provides datagram
service between end points called sockets. A socket address is composed of the internet address of its
host and the port number to which the socket is bound.

Udp_connect returns the file descriptor of a UDP socket bound to port sport. Each read(2) from this file
descriptor will only accept datagrams from the UDP socket at host dhost, port dport; a write on this file
descriptor will be sent to that socket.

Udp_listen returns the file descriptor of a UDP socket bound to port sport and waits for a datagram to be
sent to that port. Once a message has been received from another socket, all writes will go to that socket
and reads will only accept data from that socket.

Udp_datagram returns the file descriptor of a UDP socket bound to port sport. Messages written to the
file descriptor must start with a struct udpaddr which contains the destination of the message.

struct udpaddr {
in_addr host;
int port;

};

Messages read from the file descriptor also start with a struct udpaddr and contain the address of the
source socket.

FILES
/dev/udp∗

the socket devices

SEE ALSO
internet(3), tcp(3)

DIAGNOSTICS
All these routines returns -1 on failure.

714

UNAME(3) Library Functions Manual UNAME(3)

NAME
uname - get name of current system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
struct utsname ∗name;

DESCRIPTION
Uname stores information identifying the current system in the structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h> whose members are:

char sysname[9];
char nodename[9];
char release[9];
char version[9];

Uname returns a null-terminated character string naming the current system in the character array sys-
name. Similarly, nodename contains the name that the system is known by on a communications net-
work. Release and version further identify the operating system. Upon successful completion, a non-
negative value is returned.

FILES
/etc/whoami

DIAGNOSTICS
If the routine fails, -1 is returned and errno is set to indicate the error.

715

UNGETC(3S) UNGETC(3S)

NAME
ungetc − push character back into input stream

SYNOPSIS
#include <stdio.h>

ungetc(c, stream)
FILE ∗ stream;

DESCRIPTION
Ungetc pushes the character c back on an input stream. That character will be returned by the next getc
call on that stream. Ungetc returns c.

One character of pushback is guaranteed provided something has been read from the stream and the
stream is actually buffered. Attempts to push EOF are rejected.

SEE ALSO
getc(3), stdio(3), fseek(3)

DIAGNOSTICS
Ungetc returns EOF if it can’t push a character back.

3rd Berkeley Distribution 716

VALLOC(3) Library Functions Manual VALLOC(3)

NAME
valloc - aligned memory allocator

SYNOPSIS
char ∗valloc(size)
unsigned size;

DESCRIPTION
Valloc allocates size bytes aligned on a boundary adequate for vread(2)). It is implemented by calling
malloc(3) with a slightly larger request, saving the true beginning of the block allocated, and returning a
properly aligned pointer.

DIAGNOSTICS
Valloc returns a null pointer (0) if there is no available memory or if the arena has been detectably cor-
rupted by storing outside the bounds of a block.

BUGS
Vfree isn’t implemented.

717

VARARGS(3) Library Functions Manual VARARGS(3)

NAME
varargs − variable argument list

SYNOPSIS
#include <varargs.h>
function(va_alist)
va_dcl

va_list pvar;

va_start(pvar);

va_arg(pvar, type);

va_end(pvar);

DESCRIPTION
This set of macros allows portable procedures that accept variable argument lists to be written. Routines
which have variable argument lists (such as printf(3)) that do not use varargs are inherently nonportable,
since different machines use different argument passing conventions.

The literal identifier va_alist is used in a function header to declare a variable argument list. It is declared
by va_dcl. Note that there is no semicolon after va_dcl.

Va_list is the type of the variable pvar, which is used to traverse the list. One variable of this type must
always be declared.

Va_start initializes pvar to the beginning of the list.

Va_arg returns the next argument in the list pointed to by pvar. Type is the type the argument is expected
to be. Different types can be mixed, but it is up to the routine to know what type is expected, since it can-
not be determined at runtime.

Va_end is used to finish up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLES
How to define execl in terms of execv; see exec(2):

#include <varargs.h>
execl(va_alist)
va_dcl
{

va_list ap;
char ∗file;
char ∗args[100];
int argno = 0;
va_start(ap);
file = va_arg(ap, char∗);
while(args[argno++] = va_arg(ap, char∗));
va_end(ap);
execv(file, args);

}

718

VIEW2D(3X) VIEW2D(3X)

NAME
view2d, moviefil − movie of a function f(x, y, t)

SYNOPSIS
view2d(fd, nx, ny, time, u, v, fixuv, pmin, pmax, p)
short p[];
double time;

moviefil(fd, nx, ny, time, outside, f)
float time, outside, f[];

DESCRIPTION
View2d writes a frame in the format view2d(5) onto the file specified by file descriptor fd. To load these
routines, use the ld(1) option -lview2d. Nx, ny give the grid size. Time is a (nondecreasing) frame index,
typically set to simulation time or iteration count. U and v describe the relation between pixel values and
user function values:

p = u + f × 2-v.

U and v may vary from one frame to the next. When the global scaling is known beforehand, put fixuv =
1 and set pmin and pmax to the limits of the data. (Otherwise put fixuv=0; pmin and pmax will be ig-
nored.)

P is the nx by ny array of pixel values, with the x index running fastest. There is a threshold for describ-
ing nonrectangular regions: any pixel value less than or equal to -32766 is treated as an out-of-bounds
marker and will appear as black. Other pixel values should lie in the range -32765..32765 inclusive.

Moviefil is an alternate version that is somewhat less flexible but easier to use. It takes floats and scales
automatically to shorts. An element of f less than outside is treated as undefined and will appear as
black.

SEE ALSO
view2d(1), view2d(5)

BUGS
The array arguments are 2-D Fortran arrays.

719

JOBS(3J) JOBS(3J)

NAME
jobs - summary of job control facilities

SYNOPSIS
#include <sys/ioctl.h>
#include <signal.h>
#include <sys/vtimes.h>
#include <wait.h>

int fildes, signo;
short pid, pgrp;
union wait status;
struct vtimes vt;

ioctl(fildes, TIOCSPGRP, &pgrp)
ioctl(fildes, TIOCGPGRP, &pgrp)

setpgrp(pid, pgrp)
getpgrp(pid)
killpg(pgrp, signo)

sigset(signo, action)
sighold(signo)
sigrelse(signo)
sigpause(signo)
sigsys(signo, action)

wait3(&status, options, &vt)

cc ... -ljobs

DESCRIPTION
The facilities described here are used to support the job control implemented in csh(1), and may be used
in other programs to provide similar facilities. Because these facilities are not standard in UNIX and be-
cause the signal mechanisms are also slightly different, the associated routines are not in the standard C li-
brary, but rather in the -ljobs library.

For descriptions of the individual routines see the various sections listed in SEE ALSO below. This section
attempt only to place these facilities in context, not to explain the semantics of the individual calls.

Terminal arbitration mechanisms.

The job control mechanism works by associating with each process a number called a process group ; re-
lated processes (e.g. in a pipeline) are given the same process group. The system assigns a single process
group number to each terminal. Processes running on a terminal are given read access to that terminal
only if they are in the same process group as that terminal.

Thus a command interpreter may start several jobs running in different process groups and arbitrate access
to the terminal by controlling which, if any, of these processes is in the same process group as the termi-
nal. When a process which is not in the process group of the terminal tries to read from the terminal, all
members of the process group of the process receive a SIGTTIN signal, which normally then causes them
to stop until they are continued with a SIGCONT signal. (See sigsys(2) for a description of these signals;
tty(4) for a description of process groups.)

If a process which is not in the process group of the terminal attempts to change the terminals mode, the
process group of that process is sent a SIGTTOU signal, causing the process group to stop. A similar
mechanism is (optionally) available for output, causing processes to block with SIGTTOU when they at-
tempt to write to the terminal while not in its process group; this is controlled by the LTOSTOP bit in the
tty mode word, enabled by “stty tostop” and disabled (the default) by “stty -tostop.” (The LTOSTOP bit
is described in tty(4)).

How the shell manipulates process groups.

A shell which is interactive first establishes its own process group and a process group for the terminal;
this prevents other processes from being inadvertantly stopped while the terminal is under its control. The
shell then assigns each job it creates a distinct process group. When a job is to be run in the foreground,

4th Berkeley Distribution 720

JOBS(3J) JOBS(3J)

the shell gives the terminal to the process group of the job using the TIOCSPGRP ioctl (See ioctl(2) and
tty(4)). When a job stops or completes, the shell reclaims the terminal by resetting the terminals process
group to that of the shell using TIOCSPGRP again.

Shells which are running shell scripts or running non-interactively do not manipulate process groups of
jobs they create. Instead, they leave the process group of sub-processes and the terminal unchanged. This
assures that if any sub-process they create blocks for terminal i/o, the shell and all its sub-processes will
be blocked (since they are a single process group). The first interactive parent of the non-interactive shell
can then be used to deal with the stoppage.

Processes which are orphans (whose parents have exited), and descendants of these processes are pro-
tected by the system from stopping, since there can be no interactive parent. Rather than blocking, reads
from the control terminal return end-of-file and writes to the control terminal are permitted (i.e.
LTOSTOP has no effect for these processes.) Similarly processes which ignore or hold the SIGTTIN or
SIGTTOU signal are not sent these signals when accessing their control terminal; if they are not in the
process group of the control terminal reads simply return end-of-file. Output and mode setting are also al-
lowed.

Before a shell suspends itself, it places itself back in the process group in which it was created, and then
sends this original group a stopping signal, stopping the shell and any other intermediate processes back to
an interactive parent. The shell also restores the process group of the terminal when it finishes, as the
process which then resumes would not necessarily be in control of the terminal otherwise.

Naive processes.

A process which does not alter the state of the terminal, and which does no job control can invoke sub-
processes normally without worry. If such a process issues a system(3) call and this command is then
stopped, both of the processes will stop together. Thus simple processes need not worry about job control,
even if they have “shell escapes” or invoke other processes.

Processes which modify the terminal state.

When first setting the terminal into an unusual mode, the process should check, with the stopping signals
held, that it is in the foreground. It should then change the state of the terminal, and set the catches for
SIGTTIN, SIGTTOU and SIGTSTP. The following is a sample of the code that will be needed, assuming
that unit 2 is known to be a terminal.

short tpgrp;
...

retry:
sigset(SIGTSTP, SIG_HOLD);
sigset(SIGTTIN, SIG_HOLD);
sigset(SIGTTOU, SIG_HOLD);
if (ioctl(2, TIOCGPGRP, &tpgrp) != 0)

goto nottty;
if (tpgrp != getpgrp(0)) { /∗ not in foreground ∗/

sigset(SIGTTOU, SIG_DFL);
kill(0, SIGTTOU);
/∗ job stops here waiting for SIGCONT ∗/
goto retry;

}
...save old terminal modes and set new modes...
sigset(SIGTTIN, onstop);
sigset(SIGTTOU, onstop);
sigset(SIGTSTP, onstop);

It is necessary to ignore SIGTSTP in this code because otherwise our process could be moved from the
foreground to the background in the middle of checking if it is in the foreground. The process holds all
the stopping signals in this critical section so no other process in our process group can mess us up by
blocking us on one of these signals in the middle of our check. (This code assumes that the command in-
terpreter will not move a process from foreground to background without stopping it; if it did we would
have no way of making the check correctly.)

4th Berkeley Distribution 721

JOBS(3J) JOBS(3J)

The routine which handles the signal should clear the catch for the stop signal and kill(2) the processes in
its process group with the same signal. The statement after this kill will be executed when the process is
later continued with SIGCONT.

Thus the code for the catch routine might look like:

...
sigset(SIGTSTP, onstop);
sigset(SIGTTIN, onstop);
sigset(SIGTTOU, onstop);
...

onstop(signo)
int signo;

{
... restore old terminal state ...
sigset(signo, SIG_DFL);
kill(0, signo);
/∗ stop here until continued ∗/
sigset(signo, onstop);
... restore our special terminal state ...

}

This routine can also be used to simulate a stop signal.

If a process does not need to save and restore state when it is stopped, but wishes to be notified when it is
continued after a stop it can catch the SIGCONT signal; the SIGCONT handler will be run when the
process is continued.

Processes which lock data bases such as the password file should ignore SIGTTIN, SIGTTOU, and SIGT-
STP signals while the data bases are being manipulated. While a process is ignoring SIGTTIN signals,
reads which would normally have hung will return end-of-file; writes which would normally have caused
SIGTTOU signals are instead permitted while SIGTTOU is ignored.

Interrupt-level process handling.

Using the mechanisms of sigset(3) it is possible to handle process state changes as they occur by provid-
ing an interrupt-handling routine for the SIGCHLD signal which occurs whenever the status of a child
process changes. A signal handler for this signal is established by:

sigset(SIGCHLD, onchild);

The shell or other process would then await a change in child status with code of the form:

recheck:
sighold(SIGCHLD); /∗ start critical section ∗/
if (no children to process) {

sigpause(SIGCHLD); /∗ release SIGCHLD and pause ∗/
goto recheck;

}
sigrelse(SIGCHLD); /∗ end critical region ∗/
/∗ now have a child to process ∗/

Here we are using sighold to temporarily block the SIGCHLD signal during the checking of the data
structures telling us whether we have a child to process. If we didn’t block the signal we would have a
race condition since the signal might corrupt our decision by arriving shortly after we had finished check-
ing the condition but before we paused.

If we need to wait for something to happen, we call sigpause which automically releases the hold on the
SIGCHLD signal and waits for a signal to occur by starting a pause(2)Otherwise we simply release the
SIGCHLD signal and process the child. Sigpause is similar to the PDP-11 wait instruction, which returns
the priority of the processor to the base level and idles waiting for an interrupt.

It is important to note that the long-standing bug in the signal mechanism which would have lost a
SIGCHLD signal which occurred while the signal was blocked has been fixed. This is because sighold
uses the SIG_HOLD signal set of sigsys(2) to prevent the signal action from being taken without losing

4th Berkeley Distribution 722

JOBS(3J) JOBS(3J)

the signal if it occurs. Similarly, a signal action set with sigset has the signal held while the action routine
is running, much as a the interrupt priority of the processor is raised when a device interrupt is taken.

In this interrupt driven style of termination processing it is necessary that the wait calls used to retrieve
status in the SIGCHLD signal handler not block. This is because a single invocation of the SIGCHLD
handler may indicate an arbitrary number of process status changes: signals are not queued. This is simi-
lar to the case in a disk driver where several drives on a single controller may report status at once, while
there is only one interrupt taken. It is even possible for no children to be ready to report status when the
SIGCHLD handler is invoked, if the signal was posted while the SIGCHLD handler was active, and the
child was noticed due to a SIGCHLD initially sent for another process. This causes no problem, since the
handler will be called whenever there is work to do; the handler just has to collect all information by call-
ing wait3 until it says no more information is available. Further status changes are guaranteed to be re-
flected in another SIGCHLD handler call.

Restarting system calls.

In older versions of UNIX “slow” system calls were interrupted when signals occurred, returning EINTR.
The new signal mechanism sigset(3) normally restarts such calls rather than interrupting them. To sum-
marize: pause and wait return error EINTR (as before), ioctl and wait3 restart, and read and write restart
unless some data was read or written in which case they return indicating how much data was read or writ-
ten. In programs which use the older signal(2) mechanisms, all of these calls return EINTR if a signal oc-
curs during the call.

SEE ALSO
csh(1), ioctl(2), killpg(2), setpgrp(2), sigsys(2), wait3(2), signal(3), tty(4)

BUGS
The job control facilities are not available in standard version 7 UNIX. These facilities are still under de-
velopment and may change in future releases of the system as better inter-process communication facili-
ties and support for virtual terminals become available. The options and specifications of these system
calls and even the calls themselves are thus subject to change.

4th Berkeley Distribution 723

PLOT (3X) PLOT (3X)

NAME
plot: openpl et al. - graphics interface

SYNOPSIS
openpl()

erase()

label(s)
char s[];

line(x1, y1, x2, y2)

circle(x, y, r)

arc(x, y, x0, y0, x1, y1)

move(x, y)

cont(x, y)

point(x, y)

linemod(s)
char s[];

space(x0, y0, x1, y1)

closepl()

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. See plot(5) for a
description of their effect. Openpl must be used before any of the others to open the device for writing.
Closepl flushes the output.

String arguments to label and linemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by the following
ld(1) options:

-lplot device-independent graphics stream on standard output for plot(1) filters
-l300 GSI 300 terminal
-l300s GSI 300S terminal
-l450 DASI 450 terminal
-l4014 Tektronix 4014 terminal
/usr/jerq/lib/libjplot.a

Blit terminal

SEE ALSO
plot(5), plot(1), graph(1)

724

INTRO(4) Kernel Interfaces Manual INTRO(4)

NAME
intro - introduction to devices, line disciplines, and file systems

DESCRIPTION
This section describes drivers for devices, stream line disciplines, and file systems.

Devices are accessed through special files of type S_IFBLK (block devices) or S_IFCHR (character
devices); see stat(2). Block devices use a block buffering scheme within the system, so that sectored
devices like disks may be accessed a byte at a time. Character devices don’t use the block buffers. Only
block devices may be mounted as disk file systems. Most block devices have associated ‘raw’ character
devices that bypass all buffering for fast direct I/O.

The device associated with a special file is identified by a pair of numbers: a major device number naming
the driver, and a minor device number picking some particular device or subunit. Major numbers are
listed in mknod(8). Minor numbers are specific to each driver; see the writeups in this section. Minor
numbers are stored in a single unsigned byte; they are chosen from the range 0-255.

Some character devices are also stream devices. These use a different internal buffering mechanism to
allow data to flow asynchronously. Various special operations are possible on streams; see stream(4).

Line disciplines are processing modules that may be inserted into streams. They are identified by integers
passed to the calls that insert and remove them. The C library contains global variables initialized to the
numbers for various line disciplines; stream(4) has a list.

There are several different types of file system: conventional disk volumes, remote file systems accessed
by the system sending messages though a stream to a server as described in netfs(8), a file system contain-
ing a file representing each process in the system, and so on. All of these appear the same to ordinary
processes, except that not all file systems implement all operations; for example, a process file has a
name, and may be opened, read, and written like an ordinary file, but may not be renamed because proc(4)
doesn’t allow that.

File system types are identified by integers, used by and listed in fmount(2). They are just magic numbers
at present.

SEE ALSO
fmount(2), stream(4), mknod(8)

725

BK (4) Kernel Interfaces Manual BK (4)

NAME
bk - line discipline for machine-machine communication

SYNOPSIS
#include <sgtty.h>

int ldisc = NETLDISC, fildes; ...

ioctl(fildes, TIOCSETD, &ldisc);

DESCRIPTION
This line discipline provides a replacement for the old and new tty drivers described in tty(4) when high
speed output to and especially input from another machine is to be transmitted over a asynchronous com-
munications line. The discipline was designed for use by the Berkeley network net(1) but is well suited to
uploading of data from microprocessors into the system. If you are going to send data over asynchronous
communications lines at high speed into the system, you must use this discipline, as the system otherwise
may detect high input data rates on terminal lines and disables the lines; in any case the processing of such
data when normal terminal mechanisms are involved saturates the system.

A typical application program then reads a sequence of lines from the terminal port, checking header and
sequencing information on each line and acknowledging receipt of each line to the sender, who then trans-
mits another line of data. Typically several hundred bytes of data and a smaller amount of control infor-
mation will be received on each handshake.

The old standard teletype discipline can be restored by doing:

ldisc = OTTYDISC; ioctl(fildes, TIOCSETD, &ldisc);

While in networked mode, normal teletype output functions take place. Thus, if an 8 bit output data path
is desired, it is necessary to prepare the output line by putting it into RAW mode using ioctl(2). This must
be done before changing the discipline with TIOCSETD, as most ioctl(2) calls are disabled while in net-
work line-discipline mode.

When in network mode, input processing is very limited to reduce overhead. Currently the input path is
only 7 bits wide, with newline the only recognized character, terminating an input record. Each input
record must be read and acknowledged before the next input is read as the system refuses to accept any
new data when there is a record in the buffer. The buffer is limited in length, but the system guarantees to
always be willing to accept input resulting in 512 data characters and then the terminating newline.

User level programs should provide sequencing and checksums on the information to guarantee accurate
data transfer.

SEE ALSO
tty(4)

BUGS
A standard program and protocol should be defined for uploading data from microprocessors, so that
havoc doesn’t result.

A full 8-bit input path should be provided with a mechanism for escaping newlines into an input packet.

4th Berkeley Distribution 726

BUFLD(4) Kernel Interfaces Manual BUFLD(4)

NAME
buf_ld - buffering line discipline

DESCRIPTION
Buf_ld treasures up data for a while, then emits it in a burst. It is otherwise transparent. It is meant to re-
duce overhead of programs such as cu(1) and uucp(1) that read input from moderate-speed lines in raw or
cbreak mode.

It saves characters until 16 have arrived, or until 1/20 sec has passed and no more characters have come.

SEE ALSO
stream(4), ttyld(4)

727

CONNLD(4) Kernel Interfaces Manual CONNLD(4)

NAME
conn_ld - line discipline for unique stream connection

SYNOPSIS
#include <sys/filio.h>

DESCRIPTION
This line discipline provides unique connections to a server. The server process should push the line dis-
cipline on a pipe (see FIOPUSHLD in stream(4)) and fmount(2) the pipe end on a file. A subsequent at-
tempt to open(2) or creat that file causes a new pipe to be created. A file descriptor for one end of the
new pipe is passed on the mounted pipe to to the server process as if by FIOSNDFD; see stream(4). The
opening process is blocked until the server responds. The server should receive the passed file descriptor
with FIORCVFD and respond in one of the following ways:

— Accept the new file descriptor by performing

ioctl(fd, FIOACCEPT, (void ∗)0);

The originating open completes and returns a file descriptor for the other end of the new pipe.

— Write some data on the new file descriptor. This performs an implicit FIOACCEPT.

— Pass a different file descriptor:

ioctl(fd, FIOSNDFD, &newfd);

The originator’s end of the new pipe is closed, and a file descriptor for the open file designated
by newfd is returned to the originating open.

— Reject the connection, by closing the new file descriptor or by performing

ioctl(fd, FIOREJECT, (void ∗)0);

The originating open fails with ENXIO and the new pipe is discarded.

SEE ALSO
fmount(2), stream(4)

728

CONSOLE(4) Kernel Interfaces Manual CONSOLE(4)

NAME
console - VAX console interface

DESCRIPTION
The console terminal is either in program mode (connected to the program running in the VAX) or in con-
sole mode (connected to the console interpreter, which prompts with >>>). On most VAXes, control-p
switches to console mode. If the VAX CPU is still running, SET TERM PROG returns to program mode.
If the CPU is halted, C restarts it and connects to the VAX. Hitting the break key in either mode may halt
the console processor and produce an @ prompt; hit P to escape.

On an 11/750, switching to console mode always halts the VAX; only C will escape. Control-d while in
console mode may induce micro-debugging mode, where the prompt is RDM>. Type RET to return to con-
sole mode.

On a MicroVAX, the break key (only) halts the VAX and switches to console mode.

All these modes are implemented by the VAX hardware. To the operating system, the console looks like
an ordinary terminal as described in tty(4), except that the speed is fixed in the hardware.

FILES
/dev/console

SEE ALSO
tty(4), ttyld(4), reboot(8)

729

DH(4) Kernel Interfaces Manual DH(4)

NAME
dh - DH-11 communications multiplexer

DESCRIPTION
Each line attached to the DH-11 communications multiplexer behaves as described in tty(4). Input and
output for each line may independently be set to run at any of 16 speeds; see tty(4) for the encoding.

FILES
/dev/tty[hi][0-9a-f]

SEE ALSO
tty(4)

4th Berkeley Distribution 730

DK (4) Kernel Interfaces Manual DK (4)

NAME
dk, dkp_ld, unixp_ld, cmc_ld - Datakit interface and protocols

SYNOPSIS
#include <sys/dkio.h>

DESCRIPTION
These device drivers and line disciplines are used to connect to a Datakit network. Normally the pro-
grams in dkmgr(8) do all the work.

Several combinations of hardware and software may be used to connect a system to Datakit:

The dk driver works with a DR11-C or DRV11-J connected through an adapter box to a Datakit
CPM-422. The host computer does all the protocol work.

The kdi driver works with a KMC11-B and one of several line units (KDI, DUBHI, KMS11-P)
connected to one of several Datakit or ISN interface boards. The KMC11 runs microcode that
handles the URP protocol.

The experimental kmcdk driver works with a KMC11-B and a line unit, as above, but the
KMC11 runs different microcode implementing a simple DMA engine, and the host does all the
protocol work. This is slower, but rather more robust, than the kdi setup.

The experimental cure driver works with a custom-built microprocessor board connected to a
Datakit, ISN, or Hyperkit fiber interface. The host does all the protocol work.

Each minor device number represents a Datakit channel; the device number is the channel number. The
kdi driver allows only 96 channels per KMC11-line unit pair; devices 96-191 are channels 0-95 on a sec-
ond pair, if present, and devices 192-255 are channels 0-63 on a third. For the other drivers, there may be
only one hardware interface, which may have up to 256 channels.

Usually there is one interface, with files in directory See dkmgr(8) for more about naming conventions.

Dkp_ld is a stream line discipline implementing the URP protocol. The kdi driver makes its own URP
arrangements; other interfaces need the line discipline. A separate copy of dkp_ld must be pushed on
each active channel.

Cmc_ld and unixp_ld are line disciplines set up calls handle and controller handshake messages. Cmc_ld
runs a Research-only call setup protocol; unixp_ld runs the standard one. One copy of the appropriate
line discipline must be pushed on the common signaling channel to deal with occasional controller keep-
alive and maintenance messages. Other copies of the line discipline come and go as calls are placed.

These ioctl calls are provided by the device drivers:
DIOCNXCL Allow this channel to be opened many times. By default, if a channel is open, it may not

be opened again. The default is restored whenever the channel is completely closed.
KIOCSHUT Reset the kdi driver, hanging up all channels.

These ioctl calls are provided by the URP processors, dkp_ld and kdi:

DIOCSTREAM
Don’t generate a stream delimiter when this channel receives a BOT trailer.

DIOCRECORD
Insert a stream delimiter after receiving BOT; the default.

DIOCSCTL The third argument points to a byte; send that as a Datakit control envelope.
DIOCRCTL The third argument points to a byte; copy the most recently received non-URP control

envelope there. Zero means no control has been received since the last call.
DIOCXWIN Set transmit window size. The third argument points to an array of two long integers.

The first number is the maximum size of each URP block; the second is the number of
blocks that may be outstanding. Blocks may be no more than 4096 bytes, and the proto-
col allows no more than eight blocks in a window. A KIOCINIT call should follow im-
mediately, or things may go awry.

KIOCISURP Return success if some URP processor is active on this channel.
KIOCINIT Initialize URP.

These ioctl calls are provided by the call setup line disciplines:

731

DK (4) Kernel Interfaces Manual DK (4)

DIOCLHN This is the common signalling channel.
DIOCHUP Tell the controller to initialize, hanging up all channels.
DIOCSTOP Temporarily hold back received data, so it won’t be lost in call setup messages.
DIOCSTART

Release data held by DIOCSTOP.
DIOCCHAN The third argument points to an integer; fill it in with the number of a free channel for

calling out. This is a hint, not a promise; the channel may already be taken by the time it
is opened. The caller should be prepared to try again.

FILES
/dev/dk

SEE ALSO
dkmgr(8), kmc(8)
A. G. Fraser and W. T. Marshall, ‘Data Transport in a Byte Stream Network’, IEEE J-SAC, (September,
1989)
Datakit VSC Internal Interface Specification, select code 700-283, AT&T Customer Information Center,
Indianapolis

BUGS
Dkp_ld and kdi insist on using exactly three blocks in a window, no matter what they are told in
DIOCXWIN.
The kdi driver has only two block sizes, 28 and 252 bytes.

732

DRUM(4) Kernel Interfaces Manual DRUM(4)

NAME
drum - paging device

DESCRIPTION
This file is the paging and swapping device. It usually refers to an indirect driver that allows swapping to
be spread over several disk drives.

FILES
/dev/drum

BUGS
The indirect driver divides the swap area into interleaved sections of half a megabyte or so; reads may not
span the boundary between sections. Since the system doesn’t allocate blocks across sections, this proba-
bly doesn’t matter.

733

DZ (4) Kernel Interfaces Manual DZ (4)

NAME
dz - DZ-11 communications multiplexer

DESCRIPTION
Each line attached to the DZ-11 communications multiplexer behaves as described in ttyld(4). Each line
may be set to run at any of 16 speeds; see ttyld(4) for the encoding.

FILES
/dev/tty# where # is one or two digits
/dev/ttyd[0-9a-f]

SEE ALSO
ttyld(4)

734

ETHERNET (4) Kernel Interfaces Manual ETHERNET (4)

NAME
ethernet − Ethernet interface

SYNOPSIS
#include <sys/enio.h>
#include <sys/ethernet.h>

DESCRIPTION
There are drivers for several hardware interfaces to Ethernet. All have the same programming interface.

There are eight software channels for each hardware device. A channel sends and receives packets for a
single Ethernet interface; hence eight protocols may be used independently on the same device. If a chan-
nel is open, it may not be opened again.

Read and write deal in Ethernet packets, consisting of a header followed by no less than 46 but no more
than 1500 bytes of data. The header, defined in <sys/ethernet.h>, is as follows:

#define ETHERALEN 6 /∗ bytes in an ethernet address ∗/
struct etherpup {

unsigned char dhost[ETHERALEN]; /∗ destination address ∗/
unsigned char shost[ETHERALEN]; /∗ source address ∗/
unsigned short type; /∗ protocol type ∗/

};

The protocol type is in the network’s byte order, most significant byte first.

Read on a channel returns at most one complete packet. If only part of a packet fits in the read buffer,
successive reads return the remainder. Write should be given a single complete packet; dhost and type
must be filled in. The system supplies shost.

There are a few ioctl calls, defined in <sys/enio.h>:

ENIOTYPE
The third argument points to a short integer; use that as the protocol type for this channel.

ENIOADDR
The third argument points to a six-character buffer; copy the hardware address of this inter-
face there.

Minor device numbers 0-7 are the eight channels of the first hardware device of a given type; 8-15 are the
second device, and so on. File names usually end in two digits, like /dev/il13 for the fourth channel of the
second Interlan device.

FILES
/dev/il??

Interlan NI1010A devices

/dev/qe??
DEQNA devices

/dev/bna??
DEBNA devices

SEE ALSO
internet(3), ipconfig(8)

BUGS
The DEQNA driver fills in the protocol type field in transmitted packets; other drivers don’t.

735

FD(4) Kernel Interfaces Manual FD(4)

NAME
fd, stdin, stdout, stderr, tty - file descriptor files

DESCRIPTION
These files, conventionally called /dev/fd/0, /dev/fd/1, ... /dev/fd/127, refer to files accessible through file
descriptors. If file descriptor n is open, these two system calls have the same effect:

fd = open("/dev/fd/n", mode);
fd = dup(n);

On these devices creat (see open(2)) is equivalent to open, and mode is ignored. As with dup, subsequent
reads or writes on fd fail unless the original file descriptor allows the operations.

FILES
/dev/fd/∗

/dev/stdin
linked to /dev/fd/0

/dev/stdout
linked to /dev/fd/1

/dev/stderr
linked to /dev/fd/2

/dev/tty
linked to /dev/fd/3

SEE ALSO
open(2), dup(2)

DIAGNOSTICS
Open returns -1 and EBADF if the related file descriptor is not open and in the appropriate mode (read-
ing or writing).

736

FL(4) Kernel Interfaces Manual FL(4)

NAME
fl - floppy interface

DESCRIPTION
This is a simple interface to the D.E.C. RX01 floppy disk unit, which is part of the console LSI-11 sub-
sytem for VAX-11/780’s. Access is given to the entire floppy consisting of 77 tracks of 26 sectors of 128
bytes.

All i/o is raw; the seek addresses in raw transfers should be a multiple of 128 bytes and a multiple of 128
bytes should be transferred. as in other ‘‘raw’’ disk interfaces.

FILES
/dev/floppy

SEE ALSO
arff(8)

BUGS
Multiple console floppies are not supported.

If a write is given with a count not a multiple of 128 bytes then the trailing portion of the last sector will
be zeroed.

4th Berkeley Distribution 737

HP(4) Kernel Interfaces Manual HP(4)

NAME
hp - RP06, RM03, RM-05 moving-head disk

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor devices 8 through
15 refer to drive 1, etc.

The origin and size of the pseudo-disks on each drive are as follows:

RP03 partitions
disk start length
0 0 15884
1 15884 33440
2 40964 8360
3 0 0
4 0 0
5 0 0
6 49324 291346
7 0 0

RM03 partitions
disk start length
0 0 15884
1 16000 33440
2 0 0
3 0 0
4 0 0
5 0 0
6 49600 82080
7 0 0

RM05 partitions
disk start length
0 0 15884
1 16416 33440
2 0 500992
3 341696 15884
4 358112 55936
5 414048 36944
6 341696 159296
7 49856 291346

It is unwise for all of these files to be present in one installation, since there is overlap in addresses and
protection becomes a sticky matter. Ordinarily devices 0 and 6 on rp06 and rm03 drives, and 0, 7, and ei-
ther 6 or 5, 6, and 7 on rm05 drives. Note that the file system sizes are chosen to allow the partitions to be
copied between the rp06’s and rm05’s. This is done so that systems with mixed drives will be able to re-
arrange file systems easily (see also up(4)). Device 2 is the entire pack, and is used in pack-to-pack copy-
ing.

The block files access the disk via the system’s normal buffering mechanism and may be read and written
without regard to physical disk records. There is also a ‘raw’ interface which provides for direct transmis-
sion between the disk and the user’s read or write buffer. A single read or write call results in exactly one
I/O operation and therefore raw I/O is considerably more efficient when many words are transmitted. The
names of the raw files conventionally begin with an extra ‘r.’

FILES
/dev/rp[0-3][a-h] block files
/dev/rrp[0-3][a-h] raw files

SEE ALSO
rp(4)

4th Berkeley Distribution 738

HP(4) Kernel Interfaces Manual HP(4)

BUGS
In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on the
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and lseek(2)
should always deal in 512-byte multiples.

4th Berkeley Distribution 739

HT (4) Kernel Interfaces Manual HT (4)

NAME
ht - RH-11/TE-16 magtape interface

DESCRIPTION
The files mt0, ..., mt15 refer to the DEC RH/TM/TE-16 magtape. The files mt0, ..., mt7 are 800 bpi, and
mt8, ..., mt15 are 1600bpi. The files mt0, ..., mt3 and mt8, ..., mt11 are rewound when closed; the others
are not. When a file open for writing is closed, a double end-of-file is written.

A standard tape consists of a series of 1024 byte records terminated by an end-of-file. To the extent possi-
ble, the system makes it possible, if inefficient, to treat the tape like any other file. Seeks have their usual
meaning and it is possible to read or write a byte at a time. Writing in very small units is inadvisable,
however, because it tends to create monstrous record gaps.

The mt files discussed above are useful when it is desired to access the tape in a way compatible with or-
dinary files. When foreign tapes are to be dealt with, and especially when long records are to be read or
written, the ‘raw’ interface is appropriate. The associated files may be named rmt0, ..., rmt15, but the
same minor-device considerations as for the regular files still apply.

Each read or write call reads or writes the next record on the tape. In the write case the record has the
same length as the buffer given. During a read, the record size is passed back as the number of bytes read,
provided it is no greater than the buffer size; if the record is long, an error is indicated. In raw tape I/O,
the buffer must begin on a word boundary and the count must be even. Seeks are ignored. A zero count is
returned when a tape mark is read; another read will fetch the first record of the next tape file.

FILES
/dev/mt∗ , /dev/rmt∗

SEE ALSO
tp(1)

BUGS
The magtape system is supposed to be able to take 64 drives. Such addressing has never been tried.
These bugs will be fixed when we get more experience with this device.

The driver is limited to four transports.

If any non-data error is encountered, it refuses to do anything more until closed. In raw I/O, there should
be a way to perform forward and backward record and file spacing and to write an EOF mark explicitly.

4th Berkeley Distribution 740

IP(4) Kernel Interfaces Manual IP(4)

NAME
ip, ip_ld - DARPA internet protocol

SYNOPSIS
#include <sys/inio.h>
#include <sys/inet/in.h>
#include <sys/inet/ip_var.h>

DESCRIPTION
The ip_ld line discipline and the /dev/ip∗ files together implement the DARPA IP datagram protocol.
They are used by the programs described in ipconfig(8) and route(8).

Each Ethernet device, Datakit channel, or other stream that is to send and receive IP packets must be reg-
istered as an ‘IP interface’ by pushing ip_ld and setting local and remote addresses with ioctl calls.
Thereafter, data received from the network are assumed to be IP packets, and are intercepted by the line
discipline. Packets destined for the local address of an active IP interface are routed for reading on one of
the ip device files. Other packets are routed to the IP interface with a matching remote address and
retransmitted.

Data written on ip devices are taken to be IP packets, are handed to the IP interface with a matching
address, and are sent. Packets destined for unreachable places are quietly dropped.

A packet consists of a single stream record, followed by a delimiter: at most one packet is returned by a
read call; an entire packet must be presented in a single write. A packet includes the IP header. Numbers
in the header are in host byte order.

Different ip devices handle different protocols atop IP. The minor device is the protocol number in the IP
header; e.g. 6 for TCP or 17 for UDP. While an ip device is open, it may not be opened again. IP packets
are often processed by pushing a line discipline such as tcp_ld on an ip device, rather than by explicit
read and write calls; see tcp(4).

The following ioctl(2) calls, defined in <sys/inio.h>, apply to an IP interface. IPIOLOCAL and either
IPIOHOST or IPIONET must be called on each interface before packets will be routed correctly. Type
in_addr, defined in <sys/inet/in.h>, is a 32-bit integer representing an IP address in host byte order.

IPIOLOCAL
The third argument points to an in_addr: the local IP address for this interface.

IPIOHOST The third argument points to an in_addr: the remote IP address of the single host reach-
able through this interface.

IPIONET The third argument points to an in_addr: the remote IP address of the network of many
hosts reachable through this interface. IP addresses are matched to the network address
by applying an internal bit-mask: any IP address for which (address&mask)==net-
address is part of the network. The default mask depends on the IP address class; see the
IP protocol standard for details.

IPIOMASK The third argument points to an in_addr containing a new network mask for this inter-
face.

IPIOMTU The third argument points to an integer number of bytes. IP packets larger than this size
(1500 by default) will be split into smaller ones before being sent through this interface.

IPIOARP The network device for this interface is an Ethernet. Discard the Ethernet header from
each incoming packet. When sending a packet, prefix an Ethernet header containing pro-
tocol type 0x8 and a destination address obtained by looking up the IP destination address
in a table. If the IP address is not in the table, discard the packet, and make an in_addr
containing the offending address available for reading on this file descriptor (the one on
which ip_ld was pushed).

IPIORESOLVE
The third argument points to a structure:
struct {

in_addr inaddr;
unsigned char enaddr[6];

741

IP(4) Kernel Interfaces Manual IP(4)

};
Add an entry to the table consulted after IPIOARP, mapping IP address inaddr to Ether-
net address enaddr.

The following ioctl calls, define in <sys/inio.h>, apply to the entire IP subsystem; they may be used on
any file with ip_ld pushed.

IPIOROUTE
The third argument points to a structure:
struct route {

in_addr dst;
in_addr gate;

};
Arrange that henceforth, any IP packet destined for address dst will be routed as if des-
tined for gate.

IPIOGETIFS
The third argument points to a union as follows. The structure is defined in
<sys/inet/ip_var.h>.
union {

int index;
struct ipif {

struct queue ∗queue;
int flags;
int mtu;
in_addr thishost;
in_addr that;
in_addr mask;
in_addr broadcast;
int ipackets, ierrors;
int opackets, oerrors;
int arp;
int dev;

} ipif;
};
Before the call, index should contain an integer naming an entry in the system’s table of
active interfaces. Interfaces are numbered in a continuous sequence starting at 0. Out-of-
range numbers return an error. After the call, ipif is filled in with various numbers about
that interface.

FILES
/dev/ip∗

SEE ALSO
ioctl(2), internet(3), ipconfig(8), route(8)
DARPA standards RFC 791, RFC 1122

BUGS
The ARP mechanism should be generalized to deal with networks other than Ethernet. There is only one
ARP table for the entire system; there should be one for each interface.
The structures used by IPIOROUTE and IPIORESOLVE should appear in a header file somewhere.

742

KL(4) Kernel Interfaces Manual KL(4)

NAME
kl - KL-11 or DL-11 asynchronous interface

DESCRIPTION
The discussion of terminal I/O given in tty(4) applies to these devices.

Since they run at a constant speed, attempts to change the speed via ioctl(2) are ignored.

FILES
/dev/ttyk[0-9a-f]

SEE ALSO
tty(4)

BUGS
Modem control for the DL-11E is not implemented.

4th Berkeley Distribution 743

LP(4) Kernel Interfaces Manual LP(4)

NAME
lp - line printer

DESCRIPTION
Lp provides the interface to any of the standard DEC line printers. When it is opened or closed, a suitable
number of page ejects is generated. Bytes written are printed.

An internal parameter within the driver determines whether or not the device is treated as having a 96- or
64-character set. In half-ASCII mode, lower case letters are turned into upper case and certain characters
are escaped according to the following table:

{ -(
} -)
` -́
| -!

-̂ (.).PP The driver correctly interprets carriage returns, backspaces, tabs, and form feeds. A
sequence of newlines which extends over the end of a page is turned into a form feed. Lines
longer than 80 characters are truncated (This is a parameter in the driver). Another parameter
allows indenting all printout if it is unpleasantly near the left margin.

FILES
/dev/lp

SEE ALSO
lpr(1)

BUGS
Half-ASCII mode, the indent and the maximum line length should be settable by an ioctl(2).

744

MEM(4) Kernel Interfaces Manual MEM(4)

NAME
mem, kmem, kUmem, mtpr, fineclock - memory and VAX processor registers

DESCRIPTION
Mem is a file that is an image of the main memory of the computer. It may be used to examine (and even
to patch) the system. Byte addresses in mem are interpreted as physical memory addresses. References to
non-existent locations return errors.

Kmem and kUmem are like mem, but access kernel-mode virtual memory. KUmem promises that reads
and writes will be done in two-byte quantities; this is convenient for UNIBUS accesses.

Mtpr accesses VAX internal processor registers. Each register is 4 bytes long; register n may be read or
written at address n∗4.

Fineclock reads a high-resolution clock. Reading four bytes returns a 32-bit unsigned integer representing
the number of microseconds since the epoch 00:00:00 GMT, Jan. 1, 1970, with high-order bits discarded.

Mem, kmem, kUmem, and mtpr have minor device numbers 0, 1, 3, and 5. Fineclock is a separate driver;
the minor device number is ignored.

FILES
/dev/mem
/dev/kmem
/dev/kUmem
/dev/mtpr
/dev/fineclock

SEE ALSO
time(2)
VAX Hardware Handbook

BUGS
Examining and patching device and processor registers may give unexpected results when read-only or
write-only bits are present.
An attempt to read a nonexistent processor register returns 0 instead of an error.
The fineclock counter overflows every hour or so. It is only as precise as the hardware; hence it is inaccu-
rate on a MicroVAX.

745

MESGLD(4) Kernel Interfaces Manual MESGLD(4)

NAME
mesg_ld, rmesg_ld - message line discipline modules

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>

DESCRIPTION
Mesg_ld and rmesg_ld turn internal stream messages into ordinary data and vice versa. They supply a
way to splice a stream connection together through a process or across a network connection. The mes-
sages represent ordinary data and various control operations.

After mesg_ld has been pushed on a stream, read(2) on the stream returns encoded messages; write is ex-
pected to supply messages in the same coding. An encoded message consists of a header followed by
zero or more bytes of associated data. The header, as defined in <sys/stream.h>, is of the form

struct mesg {
char type;
unsigned char magic;
unsigned char losize, hisize;

};
#define MSGMAGIC 0345
#define MSGHLEN 4 /∗ true length of struct mesg in bytes ∗/

The header is MSGHLEN bytes long; beware that this is not always the same as sizeof(struct
mesg). The magic field contains the constant MSGMAGIC, to help prevent interpreting bad data as a
message header. There are losize+(hisize<<8) bytes of associated data.

Messages may be written in pieces, or several messages may be written at once. At most one message
will be read at a time. If an impossible message is written, the stream may be shut down.

Rmesg_ld is exactly the opposite of mesg_ld . It is intended for use with devices that generate data con-
taining encoded messages. Here is a list of message types, defined in <sys/stream.h>:

M_DATA
(0) Ordinary data.

M_BREAK
(01) A line break on an RS232-style asynchronous connection. No associated data.

M_HANGUP
(02) When received, indicates that the other side has gone away. Thereafter the stream is useless.
No associated data.

M_DELIM
(03) A delimiter that introduces a record boundary in the data. No associated data.

M_IOCTL
(06) An ioctl(2) request. The associated data is a four-byte integer containing the function code,
least significant byte first, followed by some amount of associated data. An M_IOCACK or
M_IOCNAK reply is expected.

M_DELAY
(07) A real-time delay. One byte of data, giving the number of clock ticks of delay time.

M_CTL
(010) Device-specific control message.

M_SIGNAL
(0101) Generate signal number given in the one-byte message.

M_FLUSH
(0102) Flush input and output queue if possible.

M_STOP
(0103) Stop transmission immediately.

746

MESGLD(4) Kernel Interfaces Manual MESGLD(4)

M_START
(0104) Restart transmission after M_STOP.

M_IOCACK
(0105) Successful reply to M_IOCTL. Associated data is to be written back to the caller.

M_IOCNAK
(0106) Failed reply to M_IOCTL. A single-byte message, if present, will be returned in by the
failing ioctl.

M_PRICTL
(0107) High-priority device-specific control message.

SEE ALSO
stream(4)

BUGS
The format of arguments to M_IOCTL is machine dependent.
The amount of associated data is limited, but large (>4K).

747

MT (4) Kernel Interfaces Manual MT (4)

NAME
mt - magtape interface

SYNOPSIS
#include <sys/types.h>
#include <sys/mtio.h>

DESCRIPTION
The rmt files refer to magnetic tape drives. Filenames beginning with rmt are rewound when closed;
those beginning with nrmt are not. When a file open for writing is closed, two file marks are written. If
the tape is not to be rewound, it is positioned with the head between the two file marks.

Conventionally rmt0 is 800, rmt1 is 1600, and rmt2 is 6250 bpi.

Each read(2) or write call reads or writes the next record on the tape. Read returns at most a single
record; the return value is the record size. If the next record is larger than the read buffer, an error is
returned. A file mark causes read to return 0; the next read will return the next record. Seeks are
ignored.

An ioctl(2) call performs special operations:

MTIOCTOP
perform a suboperation encoded as below in the mt_op field of a structure whose address is
passed as the third argument of ioctl.

struct mtop {
short mt_op; /∗ operation ∗/
daddr_t mt_count; /∗ repeat count ∗/

};
MTWEOF

write an end-of-file record
MTFSF

forward space file
MTBSF

backward space file
MTFSR

forward space record
MTBSR

backward space record
MTREW

rewind
MTOFFL

rewind and put the drive offline

The files described above provide a ‘raw’ interface. There is also a ‘block’ interface which attempts to
treat the tape like an ordinary file as much as possible. Block tapes are accessed through files with names
beginning with mt or nmt. Such a tape contains a single file, consisting of a series of 1024-byte records
followed by a file mark. Seeks have their usual meaning, and it is possible to read and write a byte at a
time, though writing in very small units may create enormous record gaps. The file always ends at the
most recently written byte.

Conventions for minor device numbers vary among different hardware drivers:

For the TU78, the drive unit number is encoded in the two low-order bits. Adding 4 prevents the
tape from rewinding at close time. Adding 8 selects 6250 bpi for writing; the default is 1600.
The tape drive senses density automatically when reading.

The TE16 is like the TU78, except that the default density is 800 bpi, and adding 8 to the device
number selects 1600.

For TMSCP tape drives such as the TU81 and the TK50, the unit number is encoded in the three
low-order bits. Adding 128 prevents the tape from rewinding on close. Density is selected by
octal bits 070; the eight possible values represent eight different device-dependent tape formats.
For 9-track tape drives, add 0 for 800 bpi, 8 for 1600, 16 for 6250. For TK50 cartridge drives,

748

MT (4) Kernel Interfaces Manual MT (4)

add 24 (old-style block format). For TK70 drives, add 8. The tape drives sense density automat-
ically on reading, but if a drive doesn’t support a particular density, the hardware may complain
when the device is opened.

FILES
/dev/mt?
/dev/rmt?
/dev/nmt?
/dev/nrmt?

SEE ALSO
tape(1)

BUGS
If any non-data error is encountered, the tape drivers generally refuse to do anything more until closed.
The naming convention behaves poorly with multiple tape drives.
Block tape has probably outlived its usefulness.

749

NEWTTY (4) Kernel Interfaces Manual NEWTTY (4)

NAME
newtty - summary of the ‘‘new’’ tty driver

SYNOPSIS
stty new

stty new crt

DESCRIPTION
This is a summary of the new tty driver, described completely, with the old terminal driver, in tty(4). The
new driver is largely compatible with the old but provides additional functionality for job control.

CRTs and printing terminals.

The new terminal driver acts differently on CRTs and on printing terminals. On CRTs at speeds of 1200
baud or greater it normally erases input characters physically with backspace-space-backspace when they
are erased logically; at speed under 1200 baud this is often unreasonably slow, so the cursor is normally
merely moved to the left. This is the behavior when you say “stty new crt”; to have the tty driver always
erase the characters say “stty new crt crterase crtkill”, to have the characters remain even at 1200 baud or
greater say “stty new crt -crterase -crtkill”.

On printing terminals the command “stty new prterase” should be given. Logically erased characters are
then echoed printed backwards between a ‘\’ and an ‘/’ character.

Other terminal modes are possible, but less commonly used; see tty(4) and stty(1) for details.

Input editing and output control.

When preparing input the character # (normally changed to ˆH using stty(1)) erases the last input charac-
ter, ˆW the last input word, and the character @ (often changed to ˆU) erases the entire current input line.
A ˆR character causes the pending input to be retyped. Lines are terminated by a return or a newline; a ˆD
at the beginning of a line generates an end-of-file.

Control characters echo as ˆx when typed, for some x; the delete character is represented as ˆ?.

The character ˆV may be typed before any character so that it may be entered without its special effect.
For backwards compatibility with the old tty driver the character ‘\’ prevents the special meaning of the
character and line erase characters, much as ˆV does.

Output is suspended when a ˆS character is typed and resumed when a ˆQ character is type. Output is dis-
carded after a ˆO character is typed until another ˆO is type, more input arrives, or the condition is cleared
by a program (such as the shell just before it prints a prompt.)

Signals.

A non-interactive program is interrupted by a ˆ? (delete); this character is often reset to ˆC using stty(1).
A quit ˆ\ character causes programs to terminate like ˆ? does, but also causes a core image file to be cre-
ated which can then be examined with a debugger. This is often used to stop runaway processes. Interac-
tive programs often catch interrupts and return to their command loop; only the most well debugged pro-
grams catch quits.

Programs may be stopped by hitting ˆZ, which returns control to the shell. They may then be resumed us-
ing the job control mechanisms of the shell, i.e. the fg (foreground) command. The character ˆY is like ˆZ
but takes effect when read rather then when typed; it is much less frequently used.

See tty(4) for a more complete description of the new terminal driver.

SEE ALSO
csh(1), newcsh(1), stty(1), tty(4)

4th Berkeley Distribution 750

NULL(4) Kernel Interfaces Manual NULL(4)

NAME
null - data sink

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

751

PROC(4) Kernel Interfaces Manual PROC(4)

NAME
proc - process file system

SYNOPSIS
#include <sys/types.h> #include <sys/proc.h>
#include <sys/pioctl.h>

DESCRIPTION
Proc is a file system that contains memory images of each running process in the system. The name of
each entry in the /proc directory is the process id of the subject process, expressed in decimal with
optional leading zeros. Each process file is owned by the userid of the subject process. The file mode
includes read and write permission for the owner if that userid has read access to the associated text file;
all other permission bits are zero. The file size is the sum of the sizes of virtual memory segments in the
subject process.

The subject process is unaffected, except that setuid bits will be ignored if it does an exec(2). (Setuid bits
are also ignored if the execing process has traced signals, or stops on exec; see the description of PIOCS-
MASK and PIOCSEXEC below.)

Data may be transferred from or to any locations in the subject’s address space through lseek(2), read(2),
and write. The text segment begins at address 0; the data segment starts above the text. The user area
extends downward below address 0x80000000, and is UPAGES∗NBPG bytes long (see the header files
listed below); the stack segment grows downward below the user area. The text, data, and stack sizes may
be determined from the process’s proc structure (see PIOCGETPR below). It is an error to access
addresses between data and stack. No read or write may span a segment boundary; in the user area only
the locations of saved user registers are writable.

Ioctl(2) calls control the subject process. The third argument usually points to an integer. The ioctl codes
are:

PIOCSTOP
Send signal SIGSTOP to the process, and wait for it to enter the stopped state.

PIOCWSTOP
Wait for the process to stop.

PIOCRUN
Make the process runnable again after a stop.

PIOCSMASK
Define a set of signals to be traced. The process will stop when it receives any signal whose
number, as given in signal(2), corresponds to a 1-bit in the given integer, with the least significant
bit counted as 1. The traced state and mask bits are inherited by the child of a fork(2). When the
process file is closed, the mask becomes zero, but the traced state persists.

PIOCSEXEC
Cause the process to stop after exec(2). This condition is inherited across fork(2) and persists
when the process file is closed.

PIOCREXEC
Reverse the effect of PIOCSEXEC.

PIOCCSIG
Clear the subject’s currently pending signal (if any).

PIOCKILL
Set the subject’s currently pending signal to a given number.

PIOCOPENT
Return a read-only file descriptor for the subject process’s text file. (Thus a debugger can find
the symbol table without knowing the name of the text file.)

PIOCNICE
Increment the priority of the subject process by a given amount as if by nice(2).

752

PROC(4) Kernel Interfaces Manual PROC(4)

PIOCGETPR
Copy the subject’s proc structure (see <sys/proc.h>) from the kernel process table into an area
pointed to the third argument. (This information, which resides in system space, is not accessible
via a normal read.)

Any system call is guaranteed to be atomic with respect to the subject process, but nothing prevents more
than one process from opening and controlling the same subject.

The following header files are useful in analyzing proc files:

<signal.h>
list of signal numbers

<sys/param.h>
size parameters

<sys/types.h>
special system types

<sys/user.h>
user structure

<sys/proc.h>
proc structure

<sys/reg.h>
locations of saved user registers

<sys/pioctl.h>
ioctl codes for proc files

FILES
/proc/∗

SEE ALSO
adb(1), ps(1), hang(1), fmount(2), signal(2), mount(8), pi(9)

DIAGNOSTICS
These errors can occur in addition to the errors normally associated with the file system; see intro(2):

ENOENT
The subject process has exited.

EIO The subject process has attempted I/O at an illegal address.

EBUSY
The subject is in the midst of changing virtual memory attributes, or has pages locked for physi-
cal I/O.

ENOSPC
A write has been attempted on a shared text segment and there is no room on the swap space to
make a copy.

EPERM
A non-super-user has attempted to better the subject’s priority with PIOCNICE.

BUGS
A process must be swapped in for reading and writing (but not ioctl); this may cause a noticeable delay.
The spectrum of states which result in EBUSY is too conservative.
A process loaded from a text file with magic number 0407 does not have as a read-only text segment; in
this (presumably rare) case PIOCOPENT does not work, and the process is accessible even if the text file
is read-only.
The interface involves too many VAX-specific magic numbers.

753

RA(4) Kernel Interfaces Manual RA(4)

NAME
ra - DEC MSCP disks (RA60, RA80, RA81, RA90)

DESCRIPTION
Ra devices occupy disk drives conforming to DEC’s Mass Storage Control Protocol standard: drives such
as the RA81 connected via controllers such as the UDA50. Files with minor device numbers 0 through 7
refer to different sections of drive 0, minor devices 8 through 16 refer to drive 1, and so on up to 63 (8 dri-
ves).

Normally the disk is accessed in 1024-byte blocks (1K). If 64 is added to the minor device number,
4096-byte blocks (4K) are used instead. A 4K device mounted as a file system is bitmapped; see filsys(5).

Conventionally the files are given names like ra37 for section 7 of drive 3. There are no name rules dis-
tinguishing 1024-byte files from 4096-byte files; in practice the files are almost always the 4096-byte
kind.

The start and size of the sections of each drive are as follows. Sizes are measured in 512-byte hardware
sectors.

disk start length
0 0 10240
1 10240 20480
2 30720 249848
3 280568 249848
4 530416 249848
5 780264 arbitrarily large
6 30720 749544
7 0 arbitrarily large

The ‘arbitrarily large’ sections reach to the end of the disk. Rarct will display disk sizes; see rarepl(8).
For example, an RA81 has 891072 sectors, so section 7 is that size, and section 5 is
891072− 780264=110808 sectors. An RA90 has 2376153 sectors; section 7 is that size, section 5 is
2376153− 780264=1595889 sectors. For other disks, run rarct and do the arithmetic.

The ra files discussed above access the disk via the system’s normal buffering mechanism and may be
read and written without regard to physical disk records. There is also a ‘raw’ interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably more efficient when many words
are transmitted. The names of the raw files begin with rra and end with a number which selects the same
disk as the corresponding ra file.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512 bytes (a disk
block). Likewise lseek(2) calls should specify a multiple of 512 bytes.

Several ioctl(2) calls apply to the raw devices.

UIOCHAR
The third argument to ioctl points to an object to be filled with drive parameters:
struct ud_unit {

daddr_t radsize; /∗ disk size, sectors ∗/
daddr_t rctsize; /∗ RCT size, including pad ∗/
long medium; /∗ medium id ∗/
short tracksz; /∗ sectors per track ∗/
short groupsz; /∗ tracks per group ∗/
short cylsz; /∗ groups per cylinder ∗/
char rbns; /∗ RBNs per track ∗/
char copies; /∗ number of RCT copies ∗/

};

UIORRCT
The third argument points to an object of type
struct ud_rctbuf {

caddr_t buf;
int lbn;

754

RA(4) Kernel Interfaces Manual RA(4)

};

buf points to a 512-byte buffer, into which block lbn of the replacement and caching table (RCT)
is read. As many copies of the RCT as necessary are examined to find a readable copy of the
block.

UIOWRCT
The third argument is like that of UIORRCT. Block lbn of the RCT is written in all copies.

UIOREPL
The third argument points to an object of type:
struct ud_repl {

daddr_t replbn; /∗ good block ∗/
daddr_t lbn; /∗ bad block ∗/
short prim; /∗ nonzero if primary replacement ∗/

};

A ‘replace’ command is sent to the controller, requesting that attempts to access logical block lbn
henceforth be revectored to replacement block replbn. Prim should be set nonzero if and only if
replbn is the primary replacement block for lbn.

UIOSPDW
Arrange that the disk drive will spin down when the last file using it is closed.

UIORST
Reset the controller to which this disk is connected. Any pending operations are abandoned and
return an error.

FILES
/dev/ra∗
/dev/rra∗

SEE ALSO
rarepl(8)
MSCP Basic Disk Functions Manual
DEC Standard Disk Format Specification

BUGS
In raw I/O read(2) and write truncate file offsets to 512-byte block boundaries, and write scribbles on the
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and lseek(2)
should always deal in 512-byte multiples.

UIORRCT and UIOWRCT will misbehave if invoked on a section that doesn’t start at the beginning of
the disk. Section 7 (the whole disk) is the best choice.

The 1K/4K flag bit in the device number is unfortunate.

755

RK (4) Kernel Interfaces Manual RK (4)

NAME
rk - RK11/RK07 disk driver

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0, minor devices 8 through
16 refer to drive 1, etc.

The range and size of the pseudo-drives for each drive are as follows:

RK07 partitions:
disk start length
0 0 15884
1 15906 10032
2 0 53780
3 0 0
4 0 0
5 0 0
6 26004 27786
7 0 0

On a dual RK07 system partition 0 is used for the root for one drive and partition 6 for the /usr file system.
If large jobs are to be run, partition 1 on both drives provides a 10Mbyte paging area. Otherwise partition
2 on the other drive is used as a single large file system.

The rk files discussed above access the disk via the system’s normal buffering mechanism and may be
read and written without regard to physical disk records. There is also a ‘raw’ interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or write call re-
sults in exactly one I/O operation and therefore raw I/O is considerably more efficient when many words
are transmitted. The names of the raw RK files begin with rrk and end with a number which selects the
same disk as the corresponding rk file.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512 bytes (a disk
block). Likewise lseek(2) calls should specify a multiple of 512 bytes.

FILES
/dev/rk?
/dev/rrk?"

BUGS
In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on the
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and lseek(2)
should always deal in 512-byte multiples.

756

RV (4) Kernel Interfaces Manual RV (4)

NAME
rv - Racal/Vadic ACU interface

DESCRIPTION
The racal/vadic ACU interface is provided by the files /dev/cua[01] which is a multiplexed file, and by
the daemon dnd which monitors the file, simulating a standard DN dialer. To place an outgoing call one
forks a sub-process trying to open /dev/cul? and then opens the corresponding file /dev/cua? file and
writes a number on it. The daemon translates the call to proper format for the Racal/Vadic interface, and
monitors the progress of the call recording accounting information for later use.

The codes for the phone numbers are the same as in the DN interface:

0-9 dial 0-9
: dial ∗
; dial #
- delay for second dial tone
< end-of-number

The entire telephone number must be presented in a single write system call.

It is require that an end-of-number code be given.

FILES
/dev/cua0 virtual dialer for 300 baud dialout
/dev/cua1 virtual dialer for 1200 baud dialout
/dev/cul0 the terminal which is connected to the 300 baud dialout
/dev/cul1 the terminal which is connected to the 1200 baud dialout
/usr/adm/dnacct Accounting records for sucessfully completed calls.

SEE ALSO
cu(1), uucp(1)

BUGS
Locking problems.

The multiplexor seems to have rare-case bugs which occasinally crash the system taking trap type 9’s,
usually in the sdata system routine.

757

SCSI (4) Kernel Interfaces Manual SCSI (4)

NAME
scsi - SCSI interface

SYNOPSIS
#include <scsi.h>

DESCRIPTION
The special file /dev/scsi provides a low level interface to a SCSI bus. Commands are transmitted to
the bus by write; the response to each command is received with read(2). The format of a command is

unsigned long tran_id; /∗ transaction id ∗/
unsigned char target; /∗ SCSI id of target device ∗/
unsigned char flags; /∗ flags for this transaction ∗/
unsigned long nreturn; /∗ number of bytes to be read back ∗/
char cmd[10]; /∗ SCSI command ∗/
char data[]; /∗ optional data ∗/

Thus, to send n bytes of data, the byte count for write should be n+20. Possible flags are SCSI_WR (data
goes from host to SCSI), SCSI_RD (data goes from SCSI to host), SCSI_BRESET (reset the SCSI bus),
SCSI_RESET (reset the controller), and SCSI_SENSE (return extended sense data on error). For most
controllers, SCSI_BRESET implies SCSI_RESET. Flags are OR’ed together, and there must be exactly
one of SCSI_WR and SCSI_RD. The SCSI command should terminate within a small time (currently 10
seconds); a longer limit (300 seconds) can be specified by using SCSI_LTMOUT.

The data read is structured as

unsigned long tran_id; /∗ transaction id ∗/
unsigned char status; /∗ scsi status byte ∗/
unsigned char message; /∗ scsi message byte ∗/
unsigned char flags; /∗ flags for this transaction ∗/
unsigned char c_type; /∗ 1=td 2=us ∗/
unsigned short c_reg1; /∗ td=sa, us=csr ∗/
unsigned short c_reg2; /∗ td=mscp, us=per ∗/
unsigned char sense[22]; /∗ extended sense data ∗/
char pad[2];
char data[]; /∗ any data ∗/

Thus, to read n bytes of data. the byte count to read should be n+36. If flags has the SCSI_CERR bit
set, there was a controller error, which is described by the c_ fields. The values of csr (or sa) and per (or
mscp) are documented in the interface manual for the U.S. Design 1158 Unibus controller (or T.D. Sys-
tems Viking controller). If the SCSI_SENSE bit was set in the write, and the status byte shows a check
condition, an attempt is made to get extended sense information. If the attempt succeeds the
SCSI_SENSE is set in flags. Otherwise, the status and message bytes for the failed attempt are placed in
sense[0] and sense[1] respectively.

The transaction id identifies which write caused the results for this read . This will become more impor-
tant when multiple simultaneous transactions are allowed.

FILES
/dev/scsi

SEE ALSO
scsish(8)

758

STREAM(4) Kernel Interfaces Manual STREAM(4)

NAME
stream - communication channels

SYNOPSIS
#include <sys/filio.h>
#include <sys/ttyio.h>

DESCRIPTION
A stream is a connection between two processes, or between a process and a device. It is referred to by a
file descriptor, and ordinary read and write calls apply. When a write call is given on a stream whose
other end has disappeared, for example because the process at other end of a pipe has terminated, or a de-
vice has hung up, signal SIGPIPE is generated; if the signal is ignored, the write call returns error
EPIPE. The first 64 attempts to read such a disconnected stream return 0; subsequent attempts generate
SIGPIPE signals.

Pipes are streams; so are most communication devices like terminals and networks.

Line disciplines may be inserted into a stream to do various sorts of processing. Line disciplines within a
stream are identified by their position; level 0 is nearest the process. Line disciplines on one end of a pipe
cannot be seen from the other. Line discipline types are integers; a list is given below.

These ioctl calls, defined in <sys/filio.h>, manipulate line disciplines:

FIOPUSHLD
The third argument points to an integer naming a line discipline; insert that line discipline
at level 0.

FIOINSLD The third argument points to a structure:

struct insld {
short ld;
short level;

};

Insert the line discipline named by ld in the stream at depth level. If there are fewer than
level line disciplines in the stream, an error is returned.

FIOPOPLD The third argument points to an integer; remove the line discipline at that level in the
stream. A null pointer (the usual case) means level 0.

FIOLOOKLD
The third argument points to an integer; return the type of the line discipline at that level,
both in the same integer and as the return value from ioctl. A null pointer means level 0.

These ioctl calls, also in <sys/filio.h>, perform other operations on streams:

FIOSNDFD The third argument points to an integer naming an open file descriptor. Send a reference
to that file to the other end of the stream. This works only on pipes. The reference is un-
affected by intervening line disciplines; in particular it cannot be intercepted or forged by
mesgld(4). FIOSNDFD returns immediately; it does not wait for the reference to be re-
ceived.

FIORCVFD The third argument points to a structure:

struct passfd {
int fd;
short uid;
short gid;
short nice;
char logname[8];

};

Receive a file reference sent by FIOSNDFD; fill in the structure with a file descriptor fd
for the passed file, and the userid uid, groupid gid, login name logname, and scheduling
priority nice of the sending process. The file reference must be the next message in the
stream; if data precedes it, EIO is returned. If the stream is empty, FIORCVFD blocks
until data or a file reference arrives.

759

STREAM(4) Kernel Interfaces Manual STREAM(4)

FIONREAD The third argument points to an integer; fill it in with the number of characters that may be
read from this stream without blocking.

These ioctl calls also work on streams, but are defined in <sys/ttyio.h> for historic reasons:

TIOCSPGRP
The third argument points to a short integer. If the pointer is null (the usual case), make a
new process group for the current process, and associate the group with this stream. If the
pointer is not null, it points to a process group id; associate that group with this stream.
When the lowest level of a stream receives a signal message (like SIGINT or SIGQUIT
from ttyld(4)), the signal is sent to processes in the associated process group. If the stream
is shut down prematurely, the process group is sent SIGHUP.

TIOCGPGRP
The third argument points to a short integer; fill it in with the process group id associated
with this stream. 0 means no group.

TIOCEXCL Mark this stream so that future opens are forbidden except to the super-user or to
processes in the associated process group.

TIOCNXCL
Remove the mark left by TIOCEXCL.

TIOCSBRK Send a break on a serial line.

TIOCFLUSH
Throw away queued data anywhere in the stream.

Here is a list of line discipline types. The names refer to global integers defined in the C library.

tty_ld Regular terminal processing, ttyld(4).
ntty_ld Restricted Berkeley ‘new tty’ terminal processing; see the Berkeley Users Manual.
cdkp_ld Character-mode Datakit universal receiver protocol, dk(4).
dkp_ld Block-mode Datakit universal receiver protocol, dk(4).
rdk_ld
uxp_ld Datakit protocols used in call setup, dk(4).
buf_ld Buffering mechanism, bufld(4).
mesg_ld
rmesg_ld Turn stream controls into ordinary data and vice versa, mesgld(4).
conn_ld Make unique connections to a server, connld(4).
ip_ld
tcp_ld
udp_ld Internet protocols, internet(3).

SEE ALSO
ioctl(2), signal(2), mesgld(4), ipc(3)
D. M. Ritchie, ‘A Stream I/O System’, this manual, Volume 2

760

TBL(4) Kernel Interfaces Manual TBL(4)

NAME
tbl - kernel table file system

DESCRIPTION
Tbl is a file-system mount point that provides access to kernel data tables. The name of each entry in the
/tbl directory is the name of a directory containing files that describe a kernel data table. These files
have the following names and contents:

base system base address of the table

count number of elements in the table

data table contents

size size of a table element

The standard system-call interface is used to access tbl. Open(2) and close(2) behave as usual. Data may
be transferred from or to any locations in the ‘‘data’’ file through lseek, read, and write(2)

The following header files are useful in analyzing tbl ‘‘data’’ files:

<sys/file.h>
‘‘file’’ structure

<sys/inode.h>
‘‘inode’’ structure

<sys/lnode.h>
‘‘lnode’’ structure

<sys/param.h>
size parameters

<sys/proc.h>
‘‘proc’’ structure

<sys/stream.h>
‘‘stream’’, ‘‘block’’, and ‘‘queue’’ structures

<sys/text.h>
‘‘text’’ structure

<sys/types.h>
special system types

FILES
/tbl/∗/base
/tbl/∗/count
/tbl/∗/data
/tbl/∗/size

SEE ALSO
fmount(2), tblmount(8),

BUGS
The super-user may write on any file, despite the permissions.

761

TCP(4) Kernel Interfaces Manual TCP(4)

NAME
tcp, tcp_ld - DARPA transmission control protocol

SYNOPSIS
#include <sys/inio.h>
#include <sys/inet/tcp_user.h>

DESCRIPTION
The tcp_ld line discipline and the /dev/tcp∗ devices together implement the DARPA TCP circuit pro-
tocol. They are normally used through tcpmgr(8) and the routines in ipc(3).

One instance of tcp_ld should be pushed on an IP device stream, usually see ip(4). Thereafter, data writ-
ten on the tcp devices is turned into IP packets written to the IP device, and vice versa.

Different tcp devices represent different software channels. Files with odd minor device numbers are for
placing calls; while such a file is open, it may not be opened again. Files with even device numbers
receive calls.

To place a call, open an unused odd-numbered tcp file; write a struct tcpuser describing the address to be
called; and read a struct tcpuser for status. The structure is defined in <sys/inet/tcp_user.h>:

struct tcpuser {
int code;
tcp_port lport, fport;
in_addr laddr, faddr;
int param;

};
#define TCPC_LISTEN 1
#define TCPC_CONNECT 2
#define TCPC_OK 3
#define TCPC_SORRY 4 /∗ unknown error ∗/
#define TCPC_BADDEV 5 /∗ tcp device is bad ∗/
#define TCPC_NOROUTE 6 /∗ no routing to dest ∗/
#define TCPC_BADLOCAL 7 /∗ bad local address ∗/
#define TCPC_BOUND 8 /∗ address already bound ∗/
#define SO_KEEPALIVE 0x2 /∗ generate keepalives ∗/

In the structure describing the call, code should be TCPC_CONNECT; faddr and fport are the destina-
tion IP address and TCP port number; laddr is the IP address associated with a local IP interface, or
INADDR_ANY to let the system pick; lport is the local TCP port number, or to let the system pick;
param is 0 or SO_KEEPALIVE.

In the structure returned for status, code is TCPC_OK if the call completed correctly; henceforth data
written to and read from the file is transported on the circuit. Other codes mean the circuit was not set up.

To listen for incoming calls, open an odd-numbered device and write a struct tcpuser with code set to
TCPC_LISTEN; laddr set to the local IP address for which calls should be taken, or INADDR_ANY to
catch any calls not explicitly taken by another listener; lport set to the port on which to listen, or 0 for any
port; and param set to 0. Thereafter, reads return successive tcpuser structures, each describing a new
call; faddr and fport identify the caller, laddr and lport the assigned local address. The local tcp device
number, n, assigned to the call is returned in param. The corresponding device, /dev/tcpn, should be
opened; data read and written there is transported by the circuit.

Several ioctl(2) calls, defined in <sys/inio.h>, apply to tcp devices:

TCPIOHUP When the remote end of the circuit is disconnected, send signal SIGHUP to the local
process group associated with the stream.

TCPMAXSEG
The third argument points to an integer giving the maximum segment size for this con-
nection: the greatest number of bytes to be packed into one IP packet.

TCPGETADDR
The third argument points to a struct tcpuser; fill in laddr, lport, faddr, and fport
with the local and foreign addresses associated with the circuit.

762

TCP(4) Kernel Interfaces Manual TCP(4)

FILES
/dev/tcp??
/dev/ip6

SEE ALSO
ip(4), internet(3), tcpmgr(8)
DARPA standards RFC 793, 1122

763

TTY (4) Kernel Interfaces Manual TTY (4)

NAME
tty - serial line interface drivers

SYNOPSIS
#include <sys/ttyio.h>

DESCRIPTION
The files /dev/tty∗ refer to serial line devices such as the DZ11. They are normally used in conjunc-
tion with the terminal line discipline, ttyld(4).

Certain device-related parameters, such as parity and line speed, may be set by ioctl(2) calls:

TIOCGDEV
The argument points to a ttydevb structure to be filled in with current settings.

TIOCSDEV
The argument points to a ttydevb structure from which the parameters are set.

The ttydevb structure, as defined in <sys/ttyio.h>, is

struct ttydevb {
char ispeed; /∗ input speed ∗/
char ospeed; /∗ output speed ∗/
short flags; /∗ mode flags ∗/

};

The speeds are encoded as follows. Impossible speeds are ignored.

B0 0 (hang up device)
B50 1 50 baud
B75 2 75 baud
B110 3 110 baud
B134 4 134.5 baud
B150 5 150 baud
B200 6 200 baud
B300 7 300 baud
B600 8 600 baud
B1200 9 1200 baud
B1800 10 1800 baud
B2400 11 2400 baud
B4800 12 4800 baud
B9600 13 9600 baud
EXTA 14 External A
EXTB 15 External B

The flags are:

F8BIT 040 eight-bit input and output
ODDP 0100 odd parity
EVENP 0200 even parity

If F8BIT is set, all eight bits of each output character are transmitted without imposing parity, and all
eight bits of each input character are passed back without parity checking or stripping. Otherwise, EVENP
requests that even parity be accepted and generated, ODDP odd parity. If both EVENP and ODDP are set,
or if both are clear, even parity is generated and any parity is accepted.

For DZ11 lines, 1200 baud and 8-bit mode are the defaults. The transmit and receive speeds are the same;
ospeed is ignored.

SEE ALSO
ioctl(2), ttyld(4)

BUGS
Every hardware interface doesn’t support every operation.

764

TTYLD(4) Kernel Interfaces Manual TTYLD(4)

NAME
tty_ld - terminal processing line discipline

SYNOPSIS
#include <sys/ttyio.h>

DESCRIPTION
Tty_ld is usually inserted into a stream connected to a terminal device. It gathers input into lines, handles
special characters like erase, kill, and interrupt, inserts output delays, and the like. It does not deal with
hardware parameters such as speed and parity; see tty(4) for such matters.

Certain special characters have particular meaning on input. These characters are not passed to a program
except in raw mode, where they lose their special character. It is possible to change these characters from
the default.

The erase character (backspace by default) erases the last-typed character. It will not erase beyond the be-
ginning of a line or an end-of-file character.

The kill character (default @) erases the entire preceding part of the line, but not beyond an end-of-file
character.

The end-of-file character (default control-d) causes any characters waiting to be read to be passed immedi-
ately to the program, without waiting for newline. The end-of-file character itself is discarded. Thus if
the end-of-file character occurs at the beginning of a line, there are no characters waiting, and zero charac-
ters will be passed back; this is the standard end-of-file indication.

The escape character (\) escapes a following erase, kill, or end-of-file character and allows it to be treated
as ordinary data.

The interrupt character (default DEL) is not passed to a program but sends signal SIGINT to any
processes in the process group of the stream; see signal(2) and stream(4).

The quit character (default FS, control-\) sends signal SIGQUIT.

The stop character (default DC3, control-s) delays printing on the terminal until something is typed in.

The start character (default DC1, control-q) restarts printing after a stop character without generating any
input to a program.

Two ioctl(2) calls affect these characters:

TIOCGETC
The argument points to a tchars structure to be filled in with current settings.

TIOCSETC
The argument points to a tchars structure from which the characters are set.

The tchars structure, as defined in <sys/ttyio.h>, is

struct tchars {
char t_intrc; /∗ interrupt ∗/
char t_quitc; /∗ quit ∗/
char t_startc; /∗ start output ∗/
char t_stopc; /∗ stop output ∗/
char t_eofc; /∗ end-of-file ∗/
char t_brkc; /∗ input delimiter (like nl) ∗/

};

A character value of 0377 eliminates the effect of that character. The t_brkc character, by default 0377,
acts like a new-line in that it terminates a line, is echoed, and is passed to the program. The stop and start
characters may be the same, to produce a toggle effect. It is counterproductive to make other special char-
acters (including erase and kill) identical.

Two ioctl calls affect other terminal processing parameters:

TIOCGETP
The argument points to a sgttyb structure to be filled in with the current settings.

765

TTYLD(4) Kernel Interfaces Manual TTYLD(4)

TIOCSETP
The argument points to a sgttyb structure from which the parameters are set.

The sgttyb structure, as defined in <sys/ttyio.h>, is
struct sgttyb {

char sg_ispeed;/∗ unused ∗/
char sg_ospeed;/∗ unused ∗/
char sg_erase; /∗ erase character ∗/
char sg_kill; /∗ kill character ∗/
short sg_flags; /∗ mode flags ∗/

};

The flag bits are

ALLDELAY 0177400 Delay algorithm selection
VTDELAY 0040000 Form-feed and vertical-tab delays:
FF0 0
FF1 0040000
CRDELAY 0030000 Carriage-return delays:
CR0 0
CR1 0010000
CR2 0020000
CR3 0030000
TBDELAY 0006000 Tab delays:
TAB0 0
TAB1 0002000
TAB2 0004000
XTABS 0006000
NLDELAY 0001400 New-line delays:
NL0 0
NL1 0000400
NL2 0001000
NL3 0001400
RAW 0000040 Raw mode: wake up on all characters
CRMOD 0000020 Map CR into LF; echo LF or CR as CR-LF
ECHO 0000010 Echo (full duplex)
LCASE 0000004 Map upper case to lower on input
CBREAK 0000002 Return each character as soon as typed
TANDEM 0000001 Automatic flow control

The delay bits specify how long transmission stops to allow for mechanical or other movement when cer-
tain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds; type 2 about .16 seconds; type 3 about .32 seconds.

New-line delay type 1 is supposed to be for the Teletype model 37; type 2 is about .10 seconds.

Tab delay type 1 is supposed to be for the Teletype model 37. Type 3, called XTABS, is not a delay at all
but causes tabs to be replaced by the appropriate number of spaces on output.

In RAW mode, every character is passed immediately to the program without waiting until a full line has
been typed. No erase or kill processing is done; the end-of-file, interrupt, and quit characters are not
treated specially. There are no delays and no echoing, and no replacement of one character for another.

CRMOD causes input carriage returns to be turned into new-lines; input of either CR or LF causes CR-LF
both to be echoed (for terminals without a new-line function).

CBREAK is a sort of half-cooked mode. Programs read each character as soon as typed, instead of waiting
for a full line, but quit and interrupt work, and output delays CRMOD, XTABS, and ECHO work normally.
On the other hand there is no erase or kill, and no special treatment of \ or end-of-file.

TANDEM mode causes the system to transmit the stop character whenever the input queue is in danger of

766

TTYLD(4) Kernel Interfaces Manual TTYLD(4)

overflowing, and the start character when the input queue has drained sufficiently. It is useful for flow
control when the ‘terminal’ is actually another machine that obeys the conventions.

SEE ALSO
getty(8), stty(1), signal(2), ioctl(2), stream(4), tty(4)

BUGS
The escape character cannot be changed.

767

UP(4) Kernel Interfaces Manual UP(4)

NAME
up - emulex sc21/ampex 9300 UNIBUS moving head disk

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor devices 8 through
15 refer to drive 1, etc.

The origin and size of the pseudo-disks on each drive are as follows:

9300 partitions
disk start byte
0 0 15884
1 16416 33440
2 0 500992
3 341696 15884
4 358112 55936
5 414048 36944
6 341696 159296
7 49856 291346

The block files access the disk via the system’s normal buffering mechanism and may be read and written
without regard to physical disk records. There is also a ‘raw’ interface which provides for direct transmis-
sion between the disk and the user’s read or write buffer. A single read or write call results in exactly one
I/O operation and therefore raw I/O is considerably more efficient when many words are transmitted. The
names of the raw files conventionally begin with an extra ‘r.’

FILES
/dev/up[0-3][a-h] block files
/dev/rup[0-3][a-h] raw files

SEE ALSO
rp(4)

BUGS
In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on the
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and lseek(2)
should always deal in 512-byte multiples.

768

VA(4) Kernel Interfaces Manual VA(4)

NAME
va - Benson-Varian interface

SYNOPSIS
#include <sys/vcmd.h>

DESCRIPTION
The Benson-Varian printer/plotter in normally used with the programs vpr(1), vprint(1) or vtroff (1)This
description is designed for those who wish to drive the Benson-Varian directly.

The Benson-Varian at Berkeley uses 11” by 8” fan-fold paper. It will print 132 characters per line in print
mode and 2112 dots per line in plot mode.

In print mode, the Benson-Varian uses a modified ASCII character set. Most control characters print vari-
ous non-ASCII graphics such as daggers, sigmas, copyright symbols, etc. Only LF and FF are used as
format effectors. LF acts as a newline, advancing to the beginning of the next line, and FF advances to the
top of the next page.

In plot mode, the Benson-Varian prints one raster line at a time. An entire raster line of bits (2112 bits =
264 bytes) is sent, and then the Benson-Varian advances to the next raster line.

Note: The Benson-Varian must be sent an even number of bytes. If an odd number is sent, the last byte
will be lost. Nulls can be used in print mode to pad to an even number of bytes.

To use the Benson-Varian yourself, you must realize that you cannot open the device, /dev/va0 if there is a
daemon active. You can see if there is a daemon active by doing a ps(1), or by looking in the directory
/usr/spool/vad. If there is a file lock there, then there is probably a daemon /usr/lib/vad running. If not,
you should remove the lock.

In any case, when your program tries to open the device /dev/va0 you may get one of two errors. The first
of these ENXIO indicates that the Benson-Varian is already in use. Your program can then sleep(2) and
try again in a while, or give up. The second is EIO and indicates that the Benson-Varian is offline.

To set the Benson-Varian into plot mode you can use the following ioctl(2) call

ioctl(fileno(va), VSETSTATE, plotmd);

where plotmd is defined to be

int plotmd[] = { VPLOT, 0, 0 };

and va is the result of a call to fopen on stdio. When you finish using the Benson-Varian in plot mode
you should advance to a new page by sending it a FF after putting it back into print mode, i.e. by

int prtmd[] = { VPRINT, 0, 0 };
...
fflush(va);
ioctl(fileno(va), VSETSTATE, prtmd);
write(fileno(va), "\f\0", 2);

N.B.: If you use the standard I/O library with the Benson-Varian you must do

setbuf(vp, vpbuf);

where vpbuf is declared

char vpbuf[BUFSIZ];

otherwise the standard I/O library, thinking that the Benson-Varian is a terminal (since it is a character
special file) will not adequately buffer the data you are sending to the Benson-Varian. This will cause it to
run extremely slowly and tends to grind the system to a halt.

FILES
/dev/va0
/usr/include/sys/vcmd.h

SEE ALSO
vfont(5), vpr(1), vtroff(1), vp(4)

4th Berkeley Distribution 769

VA(4) Kernel Interfaces Manual VA(4)

BUGS
The 1’s (one’s) and l’s (lower-case el’s) in the Benson-Varian’s standard character set look very similar;
caution is advised.

4th Berkeley Distribution 770

VC(4) Kernel Interfaces Manual VC(4)

NAME
vc - versatec model 122 interface

SYNOPSIS
#include <sys/vcio.h>

DESCRIPTION
The files vc[0-9] refer to the Versatec model 122 interface. Any plotter obeying the Versatec "green sheet"
interface standard can be used with this interface.

Upon opening the device, a RESET_ALL command is executed by the driver. The driver will only accept
a write or an ioctl(2) ; reads will fail and seeks are ignored.

ioctl(2) calls perform special operations. There are two basic calls: VGETSTATE and VSETSTATE.
VSETSTATE can be used to send special commands to the plotter by setting bits in the control status reg-
ister (CSR). VGETSTATE returns the CSR of the interface. The functions are specified in vcio.h. The
bits are as follows:

VC_SPP
is "Simultaneous Print/Plot"

VC_PP
is print/plot mode. Data bytes sent in print mode are printed using the ROM in the plotter. Bytes
written in plot mode are plotted. It is possible to use print mode to send commands to the plotter.
See the manual for details.

VC_SWPBT
swaps the bytes in the interface. Useful for the VAX.

The remote operations are sent one at a time. is short for Remote Line Terminate . It sends a line termina-
tor to the Versatec.

VC_CLEAR
clears the buffer.

VC_RESET
will reset the controller and the plotter.

VC_RFFED
is short for Remote Form Feed and will advance the paper.

VC_REOTR
is short for Remote End of Transmission which is equivalent to sending an EOF.

VC_RESET_ALL
is the ultimate reset.

FILES
/dev/vc?

BUGS

771

VP(4) Kernel Interfaces Manual VP(4)

NAME
vp - Versatec interface

SYNOPSIS
#include <sys/vcmd.h>

DESCRIPTION
The Versatec printer/plotter in normally used with the programs vpr(1), vprint(1) or vtroff (1)This descrip-
tion is designed for those who wish to drive the Versatec directly.

The Versatec at Berkeley is 36” wide, and has 440 characters per line and 7040 dots per line in plot mode
(this is actually slightly less than 36” of dots.) The paper used is continuous roll paper, and comes in 500’
rolls.

To use the Versatec yourself, you must realize that you cannot open the device, /dev/vp0 if there is a dae-
mon active. You can see if there is a daemon active by doing a ps(1), or by looking in the directory
/usr/spool/vpd. If there is a file lock there, then there is probably a daemon /usr/lib/vpd running. If not,
you should remove the lock.

In any case, when your program tries to open the device /dev/vp0 you may get one of two errors. The first
of these ENXIO indicates that the Versatec is already in use. Your program can then sleep(2) and try
again in a while, or give up. The second is EIO and indicates that the Versatec is offline.

To set the Versatec into plot mode you can use the following ioctl(2) call

ioctl(fileno(vp), VSETSTATE, plotmd);

where plotmd is defined to be

int plotmd[] = { VPLOT, 0, 0 };

and vp is the result of a call to fopen on stdio. When you finish using the Versatec in plot mode you
should eject paper by sending it a EOT after putting it back into print mode, i.e. by

int prtmd[] = { VPRINT, 0, 0 };
...
fflush(vp);
ioctl(fileno(vp), VSETSTATE, prtmd);
write(fileno(vp), "\04", 1);

N.B.: If you use the standard I/O library with the Versatec you must do

setbuf(vp, vpbuf);

where vpbuf is declared

char vpbuf[BUFSIZ];

otherwise the standard I/O library, thinking that the Versatec is a terminal (since it is a character special
file) will not adequately buffer the data you are sending to the Versatec. This will cause it to run ex-
tremely slowly and tends to grind the system to a halt.

FILES
/dev/vp0

SEE ALSO
vfont(5), vpr(1), vtroff(1), va(4)

BUGS

4th Berkeley Distribution 2/21/80 772

80.out(5) File Formats Manual 80.out(5)

NAME
80.out assembler and link editor output

DESCRIPTION
80.out is the output file of the assembler as80 and the link editor ld80 . Both programs make 80.out exe-
cutable if there were no errors and no unresolved external references.

80.out has five sections: header, text, data, relocation information and a symbol table (in that order). The
last two sections may be empty if the program was loaded with the ‘‘b’’, ‘‘d’’ or ‘‘t’’ option of ld80.

(Constants beginning with ‘0’ are octal values.)

HEADER

The header always contains 040 bytes:

Address Contents

(octal)

0-1 Magic number (0413)

2-3 Size of text segment

4-5 Size of data segment

6-7 Size of bss segment

10-11 Size of symbol table

12-13 Load origin of text segment

14-15 Load origin of data segment

16-20 Load origin of bss segment

20-21 Size of relocation table

22-23 A word of flags

24-37 Padding

The size of each segment is in bytes. The size of the header is not included in any of the other sizes.

The flag values are:

Bit Meaning

0 If set, no relocation information is present.

The start of the text segment in the file is 040, the start of the data is (040 + text size), the start of the relo-
cation is (040 + text + data size), and the start of the symbol table is (040 + text size + data size + reloca-
tion size).

RELOCATION INFORMATION

The relocation information (if present) occupies one or two bytes for each byte or word of text or data.
The bits of the relocation word (or byte) are:

Bit Meaning

6-15 Symbol number in symbol table for external references. The firat symbol is numbered 0.

5 High-byte flag: If set, the next byte of text or data is to be treated as the high order byte of a
16-bit quantity for relocation purposes.

4 Two-byte flag: If set, the next two bytes of text or data are to be treated as a 16-bit quantity for
relocation purposes.

3 External flag: If set, bits 15-6 contain a symbol number, otherwise, only one byte of relocation
information is present.

0-2 Segment information:

0 absolute

1 text

March 1,1977 773

80.out(5) File Formats Manual 80.out(5)

2 data

3 bss

SEE ALSO
"as80" (I), "ld80" (I), "nm80" (I)

SYMBOL TABLE
The symbol table entries consist of six words:

Word Meaning

The fifth word is a flag indicating the type of the symbol. The following values are possible:

00 undefined

01 absolute

02 text

03 data

04 bss

05 file name symbol (produced by ld80)

010 undefined external

011 absolute external

012 text segment external

013 data segment external

014 bss segment external

6 The sixth word is the value of the symbol.

The sixth word of a symbol table entry contains the value of the symbol.

The value of a word in the text or data portions which is not a reference to an undefined external symbol is
exactly that value which will appear in core when the file is executed. If a word in the text or data portion
involves a reference to an undefined external symbol, as indicated by the relocation bits for that word,
then the value of the word as stored in the file is an offset from the associated external symbol. When the
file is processed by the link editor and the external symbol becomes defined, the value of the symbol will
be added into the word in the file.

March 1,1977 774

A.OUT (5) File Formats Manual A.OUT (5)

NAME
a.out - object file format

SYNOPSIS
#include <a.out.h>

DESCRIPTION
A.out is the default name of the output file of the assembler as(1) or the link editor ld(1). Both programs
make a.out executable if there were no errors and no unresolved external references. An object file has
five sections: a header, the program text and data, relocation information, a symbol table and a string table
(in that order). The last three may be absent; see strip(1) and option -s of ld(1). The header format, given
in <a.out.h>, is

struct exec {
long a_magic; /∗ magic number ∗/
unsigned a_text; /∗ size of text segment ∗/
unsigned a_data; /∗ size of initialized data ∗/
unsigned a_bss; /∗ size of uninitialized data ∗/
unsigned a_syms; /∗ size of symbol table ∗/
unsigned a_entry; /∗ entry point ∗/
unsigned a_trsize; /∗ size of text relocation ∗/
unsigned a_drsize; /∗ size of data relocation ∗/

};
#define OMAGIC 0407 /∗ old impure format ∗/
#define NMAGIC 0410 /∗ read-only text ∗/
#define ZMAGIC 0413 /∗ demand load format ∗/

Macros which take exec structures as arguments and tell whether the file has a reasonable magic number
or return offsets:
#define N_BADMAG(x) (((x).a_magic)!=OMAGIC && \

((x).a_magic)!=NMAGIC && ((x).a_magic)!=ZMAGIC)
#define N_TXTOFF(x) \

((x).a_magic==ZMAGIC ? 1024 : sizeof (struct exec))
#define N_SYMOFF(x) (N_TXTOFF(x) + (x).a_text+(x).a_data + \

(x).a_trsize+(x).a_drsize)
#define N_STROFF(x) (N_SYMOFF(x) + (x).a_syms)

Sizes are expressed in bytes. The size of the header is not included in any of the other sizes.

When an a.out file is executed, a memory image of three segments is set up: the text segment, the data
segment, and a stack. The text segment begins at virtual address 0. Following the text segment is the data
segment, in which explicitly initialized data come first, then other data, initialized to 0. The stack occu-
pies the highest possible locations in the core image, automatically growing downwards from 0x7ffff400
as needed. The data segment may be extended by brk(2).

If the magic number in the header is OMAGIC, the text segment is neither write-protected nor shared and
the data segment is immediately contiguous with the text segment. This kind of executable program is
rarely used. If the magic number is NMAGIC or ZMAGIC, the data segment is loaded at the first 0 mod
1024 address following the text segment, and the text segment is write-protected and shared among all
processes that are executing the same file. ZMAGIC format, which ld(1) produces by default, supports
demand paging: the text and data segments are multiples of 1024 bytes long and begin at byte offsets of 0
mod 1024 in the a.out file.

Macros are provided to compute the absolute offset of various parts of the file:

N_TXTOFF
Text segment.

N_SYMOFF
Symbol table.

N_STROFF
String table.

775

A.OUT (5) File Formats Manual A.OUT (5)

The offsets of the data segment, text relocation information, and data relocation information are obtained
by successively adding to N_TXTOFF the size fields a_text, a_data, and a_trsize. The first 4 bytes of
the string table contain it size, including the 4 bytes.

The layout of a symbol table entry, as given in <a.out.h>, is

struct nlist {
union {

char ∗n_name;/∗ for use when in-core ∗/
long n_strx; /∗ index into file string table ∗/

} n_un;
unsigned char n_type; /∗ type flag; see below ∗/
char n_other;
short n_desc; /∗ see stab(5) ∗/
unsigned n_value; /∗ value of this symbol (or struct offset) ∗/

};

Basic values for n_type:

#define N_UNDF 0x0 /∗ undefined ∗/
#define N_ABS 0x2 /∗ absolute ∗/
#define N_TEXT 0x4 /∗ text ∗/
#define N_DATA 0x6 /∗ data ∗/
#define N_BSS 0x8 /∗ bss ∗/
#define N_COMM 0x12 /∗ common (internal to ld) ∗/
#define N_FN 0x1f /∗ file name symbol ∗/
#define N_EXT 01 /∗ external bit, or’ed in ∗/
#define N_TYPE 0x1e /∗ mask for all the type bits ∗/

Other permanent symbol table entries have some N_STAB bits set. These are given in <stab.h>:
#define N_STAB 0xe0 /∗ if any of these bits set, keep ∗/

The field n_un.n_strx gives an index into the string table; 0 indicates that no name is associated with the
entry. The field n_un.n_name can be used to refer to the symbol name only if the program sets this up
using n_strx and appropriate data from the string table.

A symbol of type undefined external with nonzero value field names a common region; the value specifies
its size.

Relocation information occupies eight bytes per relocatable datum:

struct relocation_info {
int r_address; /∗ address of datum to be relocated ∗/
unsigned r_symbolnum:24, /∗ local symbol ordinal ∗/

r_pcrel:1, /∗ is referenced relative to pc ∗/
r_length:2, /∗ 0=byte, 1=word, 2=long ∗/
r_extern:1, /∗ symbol value unknown ∗/
:4; /∗ nothing, yet ∗/

};

If r_extern is 1, the datum designated by r_address and r_length will be relocated by adding to it the
value of the associated external symbol. If r_extern is 0, r_symbolnum is encoded in the style of n_type
and the value will be relocated by adding the relocated base of the designated area (text, initialized data,
or common data).

SEE ALSO
adb(1), as(1), ld(1), nm(1), stab(5), strip(1)

776

ACCT (5) File Formats Manual ACCT (5)

NAME
acct - execution accounting file

SYNOPSIS
#include <sys/types.h>
#include <sys/acct.h>

DESCRIPTION
Acct(2) causes an entry to be appended to an accounting file for each process that terminates. The layout
of an accounting file entry, as given in <sys/acct.h>, is

typedef unsigned short comp_t;
struct acct
{

char ac_comm[10]; /∗ command name ∗/
comp_t ac_utime; /∗ user time ∗/
comp_t ac_stime; /∗ system time ∗/
comp_t ac_etime; /∗ elapsed time ∗/
time_t ac_btime; /∗ beginning time ∗/
short ac_uid; /∗ user ID ∗/
short ac_gid; /∗ group ID ∗/
short ac_mem; /∗ average memory usage ∗/
comp_t ac_io; /∗ number of disk IO blocks ∗/
dev_t ac_tty; /∗ control typewriter ∗/
char ac_flag; /∗ flag ∗/

};

Values in ac_flag:

#define AFORK 01 /∗ has executed fork, but no exec ∗/
#define ASU 02 /∗ used super-user privileges ∗/

If the process does an exec(2), the first 10 characters of the filename appear in ac_comm.

The type comp_t counts 60- or 50-cycle clock ticks in a private floating-point format: a three-bit base-8
exponent and a 13-bit unsigned mantissa. Thus the number of clock ticks that a process ran is expressed
by (ac_etime&017777)<<((ac_etime>>13)&03). The beginning time, ac_btime, is recorded in the for-
mat of time(2).

SEE ALSO
acct(2), sa(8)

777

ALIASES(5) File Formats Manual ALIASES(5)

NAME
aliases - aliases file for delivermail

SYNOPSIS
/usr/lib/aliases

DESCRIPTION
This file describes user id aliases that will be used by /etc/delivermail. It is formatted as a series of lines
of the form

name:addr1,addr2,...addrn
The name is the name to alias, and the addri are the addresses to send the message to. Lines beginning
with white space are continuation lines. Lines beginning with ‘ # ’ are comments.

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to any person
more than once.

This is only the raw data file; the actual aliasing information is placed into a binary format in the files
/usr/lib/aliases.dir and /usr/lib/aliases.pag using the program newaliases(5)A newaliases command should
be executed each time the aliases file is changed for the change to take effect.

SEE ALSO
newaliases(1), dbm(3), delivermail(8)

BUGS
Because of restrictions in dbm(3) a single alias cannot contain more than about 1000 bytes of information.
You can get longer aliases by ‘‘chaining’’; i.e. make the last name in the alias by a dummy name which is
a continuation alias.

4th Berkeley Distribution 778

AR(5) File Formats Manual AR(5)

NAME
ar - archive (library) file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar(1) is used to combine several files into one. Archives are used mainly as li-
braries to be searched by the link-editor ld.

A file produced by ar has a magic string at the start, followed by the constituent files, each preceded by a
file header. The magic number and header layout as described in the include file are:

#define ARMAG "!<arch>\n"
#define SARMAG 8
#define ARFMAG "‘\n"
struct ar_hdr {

char ar_name[16];
char ar_date[12];
char ar_uid[6];
char ar_gid[6];
char ar_mode[8];
char ar_size[10];
char ar_fmag[2];

};
#define SAR_HDR 60

The name is a blank-padded string. The ar_fmag field contains ARFMAG to help verify the presence of
a header. The other fields are left-adjusted, blank-padded numbers. They are decimal except for
ar_mode, which is octal. The date is the modification date of the file at the time of its insertion into the
archive. The length of the header is SAR_HDR. Because struct may be padded on some machines,
SAR_HDR should be used in preference to sizeof(struct when reading and writing file headers.

Each file begins on an even (0 mod 2) boundary; a newline is inserted between files if necessary. Never-
theless ar_size reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

If an archive contains only printable files, the archive itself is printable.

SEE ALSO
ar(1), ld(1), nm(1)

BUGS
File names lose trailing blanks.
Most software that deals with archives takes an embedded blank as a name terminator.

779

BACKUP(5) File Formats Manual BACKUP(5)

NAME
backup - incremental backup files

DESCRIPTION
The backup system consists of a number of client machines, and a ‘backup machine’, which has a data-
base and a collection of backup copies of files. On clients files concerned with backup live in a directory,
normally defined in the shell script The file needed on both client and backup machine, has up to three
lines, namely the backup machine name, the default backup device, and the directory, hereafter called
$FM, where the rest of the backup software lives on the backup machine. Client systems normally have
just the first line. The rest of this description applies to the backup machine.

The databases live in $FM/db and are maintained in cbt(3) form. The main database, called stores two
mappings. The first maps filename-time pairs to backup copy names, thus:

/n/bowell/usr/jim/goo//519487622 v/v22/17

The number after is the inode change date, expressed in seconds since the epoch; see stat(2). If the
backup copy is still on magnetic disk, it will be called $FM/v/v22/17; otherwise it will be v22/17 on some
optical disk. (The mapping of backup copy name to optical disk name is kept in $FM/adm/volidmap.)
The second mapping maps filenames to the time of their most recently backed-up version:

/n/bowell/usr/jim/goo 520514116

The second database, dir, maps directoryname-time pairs to the contents of that directory. This allows
quick recovery of file trees.

The third database, fs, maps filename-time pairs to (essentially) inodes. This allows efficient implementa-
tion of backup mount; see backup(1).

The program $FM/bin/dbupdate manages these databases. The dir and fs databases are optional; they
will be updated only if they already exist. The program $FM/bin/sweep also assigns the backup copy
names into a flat directory structure. A new directory is used when the total size of the files in the current
directory would exceed 20000K bytes, rounding each file size up to a multiple of 4K.

The backup copy of a file consists of a header that gives the original inode, pathname and owner (as a
string), followed by the contents of the file. Directories are stored as a sequence of entry names.

To prevent multiple writers into a database, a lockfile is used. The content of this file is the process id of
the process accessing the database. Locks are removed by $FM/bin/rmlocks executed by rc(8) when
the system boots.

The backup system supports multiple filemap databases (this allows the current database to be kept
small). The list of database names is kept in one per line in order of increasing priority. The last name is
assumed to be the active database; all the others are read-only.

Programs such as sweep and dbupdate leave droppings in the log file

Statistics of the numbers of files and bytes saved for users of a given system are kept in Each file consists
of a sequence of records with a machine-independent structure; generally, one record per user per day.
The records are maintained by which processes the file $FM/stat.log that is maintained by dbupdate.

To allow quick searching for filenames with full regular expressions, a simple sorted list of all saved file-
names is often kept, normally in

The device (and system) used for recovering files can be specified in many ways. In order of decreasing
priority: a -f option in backup recover or backup fetch (see backup(1)), a default device on the client sys-
tem (in line 2 of the default device on the backup system.

FILES
/usr/lib/backup/∗
/usr/lib/backup/conf
/usr/backup/db
/usr/backup/locks
/usr/backup/log
/usr/backup/filenames

780

BACKUP(5) File Formats Manual BACKUP(5)

SEE ALSO
backup(1), worm(8), backup(8), cbt(1), stat(2)
A. Hume, ‘The File Motel: an Owner’s Manual’, this manual, Volume 2

781

CONFIG(5) File Formats Manual CONFIG(5)

NAME
config - system configuration files

DESCRIPTION
These files are used as input by config(A)Except as noted, they are kept in

The file named files lists the kernel source files. Each line consists of a filename (relative to followed
by some magic words. For example:

sys/acct.c standard

is a file used by any version of the system;

dev/uba.c standard device-driver

is also always used, and contains device register references (which may require special compilation
hacks);

dev/ju.c optional

is included only if the ju device is expected;

dev/ttyld.c optional

is included only if the tty pseudo-device is requested.

The file devices describes possible device drivers, file system handlers, and line disciplines; the infor-
mation is used to generate handler dispatch tables. It consists of lines with the following blank-separated
fields:

Type of handler:

device for character devices
stream-device
block-device
file-system
line-discipline

If the type is preceded by the word standard (e.g. standard block-device), the han-
dler is always included; otherwise, it is included only if requested.

Table index: major device number, file system type, or line discipline number.

Driver name: used in and

Config writes a header file name.h for each device; if that device is configured, then the upper case NAME
is defined to be the number of devices of that type.

Entry point name. Used as a prefix for data structure and driver entry points.

Entry points.
For block devices: some of open, close, strategy, dump, B_TAPE (the last puts the flag
B_TAPE in the d_flags entry in the block device switch).
For character devices: open, close, read, write, ioctl, reset.
For stream devices and line disciplines, info should be specified.
For file system handlers: put, get, free, updat, read, write, trunc, stat, nami, mount, ioctl.

As a special case, lines beginning with : are copied intact to This can be used for hacks like

: int mem_no = 3;/∗ major device number of memory special file ∗/

Addenda to files and devices specific to a particular machine may be kept in /usr/sys/machine/files
and /usr/sys/machine/devices. The addenda are treated as if appended to the general files.

782

CORE(5) File Formats Manual CORE(5)

NAME
core - format of memory image file

DESCRIPTION
A memory image of a terminated process is written into file core when any of various errors occur; see
signal(2). The memory image is written in the process’s working directory, if it can be; normal access
controls apply.

A core file consists of a copy of the user block for the terminated process, followed by an image of its data
and stack segments. The user block, which occupies 5K bytes, contains descriptive information about the
process and a stack used by the operating system when serving the process; see the include file
<sys/user.h>.

SEE ALSO
adb(1), pi(9) bigcore(1), signal(2)

783

CPIO(5) File Formats Manual CPIO(5)

NAME
cpio - format of cpio archive

DESCRIPTION
The archived files are recorded consecutively, each preceded by a header. The header structure, when
the -c option of cpio(1) is not used, is:

typdef unsigned short ushort;
struct {

short h_magic,
h_dev;

ushort h_ino,
h_mode,
h_uid,
h_gid;

short h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to word];
} Hdr;

When the -c option is used, the header information is printable, as described by the printf(3) call

printf(Chdr, "%6o%6o%6o%6o%6o%6o%6o%6o%11lo%6o%11lo%s",
Hdr.h_magic, Hdr.h_dev, Hdr.h_ino, Hdr.h_mode,
Hdr.h_uid, Hdr.h_gid, Hdr.h_nlink, Hdr.h_rdev,
Longtime, Hdr.h_namesize, Longfile, Hdr.h_name

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize, respectively.
Every instance of h_magic contains the octal constant 070707. The items h_dev through h_mtime
have meanings explained in stat(2). The length of the null-terminated path name h_name, including the
null byte, is given by h_namesize.

The last element of the archive is a dummy entry for the name TRAILER!!!, with padding to a multiple
of 512 bytes. Special files, directories, and the trailer are recorded with h_filesize equal to zero.

SEE ALSO
cpio(1), find(1), stat(2).

784

DIR(5) File Formats Manual DIR(5)

NAME
dir - format of directories

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory. The fact
that a file is a directory is indicated by a bit in the flag word of its inode entry; see filsys(5). The structure
of a directory entry as given in the include file is:

#define DIRSIZ 14
struct direct
{

ino_t d_ino;
char d_name[DIRSIZ];

};

By convention, the first two entries in each directory are . for the directory itself and .. for the parent
directory. In the ultimate root directory .. is the same as ..

It is inadvisable to read directories using this structure. The routines in directory(3) and dirread(2) are
more efficient and portable.

SEE ALSO
filsys(5), directory(3), dirread(2)

785

DUMP(5) File Formats Manual DUMP(5)

NAME
dump, ddate - incremental dump format

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>
#include <dumprestor.h>

DESCRIPTION
Tapes used by dump and restor(1) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

The format of the header record and of the first record of each description as given in the include file
<dumprestor.h> is:

#define NTREC 10
#define MLEN 16
#define MSIZ 4096
#define TS_TAPE 1
#define TS_INODE 2
#define TS_BITS 3
#define TS_ADDR 4
#define TS_END 5
#define TS_CLRI 6
#define MAGIC (int) 60011
#define CHECKSUM (int) 84446
struct spcl {

int c_type;
time_t c_date;
time_t c_ddate;
int c_volume;
daddr_t c_tapea;
ino_t c_inumber;
int c_magic;
int c_checksum;
struct dinode c_dinode;
int c_count;
char c_addr[BSIZE];

} spcl;
struct idates {

char id_name[16];
char id_incno;
time_t id_ddate;

};
#define DUMPOUTFMT "%-16s %c %s" /∗ for printf ∗/

/∗ name, incno, ctime(date) ∗/
#define DUMPINFMT "%16s %c %[ˆ\n]\n" /∗ inverse for scanf ∗/

NTREC is the number of 1024 byte records in a physical tape block. MLEN is the number of bits in a bit
map word. MSIZ is the number of bit map words.

The TS_ entries are used in the c_type field to indicate what sort of header this is. The types and their
meanings are as follows:

TS_TAPE Tape volume label
TS_INODE A file or directory follows. The c_dinode field is a copy of the disk inode and contains

bits telling what sort of file this is.

4th Berkeley Distribution 786

DUMP(5) File Formats Manual DUMP(5)

TS_BITS A bit map follows. This bit map has a one bit for each inode that was dumped.
TS_ADDR A subrecord of a file description. See c_addr below.
TS_END End of tape record.
TS_CLRI A bit map follows. This bit map contains a zero bit for all inodes that were empty on the

file system when dumped.
MAGIC All header records have this number in c_magic.
CHECKSUM

Header records checksum to this value.

The fields of the header structure are as follows:

c_type The type of the header.
c_date The date the dump was taken.
c_ddate The date the file system was dumped from.
c_volume The current volume number of the dump.
c_tapea The current number of this (1024-byte) record.
c_inumber The number of the inode being dumped if this is of type TS_INODE.
c_magic This contains the value MAGIC above, truncated as needed.
c_checksum This contains whatever value is needed to make the record sum to CHECKSUM.
c_dinode This is a copy of the inode as it appears on the file system; see filsys(5).
c_count The count of characters in c_addr.
c_addr An array of characters describing the blocks of the dumped file. A character is zero if the

block associated with that character was not present on the file system, otherwise the
character is non-zero. If the block was not present on the file system, no block was
dumped; the block will be restored as a hole in the file. If there is not sufficient space in
this record to describe all of the blocks in a file, TS_ADDR records will be scattered
through the file, each one picking up where the last left off.

Each volume except the last ends with a tapemark (read as an end of file). The last volume ends with a
TS_END record and then the tapemark.

The structure idates describes an entry of the file /etc/ddate where dump history is kept. The fields of the
structure are:

id_name The dumped filesystem is ‘/dev/id_nam’.
id_incno The level number of the dump tape; see dump(1)
id_ddate The date of the incremental dump in system format see types(5).

FILES
/etc/ddate

SEE ALSO
dump(8), dumpdir(8), restor(8), filsys(5), types(5)

4th Berkeley Distribution 787

ENVIRON (5) File Formats Manual ENVIRON (5)

NAME
environ - user environment

SYNOPSIS
extern char ∗∗environ;

DESCRIPTION
An array of strings called the ‘environment’ is made available by exec(2) when a process begins. By con-
vention these strings have either the form name=value, defining a variable, or name(){value}, defining a
function; see sh(1). The following variables are used by various commands:

PATH
The sequence of directory prefixes that sh, time(1), nice(1), etc., apply in searching for a file
known by an incomplete path name. The prefixes are separated by :. Login(8) sets
PATH=:/bin:/usr/bin.

HOME
A user’s login directory, set by login(8) from the password file passwd(5).

TERM
The kind of terminal for which output is to be prepared. This information is used by commands,
such as nroff or plot(1), which may exploit special terminal capabilities. Some customary values
of TERM are 2621 (HP), 4014 (Tektronix), 5620 (Teletype), and 630 (Teletype). See described
in termcap(5), for a longer list.

SHELL
The name of the login shell.

The environment may be queried by getenv(3) or by the set or whatis commands of sh(1). Names
may be placed in the environment by the export command and by name=value arguments of sh(1).
Names may also be placed in the environment at the point of an exec(2). It is unwise to conflict with cer-
tain sh(1) variables that are frequently exported by .profile files: MAIL, PS1, PS2, IFS.

SEE ALSO
sh(1), printenv(1), exec(2), getenv(3), term(6)

BUGS
Function definitions in the environment break some old programs, including old shells.

788

FILSYS(5) File Formats Manual FILSYS(5)

NAME
filsys, flblk, ino - format of a disk file system

SYNOPSIS
#include <sys/types.h>
#include <sys/fblk.h>
#include <sys/filsys.h>
#include <sys/ino.h>

DESCRIPTION
Every file system is divided into a certain number of blocks of 1K or 4K bytes, as determined by the pred-
icate BITFS() applied to the minor device number where the file system is mounted. Block 0 is unused
and is available to contain a bootstrap program, pack label, or other information.

Block 1 is the ‘super-block’. Its layout is defined in <sys/filsys.h>:

struct filsys {
unsigned short s_isize;
daddr_t s_fsize;
short s_ninode;
ino_t s_inode[NICINOD];
char s_flock;
char s_ilock;
char s_fmod;
char s_ronly;
time_t s_time;
daddr_t s_tfree;
ino_t s_tinode;
short s_dinfo[2];

#define s_m s_dinfo[0]
#define s_n s_dinfo[1]
#define s_cylsize s_dinfo[0]
#define s_aspace s_dinfo[1]

char s_fsmnt[14];
ino_t s_lasti;
ino_t s_nbehind;
union {

struct {
short S_nfree;
daddr_t S_free[NICFREE];

} R;
struct {

char S_valid;
#define BITMAP 961

long S_bfree[BITMAP];
} B;
struct {

char S_valid;
char S_flag; /∗ 1 means bitmap not in S_bfree ∗/
long S_bsize; /∗ size of bitmap blocks ∗/
struct buf ∗S_blk[BITMAP-1];

} N;
} U;

};
#define s_nfree U.R.S_nfree
#define s_free U.R.S_free
#define s_valid U.B.S_valid
#define s_bfree U.B.S_bfree

789

FILSYS(5) File Formats Manual FILSYS(5)

s_isize
The address of the first block after the i-list, which starts in block 2. Thus the i-list is
s_isize-2 blocks long.

s_fsize
The address of the first block not in the file system.

s_inode
Array of free inode numbers.

s_ninode
The number of free i-numbers in the s_inode array. Inodes are placed in the list in LIFO order.
If the list underflows, it is replenished by searching the i-list to obtain the numbers of free inodes.
When the list is full, freed inodes are not recorded in s_inode.

s_lasti
Where the last search for free inodes ended.

s_nbehind
Number of free inodes before s_lasti that are not listed in s_inode. The system will search
forward for free inodes from s_lasti for more inodes unless s_nbehind is sufficiently large,
in which case it will search the i-list from the beginning.

s_flock
s_ilock

Flags maintained in the core copy of the super-block while the file system while it is mounted.
The values on disk are immaterial.

s_fmod
Flag to indicate that the super-block has changed and should be copied to the disk during the next
periodic update of file system information. The value on disk is immaterial.

s_ronly
Flag for read-only file system. The value on disk is immaterial.

s_time
Time of the last change to the super block.

s_dinfo
Disk interleave information: s_cylsize= blocks per cylinder, s_aspace= blocks to skip; see
fsck(8).

s_fsmnt
Unused.

s_tfree
s_tinode

Numbers of free blocks and free inodes. Maintained for the benefit of df (see du(1)), these val-
ues are otherwise irrelevant.

Different data are used to manage free space in 1K and 4K file systems. These fields are for 1K file sys-
tems:

s_free An array of free block numbers. s_free[0] is the block address of the next in a chain of
blocks constituting the free list. The layout of these blocks is defined in <sys/fblk.h>:

struct fblk {
int df_nfree;
daddr_t df_free[NICFREE];

}
where df_nfree and df_free are exactly like s_nfree and s_free.

s_nfree
Blocks given in s_free[1] through s_free[s_nfree-1] are available for allocation.
Blocks are allocated in LIFO fashion from this list. If freeing would cause the array to overflow,
it is cleared by copying into the newly freed block, which is pushed onto the free chain. If allo-
cation would cause underflow, the array is replenished from the next block on the chain.

790

FILSYS(5) File Formats Manual FILSYS(5)

These are for 4K file systems:

s_bfree
a bit array specifying the free blocks of a 4K file system. The bit
(s_bfree[i/w]>>(i%w))&1, where w is the bit size of a long, is nonzero if the ith data
block is free. If the file system is too large for the bitmap to fit here, then it is stored at the end of
the file system, and locked into memory when the file system is mounted. The N variant of the
union is used by the kernel in this case.

s_valid
The bitmap of a mounted file system is maintained only in main memory; the bitmap on the
medium is marked invalid by setting s_valid to zero. Unmounting updates the medium copy
and sets s_valid to 1. A file system with invalid bitmap may be mounted read-only; its bitmap
can be corrected by chuck(8).

I-numbers begin at 1, and the storage for inodes begins in block 2. Inodes are 64 bytes long. Inode 2 is
reserved for the root directory of the file system, but no other i-number has a built-in meaning. Each
inode represents one file.

The layout of an inode is defined in <sys/ino.h>:

struct dinode {
unsigned short di_mode;
short di_nlink;
short di_uid;
short di_gid;
off_t di_size;
char di_addr[40];
time_t di_atime;
time_t di_mtime;
time_t di_ctime;

};

di_mode
The kind of file; it is encoded as st_mode stat(2), and is 0 for a free inode.

di_nlink
The number of directory entries (links) that refer to this inode

di_uid
Owner’s userid.

di_gid
Owner’s groupid.

di_size
Number of bytes in the file.

di_atime
Time of last access; see times(2).

di_mtime
Time of last modification.

di_ctime
Time of last change to inode or contents.

di_addr
For special files the first two bytes of di_addr contain the device code; see intro(4) and
types(5).

For plain files and directories di_addr contains block numbers packed into 3 bytes each. The
first 10 numbers specify device blocks directly. The last 3 are singly, doubly, and triply indirect
and point to blocks of block pointers of type daddr_t (see types(5)). A zero pointer indicates a
‘hole’ where no data has been written. Holes read as if they contained all zeros.

A symbolic link is, aside from mode, a plain file whose sole content is the name of the file linked to.

791

FILSYS(5) File Formats Manual FILSYS(5)

SEE ALSO
chuck(8), fsck(8), icheck(8), dir(5), mount(8), stat(2), types(5), l3tol(3)

792

FONT (5) File Formats Manual FONT (5)

NAME
font - description files for troff

DESCRIPTION
Directories /usr/lib/font/devdest describe typesetters, where dest is as in the -T option of troff(1). Such
directories contain files named as in FILES below.

Lines of a typesetter description in file DESC have the following forms.

res n Resolution of device is n basic units per inch.
hor n Horizontal motion occurs in increments of n units.
vert n Vertical motion occurs in increments of n units.
unitwidth n

Widths are given for pointsize n.
sizescale n

Scaling for fractional pointsizes, not used.
paperwidth n

Width of paper is n units.
paperlength n

Length of paper is n units.
biggestfont n

Maximum number of characters in a font is n.
sizes n n n ... 0

Pointsizes n ... are available.
fonts n name ...

Number of initial fonts followed by their names, for example
fonts 4 R I B S

charset
This line comes last, followed by a list of special character names for the device, separated by
spaces or newlines, as bu for \(bu

Lines of a font description file have the following forms.

name name
name of the font, such as R or CW

internalname name
The typesetter’s name for the font, independent of the troff name or font position.

special
A troff special font, logically part of all non-special fonts.

ligatures name ... 0
The named ligatures are available. Legal names are ff fi fl ffi ffl.

spacewidth n
Space is n units wide (default 1/3 of an em).

charset
Must come last. Each line following charset describes one character thus:

name width height code

Name is either a single ASCII character or a special character listed in Width is in basic units.
Height is 1 if the character descends below the baseline, 2 if it rises above the letter ‘a’, 3 if it
both rises and descends, 0 for neither. Code is the number sent to the typesetter to produce the
character. If a character name is a synonym for the preceding one, its width, height, and code
may be replaced by one double quote [CB]".

Lines beginning with # are comments in both DESC and font description files.

Troff and its postprocessors use the binary versions as compiled by a program makedev.

FILES
/usr/lib/font/dev∗

typesetter description directory

793

FONT (5) File Formats Manual FONT (5)

DESC typesetter description (ASCII)

DESC.out
typesetter description (binary); created by makedev

font description of the named font (ASCII)

font.out
description of the named font (binary); created by makedev

/n/bowell/usr/src/cmd/troff/makedev

SEE ALSO
troff(1)
B. W. Kernighan, ‘A Typesetter-Independent Troff’, this manual, Volume 2

794

FSTAB(5) File Formats Manual FSTAB(5)

NAME
fstab, mtab - information about file systems

SYNOPSIS
#include <fstab.h>

DESCRIPTION
The file /etc/fstab describes the normal configuration of file systems. It guides the default operation
of mount, umount, swapon, and fsck(8). The order of records in /etc/fstab is important.

Each line of the file describes one file system. Fields separated by colons specify

pathname of block device or other mounted object
pathname of mount point
file system type number
integer mount flags
pass number for checking; see fsck(8)

File system type numbers and flags are listed in fmount(2).

Two special non-numeric file system types signify things that aren’t file systems: xx causes the line to be
ignored, sw signifies a swap device.

Use getfsent(3) to read data from /etc/fstab.

The file /etc/mtab lists file systems currently mounted. Each entry is a structure of the form

#define FSNMLG 32
struct mtab {

char file[FSNMLG]; mount point
char spec[FSNMLG-1]; mounted object
char type; file system type

};

EXAMPLES
A simple fstab.

/dev/ra00:/:0:0:1
/dev/ra02:/usr:0:0:2
/dev/ra05:/tmp:0:0:3
/dev/ra10:/ra10:0:1:1
/dev/ra11::sw:0:0
/dev/ra15:/ra15:0:1:3
/dev/null:/proc:2:0:0

FILES
/etc/fstab
/etc/mtab

SEE ALSO
fmount(2), getfsent(3), mount(8)

BUGS
Swap areas are not file systems, and should not be described in fstab.
For compatibility with old programs and habits, two deprecated magic file system types survive: rw
means ‘type 0, flag 0’ (a disk file system, mounted for reading and writing); ro means ‘type 0, flag 1’ (a
disk file system, mounted read-only).
Only file systems mounted with mount(8) are listed in mtab.

795

LNODE(5) File Formats Manual LNODE(5)

NAME
lnode - kernel user shares structure

SYNOPSIS
#include <sys/lnode.h>

DESCRIPTION
The kernel lnode structure is used to maintain per-user shares while a user has processes running. Lnodes
are installed by login(8) via the limits(2) system call when a new user logs into the system. Dead lnodes
are removed by sharer(8) when the last process for a user exits. The layout as given in the include file is:

/∗
∗ Structure for active shares
∗/
typedef short uid_t;
struct lnode
{

uid_t l_uid; /∗ real uid for owner of this node ∗/
u_short l_flags; /∗ (see below) ∗/
u_short l_shares; /∗ allocated shares ∗/
uid_t l_group; /∗ uid for this node’s scheduling group ∗/
float l_usage; /∗ decaying accumulated costs ∗/
float l_charge; /∗ long term accumulated costs ∗/

};
/∗
∗ Meaning of bits in l_flags
∗/
#define ACTIVELNODE 001 /∗ this lnode is on active list ∗/
#define LASTREF 002 /∗ set for L_DEADLIM if last reference to this lnode ∗/
#define DEADGROUP 004 /∗ group account is dead ∗/
#define CHNGDLIMITS 020 /∗ this lnode’s limits have changed ∗/
#define NOTSHARED 040 /∗ this lnode does not get a share of the m/c ∗/

Lnodes are grouped together in a tree. At any level in the tree, the share of resources allocated to an indi-
vidual lnode is that proportion of the group’s resources represented by the ratio of the lnode’s shares to the
total shares of all the lnodes in the group. The l_group field represents the uid of the group leader’s lnode.
The top of the tree is represented by root’s lnode, which is initialised at system boot time.

The LASTREF bit in l_flags is set for the L_DEADLIM request to the limits(2) system call if the last
process referencing the lnode has exited. The DEADGROUP bit is set if this lnode was the last one refer-
encing it’s group. Dead groups are collected via the L_DEADGROUP request to the limits(2) system call.

The l_charge field is the long term accumulated charge for consumption of resources. For group leaders,
it represents the charge for the whole group. The l_usage field is a number representing recent usage of
resources, and is used by the scheduler to determine current share of resources.

kern_lnode
Each user’s lnode is embedded in a larger structure to hold temporary values for use by the scheduler,
known as a kern_lnode. The layout as given in the include file is:

/∗
∗ Kernel user share structure
∗/
typedef struct kern_lnode ∗ KL_p;
struct kern_lnode
{

KL_p kl_next; /∗ next in active list ∗/
KL_p kl_prev; /∗ prev in active list ∗/
KL_p kl_parent; /∗ group parent ∗/
KL_p kl_gnext; /∗ next in parent’s group ∗/
KL_p kl_ghead; /∗ start of this group ∗/
struct lnode kl; /∗ user parameters (as above) ∗/

SHARE 796

LNODE(5) File Formats Manual LNODE(5)

float kl_gshares; /∗ total shares for this group ∗/
float kl_eshare; /∗ effective share for this group ∗/
float kl_norms; /∗ share∗∗ 2 for this lnode ∗/
float kl_usage; /∗ kl.l_usage / kl_norms ∗/
float kl_rate; /∗ active process rate for this lnode ∗/
float kl_temp; /∗ temporary for scheduler ∗/
float kl_spare; /∗ <spare> ∗/
u_long kl_cost; /∗ cost accumulating in current period ∗/
u_long kl_muse; /∗ memory pages used ∗/
u_short kl_refcount; /∗ processes attached to this lnode ∗/
u_short kl_children; /∗ lnodes attached to this lnode ∗/

};

Every process has a pointer to its owner’s kern_lnode called p_lnode. Every time a process incurs a clock
tick, the value p_lnode->kl_usage multipied by p_lnode->kl_rate is added to its scheduling priority in
p_sharepri. p_sharepri is decayed by the clock by an amount depending on the process’s p_nice value
— the ‘‘nicer’’ the process, the slower the decay. This value is copied into the low-level scheduler’s prior-
ity in p_pri whenever the process is run in user space.

SEE ALSO
limits(2), share(5), sharer(8).

SHARE 797

MAP(5) File Formats Manual MAP(5)

NAME
map - digitized map formats

DESCRIPTION
Files used by map(7) are a sequence of structures of the form:

struct {
signed char patchlatitude;
signed char patchlongitude;
short n;
union {

struct {
short latitude;
short longitude;

} point[n];
struct {

short latitude;
short longitude;
struct {

signed char latdiff;
signed char londiff;

} point[-n];
} highres;

} segment;
};

Fields patchlatitude and patchlongitude tell to what 10-degree by 10-degree patch of the
earth’s surface a segment belongs. Their values range from -9 to 8 and from -18 to 17, respectively, and
indicate the coordinates of the southeast corner of the patch in units of 10 degrees.

Each segment of |n| points is connected; consecutive segments are not necessarily related. Latitude and
longitude are measured in units of 0.0001 radian. If n is negative, then differences to the first and suc-
ceeding points are measured in units of 0.00001 radian. Latitude is counted positive to the north and lon-
gitude positive to the west.

The patches are ordered lexicographically by patchlatitude then patchlongitude. A printable
index to the first segment of each patch in a file named data is kept in an associated file named data.x.
Each line of an index file contains patchlatitude, patchlongitude and the byte position of the
patch in the map file. Both the map file and the index file are ordered by patch latitude and longitude.

Shorts are stored in little-endian order, low byte first, regardless of computer architecture. To assure
portability, map accesses them bytewise.

SEE ALSO
map(7), proj(3)

798

MPXIO(5) File Formats Manual MPXIO(5)

NAME
mpxio - multiplexed i/o

SYNOPSIS
#include <sys/mx.h>

#include <sgtty.h>

DESCRIPTION
Data transfers on mpx files (see mpx(2)) are multiplexed by imposing a record structure on the io stream.
Each record represents data from/to a particular channel or a control or status message associated with a
particular channel.

The prototypical data record read from an mpx file is as follows

struct input_record {
short index;
short count;
short ccount;
char data[];

};

where index identifies the channel, and count specifies the number of characters in data. If count is zero,
ccount gives the size of data, and the record is a control or status message. Although count or ccount
might be odd, the operating system aligns records on short (i.e. 16-bit) boundaries by skipping bytes
when necessary.

Data written to an mpx file must be formatted as an array of record structures defined as follows

struct output_record {
short index;
short count;
short ccount;
char ∗data;

};

where the data portion of the record is referred to indirectly and the other cells have the same interpreta-
tion as in input_record.

The control messages listed below may be read from a multiplexed file descriptor. They are presented as
two 16-bit integers: the first number is the message code (defined in <sys/mx.h>), the second is an op-
tional parameter meaningful only with M_WATCH, M_BLK, and M_SIG.

M_WATCH
a process ‘wants to attach’ on this channel. The second parameter is the 16-bit user-id of the
process that executed the open.

M_CLOSE
the channel is closed. This message is generated when the last file descriptor referencing a
channel is closed. The detach command (see mpx(2) should be used in response to this mes-
sage.

M_EOT indicates logical end of file on a channel. If the channel is joined to a typewriter, EOT (con-
trol-d) will cause the M_EOT message under the conditions specified in tty(4) for end of
file. If the channel is attached to a process, M_EOT will be generated whenever the process
writes zero bytes on the channel.

M_BLK if non-blocking mode has been enabled on an mpx file descriptor xd by executing ioctl(xd,
MXNBLK, 0), write operations on the file are truncated in the kernel when internal queues
become full. This is done on a per-channel basis: the parameter is a count of the number of
characters not transferred to the channel on which M_BLK is received.

M_UBLK is generated for a channel after M_BLK when the internal queues have drained below a
threshold.

4th Berkeley Distribution 799

MPXIO(5) File Formats Manual MPXIO(5)

M_SIG is generated instead of a normal asynchronous signal on channels that are joined to typewrit-
ers. The parameter is the signal number.

Two other messages may be generated by the kernel. As with other messages, the first 16-bit quantity is
the message code.

M_OPEN
is generated in conjunction with ‘listener’ mode (see mpx(2)). The uid of the calling process
follows the message code as with M_WATCH. This is followed by a null-terminated string
which is the name of the file being opened.

M_IOCTL
is generated for a channel connected to a process when that process executes the ioctl(fd, cmd,
&vec) call on the channel file descriptor. The M_IOCTL code is followed by the cmd argu-
ment given to ioctl followed by the contents of the structure vec. It is assumed, not needing a
better compromise at this time, that the length of vec is determined by sizeof (struct sgttyb) as
declared in <sgtty.h>.

Two control messages are understood by the operating system. M_EOT may be sent through an mpx file
to a channel. It is equivalent to propagating a zero-length record through the channel; i.e. the channel is
allowed to drain and the process or device at the other end receives a zero-length transfer before data starts
flowing through the channel again. M_IOANS can also be sent through a channel to reply to a
M_IOCTL. The format is identical to that received from M_IOCTL.

SEE ALSO
mpx(2)

4th Berkeley Distribution 800

NETNEWS(5) File Formats Manual NETNEWS(5)

NAME
netnews - usenet news articles, utility files

DESCRIPTION
There are two formats of news articles: A and B. Format A is the only format that the older netnews(A)
understands. Readnews and postnews(7) deal with both formats, but produce B by default.

Format A looks like this:

Aarticle-ID
newsgroups
path
date
title
body of article

Format B contains two extra pieces of information: receipt date and expiration date. A file in B format
consists of a series of headers and then the body. A header is a line with a capital letter in the 1st column
and a colon somewhere on the line. Unrecognized header fields are ignored. News is stored in whichever
format it was created. The following fields are among those recognized:

From:
Newsgroups:
Subject:
Date:
Date-Received:
Expires:
Reply-To:
References: ID of article this is a follow-up to
Control: Text of a control message

Each line of the control file /usr/lib/news/sys file line has four fields, separated by colons:

system-name:subscriptions: flags:transmission command

Only the system-name and subscriptions need to be present.

The system name is the name of the system being sent to. The subscriptions are the newsgroups it gets.
The flags are a set of letters describing how the article should be transmitted. The default is B. Valid
flags include A, B, N (use ihave/sendme protocol), U (use uux and the name of the stored article in a %s
string).

The transmission command is executed by the shell with the article to be transmitted as the standard
input. The default is uux - -z -r sysname!rnews.

Somewhere in the control file, there must be a line for the host system. This line has no flags or transmis-
sion commands. A # as the first character in a line denotes a comment.

FILES
/usr/lib/news/∗

/usr/spool/news/∗

SEE ALSO
postnews(7), readnews(7)
M. Horton, Standard for the Interchange of USENET Messages, RFC850, DARPA Information Processing
Techniques Office, Arlington VA, 1983

801

PASSWD(5) File Formats Manual PASSWD(5)

NAME
passwd, group - password and group files

DESCRIPTION
The file /etc/passwd has one line for each user with the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group ID
comp center account number, box number, optional user-id
initial working directory
program to use as shell

Fields are separated by colons. The comp center field is used only when communicating with certain sys-
tems, and in other installations can contain any desired information. If the password field is null, no pass-
word is demanded; if the shell field is null, /bin/sh is used.

The file /etc/group defines the membership of users in permission groups. It contains one line for
each group with the following colon-separated fields:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

Each group is separated from the next by a new-line. If the password field is null, newgrp(1) will not
demand a password.

Because the passwords are encrypted, these files can and do have general read permission and can be
used, for example, to map numerical ids to names.

FILES
/etc/passwd /etc/group

SEE ALSO
newgrp(1), getpwent(3), login(8), crypt(3), passwd(1)

BUGS
Passwd(1) won’t change passwords in the group file.

802

PICFILE(5) File Formats Manual PICFILE(5)

NAME
picfile - raster graphic image format

DESCRIPTION
Files in this format store images represented as two-dimensional arrays of multiple-channel pixels. A pic-
file consists of an ASCII header followed by binary data encoding the pixels in row-major order. The
header is a list of attribute/value pairs separated by newlines, terminated by an empty line. Each header
line has the form name=value. The name may not contain an ASCII NUL, newline or =; the value may not
contain null or newline. The last line of a header is empty.

The standard attributes are described below; all but TYPE and WINDOW are optional. TYPE must
come first; otherwise order is irrelevant. As any unrecognised attribute is passed over uninterpreted by all
standard software, applications are welcome to include arbitrary annotations, like SHOESIZE=10, if they
wish.

TYPE=type
How the pixels are encoded. Standard types are
runcode

A run-length encoding. The data are a sequence of (nchan+1)-byte records each con-
taining a count k and nchan bytes giving a pixel value to be repeated k+1 times. A run
may not span scanlines.

dump A two-dimensional array of nchan-byte records in row major order.
bitmap

One-bit pixels, packed into bytes high bit leftmost. Zero bits are white, one bits are
black. Rows are padded with zeros to a multiple of 16 bits.

ccitt-g4
A black-and-white image under CCITT FAX Group 4 compression. This format is
highly compressive on images of text and line art. Similarly, ccitt-g31 and
ccitt-g32 for Group 3, 1-D and 2-D.

pico A sequence of nchan two-dimensional arrays of single bytes.
ccir601

Pixels are in dump order, 2 bytes per pixel encoded according to the IEEE digital com-
ponent video standard.

WINDOW=x0 y0 x1 y1
The x,y coordinates of the upper left corner and the point just diagonally outside the lower right
corner, x increasing to the right, y down.

NCHAN=nchan
The number of channels, default 1.

CHAN=value
The order of channels.

RES=x y
The digitizing resolution horizontally and vertically, in pixels/inch.

CMAP=
(The value is empty.) A color map, a 256× 3-byte translation table for color values, follows the
header. In a full-color picture, each color-map row maps pixel values of the corresponding chan-
nel. In a monochrome picture, pixel values index the color map to yield red, green and blue, like
this:

unsigned char cmap[256][3];
red=cmap[pixel][0];
green=cmap[pixel][1];
blue=cmap[pixel][2];

EXAMPLES
sed ’/ˆ$/q’ image

Print a header. A sample header follows.

TYPE=dump
WINDOW=0 0 512 512
NCHAN=1

803

PICFILE(5) File Formats Manual PICFILE(5)

CHAN=m
RES=300 300
CMAP=
COMMAND= antiquantize ’halftone CLASSIC’ 512.halftone LIBERTY.anticlassic
COMMAND= halftone CLASSIC 512.liberty 512.halftone 1.75 512.halftone
COMMAND= transpose IN OUT
COMMAND= resample 512 IN OUT
COMMAND= transpose IN OUT
COMMAND= resample 512 IN OUT
COMMAND= clip 400 400 LIBERTY OUT

SEE ALSO
bcp(1), cscan(1), imscan(1), pico(1), flicks(9) mugs in face(9) rebecca(9) flickfile(9)
T. Duff, ‘The 10th Edition Raster Graphics System’, this manual, Volume 2

804

PLOT (5) File Formats Manual PLOT (5)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3), and are interpreted for various devices
by commands described in plot(1). A graphics file is an ASCII stream of instruction lines. Arguments are
delimited by spaces, tabs, or commas. Numbers may be floating point. Punctuation marks (except :) ,
spaces, and tabs at the beginning of lines are ignored. Comments run from : to newline. Extra letters
appended to a valid instruction are ignored. Thus ...line, line, li all mean the same thing. Argu-
ments are interpreted as follows:

1. If an instruction requires no arguments, the rest of the line is ignored.

2. If it requires a string argument, then all the line after the first field separator is passed as argu-
ment. Quote marks may be used to preserve leading blanks. Strings may include newlines repre-
sented as \n.

3. Between numeric arguments alphabetic characters and punctuation marks are ignored. Thus line
from 5 6 to 7 8 draws a line from (5, 6) to (7, 8).

4. Instructions with numeric arguments remain in effect until a new instruction is read. Such com-
mands may spill over many lines. Thus the following sequence will draw a polygon with vertices
(4.5, 6.77), (5.8, 5.6), (7.8, 4.55), and (10.0, 3.6).

move 4.5 6.77
vec 5.8, 5.6 7.8
4.55 10.0, 3.6 4.5, 6.77

The instructions are executed in order. The last designated point in a line, move, rmove, vec, rvec, arc,
or point command becomes the ‘current point’ (X,Y) for the next command. Each of the following
descriptions corresponds to a routine in plot(3).

Open & Close
o string Open plotting device. For troff, string specifies the size of the plot (default is 6i.)
cl Close plotting device.

Basic Plotting Commands
e Start another frame of output or erase the screen on CRT terminals without scroll.
m x y (move) Current point becomes x y.
rm dx dy Current point becomes X+dx Y+dy.
poi x y Plot the point x y and make it the current point.
v x y Draw a vector from the current point to x y.
rv dx dy Draw vector from current point to X+dx Y+dy
li x1 y1 x2 y2

Draw a line from x1 y1 to x2 y2. Make the current point x2 y2.
t string Place the string so that its first character is centered on the current point (default). If string

begins with \C it is centered (right-adjusted) on the current point. A backslash at the begin-
ning of the string may be escaped with another backslash.

a x1 y1 x2 y2 xc yc r
Draw a circular arc from x1 y1 to x2 y2 with center xc yc and radius r. If the radius is posi-
tive, the arc is drawn counterclockwise; negative, clockwise. The starting point is exact but
the ending point is approximate.

ci xc yc r Draw a circle centered at xc yc with radius r. If the range and frame parameters do not spec-
ify a square, the ‘circle’ will be elliptical.

di xc yc r Draw a disc centered at xc yc with radius r using the filling color (see cfill below). Only
works on the 5620; on other devices is the same as circle.

bo x1 y1 x2 y2
Draw a box with lower left corner at x1 y1 and upper right corner at x2 y2.

sb x1 y1 x2 y2
Draw a solid box with lower left corner at x1 y1 and upper right corner at x2 y2 using the fill-
ing color (see cfill below).

805

PLOT (5) File Formats Manual PLOT (5)

par x1 y1 x2 y2 xg yg
Draw a parabola from x1 y1 to x2 y2 ‘guided’ by xg yg. The parabola passes through the
midpoint of the line joining xg yg with the midpoint of the line joining x1 y1 and x2 y2 and is
tangent to the lines from xg yg to the endpoints.

pol { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Draw polygons with vertices x1 y1 ... xn yn and X1 Y1 ... Xm Ym. If only one polygon is
specified, the inner brackets are not needed.

fi { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Fill a polygon. The arguments are the same as those for pol except that the first vertex is
automatically repeated to close each polygon. The polygons do not have to be connected.
Enclosed polygons appear as holes.

sp { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Draw a parabolic spline guided by x1 y1 ... xn yn with simple endpoints.

fsp { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Draw a parabolic spline guided by x1 y1 ... xn yn with double first endpoint.

lsp { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Draw a parabolic spline guided by x1 y1 ... xn yn with double last endpoint.

dsp { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Draw a parabolic spline guided by x1 y1 ... xn yn with double endpoints.

csp { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
in filename

(include) Take commands from filename.
de string { commands }

Define string as commands.
ca string scale

Invoke commands defined as string applying scale to all coordinates.

Commands Controlling the Environment
co string Draw lines with color string. Available colors depend on the device. String may contain def-

initions for several devices separated by /. Colors possible for the various devices are:
pen black, red, green, blue, Tblack, Tred, Tgreen, Tblue (assumes default carousel,

T=thick)
1-8 (pen number)
Snumber character size as % of plotting area

troff F font
Ppoint size

2621 Hcharacter for plotting

pe string Use string as the style for drawing lines. Not all pen styles are implemented for all devices.
String may contain definitions for several devices separated by /. The available pen styles
are:

pen solid, dott[ed], short, long, dotd[ashed], cdash, ddash
4014 solid , dott[ed], short, long, dotd[ashed], ddash
troff solid, dash only straight lines will be dashed
5620 Bnumber line thickness
2621 Hcharacter for plotting

cf string Color for filling; may contain the definitions for several devices. separated by /. The follow-
ing colors are available on the specified devices:

pen black, red, green, blue, Tblack, Tred, Tgreen, Tblue
1-8 pen number

5620 Btexture string with octal numbers for texture; see types(9) The 16 words of texture
should be followed by one word for the mode used by texture(); see bitblt(9)

2621 Hcharacter for filling
All /Adegrees slant of shading lines

/Gnumber gap between shading lines (in user units)

806

PLOT (5) File Formats Manual PLOT (5)

ra x1 y1 x2 y2
The data will fall between x1 y1 and x2 y2. The plot will be magnified or reduced to fit the
device as closely as possible.

Range settings that exactly fill the plotting area with unity scaling appear below for devices
supported by the filters of plot(1). The upper limit is just outside the plotting area. In every
case the plotting area is taken to be square; points outside may be displayable on devices with
nonsquare faces.

4014 range
troff range
2621 range
5620 range dependent on layer size
pen range dependent on paper size

fr px1 py1 px2 py2
Plot the data in the fraction of the display specified by px1 py1 for lower left corner and px2
py2 for upper right corner. Thus frame plots in the lower right quadrant of the display;
frame uses the whole display but inverts the y coordinates.

sa Save the current environment, and move to a new one. The new environment inherits the old
one. There are 7 levels.

re Restore previous environment.

SEE ALSO
plot(1), plot(3), graph(1)

807

POLY (5) File Formats Manual POLY (5)

NAME
poly - polyhedron database

DESCRIPTION
The directory /usr/lib/polyhedra contains an index file and many polyhedron description files, each de-
scribing a solid polyhedron and its (not necessarily unique) planar net. Each line of the index file consists
of a polyhedron’s number followed by a horizontal tab and the polyhedron’s name. The polyhedron’s
number is also the name of its description file. The routines of poly(3) read such description files.

Each description file consists of a number of fields. Each field begins with a line consisting of : and the
field name. The field continues until the next header line or end of file. Some fields contain values, which
consist of a floating point number optionally followed by an algebraic expression enclosed in [], or
angles, which are a value in radians and optionally two more values (sin and cos) separated by @. The
fields include, but are not limited to,

number
The polyhedron’s number.

name The polyhedron’s name, less than 128 characters long and not capitalized.

symbol
The Schlaefli symbol, a tab, and the Johnson symbol for the polyhedron, given in eqn(1) style
with delimiters @@.

dual The name of the dual polyhedron optionally followed by a horizontal tab and the number of the
dual.

vertices
The first line is the number of vertices, which follow, one per line. Each vertex has a coordinate
(three values separated by spaces), a number n, and n face,edge pairs that surround the vertex.

faces The first line contains the number of faces and the maximum number of vertices in any face. The
remaining lines are the faces, each with a vertex count n, followed by 2n vertex numbers (planar,
solid), 2n edge numbers (planar, solid), and n angles. The vertices of each face are listed in the
same order for both the planar and solid forms: counter-clockwise as viewed from above the pla-
nar net (i.e. from z>0) which generally corresponds to outside the solid polyhedron.

edges The first line contains the number of edges. Each edge is one line: face1 vertex1 face2 vertex2
length angle. The length is a value.

summary
The three lines summarise the different kinds of faces, vertices and edges respectively. Each line
consists of a total and a list of count example symbolic triples; where example is an index into the
appropriate list and symbolic is given in eqn(1) style with delimiters @@.

EOF The end of the polyhedron’s description. (Another polyhedron description may follow in this
file.)

An expression in a value gives the exact value in the syntax of bc(1) using these functions:
a(x) = tan−1(x), b(x) = (x)1/3, c(x) = cos(x), d(x) = tan(x), p = π, q(x) = x2, r(x) = cos−1(x),
s(x) = sin(x), t = φ = (1 + √5)/2. (.).if t .ig a(x) = arctan(x), b(x) = cubrt(x), c(x) = cos(x), d(x) = tan(x),
p = pi, q(x) = xˆ2, r(x) = arccos(x), s(x) = sin(x), t = phi = (1 + sqrt(5))/2. (.)The code may include
assignments but does not include white space.

FILES
/usr/lib/polyhedra/index index file
/usr/lib/polyhedra/[0-9]∗ description files

SEE ALSO
poly(3), poly(7)

bowell 808

SHARE(5) File Formats Manual SHARE(5)

NAME
Share - Share Scheduling on Unix

SYNOPSIS
Scheduling for a share of the machine

DESCRIPTION
Share is a term covering those elements of the Unix kernel that affect the priority of a user’s job. The ba-
sic scheduler in Unix schedules processes on a short term per-process basis. The share scheduler takes
account of the history of a user’s usage of the resources of the machine, and introduces a per-user long
term scheduler. To do this, several variables are available to the scheduler in a per-user data structure
known as an lnode. These record the intended share of the machine that the user should get, the recent
history of resources consumed (‘‘usage’’), and the number of active (running) processes belonging to the
user. Together, these affect the priority of each of the processes so that consumption of resources is ad-
justed toward the intended share.

A user’s usage is calculated by accumulating the charges incurred by use of resources, and decaying the
result over time. The share scheduler affects the low-level scheduling of a user’s processes by adding the
user’s usage divided by the allocated share, and multiplied by the active process count, to the priority of a
process every time that process incurs a clock tick. Since the larger its priority, the less often a process is
scheduled, processes belonging to users with high usage, low share, or many active processes will get a
smaller share of resources. Note that at any one time, a user can use all of the resources available pro-
vided there is no competition from others.

SCHEDULING GROUPS
lnodes are organised into a tree. For any particular sub-tree, the sub-tree’s share of resources is divided up
between the lnodes according to their relative shares. Sub-trees are also known as groups. The root lnode
of the group is the group owner, and the leaf lnodes are its users. The total shares issued to the group in-
clude both those issued to the owner, as well as those issued to the users. Both owner and users are
known as group members. The share of the group’s resources allocated to any particular member of the
group is in the proportion of the member’s shares divided by the group’s shares.

The most interesting group is the one at the top of the tree, whose owner is ‘‘root’’, and its group members
are the primary scheduling groups. ‘‘root’’ gets 100% of the available resources, which is split as above
between the primary scheduling groups.

Not all group owners represent real users, and in these cases there is no need to allocate them a share of
resources. Such lnodes are indicated by the NOTSHARED flag, which causes the scheduler to ignore their
shares when allocating their group’s resources among its members. However, the long term charge of a
group owner always includes all the charges levied on any member of its group.

For reasons of system management, ‘‘root’’ is always allocated 100% of the resources whenever it needs
them. However, since all real users run on their own lnodes, the NOTSHARED flag is turned on for
‘‘root’’, and thus the primary scheduling groups have 100% of the available resources to share between
themselves. However, for instrumentation purposes, ‘‘root’’s charge only represents its own consumption
of resources, but the total consumption of resources is accumulated in the kl_temp field of ‘‘root’’s
kern_lnode (see lnode(5) for details of a kern_lnode.)

CHARGES
Charges making up the accumulating usage figure are levied by default as follows:-

cpu 100%
disk i/o 0%
terminal i/o 0%
system services 0%
memory 0%

Memory charges are levied every scheduler cycle, but note that root is never charged for the memory it
uses. These charges can be varied at different times of the day to reflect their popularity by using the
command charge(1).

Usage is decayed at an exponential rate intended to ensure that all users of the machine get an equal
chance to compete for resources over a particular time period. The default decay results in a half-life of 2
minutes. Use charges(1) to find out the current decay rate and resource charges.

SHARE 809

SHARE(5) File Formats Manual SHARE(5)

NICE
The nice(2) system call has a slightly different effect under Share. The nice parameter for a process now
affects the rate at which its priority decays to a higher priority over time. Nicing a process will make it
run slower, by reducing its effective share of the resources, but it may not run slower than another user’s
processes if that user has an even lower effective share of the resources. However, processes with a nice
priority of 19 are guaranteed only to run when no other processes need the CPU. Niced processes are
charged less for CPU time than normal processes, priority 19 processes are charged almost nothing for
CPU time.

MANAGEMENT
There are three flags that control the operation of the share scheduler.

NOSHARE This turns off the scheduler. Since this will leave the parameters in a ‘‘frozen’’ state, it
should probably only be done at system boot time. This flag is on by default when the
system is booted, so the command charge(1) must be run to activate the scheduler. Note
that the program login(8) won’t attach users to their own lnodes while this flag is on, in-
stead each user will remain attached to root’s lnode. [Value 01]

ADJGROUPS This flags turns on global group effective share adjustment. If any group is found to be
getting less than MINGSHARE times its allocated share, then the costs incurred by its
members are reduced proportionately. [Value 02]

LIMSHARE This flag deals with an ‘‘edge effect’’ that occurs when users first log in. It may be that
their usage field has decayed to the point where they might temporarily be allocated
nearly 100% of the machine. This flag limits any one user’s share of the resources to no
more than MAXUSHARE times their intended share. Of course, this still may be nearly
100%, if no other users are logged in, or the other users have very small shares. [Value
04]

The charge(1) command is used to manipulate these flags, and the charging parameters above. There are
also other parameters which may be changed with charge:-

DecayRate The decay rate for users’ active process rates. This parameter is calculated by
counting the active proceses per user every clock scan, and is decayed every
clock scan. The usual value for this should result in a half-life for the rate of
about 10 seconds.

DecayUsage The decay rate for users’ usages. This may be altered to produce a half-life for
usage ranging from a few seconds to many days.

Delta The run frequency of the share scheduler in seconds. The default value of 4 is
fine.

MAXGROUPS This sets the maximum group nesting (depth of scheduling tree) allowed, not in-
cluding ‘‘root’’s group.

MAXPRI Absolute upper bound for a process’s priority.

MAXUPRI Upper bound for normal processes’ priorities. Idle processes run with priorities
in the range MAXUPRI < pri < MAXPRI.

MAXUSAGE Upper bound for ‘‘reasonable’’ usages. Users with usages larger than this are
grouped together and given process priorities which prevent them from interfer-
ing with ‘‘normal’’ users. The usage (multiplied by the active process rate) is
added to a running process’s priority every time it incurs a clock tick, so the up-
per bound should be small enough not to overrun the value MAXUPRI in too
short a time interval

MAXUSERS Sets the maximum number of users and groups that can be active. Note that this
cannot exceed the maximum configured in the kernel.

PriDecay This is the decay rate for maximally niced processes. A reasonable minimum
value for the half-life is about 100 seconds, but see the comment for MAXUSAGE
above.

SHARE 810

SHARE(5) File Formats Manual SHARE(5)

PriDecayBase The base for calculating the decay rate for process priorities with normal nice.
This should be set low enough so that the priorities of processes for users with
low share don’t decay too quickly. A reasonable minimum value for the half-life
is about 2 seconds.

FILES
/usr/include/sys/share.h Definition of scheduler parameters.
/usr/include/sys/charges.h Default scheduler parameters.

SEE ALSO
charge(1), pl(1), rates(1), shstats(1), ustats(1), lnode(5), shares(5), login(8), sharer(8).

REFERENCES
"Scheduling for a Share of the Machine", J Larmouth, SP&E, Vol 5 1975 pp 29-49
"Scheduling for Immediate Turnaround", J Larmouth, SP&E, Vol 8 1978 pp 559-578
"A Fair Share Scheduler", J Kay & P Lauder, TM 11275-870319-01
"Share Scheduler Administration", P Lauder

SHARE 811

SHARES(5) File Formats Manual SHARES(5)

NAME
/etc/shares - shares data-base file for share system

DESCRIPTION
/etc/shares is an direct access data-base indexed on uid containing the uid, scheduling group and allocated
shares for each user on the system. It also contains other scheduling data as defined in the files
<shares.h> and <sys/lnode.h>.

Operations on the shares file are made via the shares routines described in section 3.

Data from the shares file are installed in kernel lnode structures for active users by login(8). When users
become inactive, the lnode structures are removed from the kernel and updated in the shares file by
sharer(8)

The number of shares and the scheduling group of a user may be changed by using passwd(1), with the -a
or -n flags, or by lim(1). Data in the shares file may be examined with either pl(1) or pwintf(1).

FILES
/etc/shares User data base.
/usr/include/shares.h Format of an /etc/shares record.
/usr/include/sys/lnode.h Format of an lnode structure in an /etc/shares record.

SEE ALSO
lim(1), pl(1), pwintf(1), closeshares(3), getshares(3), getshput(3), openshares(3), putshares(3), setup-
shares(3), sharesfile(3), lnode(5), share(5), login(8), sharer(8).

SHARE 812

STAB(5) File Formats Manual STAB(5)

NAME
stab - symbol table types

SYNOPSIS
#include <stab.h>

DESCRIPTION
The include file <stab.h> defines some values of the n_type field of the symbol table of object files;
see a.out(5). These are the types for permanent symbols used by the compilers cc(1) and f77(1) and the
debugger pi(9) Symbol table entries are produced by assembler directives:

.stabs
specifies a name in quotes " ", a symbol type one char one short and an unsigned long usually an
address).

.stabd
the same, referring to the current location without an explicit name.

.stabn
generates entries with no name.

The loader ld(1) preserves the order of symbol table entries produced by these directives.

The low bits of the n_type field place a symbol into at most one segment, according to the following
masks, defined in <a.out.h>.

#define N_UNDF 0x0 /∗ undefined ∗/
#define N_ABS 0x2 /∗ absolute ∗/
#define N_TEXT 0x4 /∗ text ∗/
#define N_DATA 0x6 /∗ data ∗/
#define N_BSS 0x8 /∗ bss ∗/
#define N_EXT 0x1 /∗ external bit, or’ed in ∗/

The n_value field of a symbol is relocated by ld as an address within the appropriate segment, or is
unchanged for a symbol not in any segment. In addition, the loader will discard certain symbols, accord-
ing to rules of its own, unless the n_type field has one of the following bits set:

#define N_STAB 0xe0

This allows up to 112 symbol types, split among the various segments. Some of these have already been
claimed. Option -g of cc uses the following values, all 4 mod 16, for text symbols. Comments show the
pertinent fields of the .stabs directive.

#define N_BFUN 0x24 /∗ procedure: name,,0,lineno,address ∗/
#define N_FUN 0x24
#define N_NARGS 0x34 /∗ function call: ,,0,nbytes,address ∗/
#define N_SLINE 0x44 /∗ src line: ,,0,lineno,address ∗/
#define N_SO 0x64 /∗ source file: name,,0,lineno,address ∗/
#define N_SOL 0x84 /∗ #include file: name,,0,lineno,address ∗/
#define N_ESO 0x94 /∗ end source file: name,,0,lineno,address ∗/
#define N_ENTRY 0xa4 /∗ alternate entry: name,,0,lineno,address ∗/
#define N_RFUN 0xb4 /∗ return from function: ,,0,lineno,address ∗/
#define N_LBRAC 0xc4 /∗ left bracket: ,,0,level,address ∗/
#define N_RBRAC 0xd4 /∗ right bracket: ,,0,level,address ∗/
#define N_EFUN 0xf4 /∗ end of function: name,,0,lineno,address ∗/

These values, all 8 mod 16, are used for data symbols:

#define N_LCSYM 0x28 /∗ .lcomm symbol: name,,0,type,address ∗/
#define N_ECOML 0xe8 /∗ end common (local name): ,,address ∗/

And these for non-relocated symbols:

#define N_GSYM 0x20 /∗ global symbol: name,,0,type,0 ∗/
#define N_FNAME 0x22 /∗ procedure name (f77 kludge): name,,0 ∗/
#define N_STFUN 0x32 /∗ static function: name,,0,type,0 ∗/
#define N_RSYM 0x40 /∗ register sym: name,,0,type,register ∗/

813

STAB(5) File Formats Manual STAB(5)

#define N_BSTR 0x5c /∗ begin structure: name,,0,type,length ∗/
#define N_ESTR 0x5e /∗ end structure: name,,0,type,length ∗/
#define N_SSYM 0x60 /∗ structure elt: name,,0,type,offset ∗/
#define N_SFLD 0x70 /∗ structure field: name,,0,type,offset ∗/
#define N_LSYM 0x80 /∗ local sym: name,,0,type,offset ∗/
#define N_PSYM 0xa0 /∗ parameter: name,,0,type,offset ∗/
#define N_BCOMM 0xe2 /∗ begin common: name,, ∗/
#define N_ECOMM 0xe4 /∗ end common: name,, ∗/
#define N_VER 0xf0 /∗ symbol table version number ∗/
#define N_TYID 0xfa /∗ struct, union, or enum name ∗/
#define N_DIM 0xfc /∗ dimension for arrays ∗/

Field n_desc holds a type specifier in the form used by cc(1), by up to 6 qualifiers, with q1 most signifi-
cant:

struct desc {
short q6:2, q5:2, q4:2, q3:2, q2:2, q1:2;
short basic:5;

};

The qualifiers are coded thus: 0 none 1 pointer 2 function 3 array

The basic types are coded thus: 0 undefined 1 function argument 2 character
3 short 4 int 5 long 6 float 7 double 8 struc-
ture 9 union 10 enumeration 11 member of enumeration 12 unsigned
character 13 unsigned short 14 unsigned int 15 unsigned long 16 void

The Pascal compiler, pc(A), uses the following n_type value:

#define N_PC 0x30/∗ global pascal symbol: name,,0,subtype,line ∗/

and uses the following subtypes to do type checking across separately compiled files: 1 source
file name 2 included file name 3 global label 4 global constant
5 global type 6 global variable 7 global function 8 global proce-
dure 9 external function 10 external procedure

SEE ALSO
a.out(5), pi(9) as(1), ld(1)

BUGS
The loader’s relocation conventions limit the number of useful n_type values.

814

TERMCAP(5) File Formats Manual TERMCAP(5)

NAME
termcap - terminal capability file

DESCRIPTION
Termcap describes terminals as used, for example, by vi(1) and curses(3) or in the TERMCAP environ-
ment variable. A termcap entry is a line containing fields separated by :. Lines may be broken; \ at the
end of a line signifies continuation. Empty fields are ignored.

The first field for each entry gives names for a terminal separated by |. The first name is conventionally
two characters long for the benefit of older systems; the second name is the customary abbreviation; and
the last name fully identifies the terminal.

There are three types of capability: Boolean for the presence of a feature, numeric for sizes and time
delays, and strings for performing operations. Some string fields may be preceded by a number, which
specifies padding, a time delay required with the operation. These capabilities are marked ‘P’ or ‘P∗’
below. Padding is measured in milliseconds; P∗ signifies that the padding is proportional to the number of
lines (or characters) affected, for example, 3.5∗ specifies 3.5 milliseconds per unit.

Name Type PadDescription
ae str PEnd alternate character set
al str P∗ Add new blank line
am bool Automatic margin
as str PStart alternate character set
bc str Backspace char if not ˆH
bs bool Terminal can backspace
bt str PBack tab
bw bool Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str P∗ Clear to end of display
ce str PClear to end of line
ch str PLike cm but horizontal motion only
cl str P∗ Clear screen
cm str PCursor motion
co num Number of columns
cr str P∗ Carriage return, default ˆM
cs str PChange scrolling region (vt100), like cm
cv str PLike ch, but vertical only
da bool Display may be retained above
dB num Backspace delay
db bool Display may be retained below
dC num Carriage return delay
dc str P∗ Delete character
dF num Form feed delay
dl str P∗ Delete line
dm str Enter delete mode
dN num Newline delay
do str Down one line
dT num tab delay
ed str End delete mode
ei str End insert mode; give :ei=: if ic
eo str Can erase overstrikes with blank
ff str P∗ Hard copy page eject, default ˆL
hc bool Hardcopy terminal
hd str Half line down
ho str Home cursor if no cm
hu str Half line up
hz str Hazeltine, can’t print
ic str PInsert character
if str Name of file containing initializationis

815

TERMCAP(5) File Formats Manual TERMCAP(5)

im bool Enter insert mode; give :im=: if ic
in bool Insert mode distinguishes nulls on display
ip str P∗ Insert pad after character insert
is str Terminal initialization string
k0-k9 str Other function key codes
kb str Backspace key code
kd str Down arrow key code
ke str Leave keypad transmit mode
kh str Home key code
kl str Left arrow key code
kn num Number of function keys
ko str Termcap entries for other non-function keys
kr str Right arrow key code
ks str Enter keypad transmit mode
ku str Up arrow key code
l0-9 str Labels on other function keys
li num Number of lines on screen or page
ll str Last line, first column, if no cm
ma str Arrow key map
mi bool Safe to move in insert mode
ml str Memory lock above cursor
ms bool Safe to move in standout or underline mode
mu str Turn off memory lock
nc bool No correctly working CR (DM2500, H2000)
nd str Nondestructive space (cursor right)
nl str P∗ Newline character, default \n
ns bool Nonscrolling CRT
os bool Terminal overstrikes
pc str Pad character, default NUL
pt bool Has hardware tabs (possibly set by is)
se str Leave standout mode
sf str PScroll forward
sg num Number of blanks left by so, se
so str Enter standout mode
sr str PScroll reverse (backward)
ta str PTab, if not ˆI or if padded
tc str Entry of similar terminal, must be last
te str String to end programs that use cm
ti str String to begin programs that use cm
uc str Underscore one char and move past it
ue str Leave underscore mode
ug num Number of blanks left by us, ue
ul bool Terminal underlines but doesn’t overstrike
up str Cursor up one line
us str Enter underscore mode
vb str Visible bell, (may not move cursor)
ve str Leave open/visual mode
vs str Enter open/visual mode
xb bool Beehive (f1=escape, f2=ˆC)
xn bool Newline ignored after wrap (Concept)
xr bool Return acts like ce \r \n (Delta Data)
xs bool Standout not erased by writing over (HP264?)
xt bool Tabs are destructive, magic so (Teleray 1061)

The following example is one of the more elaborate termcap entries. (Do not believe it; see the file for
current facts.)

816

TERMCAP(5) File Formats Manual TERMCAP(5)

co|c100|concept 100:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E:\
:al=3∗\EˆR:am:bs:cd=16∗\EˆC:ce=16\EˆS:cl=2∗ˆL:cm=\Ea%+ %+ :co#80:\
:dc=16\EˆA:dl=3∗\EˆB:ei=\E\200:eo:im=\EˆP:in:ip=16∗:li#24:mi:\
:nd=\E=:se=\Ed\E:so=\ED\EE:ta=8\t:ul:up=\E;vb=\Ek\Ek:xn:

Among the Boolean capabilities shown for the Concept are automatic margins am: automatic return and
linefeed at the end of a line. Numeric capabilities are indicated by #; co#80 means the Concept has 80
columns. String capabilities are indicated by =; to clear to end of line on the Concept, issue <escape>
<control-C> and pad with 16 milliseconds delay.

In strings the ASCII ESC character is represented by \E and control characters are represented by ˆc,
where character c has ASCII code 0100 greater than the desired control character. Newline, return, tab,
backspace, form feed, \ and ˆ are represented by \n \r \t \b \f \\ \ˆ. Backslash \ followed by 3 digits speci-
fies a byte in octal. A null character is encoded \200: the routines that use termcap information mask out
the high bit of all bytes.

Local cursor motions are undefined if they run off the left or top of the screen; the curses routines refrain
from issuing such motions. It is assumed that the screen will scroll up upon running off the bottom; this
assumption is negated by ns. Capability am (automatic margin) describes the handling of the right mar-
gin.

Cursor addressing is described by capability cm, which contains printf(3)-like format codes for line and
column positions. The leftmost column is column 0.

%d as in printf
%2 like %2d
%3 like %3d
%. like %c
%+x adds x before converting
%>xy if value exceeds x, add y, no output
%r reverse order of line and column, no output
%i increment line/column (1-origin)
%% single %
%n exclusive or row and column with 0140 (DM2500)
%B BCD: 16∗(x/10) + (x%10), no output
%D Reverse coding: x-2∗(x%16), no output

For example, to go to line 3 column 12, a HP2645 terminal must get \E&a12c03Y padded for 6 millisec-
onds: :cm=6\E&%r%2c%2Y:

Capability al adds an empty line before the line where the cursor is and leaves the cursor on the new line.
This will always be done with the cursor at column 0. Capability dl deletes the line where the cursor is
and is also done with the cursor at column 0. Capabilities da and db warn that off-screen lines may
appear at the top or bottom of the screen upon scrolling or deleting lines. The curses routines do not use
this feature, but do guard against its effects.

Insert-character operations usually affect only the current line and shift characters off the end of the line
rigidly. Some terminals, such as the Concept 100, distinguish typed from untyped blanks on the screen,
shifting upon insertion only up to an untyped blank, i.e. a space caused by cursor motion; these terminals
have capability in (insert null).

Some terminals have an insertion mode; others require a special sequence to open up a blank position on
the current line. Insertion mode is entered and left by im and ie, which should be null strings if there is
no insertion mode. String ic is sent just before each character to be inserted, and padding ip is sent
after. Capability mi says it is possible to move around without leaving insertion mode. Delete mode
works similarly: enter with dm, leave with de, and issue dc before each character.

Highlighting, or ‘standout’ mode is entered by so and left by se. Underline mode is entered by us and
left by ue. Terminals that underline characters individually have capability uc. The visual bell capability
vb flashes the screen without moving the cursor.

A terminal with a keypad that transmits cursor motions may be described by capabilities kl kr ku kd kh
that give the codes for left, right, up, down, and home. Up to ten function keys may be described by k0

817

TERMCAP(5) File Formats Manual TERMCAP(5)

through k9. Special labels for the function keys may be given as l0 through l9.

The initialization string is is expected to set tabs if that is necessary. That string may come from a file if
both are present is is done first.

The entry for a terminal may be continued by jumping to another entry given by tc. Duplicate capabili-
ties are resolved in favor of the first.

FILES
/etc/termcap

SEE ALSO
curses(3), termcap(3), vi(1), ul(1)

BUGS
Termcap entries, including tc continuations, are limited to 1024 characters.

818

TP(5) File Formats Manual TP(5)

NAME
tp - DEC/mag tape formats

DESCRIPTION
Tp dumps files to and extracts files from DECtape and magtape. The formats of these tapes are the same
except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See reboot(8).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape. There are
192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each entry has the follow-
ing format:

struct {
char pathname[32];
unsigned short mode;
char uid;
char gid;
char unused1;
char size[3];
long modtime;
unsigned short tapeaddr;
char unused2[16];
unsigned short checksum;

};

The path name entry is the path name of the file when put on the tape. If the pathname starts with a zero
word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode, uid, gid, size and time
modified are the same as described under i-nodes (see file system filsys(5)). The tape address is the tape
block number of the start of the contents of the file. Every file starts on a block boundary. The file occu-
pies (size+511)/512 blocks of continuous tape. The checksum entry has a value such that the sum of the
32 words of the directory entry is zero.

Blocks above 25 (resp. 63) are available for file storage.

A fake entry has a size of zero.

SEE ALSO
filsys(5), tp(1)

BUGS
The pathname, uid, gid, and size fields are too small.

819

TROFF(5) File Formats Manual TROFF(5)

NAME
troff - device-independent output

DESCRIPTION
Troff (1) produces an ASCII representation of a typeset document, expressed in the following syntax.
Strings inside [] are optional. The string \n represents newline. White space (spaces or newlines) may
occur between commands and is sometimes necessary to terminate numbers.

sn Set point size to n.
fn Use font in position n. Normally fonts are mounted starting at position 1; 0 is reserved. troff.
cx Place character x at the current location on the page; x is a single ASCII character.
Cname

Place special character. The name of the character is delimited by white space.
Hn Go to horizontal location n, expressed in basic units.
hn Add n to the current horizontal location (relative goto).
Vn Go to vertical location n, measured positive downward.
vn Add n to the current vertical location.
nnx A two-digit number followed by an ASCII character; equivalent to hnncx.
nb a End of line. No action is required; troff will explicitly reset the location. Number b is the

amount of space before the line, a, the amount of space after the line.
w A w appears between words of the input document. No action is required.
pn Begin a new page with page number n. The vertical location on the page becomes 0.
....\n Comment.
Dl x y\n

Draw a line from the current location by x,y.
Dc d\n

Draw a circle of diameter d with the leftmost edge at the current location, x,y. The current loca-
tion becomes x+d ,y.

De dx dy\n
Draw an ellipse with x-axis dx and y-axis dy. The leftmost edge of the ellipse will be at the cur-
rent location. The current location becomes x+dx,y.

Da x y u v\n
Draw an arc counterclockwise from the current location to x+u, y+v, with center offset x,y from
the current location. The end of the arc becomes the current location.

D x y x y ...\n
Draw a spline curve (wiggly line) from the current location, moving by x,y each time. The end
of the curve becomes the current location.

x i[nit]\n
Initialize the typesetting device. The actions required depend on the device.

x T dest\n
The name of the typesetter is dest, as in option -T of troff(1).

x r[es] n h v\n
The resolution of the typesetting device is n units per inch. Horizontal motions must be multi-
ples of h units, vertical motions v units.

x p[ause]\n
Pause. Cause the current page to finish but do not relinquish the typesetter.

x s[top]\n
Stop. Cause the current page to finish and then relinquish the typesetter.

x t[railer]\n
Generate a trailer if necessary.

x f[ont] n name\n
Load font name into position n.

x H[eight] n\n
Set the character height to n points. This causes the letters to be elongated or shortened. It does
not affect the width of a letter. Not all typesetters can do this.

x S[lant] n\n
Set the slant to n degrees, if possible.

820

TROFF(5) File Formats Manual TROFF(5)

x...\n Arbitrary; may be used for device-specific functions.
SEE ALSO

troff(1), d202(1), apsend(1), lp(1), proof(9)
B. W. Kernighan, A Typesetter-Independent Troff this manual, volume 2.

821

TTYS(5) File Formats Manual TTYS(5)

NAME
ttys - terminal initialization data

DESCRIPTION
The file /etc/ttys directs init(8) in associating login processes with terminal ports. It contains one
line per port.

If the first character of a line is 0 the line will be ignored; if it is 1 the line will be effective. The second
character is used as an argument to getty(8), which performs such tasks as baud-rate recognition, reading
the login name, and calling login(8). For normal lines, the character is 0. Other characters can be used,
for example, with hard-wired terminals where speed recognition is unnecessary or which have special
characteristics; see getty(8) for a list. The remainder of the line is the terminal’s entry in the device direc-
tory,

FILES
/etc/ttys

SEE ALSO
init(8), getty(8), login(8)

822

TTYTYPE(5) File Formats Manual TTYTYPE(5)

NAME
ttytype - data base of terminal types by port

SYNOPSIS
/etc/ttytype

DESCRIPTION
Ttytype is a database containing, for each tty port on the system, the kind of terminal that is attached to it.
There is one line per port, containing the terminal kind (as a name listed in termcap (5)), a space, and the
name of the tty, minus /dev/.

This information is read by tset(1) and by login(1) to initialize the TERM variable at login time.

SEE ALSO
tset(1), login(1)

BUGS
Some lines are merely known as “dialup” or “plugboard”.

4th Berkeley Distribution 10/25/79 823

TYPES(5) File Formats Manual TYPES(5)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in the operating system. Some data of these types are
useful in user code.

typedef long daddr_t; disk block number, see filsys(5)
typedef char ∗ caddr_t; general memory pointer
typedef unsigned short ino_t; inode number, filsys(5)
typedef long size_t; file size, stat(2)
typedef long time_t; time, time(2)
typedef unsigned short dev_t; device code, stat(2)
typedef long off_t; file offset, lseek(2)

The following macros analyze and synthesize device numbers; see intro(4).

#define major(x) ((int)(((unsigned)(x)>>8)&0377))
#define minor(x) ((int)((x)&0377))
#define makedev(x,y) ((dev_t)(((x)<<8) | (y)))

The file contains other definitions as well, internal to the system or specific to particular system calls.
Pages in section 2 tell which calls need <sys/types.h>.

SEE ALSO
filsys(5), time(2), intro(4)

824

UTMP(5) File Formats Manual UTMP(5)

NAME
utmp, wtmp - login records

SYNOPSIS
#include <utmp.h>

DESCRIPTION
The utmp file allows one to discover information about who is currently logged in. The file is a sequence
of entries with the following structure declared in the include file:

struct utmp {
char ut_line[8]; /∗ tty name ∗/
char ut_name[8]; /∗ user id ∗/
long ut_time; /∗ time on ∗/

};

This structure gives the name of the special file associated with the user’s terminal, the user’s login name,
and the time of the login in the form of time(2).

The wtmp file records logins and logouts. Its format is exactly like utmp except that a null user name indi-
cates a logout on the associated terminal. Furthermore, the terminal name indicates that the system was
rebooted at the indicated time; the adjacent pair of entries with terminal names | and } indicate the sys-
tem-maintained time just before and just after a date(1) command changed the system’s idea of the time.

Wtmp is maintained by login(8) and init(8). Neither of these programs creates the file, so if it is removed
record-keeping is turned off. It is summarized by ac(8).

FILES
/etc/utmp
/usr/adm/wtmp

SEE ALSO
login(8), init(8), who(1), ac(8)

825

UUENCODE(5) File Formats Manual UUENCODE(5)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode(1) consist of a header line, followed by a number of body lines, and a trailer
line. Uudecode(1) will ignore any lines preceding the header or following the trailer. Lines preceding a
header must not, of course, look like a header.

The header line is distinguished by having the first 6 characters “begin ”. The word begin is followed by a
mode (in octal), and a string which names the remote file. A space separates the three items in the header
line.

The body consists of a number of lines, each at most 62 characters long (including the trailing newline).
These consist of a character count, followed by encoded characters, followed by a newline. The character
count is a single printing character, and represents an integer, the number of bytes the rest of the line rep-
resents. Such integers are always in the range from 0 to 63 and can be determined by subtracting the char-
acter space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to make the
characters printing. The last line may be shorter than the normal 45 bytes. If the size is not a multiple of
3, this fact can be determined by the value of the count on the last line. Extra garbage will be included to
make the character count a multiple of 4. The body is terminated by a line with a count of zero. This line
consists of one ASCII space.

The trailer line consists of “end” on a line by itself.

SEE ALSO
uuencode(1), uusend(1), uucp(1), mail(1)

4th Berkeley Distribution 6/1/80 826

VFONT (5) File Formats Manual VFONT (5)

NAME
vfont - font formats for the Benson-Varian or Versatec

SYNOPSIS
/usr/lib/vfont/∗

DESCRIPTION
The fonts for the printer/plotters have the following format. Each file contains a header, an array of 256
character description structures, and then the bit maps for the characters themselves. The header has the
following format:

struct header {
short magic;
unsigned short size;
short maxx;
short maxy;
short xtnd;

} header;

The magic number is 0436 (octal). The maxx, maxy, and xtnd fields are not used at the current time.
Maxx and maxy are intended to be the maximum horizontal and vertical size of any glyph in the font, in
raster lines. The size is the size of the bit maps for the characters in bytes. Before the maps for the char-
acters is an array of 256 structures for each of the possible characters in the font. Each element of the ar-
ray has the form:

struct dispatch {
unsigned short addr;
short nbytes;
char up;
char down;
char left;
char right;
short width;

};

The nbytes field is nonzero for characters which actually exist. For such characters, the addr field is an
offset into the rest of the file where the data for that character begins. There are up+down rows of data for
each character, each of which has left+right bits, rounded up to a number of bytes. The width field is not
used by vcat, although it is used by vwidth(1) to make width tables for troff . It represents the logical
width of the glyph, in raster lines, and shows where the base point of the next glyph would be.

FILES
/usr/lib/vfont/∗

SEE ALSO
troff(1), pti(1), vpr(1), vtroff(1), vwidth(1), vfontinfo(1), fed(1)

3rd Berkeley Distribution 2/26/79 827

VIEW2D(5) File Formats Manual VIEW2D(5)

NAME
view2d - movie of a function f(x, y, t)

DESCRIPTION
Files of this format are produced by functions in view2d(3), and displayed by commands in view2d(1). A
movie file consists of one or more frames, each consisting of a header and a sequence of 16-bit signed in-
teger values for each pixel, scanned left to right and bottom to top. (Left-to-right is the inner loop.)

The header consists of the 32-bit magic number 0135246, then eight 16-bit integers:

VER The version number.

NX, NY
The number of pixels in the frame. These may not vary from frame to frame.

u, v relate pixel values p in the file to user function values f by

p = u + f×2-v.

FIXUV
normally 0; 1 if u, v, PMIN, PMAX of first frame give a bound on the data in the entire file.

PMIN, PMAX
limits of the data; only used when FIXUV=1.

and finally a 16-byte ASCII representation of a floating point value:

TIME is a frame index, typically set to simulated time or to an iteration counter. This need not be uni-
formly spaced from frame to frame, but should be nondecreasing.

The range of displayable pixel values is [-32765,32765]. Values below this range are deemed out of
bounds and not plotted; values above are reserved.

SEE ALSO
view2d(1), view2d(3)

828

WHOAMI (5) File Formats Manual WHOAMI (5)

NAME
whoami - computer name

DESCRIPTION
The file /etc/whoami contains one line of information - the name of the computer, as used in mail(1)
and uucp(1).

FILES
/etc/whoami

829

WORM(5) File Formats Manual WORM(5)

NAME
worm - format of worm disks

SYNOPSIS
#include <worm.h>

DESCRIPTION
A WORM disk is a linked list of ‘superblocks’, roughly one for every worm write on the WORM. The
‘governing’ superblock is at block zero if it exists and has a valid magic number; otherwise the governing
superblock is the last superblock in the linked list starting at block 1. (The link to the next superblock is
preallocated and thus the last superblock in the list will be unwritten.) Each superblock has some status
information and a pointer to a set of ‘inodes’ describing a set of files. The status information for the
WORM is that of the governing superblock; the set of files on the WORM is the accumulation of all the su-
perblocks taken in order. The structure of a superblock as given in the include file is:

#define SMAGIC 0x21746967
#define VLINK 1 /∗ linked list superblock ∗/
#define VBTREE 2 /∗ cbt superblock ∗/
typedef struct superblock
{

long magic; /∗ magic number for superblock ∗/
unsigned short blocksize; /∗ physical size of blocks ∗/
short version; /∗ type of superblock ∗/
long nblocks; /∗ number of blocks on device ∗/
long zero; /∗ first logical data block ∗/
long nfree; /∗ number of free blocks ∗/
long ninodes; /∗ number of inodes ∗/
long ninochars; /∗ number of bytes of inode names ∗/
long binodes; /∗ start of inodes ∗/
long nextffree; /∗ next free file block ∗/
long nextsb; /∗ next superblock ∗/
short fd; /∗ fildes for device (in core) ∗/
char vol_id[128]; /∗ name the disk can be mounted as ∗/
char comment[128]; /∗ comments ∗/
long myblock; /∗ where this superblock is ∗/
long nF; /∗ bytes for .F (VBTREE) ∗/
long nT; /∗ bytes for .T (VBTREE) ∗/
long ctime; /∗ create time for this superblock ∗/

} superblock;

superblocks are padded with zeros to blocksize.

Following each VLINK superblock is a set of inodes, a string table, and then the data blocks for the files
described by the inodes. Following a (there is at most one) VBTREE superblock there is a set of inodes,
a string table and the .F and .T files for a cbt(1) database where the keys are filenames and the data is an
inode number.

#define DMAGIC 0x3A746967
typedef struct Inode
{

long magic; /∗ magic number for Dirent ∗/
long block; /∗ starting block of file ∗/
long nbytes; /∗ bytes in file ∗/
long ctime; /∗ creation time ∗/
union {

char ∗n; /∗ core - name ∗/
long o; /∗ disk - offset into chars block ∗/

} name; /∗ filename ∗/
long pad1 /∗ to 32 bytes ∗/
short mode /∗ as in stat(2) ∗/
short uid /∗ owner ∗/

830

WORM(5) File Formats Manual WORM(5)

short gid /∗ owner ∗/
short pad2 /∗ to 32 bytes ∗/

} Inode

If the block field of an inode is negative, the file has been deleted.

SEE ALSO
worm(8)

831

prtx(5G) prtx(5G)

NAME
prtx - format of prtx commands

DESCRIPTION
Commands are in ascii characters and are terminated by either a ";" or a newline character. Besides com-
mands there are "prefixes" that modify the following a command.

Most commands and prefixes take arguments. These are often numbers or point positions. The latter be-
ing a pair of numbers. Numbers can be arbitrary arithmetic expressions involving "+", "-", "∗ " or "/", nu-
meric constants, and parenthesis. A numeric constant is a decimal number (optionally including a deci-
mal point and fraction) followed by a scale. A scale is "i", for inches, "c" for characters, or "d" for dots.
(A dot is the smallest resolution on the printer.) If the scale is omitted "c" is assumed. Constants used in
multiplication or division should omit the scale.

Point positions are specified by a row position and a column position, separated by white space (blanks or
tabs). The upper left hand corner of the page is 0 0. Positions increase to the right and downward. If a
page contains 60 characters vertically and 80 horizontally. the last horizontal dot is at 80c-1d and the last
vertical dot is at 60c-1d.

The commands are:

comment
This command has no effect. Note that it is terminated by a ";" just like any other command.

line point1 point2 ...
Line Command: Straight lines are drawn starting at point1 going to point2 and then to further
points. At least two points must be given but there is no maximum. Points may be separated
by a "," for readability.

interp point1 point2 ...
Interpolate command: A curved line is drawn determined by the points. A point may be sur-
rounded by curly braces (’{’ and ’}’) in which case it is a "guide" point. The curve is a sec-
ond degree spline that satisfies the following constraints:

It passes through all normal points.

If two guide points are adjacent in the list it passes through the point midway be-
tween them and is tangent to the line connecting them.

If a normal point is adjacent in the list to a guide point the curve as it passes through
the normal point is tangent to the line connecting it to the guide.

If a normal point is not adjacent on the list to a guide point the curve, as it passes
through the normal point, has the same tangent as the circle that goes through that
point and two neighboring points on the list. This will be the preceding and the fol-
lowing points for a point in the middle of the list.

Unfortunately these rules can result in cusps. They seem to work best in the cases where
there are three normal points (an approximation to a circular segment) or in the case where
guide points are used to connect two normal points.

ellipse center radius
Ellipse Command: An ellipse is drawn centered at center, with its shape determined by
radius. The ellipse’s axes are parallel to the picture’s. radius is two expressions. The first
determines the "vertical radius" (i.e. half the length of the ellipse’s vertical axis) and the sec-
ond determines the "horizontal radius". If they are equal (as distances, not as number of dots
or characters) the ellipse is a circle.

text point text
Text Command: Characters specified by text are placed on the output starting at point. (The
position is the upper left hand corner of the first character.) text begins at the first non blank
character following the point and continues to the end of the line. Embedded ";" are allowed,
and "C" type escapes are processed. An escaped newline (i.e. one immediately preceded by a
backslash) is treated as text and does not end the command. A leading ":" is stripped off.
This is necessary if the first character desired is a space or arithmetic operator.

MARX WH 832

prtx(5G) prtx(5G)

stext point point text
Slanted text command: Text is placed in the output as with the simple text command except
the base line (the line running across the top of the characters) is the line through the two
points. The text starts at the first point and may proceed any distance towards or beyond the
second point. The second point provides a direction only, the characters are not stretched or
compressed.

mtext point terminator
Multi line text command: Lines following the one containing the command upto (but not in-
cluding) the first line that begins with the terminator character (default ’.’) are put in the out-
put, with the first line positioned at point and the following lines positioned vertically below
the first.

smtext point [point] [terminator] [text]
General form of the text command: The modifiers "s", "m", and "N" may be combined. If
both "s" and "m" are present "s" must come first. The second point is required present if "s"
is present and "terminator" is required if "m" is present. Otherwise they must be omitted. If
"m" is omitted then text must be present.

$X [point]
Macro Command: Invoke macro X. The the body of macro X is executed with an offset of
point. That is, positions in the body of the macro are taken as relative to point. If point is
omitted it is take to be the origin. The color and solidity in effect at the point invocation are
used in drawing unless they are explicitly overridden by a prefix within the macro body. An
invoke command is legal within a macro body but care should be taken to avoid a macro in-
voking itself.

Prefixes modify the following command, which is separated from the prefix by white space only. How-
ever, commands can be grouped with braces (i.e the characters ’{’ and ’}’). If the opening brace is in the
same line as the prefix, commands my be on different lines, and the prefix applies to all commands within
the braces ; Braces can be nested. More than one prefix can modify a single command The following pre-
fixes are defined:

at point Translation Prefixes: Locations in the prefixed command are taken as relative to the argument
of at.

expand factor
Expand Prefix: The prefix command is expanded about the origin by factor, which is an un-
scaled numeric expression. That is, all positions and shapes are multiplied by factor.

rotate angle
Rotation Prefix: Locations in the prefixed command are rotated about the origin by angle de-
grees. Text will still be horizontal, unless created with an stext command.

size N Character Size Prefix: Characters in the prefixed command have their size multiplied by N. N
must be and integer.

style solidity
Line Style Prefix: The line drawing commands (line, ellipse, interp) will normally draw solid
lines but this can be changed by a style prefix. Solidity is one of the following literals: solid,
longdashed, dashed, dotdashed, dotted, invisible. Invisible lines are not drawn at all, so this
style is useful in taking up space in connection with the stack and shelf prefixes.

color colorname
Color prefix: Every thing drawn by the following command will be in the named color. Legal
colors are: yellow, orange, red, green, blue, violet. If the output device does not have colors
this prefix is ignored.

boxit space
Boxit Prefix: Space consists of two numeric expressions, a row and a column spacing. Boxit
draws the prefixed command and an enclosing box. The box is drawn to leave the specified
spaces at the top and bottom (row space), and sides (column space) around the prefixed com-
mand.

MARX WH 833

prtx(5G) prtx(5G)

define X Define macro: X is any alphabetic character (lower and upper case are considered identical)
and the macro is defined as equivalent to the following command. The prefixed command,
which must be a block (i.e. surrounded by braces), becomes the body of the macro and is not
executed until the macro is invoked. Once defined a macro character may not be redefined.
More elaborate macros can be obtained using a general macro processor such as m4 and the
general arithmetic expressions provided by prtx.

stack Stack commands: The prefixed command must be a block. Each command of the block is in-
terpreted as if the origin had been moved to below the earlier commands. The effect is what
would be achieved if each command were prefixed by "at max 0", where max is the maxi-
mum row contained in previous commands. A row is contained in a command if the com-
mand puts a dot in the row. Text commands also contain some blank space below the charac-
ters. (In some circumstances, e.g. slanted text, prtx cannot easily compute the contained rows
and makes a guess. But, arbitrary lines, and horizontal text work properly.)

shelf Lay commands left to right. This is like the stack prefix except cammands are moved to the
right rather than down.

HISTORY
The current version of prtx also accepts an old form of the command language. It is compatibility with
this old form that makes the macro prefix require the prefixed command to be a block. In the future this
restriction will disappear.

FUTURE PLANS
SEE ALSO

prtx(1)

AUTHOR
Jerry Schwarz (harpo!jerry)

MARX WH 834

prtxfont(5G) prtxfont(5G)

NAME
prtxfont - character sets for prtx

DESCRIPTION
A font file describes for each character the dots that prtx should use to construct that character. Any char-
acter not described in the file is treated as a blank. Only characters 0 through 127 are allowed.

The first line of a file contains an integer NR giving the number of rows of dots in each character.

Except for the first each line contains a character designator followed by the description of that character.
The character designator is either the character itself or "0 where n is the octal representation of the char-
acter.

A character description consists of NR strings. Each string consisting of some number of "dot descrip-
tions", and separated from the preceding string or the character designator by spaces. Conceptually a
character is formed by placing the strings on top of each, left aligned, with the first on top. For normal
size characters each dot description corresponds to a potentially printed dot. For larger characters each
description corresponds to several dots and indicates a pattern for the dots.

The possible dot descriptions are:

1 Fill in the entire area. This is the only description that causes a dot to be printed at the nor-
mal size.

Leave the entire area blank

a Fill in the upper right hand corner

b Fill in the lower right hand corner

c Fill in the lower left hand corner

d Fill in the upper left hand corner

A Fill in the the area but leave a wedge blank on the left hand side. The descriptions with omit-
ted wedges are useful for constructing pointed characters. E.g. ’A’ might be used at the right
hand part of a ’>’

B Fill in the area but leave a wedge blank at the top.

C Fill in the area but leave a wedge blank at the right.

D Fill in the area but leave a wedge blank at the bottom.

AUTHOR
Jerry Schwarz (harpo!jerry)

MARX WH 835

ADVENTURE(6) Games Manual ADVENTURE(6)

NAME
adventure, zork, rogue, wump - dungeon-exploration games

SYNOPSIS
/usr/games/adventure

/usr/games/zork

/usr/games/rogue

/usr/games/wump

DESCRIPTION
Adventure is the grandaddy of dungeon-exploration games, part of the object of which is to puzzle out the
object and the rules. Zork marks the zenith of the genre.

Rogue requires a cursor-addressed terminal to show fragments of the cave map. Indicia published at the
bottom of the screen are the cave level being explored, the amount of gold accumulated, armor class, and
measures of your potency: ‘hit points’, strength, and experience level. Type ? for more help.

The wump cave is inhabited by a Wumpus and by Super Bats that like to pick you up and drop you some-
where else. You wander among the rooms, trying to shoot the Wumpus with an arrow, meanwhile avoid-
ing being eaten by the Wumpus and falling into Bottomless Pits.

FILES
adv.susp

rogue.save

/usr/games/lib/rogue_roll

SEE ALSO
readnews -n net.games.rogue

BUGS
You take these games where and as you find them.

836

ARITHMETIC(6) Games Manual ARITHMETIC(6)

NAME
arithmetic - drill in number facts

SYNOPSIS
/usr/games/arithmetic [+-x/] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an answer to be typed in. If the answer is
correct, it types back Right!, and a new problem. If the answer is wrong, it replies What? and waits
for another answer. Every twenty problems, it publishes statistics on correctness and the time required to
answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; +-x/ get addition, subtraction,
multiplication, and division problems respectively. One or more characters can be given; if more than one
is given, the different types of problems will be mixed in random order; default is +-

Range is a decimal number; all addends, subtrahends, differences, multiplicands, divisors, and quotients
will be less than or equal to the value of range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to appear. If the respondent makes a
mistake, the numbers in the problem which was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give correct answers, since the learner should,
in principle, be able to calculate them. Thus the program is intended to provide drill for someone just past
the first learning stage, not to teach number facts de novo. For almost all users, the relevant statistic
should be time per problem, not percent correct.

837

ASCII (6) Games Manual ASCII (6)

NAME
ascii, latin1 - character set maps

DESCRIPTION
The file /usr/pub/ascii is a map of the ASCII character set, to be printed as needed. It contains:

000 nul	001 soh	002 stx	003 etx	004 eot	005 enq	006 ack	007 bel	
010 bs	011 ht	012 nl	013 vt	014 np	015 cr	016 so	017 si	
020 dle	021 dc1	022 dc2	023 dc3	024 dc4	025 nak	026 syn	027 etb	
030 can	031 em	032 sub	033 esc	034 fs	035 gs	036 rs	037 us	
040 sp	041 !	042 "	043 #	044 $	045 %	046 &	047 ´	
050 (051)	052 ∗	053 +	054 ,	055 -	056 .	057 /	
060 0	061 1	062 2	063 3	064 4	065 5	066 6	067 7	
070 8	071 9	072 :	073 ;	074 <	075 =	076 >	077 ?	
100 @	101 A	102 B	103 C	104 D	105 E	106 F	107 G	
110 H	111 I	112 J	113 K	114 L	115 M	116 N	117 O	
120 P	121 Q	122 R	123 S	124 T	125 U	126 V	127 W	
130 X	131 Y	132 Z	133 [134 \	135]	136 ˆ	137 _	
140 `	141 a	142 b	143 c	144 d	145 e	146 f	147 g	
150 h	151 i	152 j	153 k	154 l	155 m	156 n	157 o	
160 p	161 q	162 r	163 s	164 t	165 u	166 v	167 w	
170 x	171 y	172 z	173 {	174		175 }	176	177 del

The file /usr/pub/latin1 is a map of characters 0200-0377 in the ISO Latin-1 extension to the ASCII
code. Escape sequences are given for typing the characters in mux(9)

FILES
/usr/pub/ascii
/usr/pub/latin1

838

ATC(6) Games Manual ATC(6)

NAME
atc - air traffic controller

SYNOPSIS
/usr/games/atc

DESCRIPTION
Atc presents air traffic on a cursor-controlled screen. As the controller, you must shepherd it safely
through the air space. At the beginning of the game atc displays the takeoff/landing direction for each air-
port and prompts for the game duration with: < >. Enter a number from 16 simulated minutes (hard) to
99 (easier)

Options are

-u= file
Take airspace description from file.

-a=name
use the named airspace; default is Apple1.

-s=seed
for a 32-bit random number generator

-t=time
Preset the game duration.

-p= file
save the play of the game in the named file

-m= file
play a ‘movie’ of the saved game

In the display of the airspace % and # denote airports; ∗ and ! denote navigational aids (navaids); and
commas denote airways that link numbered entry/exit ‘fixes’, airports, and navaids. Dots are separated by
one mile, horizontally, vertically, and diagonally. An airplane appears as a letter followed by its height in
thousands of feet.

There are two kinds of planes: jets flying 1 mile per tick (15 seconds) and props flying 1/2 mile per tick.

You must prevent various misfortunes. Running out of fuel is serious. So is a close encounter - less than
3 miles horizontal separation at a given altitude. A plane changing altitude is considered to be at both its
old and new altitudes. A ‘boundary error’, leaving the airspace at the wrong place, not on an airway, or at
the wrong height, is also serious, but not as likely to be fatal.

The right side of the screen shows flight plans. A typical flight strip looks like:
Fj 7->3 4 NE +

The first letter is the aircraft name, the next letter is j for jet or p for prop. The next field gives the plane’s
intentions: this one is entering at (or is now at) fix 7 and leaving at fix 3. The origin character tells where
the plane is (or will be when it enters), the destination is a fix it wishes to go to. (It will, however, con-
tinue on a straight path unless instructed otherwise.) Next is the altitude, in this case 4000 feet. The bear-
ing is a compass direction: N, NE, etc. The final character is the amount of fuel left, + for more than 10
minutes, otherwise the number of minutes of fuel remaining. Jets begin with 15 minutes of fuel, props 21.

At the top of the flight plans are listed planes that will appear in the next minute, preceded by how many
ticks (0-4) they are away. Planes may be cleared for takeoff as soon as they are listed.

Commands are terminated by newline. Backspace may be used to correct errors. The following kinds of
commands can be issued.

$
End the game (game normally ends after 26 planes)
W Print flight plan for airplane W
XA3 X will change altitude to 3000 feet
QA0 Q will land (go to 0 feet altitude)
HRE H will turn right until it is heading east
ALNW

A will turn left until it is heading northwest

839

ATC(6) Games Manual ATC(6)

CTS C will turn south through the smallest angle
T∗7 T will take exit bearing for fix 7 at next navaid
P∗% P will take landing bearing for % at next navaid
DH D will circle (hold) at next navaid
MR0 Abort pending hold, clearance, or turn for plane M
J? Cancel delayed commands for J
space Speed up the game by advancing 15 seconds

Climbing/descending. Planes climb or descend 1000 feet per mile. Climbing from 0 is a takeoff;
descending to 0 is a landing. The takeoff/landing direction for each airport is given. A landing airplane
must reach altitude 0 headed in the right direction 1 mile before the runway. No further commands may
be given after a descent to 0, as control then rests with the tower. If a plane lands from the wrong direc-
tion, it will climb to 1000 feet and issue a ‘go around’ error. While changing altitude, a flight strip reads
like

Dp :->2 7v3 S 9
which means at 7000 feet descending to 3000.

Turning. Planes turn 45 degrees per mile. Turns may be left L right R or to a specified direction T. Thus
ULNE tells plane U to turn to his left until it is heading northeast. Changes of direction are indicated in the
flight strip:

Nj :->5 5 S r W +
indicates that jet N is heading south, and will turn 90 degrees to the right. To cancel the remaining part of
this turn, give the command N) NR0.

Navaids. A plane may be directed to turn at a navaid or hold (circle) there, Thus command ‘AH’ holds
plane A at the next navaid. The flight strip for a plane that is to hold looks like

Ap :->2 5 S ∗ 7
During the hold, the ∗ will become h. Every incoming plane that will be landing holds at a navaid unless
the controller gives it other instructions.

The command ∗ clears a plane to turn sharply to any known fix at the next navaid. The flight strip for a
plane cleared through a navaid (to fix 5, for example) looks like:

Hj .->2 5 S ∗5 +
A holding aircraft given a clearance will continue around to the navaid, then immediately assume the
specified bearing. Turns cancel clearances.

Delayed commands. Commands of the form
@location,command[,command ...]

stack up activities. A location may be any fix or a point offset from a fix, e.g.
@#sw3s2,ARE

which means at the point which can be reached by going three miles SW from airport #, then two miles S,
plane A should begin a right turn until heading E. The information command shows all delayed com-
mands pending for that plane. Note that delayed commands allow one to specify actions more than one
navaid ahead.

840

BACK (6) Games Manual BACK (6)

NAME
back - backgammon

SYNOPSIS
/usr/games/back

DESCRIPTION
This program does what you expect. It will ask whether you need instructions.

841

BANNER(6) Games Manual BANNER(6)

NAME
banner, rot, rnd, bigp - print in large type

SYNOPSIS
/usr/games/banner [- font] text [| /usr/games/rot | /usr/games/rnd height width]

/usr/games/bigp [text]

DESCRIPTION
Banner prints its arguments, one per line, in

#
#
###
#
####
##
##

#
#

The font may be selected from see font(9)

Rot rotates its input clockwise ninety degrees.

banner Sideways | rot

runs down the page, and

banner Upside Down | rot | rot

is disconcerting.

Rnd scales the non-white-space characters in its input by integral height and width.

Bigp generates banners suitable for printing on a line-printer. Its output is approximately the same as

banner -defont text | rot | rnd 2 4

If no arguments are supplied, bigp creates a banner from the standard input.

842

BCD(6) Games Manual BCD(6)

NAME
bcd, ppt, morse - convert to antique media

SYNOPSIS
/usr/games/bcd text

/usr/games/ppt

/usr/games/morse

DESCRIPTION
Bcd converts the literal text into a tangible form familiar to old-timers.

Ppt converts the standard input into yet another old standard.

Morse converts the standard input into a pronounceable two-symbol code.

SEE ALSO
dd(1)

843

BIANCHI (6) Games Manual BIANCHI (6)

NAME
bianchi - espresso, steamed milk, hot water

SYNOPSIS
make mess

DESCRIPTION
This machine makes espresso, hot water, and steamed milk. It is attached to the cold water supply. The
shut off valve is actuated by the yellow handle under the sink.

The power switch is a two position switch on the lower left portion of the front face of the cabinet. At the
0 position, the machine is powered off.

The push button switch near the center of the upper front face enables water to flow though the coffee re-
ceptacles. It does not automatically shut off.

The handle on the right side of the base enables cold water to enter the machine should the pump fail. It
should not normally be used.

Users accustomed to the previous machines should be warned that this one requires considerably less cof-
fee per cup. The bayonet mounted ground coffee holders will be very hard to attach if overfilled.

WARNING!
The steam and hot water supplies are both extremely hot and capable of high pressure. Turn them on
slowly. The unwary user may suffer loss of skin or eyesight.

BUGS
When first powered on it takes 15 minutes to warm up. The last person leaving at night should turn the
machine off.

844

BOGGLE(6) Games Manual BOGGLE(6)

NAME
boggle, hangman, scrabble - word games

SYNOPSIS
/usr/games/boggle [+] [++] [word word word word]

/usr/games/scrabble

/usr/games/hangman [arg]

DESCRIPTION
Boggle provides practice for the Parker Brothers game. If invoked with 4 arguments of 4 letters each, the
program forms the obvious Boggle grid and lists all the words from /usr/dict/words found therein. If in-
voked without arguments, it will generate a board, let you enter words for 3 minutes, and then tell how
well you did relative to /usr/dict/words. Words may be formed from any sequence of 3 or more adjacent
letters in the grid. Letters may join horizontally, vertically, or diagonally. However, no position in the
grid may be used more than once within any one word. In competitive play amongst humans, each player
is given credit for those of his words which no other player has found.

Enter your words separated by spaces, tabs, or newlines. A bell will ring when there is 2:00, 1:00, 0:10,
0:02, 0:01, and 0:00 time left. You may complete any word started before the expiration of time. You can
surrender before time is up by hitting interrupt. While entering words, your erase character is only effec-
tive within the current word and your line kill character is ignored.

Option + removes the restriction that positions can only be used once in each word. Option ++ causes a
position to be considered adjacent to itself as well as to its (at most) 8 neighbors.

Scrabble plays the Selchow and Righter game on a cursor-addressed terminal against a single opponent.
To place a letter first move the cursor by typing 2, 4, 6, 8 for down, left, right, up respectively (1, 3, 7, 9
are diagonals) then type the letter in place. Type ? to cycle through a set of helpful tables.

Hangman chooses a word at least seven letters long from a dictionary. You then guess letters one at a
time.

The optional argument arg names an alternate dictionary. The special name -a gets a particular very
large dictionary.

FILES
/usr/dict/words

/usr/dict/web2
alternate dictionary for hangman

BUGS
Hangman runs hyphenated compounds together.
Scrabble rubs in its brilliance with merciless play and an inhumane interface.

845

BRIDGE(6) Games Manual BRIDGE(6)

NAME
bridge - card game

SYNOPSIS
/usr/games/bridge [arg ...]

DESCRIPTION
Bridge manages bridge games among four players. A master process mediates the flow of information
between player processes. Each player process is either a ‘robot’ player or a cursor-controlled screen in-
terface with a human player.

If several humans wish to play each invokes bridge and a rendezvous protocol hooks them together in a
common game. Once the game is set up bridge displays a diagram similar to those in newspaper bridge
columns.

Bids are coded p for pass, d for double, 3n for three notrump, and so on. Plays are coded c3 for the club
three, ht for the heart ten, and so on. A menu of common commands appears at the bottom of the screen;
further help may be obtained by typing +.

Arguments take several forms:

-h nhumans
humans=nhumans

Join (or set up and join) a game with indicated number of human players.
-s seed
seed=seed

Initialize the random number generator. Useful for duplicate play.
-f file
deck= file

Take the initial shuffled card deck from named file.
-r file
script= file

Make a record of the game in the named file.
-d dealership
dlr=dealership

Specify dealership with a one-letter direction code.
-v vulnerability
vuln=vulnerability

Specify vulnerability with one of these codes: none both n-s e-w.
-t
tough Do not display bidding history on player’s screen.

FILES
rendezvous files

/etc/termcap

DEBUG
recipient of debugging messages

SEE ALSO
J. A. Reeds and L. A. Shepp, Bridge: An exciting new card game, TM 11217-840119-02, TM
11218-840119-01.

BUGS
Occasionally the whole program goes dead.
The robots’ bridge technique has subtle bugs.

alice 846

CARDS(6) Games Manual CARDS(6)

NAME
canfield, fish - card games

SYNOPSIS
/usr/games/fish

/usr/games/canfield

DESCRIPTION
The object of the children’s card game fish is to accumulate ‘books’ of 4 cards of equal rank. At each
turn one player selects a card from his hand, and asks the other player for all cards of that rank. If the
other player has some, he hands them all over and the first player makes another request. The turn ends
when the second player has no card of the rank requested; he replies, ‘Go fish!’ The first player then
draws a card from the ‘pool’ of undealt cards. If this is the card he had last requested, he draws again.

The ranks are called a, 2, ..., 10, j, q, k. Hitting return requests information about the state of the game.
Typing p as a first guess gets ‘pro’ level play.

Canfield is a solitaire game. It requires a cursor-addressed terminal.

847

CHESS(6) Games Manual CHESS(6)

NAME
chess - board game

SYNOPSIS
/usr/games/chess

DESCRIPTION
Chess is a computer program that plays class D chess. Moves may be given either in standard (descrip-
tive) notation or in algebraic notation. The symbol ‘+’ is used to specify check; ‘o-o’ and ‘o-o-o’ specify
castling. To play black, type ‘first’; to print the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program’s reply.

FILES
/usr/lib/book opening ‘book’

DIAGNOSTICS
The most cryptic diagnostic is ‘eh?’ which means that the input was syntactically incorrect.

WARNING
Over-use of this program will cause it to go away.

BUGS
Pawns may be promoted only to queens.

848

CHING(6) Games Manual CHING(6)

NAME
ching - the book of changes

SYNOPSIS
/usr/games/ching [hexagram]

DESCRIPTION
The I Ching or Book of Changes is an ancient Chinese oracle that has been in use for centuries as a source
of wisdom and advice.

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams, each symbolized by a
particular arrangement of six straight --- and broken - - lines. These lines have values ranging from six
through nine, with the even values indicating the broken lines.

Each hexagram consists of two major sections. The ‘Judgement’ relates specifically to the matter at hand
(E.g., ‘It furthers one to have somewhere to go.’) while the ‘Image’ describes the general attributes of the
hexagram and how they apply to one’s own life (‘Thus the superior man makes himself strong and untir-
ing.’).

When any of the lines have the values six or nine, they are moving lines; for each there is an appended
judgement which becomes significant. Furthermore, the moving lines are inherently unstable and change
into their opposites; a second hexagram (and thus an additional judgement) is formed.

Normally, one consults the oracle by fixing the desired question firmly in mind and then casting a set of
changes (lines) using yarrow-stalks or tossed coins. The resulting hexagram will be the answer to the
question.

Using an algorithm suggested by S. C. Johnson, the Unix oracle simply reads a question from the standard
input (up to an EOF) and hashes the individual characters in combination with other indicia which happen
to be lying around the system. The resulting value is used as the seed of a random number generator
which drives a simulated coin-toss divination. The answer appears on the standard output.

For those who wish to remain steadfast in the old traditions, the oracle will also accept the results of a per-
sonal divination using, for example, coins. To do this, cast the change and then type the resulting line val-
ues as an argument.

The impatient modern may prefer to settle for Chinese cookies; try fortune(1)

SEE ALSO
It furthers one to see the great man.

DIAGNOSTICS
The great prince issues commands,
Founds states, vests families with fiefs.
Inferior people should not be employed.

BUGS
Waiting in the mud
Brings about the arrival of the enemy.

If one is not extremely careful,
Somebody may come up from behind and strike him.
Misfortune.

sola 849

DOCTOR(6) Games Manual DOCTOR(6)

NAME
doctor, tso - psychiatric consultation

SYNOPSIS
/usr/games/doctor

/usr/games/tso

DESCRIPTION
Doctor will understandingly explore most anything with you. Just type your thoughts followed by double
carriage returns.

Tso, on the other hand, has a will of its own.

850

EQNCHAR(6) Games Manual EQNCHAR(6)

NAME
eqnchar - special character definitions for eqn

SYNOPSIS
eqn /usr/pub/eqnchar [file ...] | troff [option ...]

neqn /usr/pub/eqnchar [file ...] | nroff [option ...]

DESCRIPTION
Eqnchar contains nroff and troff(1) character definitions for constructing characters that are not available
on standard fonts. These definitions are primarily intended for use with neqn and eqn(1). It contains defi-
nitions for the following characters. B Times bold BI Times bold italic
CH Chess CS ConstantWidth Slanted CT Courier Type-
writer (APS-5) CW Constantwidth (ASCII CX News Gothic condensed
GB Greek bold (APS-5) GR Greek GS German Script (APS-5)
H Helvetica HB Helvetica bold HI Hel-
vetica italic HK Helvetica black HX Helvetica bold italic
I Times italic M1 Universal [sic] Math M2 Univer-
sal Math 2 M3 Universal Math 3 OE Old English OK Hel-
vetica outline black PA Palatino PB Palatino bold
PI Palatino italic PO Printout (ASCII constant PX Palatino bold italic
R Times Roman S Special (math symbols) S1 Special (APS-5)
SC Script (APS-5) SM Stymie medium (APS-5) TB Techno bold (APS-5)
TX Techno bold italic US USA state maps X1 Universal Newspa-
per Pi

defont Default mux font

FILES
/usr/lib/font

/usr/lib/font/dev202/DESC.out
description of 202 typesetter

/usr/lib/font/dev202/R.out
tables for font R
/usr/jerq/font

SEE ALSO
troff(1), jf(9) font(9)

851

SAY (6) Games Manual SAY (6)

NAME
say - proverbs

SYNOPSIS
/usr/games/say [N]

DESCRIPTION
Say constructs N proverbs out of old parts. N=1 by default.

852

HANGMAN (6) Games Manual HANGMAN (6)

NAME
hangman, ana, word_clout - word games

SYNOPSIS
/usr/games/hangman [arg]

/usr/games/ana [n]

/usr/games/word_clout

DESCRIPTION
Hangman chooses a word at least seven letters long from a dictionary. You then guess letters one at a
time.

The optional argument arg names an alternate dictionary. The special name -a gets a very large dictio-
nary.

Ana reads words, one per line, from standard input and prints anagrams on standard output. The number
n, which also may be given in standard input, limits the number of words in the anagrams.

Word_clout traces connections in a thesaurus to find just words. Need to express unpleasant feelings so
they seem auspicious? Word_clout suggests calling them ‘warm’. The program will give instructions in
its uses, which include service as a thesaurus.

FILES
/usr/dict/words

/usr/dict/web2
alternate dictionary for hangman /usr/lib/spell/amspell

BUGS
Hangman runs hyphenated compounds together.

bowell 853

IMP(6) Games Manual IMP(6)

NAME
imp - interactive mail program

SYNOPSIS
/usr/games/imp

DESCRIPTION
Imp attempts to avoid the complexity of using modern mail programs by asking for control information
interactively rather than by expecting the user to supply it on the command line or by using defaults that
are sometimes not exactly what the user has in mind. Thus, imp prompts for the userid of the mail target,
the target’s home machine, the userid and home machine of the sender, and the postmark. The message
can be entered from the standard input as in mail(1) or taken from a file.

A particularly useful application of imp is to cause mail that you send from some borrowed account to ap-
pear as if it came from you on your home machine, thereby reducing the possibility of confusing the re-
cipient.

FILES
/dev/tty

SEE ALSO
mail(1), upas(8)

BUGS
Probably. Try sending mail to yourself before using imp to send mail to others.

854

IPA(6) Games Manual IPA(6)

NAME
ipa - international phonetic alphabet font and preprocessor

SYNOPSIS
ipa [file ...]

DESCRIPTION
Ipa copies the named files to the standard output, translating text delimited in either two ways into troff
character codes for IPA graphics:

@ipa(...)
@ipa{...}

To generate IPA characters in a table, ipa should come before tbl(1) in a pipeline of processes.

The following table shows the correspondence between ASCII characters and IPA graphics. Only
phonemes that occur in American English are handled. The reference tells how to access other IPA graph-
ics that exist in the font.
a @ipa{a} b @ipa{b} c @ipa{c} d @ipa{d} e @ipa{e}
f @ipa{f} g @ipa{g} h @ipa{h} i @ipa{i} j @ipa{j}
k @ipa{k} l @ipa{l} m @ipa{m} n @ipa{n} o @ipa{o}
p @ipa{p} q @ipa{q} r @ipa{r} s @ipa{s} t @ipa{t}
u @ipa{u} v @ipa{v} w @ipa{w} x @ipa{x} y @ipa{y}
z @ipa{z} A @ipa{A} B @ipa{B} C @ipa{C} D @ipa{D}
E @ipa{E} F @ipa{F} G @ipa{G} H @ipa{H} I @ipa{I}
J @ipa{J} K @ipa{K} L @ipa{L} M @ipa{M} N @ipa{N}
O @ipa{O} P @ipa{P} Q @ipa{Q} R @ipa{R} S @ipa{S}
T @ipa{T} U @ipa{U} V @ipa{V} W @ipa{W} X @ipa{X}
Y @ipa{Y} Z @ipa{Z} ! @ipa{!} @ @ipa{@} # @ipa{#}
$ @ipa{$} % @ipa{%} ˆ @ipa{ˆ} & @ipa{&} ∗ @ipa{∗}
_ @ipa{_} - @ipa{-} + @ipa{+} = @ipa{=} , @ipa{,}
< @ipa{<} . @ipa{.} > @ipa{>} : @ipa{:} ; @ipa{;}
" @ipa{"} ’ @ipa{’} | @ipa{|} @ipa{ } ‘ @ipa{‘}
? @ipa{?}
address.fc (.).if t .ig

TABLE NOT PRINTABLE IN NROFF (.).SH SEE ALSO M. Y. Liberman, An IPA Preproces-
sor for Troff, 11225-860915-15TMS
troff(1)

BUGS
Ipa mounts the IPA fonts in troff font positions 5 and 6, which may conflict with other font assignments.

855

LATEX(6) Games Manual LATEX(6)

NAME
latex, slitex, bibtex - tex macro package and bibliographies

SYNOPSIS
latex file[.tex]

slitex file[.tex]

bibtex auxname

DESCRIPTION
Latex is a standard set of macros for tex(1) inspired by, but not identical to, Scribe. The command latex
file processes file.tex and produces file.dvi, which should be printed with lp(1). It will probably be nec-
essary to run latex twice, to get all of the cross-referencing done properly. Latex writes cross-referencing
information in file.aux. Slitex is version of latex for making slides.

Bibtex reads the top-level auxiliary (.aux) file output by latex and creates a bibliography (.bbl) file to be
included in the source file. The auxname on the command line should be given without an extension.
Each \cite in the source file is looked up in bibliography files to gather together those used in the docu-
ment. Then a bibliography style file is executed to write a \thebibliography environment.

The source file should have defined the bibliography (.bib) files to search with the \bibliography com-
mand, and the bibliography style (.bst) file to execute with the \bibliographystyle command. Bibtex
searches the TEXINPUTS path (see tex(1)) for .bst files, and the BIBINPUTS path for .bst files. The
manual describes how to make bibliography files.

See files in /usr/lib/tex/macros/doc for more documentation. In particular, local.tex is the
Local Guide referred to in the manual.

SEE ALSO
Leslie Lamport, LATEX: A Document Preparation System, Addison Wesley, 1986
Howard Trickey, Latex User Guide, this manual, Volume 2,
tex(1), lp(1)

856

MAIL(6) Games Manual MAIL(6)

NAME
mail - mail addresses

DESCRIPTION
Mail(1) uses the programs of upas(8) to interpret mail addresses.

Network addresses
A general network mail address has the form machine!...!name, with one or more machines mentioned. A
machine in the middle of the list gets the mail marked ‘from’ the preceding part of list and forwards it to
the next to handle the rest of the list.

Rules for converting addresses among the conventions of different networks are given by rewrite rules; see
upas(8). A rough description of the rewrite rules for the local research network follows.

A simple name, containing no punctuation, is translated according to ‘Local addresses’ below to produce
more addresses, which get rewritten in turn.

The conventional network address local!name is delivered to the mailbox /usr/spool/mail/ name if it ex-
ists or if name is registered as a login name in the password file passwd(5). Otherwise the mail is undeliv-
erable.

Mail to another machine is forwarded.

Addresses in other forms are rewritten recursively.

Local addresses
‘Alias files’ specify local name translation. Each line of an alias file begins with # (comment) or with a
name. The rest of a name line gives the translation. The translation may contain multiple addresses and
may be continued to another line by appending a backslash. Items are separated by white space.

In translating a name, the sender’s personal alias file is checked first. Then the system alias files, listed
one per line in are checked in order. If the name is not found, the translation is taken to be local!name.

On research network machines, the first system alias file is /usr/lib/upas/names.local; it is never touched
from afar. Alias files for various organizations, e.g /usr/lib/upas/names.1127, are maintained, often by
users themselves, at selected sites and sent around the network when changed by ship(8). The master
alias file for center 1122 is kept on ‘alice’, those for other centers on ‘bowell’.

Addresses to/from major networks
A ‘from’ address is automatically supplied as a return postmark on outgoing mail addressed ‘to’ the sev-
eral networks. Respondents should be able to send to these addresses. For non-research AT&T machines
that use the research gateway, ‘from’ addresses with @ should be replaced by person%machine@re-
search.att.com.

UUCP:
(to) machine!person
(from) research!person

CSNET:
(to) csnet!machine-domain-name!person
(from) person@research.att.com

ARPANET:
(to) arpa!machine-domain-name!person
(from) person@research.att.com

ACSNET:
(to) acsnet!machine-domain-name!person
(from) person@research.usa

BITNET:
(to) bitnet!machine!person
(from) person@research.att.com

FILES
/usr/lib/upas/namefiles
/usr/lib/upas/names.∗

857

MAIL(6) Games Manual MAIL(6)

SEE ALSO
uucp(1), mail(1), upas(8)

858

MAN (6) Games Manual MAN (6)

NAME
man − macros to typeset manual

SYNOPSIS
nroff -man file ...

troff -man file ...

DESCRIPTION
These macros are used to lay out pages of this manual.

Except in .LR and .RL requests, any text argument denoted t in the request summary may be zero to six
words. Quotes " ... " may be used to include blanks in a ‘word’. If t is empty, the special treatment is
applied to the next text input line (the next line that doesn’t begin with dot). In this way, for example, .I
may be used to italicize a line of more than 6 words, or .SM followed by .B to make small letters in ‘bold’
font.

A prevailing indent distance is remembered between successive indented paragraphs, and is reset to
default value upon reaching a non-indented paragraph. Default units for indents i are ens.

The fonts are

R roman, the main font, preferred for diagnostics
I italic, preferred for parameters, short names of commands (use F for full path names), names of

manual pages, and naked function names
B ‘bold’, actually the constant width font CW, preferred for examples, declarations, keywords,

names of struct members, and literals (numbers are rarely literals)
F also font CW; used for filenames to help cross-indexing
L also font CW. In troff L=B; in nroff arguments of the macros .L, .LR, and .RL are printed in

quotes; preferred only where quotes really help (e.g. lower-case literals and punctuation).

Type font and size are reset to default values before each paragraph, and after processing font- or size-set-
ting macros.

The -man macros admit equations and tables in the style of eqn(1) and tbl(1), but do not support argu-
ments on .EQ and .TS macros.

These strings are predefined by -man:

\∗R ‘®’, ‘(Reg)’ in nroff.
\∗S Change to default type size.

FILES
/usr/lib/tmac/tmac.an
/usr/man/man0/xx

SEE ALSO
troff(1), man(1)

REQUESTS
Request Cause If no Explanation

Break Argument
.B t no t=n.t.l.∗ Text t is ‘bold’.
.BI t no t=n.t.l. Join words of t alternating bold and italic.
.BR t no t=n.t.l. Join words of t alternating bold and Roman.
.CT c x... no Chapter c, topics x in topic index; see /usr/man for topic codes.
.DT no Restore default tabs.
.EE yes End displayed example
.EX yes Begin displayed example
.F t no t=n.t.l. Text t is filename.
.FR t no t=n.t.l. Join words of t alternating filename and Roman.
.HP i yes i=p.i.∗ Set prevailing indent to i. Begin paragraph with hanging indent.
.I t no t=n.t.l. Text t is italic.
.IB t no t=n.t.l. Join words of t alternating italic and bold.
.IP x i yes x="" Same as .TP with tag x.

859

MAN (6) Games Manual MAN (6)

.IR t no t=n.t.l. Join words of t alternating italic and Roman.

.L t no t=n.t.l. Text t is literal.

.LP yes Same as .PP.

.LR t no Join 2 words of t alternating literal and Roman.

.PD d no d=.4v Interparagraph distance is d.

.PP yes Begin paragraph. Set prevailing indent to default.

.RE yes End of relative indent. Set prevailing indent to amount of starting .RS.

.RF t no t=n.t.l. Join words of t alternating Roman and filename.

.RI t no t=n.t.l. Join words of t alternating Roman and italic.

.RL t no Join 2 or 3 words of t alternating Roman and literal.

.RS i yes i=p.i. Start relative indent, move left margin in distance i. Set prevailing indent to default
for nested indents.

.SH t yes t="" Subhead; reset paragraph distance.

.SM t no t=n.t.l. Text t is small.

.SS t no t="" Secondary subhead.

.TF s yes Prevailing indent is wide as string s in font L; paragraph distance is 0.

.TH n c x yes Begin page named n of chapter c; x is extra commentary, e.g. ‘local’, for page head.
Set prevailing indent and tabs to default.

.TP i yes i=p.i. Set prevailing indent to i. Restore default indent if i=0. Begin indented paragraph
with hanging tag given by next text line. If tag doesn’t fit, place it on separate line.

.1C yes Equalize columns and return to 1-column output

.2C yes Start 2-column nofill output

∗ n.t.l. = next text line; p.i. = prevailing indent

BUGS
There’s no way to fool troff into handling literal double quote marks " in font-alternation macros, such as
.BI.
There is no direct way to suppress column widows in 2-column output; the column lengths may be
adjusted by inserting .sp requests before the closing .1C.

860

MARS(6) Games Manual MARS(6)

NAME
mars - memory array redcode simulator

SYNOPSIS
mars [-dfhmp] [-cqsvalue] file ...

DESCRIPTION
Mars is a simulator for the ‘Redcode’ machine from Kee Dewdney,s ‘Computer Recreations,’ Scientific
American , May, 1984, coded by Michael Mauldin, CMU. The easiest way to create an object file is to
use the redcode(6) command to a assemble the object file from a redcode source file.

An object file contains three header lines: the name of the program, its length, and its starting location.
Here is a sample redcode object file, for the Dwarf program:

name dwarf
length 4
start 1
00000007999
20000517999
10000027998
41799800000

The instruction format is an 11 digit decimal string, packed thus:
struct {

char[1] opcode;
char[1] mode1; char[4] arg1;
char[1] mode2; char[4] arg2;

}

Options allow for tracing execution, for graphically displaying the progress of each program, and for ana-
lyzing and dumping memory before and after execution. For example

mars -s1234 -f -c20000 dwarf.obj gemini.obj imp.obj

specifies that imp, dwarf, and gemini are to be run together, with a fullscreen display for 20000 cycles
using a random number seed of 1234.

-cN the maximum number of cycles for this run. The default is 10000.

-d (debug) execution to be traced in excruciating detail.

-f (fullscreen) execution will be displayed graphically on any terminal supported by curses(3).

-h (holes) description of memory usage will be printed after execution terminates.

-m memory will be dumped before and after execution terminates.

-p similar to -m, except only memory near each program counter is dumped.

-qN quit as soon as there are fewer than N programs still alive. Default is q1.

-sN seed for random number generator; N=0 seeds from the clock.

SEE ALSO
redcode(6)

861

MBITS(6) Games Manual MBITS(6)

NAME
mbits - macros to typeset bitmaps

SYNOPSIS
troff [option ...] -mbits [option ...] file ...

DESCRIPTION
These macros are used to typeset bitmaps. They are compatible with other troff macro packages, so that
bitmap figures may be included in documents.

.BM f Set the format for subsequent .BM requests to f . The default is b for blitblt(9) output.
The other possibility is i for faces and large icons in ASCII format.

.BM f s Insert the bitmap from file f ; each pixel will be s basic units square. The bitmap origin is
placed at the current point, which is left unchanged.

.BM f s dX dY Set the number registers dX and dY to the width and height (in basic units) of the bitmap
in file f , assuming pixel size s. This form may be used to calculate positioning.

EXAMPLES
This sequence centers the bitmap and spaces past it to continue with the text:

.BM i

.BM /n/face/48x48x1/pjw 6 dX dY

.sp

.in (\n(.lu-\n(dXu)/2u

.BM /n/face/48x48x1/pjw 6

.in

.sp \n(dYu

(.).EE

FILES
/usr/lib/btroff

SEE ALSO
blitblt(9) troff(1), bitfile(9) ms(6)

BUGS
At time of writing, mbits does not work with PostScript output devices. See mpictures(6) for an alterna-
tive.
.BM does not work inside a diversion.
The concept of ‘pixel size’ varies among typesetting devices.

862

MCS(6) Games Manual MCS(6)

NAME
mcs - macros for formatting cover sheets

SYNOPSIS
troff -mcs file ...

DESCRIPTION
The mcs package of troff(1) macros generates cover sheets for Bell Labs documents. The macros were
not meant for human production. Use docgen(1) to write them:

docgen

The mcs macros automatically load the ms(6) macros.

In the following description macros marked ∗ are mandatory; all others are optional. Optional arguments
are enclosed in square brackets. The macros must be used in the order presented:

Request
Explanation

∗ .TI [draft]
Title text follows. Unless there is an argument, the cover sheet will be shipped automatically to
the Bell Labs library ITDS. Duplicate shipments are harmless.

∗ .AH author loc dept ext rm e-mailaddre co
.AP name

Responsible AT&T person
∗ .SA Begin Abstract
∗ .SE End Abstract

.KW [k1 ... k9]
Keywords

∗ .TY type software
Memo type: TM technical memorandum, IM internal memorandum, TC technical correspondence;
software: y if memo is software related

∗ .NU org-date-seq filing_case work_project
Document Number

.ED doc_number
Earlier document number.

∗ .MY [a1 ... a8]
Mercury Code, positional arguments, y-n, at most 3 y: 1 Chemistry and Materials, 2 Communi-
cations, 3 Computing, 4 Electronics, 5 Life Science, 6 Mathematics and Statistics, 7 Physics, 8
Manufacturing

.RL code
y release to any AT&T employee; n release only on approval of each request.

.PR [BR]
Proprietary Marking, default ATT-BL Proprietary, 0 unmarked, BR restricted

.GS Government Security

.CO Complete Copy Distribution List follows

.CE End distribution lists

.CV Cover Sheet Only Distribution List follows
∗ .SC pages

Total pages ; do not include coversheet pages (if old format of pages and otherpages , the argu-
ments are added).

To turn the paper into released paper format put a .RP before the title macro. To make it into a CSTR add
a .TR before the title and .AI .MH after the author macro.

FILES
/usr/lib/tmac/tmac.cs
/usr/lib/tmac/tmac.rscover

SEE ALSO
docgen(1), ms(6), sendcover(8)

863

MILLE(6) Games Manual MILLE(6)

NAME
mille - card game

SYNOPSIS
/usr/games/mille [file]

DESCRIPTION
Mille plays a two-handed game reminiscent of the Parker Brother’s game of Mille Bournes. If a file name
is given on the command line, the game saved in that file is started.

When a game is started up, the bottom of the score window will contain a list of commands. They are:

P Pick a card from the deck. This card is placed in the P slot in your hand.
D Discard a card from your hand. To indicate which card, type the number of the card in the hand

(or P for the just-picked card) followed by a newline or space.
U Use a card. The card is again indicated by its number.
O Sort the cards in your hand. This command toggles on and off.
Q Quit the game.
S Save the game in a file. You will be asked for a file name. A newline without a name terminates

the command, but not the game.
R Redraw the screen from scratch.
W Toggle window type. This switches the score window between the startup window (with all the

command names) and the end-of-game window. The end-of-game window saves time by elimi-
nating the switch at the end of the game to show the final score.

Cards
The number of such cards appears after the card name:
Hazard Repair Safety

Out of Gas (2) Gasoline (6) Extra Tank (1)
Flat Tire (2) Spare Tire (6) Puncture Proof (1)
Accident (2) Repairs (6) Driving Ace (1)
Stop (4) Go (14) Right of Way (1)
Speed Limit (3) End of Limit (6)

25 - (10), 50 - (10), 75 - (10), 100 - (12), 200 - (4)
Rules

The object of the game is to get a total of 5000 points in several hands. Each hand is a race to put down
exactly 700 miles before your opponent does, making points on the way.
The game is played with a deck of 101 cards. Distance cards represent a number of miles traveled: 25,
50, 75, 100, and 200. When one is played, it adds that many miles to the player’s trip so far this hand.
Hazard cards prevent your opponent from putting down Distance cards. They can only be played if your
opponent has a Go card on top of the Battle pile. The hazards are ‘Out of Gas,’ ‘Accident’, ‘Flat Tire’,
‘Speed Limit and ‘Stop’. Remedy cards fix hazards: ‘Gasoline’, ‘Repairs’, ‘Spare Tire’, ‘End of Limit’,
and ‘Go’. Safety cards prevent your opponent playing Hazard cards: ‘Extra Tank’, ‘Driving Ace’, ‘Punc-
ture Proof’, ‘Right of Way’.
The board is split into several areas. From top to bottom, they are: SAFETY AREA: (unlabeled) where
the safeties will be placed. HAND: The cards in your hand. BATTLE: This is the Battle pile. where the
Hazard and Remedy Cards are played, excep Speed Limit and End of Limit. Only the top card is dis-
played, as it is the only effective one. SPEED: The Speed pile. Speed Limit and End of Limit cards are
played here to control the speed at which the player is allowed to put down miles. MILEAGE : Miles are
placed. The total of the numbers shown here is the distance traveled so far. Not more than two 200-mile
cards may be played in one turn.
The first pick alternates between the two players. Each turn usually starts with a pick from the deck. The
player then plays a card, or if this is not possible or desirable, discards one. Normally, a play or discard of
a single card constitutes a turn. If the card played is a safety, however, the same player takes another turn
immediately.
This repeats until one of the players reaches exactly 700 points or the deck runs out. If someone reaches
700, they have the option of going for an ‘Extension’, which means that the play continues until 1000
miles.

864

MILLE(6) Games Manual MILLE(6)

Hazards and Remedies
Go (Green Light) must be the top card on your Battle pile for you to play any mileage, unless you

have played Right of Way.
Stop is played on your opponent’s Go card.
Speed Limit

is played on your opponent’s Speed pile. Until they play an End of Limit they can only play 25
or 50 mile cards.

End of Limit
is played on your Speed pile to nullify a Speed Limit.

Out of Gas
is played on your opponent’s Go. They must play Gasoline and then Go before they can play
any more mileage.

Flat Tire and Accident are played similarly.
Safety Cards

prevent your opponent from playing the corresponding Hazards for the rest of the hand. It can-
cels the hazard, and entitles the player to an extra turn.

Right of Way
prevents both Stop and Speed Limit cards and acts as a permanent Go.

A hand ends whenever one player gets exactly 700 miles or the deck runs out. In that case, play continues
until someone reaches 700, or neither player can use any cards in their hand. If the trip is completed after
the deck runs out, this is called Delayed Action.
Coup Fourre: This is a French fencing term for a counter-thrust move as part of a parry to an opponents
attack. In Mille Bournes, it is used as follows: If an opponent plays a Hazard card, and you have the cor-
responding Safety in your hand, you play it immediately, eve before you draw. This immediately removes
the Hazard card from your Battle pile, and protects you from that card for the rest of the game. This gives
you more points.
Scoring: Scores are totaled at the end of each hand, whether or not anyone completed the trip. The terms
used in the Score window are:
Milestones Played: sum of miles
Each Safety: 100 points
All 4 Safeties: 300 points
Each Coup Foure:
300 points for each Coup Fourre accomplished.
Trip Completed: 400 points
Safe Trip: 300 points bonus for completing trip without 200 mile
Delayed Action:
300 points for finishing after the deck was exhausted.
Extension: 200 points bonus for a 1000 mile trip.
Shut-Out: 500 points for completing while opponent has 0 miles

AUTHOR
Ken Arnold

SEE ALSO
curses(3)

865

MONOP(6) Games Manual MONOP(6)

NAME
monop - monopoly game

SYNOPSIS
/usr/games/monop [file]

DESCRIPTION
Monop is reminiscent of the Parker Brother’s game Monopoly, and monitors a game among 1 to 9 users.
It is assumed that the rules of Monopoly are known. The game follows the standard rules, with the excep-
tion that, if a property would go up for auction and there are only two solvent players, no auction is held
and the property remains unowned.

The game, in effect, lends the player money, so it is possible to buy something which you cannot afford.
However, as soon as a person goes into debt, he must fix the problem, i.e., make himself solvent, before
play can continue. If this is not possible, the player’s property reverts to his debtee, either a player or the
bank. A player can resign at any time to any person or the bank, which puts the property back on the
board, unowned.

Any time that the response to a question is a string, e.g., a name, place or person, you can type ‘?’ to get
a list of valid answers. It is not possible to input a negative number, nor is it ever necessary.

A Summary of Commands:

quit quit game: This allows you to quit the game. It asks you if you’re sure.

print print board: This prints out the current board. The columns have the following meanings
(column headings are the same for the where, own holdings, and holdings commands):

Name
The first ten characters of the name of the square

Own
The number of the owner of the property.

Price
The cost of the property (if any)

Mg This field has a ‘∗ ’ in it if the property is mortgaged

If the property is a Utility or Railroad, this is the number of such owned by the owner.
If the property is land, this is the number of houses on it.

Rent
Current rent on the property. If it is not owned, there is no rent.

where where players are: Tells you where all the players are. A ‘∗ ’ indicates the current player.

own holdings
List your own holdings, i.e., money, get-out-of-jail-free cards, and property.

holdings holdings list: Look at anyone’s holdings. It will ask you whose holdings you wish to look at.
When you are finished, type ‘done’.

shell shell escape: Escape to a shell. When the shell dies, the program continues where you left
off.

mortgage
mortgage property: Sets up a list of mortgageable property, and asks which you wish to mort-
gage.

unmortgage
unmortgage property: Unmortgage mortgaged property.

buy buy houses: Sets up a list of monopolies on which you can buy houses. If there is more than
one, it asks you which you want to buy for. It then asks you how many for each piece of
property, giving the current amount in parentheses after the property name. If you build in an
unbalanced manner (a disparity of more than one house within the same monopoly), it asks

866

MONOP(6) Games Manual MONOP(6)

you to re-input things.

sell sell houses: Sets up a list of monopolies from which you can sell houses. it operates in an
analogous manner to buy

card card for jail: Use a get-out-of-jail-free card to get out of jail. If you’re not in jail, or you don’t
have one, it tells you so.

pay pay for jail: Pay $50 to get out of jail, from whence you are put on Just Visiting. Difficult to
do if you’re not there.

trade This allows you to trade with another player. It asks you whom you wish to trade with, and
then asks you what each wishes to give up. You can get a summary at the end, and, in all
cases, it asks for confirmation of the trade before doing it.

resign Resign to another player or the bank. If you resign to the bank, all property reverts to its vir-
gin state, and get-out-of-jail free cards revert to the deck.

save save game: Save the current game in a file for later play. You can continue play after saving,
either by adding the file in which you saved the game after the monop command, or by using
the restore command (see below). It will ask you which file you wish to save it in, and, if the
file exists, confirm that you wish to overwrite it.

restore restore game: Read in a previously saved game from a file. It leaves the file intact.

roll Roll the dice and move forward to your new location. If you simply hit the <RETURN> key
instead of a command, it is the same as typing roll.

FILES
/usr/games/lib/cards.pck Chance and Community Chest cards

BUGS
No command can be given an argument instead of a response to a query.

867

MPICTURES(6) Games Manual MPICTURES(6)

NAME
mpictures - picture inclusion macros

SYNOPSIS
troff -mpictures [options] file ...

DESCRIPTION
Mpictures macros insert PostScript pictures into troff(1) documents. The macros are:

.BP source height width position offset flags label
Define a frame and place a picture in it. Null arguments, represented by "", are interpreted as de-
faults. The arguments are:

source
Name of a PostScript picture file, optionally suffixed with (n) to select page number n
from the file (first page by default).

height Vertical size of the frame, default 3.0i.
width Horizontal size of the frame, current line length by default.
position

l (default), c, or r to left-justify, center, or right-justify the frame.
offset Move the frame horizontally from the original position by this amount, default 0i.
flags One or more of:

ad Rotate the picture clockwise d degrees, default d=90.
o Outline the picture with a box.
s Freely scale both picture dimensions.
w White out the area to be occupied by the picture.
l,r,t,b Attach the picture to the left right, top, or bottom of the frame.

label Place label at distance 1.5v below the frame.

If there’s room, .BP fills text around the frame. Everything destined for either side of the frame
goes into a diversion to be retrieved when the accumulated text sweeps past the trap set by .BP or
when the diversion is explicitly closed by .EP.

.PI source height,width,yoffset,xoffset flags.
This low-level macro, used by .BP, can help do more complex things. The two arguments not
already described are:

xoffset
Offset the frame from the left margin by this amount, default 0i.

yoffset
Offset the frame from the current baseline, measuring positive downward, default 0i.

.EP End a picture started by .BP; .EP is usually called implicitly by a trap at frame bottom.

If a PostScript file lacks page-delimiting comments, the entire file is included. If no %%BoundingBox
comment is present, the picture is assumed to fill an 8.5× 11-inch page. Nothing prevents the picture from
being placed off the page.

FILES
/usr/lib/tmac/tmac.pictures

SEE ALSO
troff(1)

DIAGNOSTICS
A picture file that can’t be read by the PostScript postprocessor is replaced by white space.

BUGS
A picture and associated text silently disappear if a diversion trap set by .BP isn’t reached. Call .EP at the
end of the document to retrieve it.
Macros in other packages may break the adjustments made to the line length and indent when text is being
placed around a picture.
A missing or improper %%BoundingBox comment may cause the frame to be filled incorrectly.

868

MPM(6) Games Manual MPM(6)

NAME
mpm, mspe - macros for page makeup

SYNOPSIS
troff -mpm file ...

troff -mspe file ...

DESCRIPTION
These troff(1) macros, largely compatible with ms(6), make better pages. They silently invoke and pro-
vide information to a postprocessor that moves floating figures, avoids widows, and justifies pages verti-
cally by stretching vertical spaces that result from .PP, .LP, .IP, .QP, .SH, .NH, .DS/.DE, .EQ/.EN,
.TS/.TE, .PS/.PE, .P1/.P2, and .QS/.QE. The packages support different styles:

-mpm generic

-mspe Software—Practice and Experience

The following macros are different from or not part of -ms. Values denoted n have default value 1v.

.BP Begin a new page.

.FL Flush: force out previous keeps.

.FC Finish a two-column region and start a new one.

.KF m
Floating keep, with preferred center at vertical position m. Special values top (default) and
bottom are permitted.

.NE n Start new page if remaining vertical space on this page is less than n .

.P1 Begin a program display (Courier font).

.P2 End a program display.

.P3 Insert optional break point in program display.

.SP n exactly

.SP n Insert vertical space of height n, stretchable unless exactly is present.

.Tm text
Place page number and text on the standard error output.

.X text
Present text to the hidden page-makeup program as part of a device-dependent output sequence x
X text. Equivalent to \X’text’.

Useful number registers:
HM Header margin; default 1 inch.
FM Footer margin; default 1 inch.
FO Footer position; default 10 inches.
%# Page number of current page.
dP,dV

Shrinkage of point size and vertical spacing for .P1, in points.

Useful strings:
%e,%o

Even and odd page title commands, as .tl ’’’’.

FILES
/usr/lib/tmac/tmac.pm
/usr/lib/tmac/pm

SEE ALSO
ms(6), troff(1)
B. W. Kernighan and C. J. Van Wyk, ‘The -mpm Macro Package’, this manual, Volume 2

BUGS
These features of -ms are missing:

Document styles other than the default .RP.
Space between front matter and first paragraph. Recover it with .SP 2.
Separating rule above footnotes.
Keeps assigned to a separate page.

869

MPM(6) Games Manual MPM(6)

Pages with more than two columns.
Troff option -o doesn’t work with -mpm because only the postprocessor knows the page numbers.

870

MS(6) Games Manual MS(6)

NAME
ms - macros for formatting manuscripts

SYNOPSIS
nroff -ms [options] file ...
troff -ms [options] file ...

DESCRIPTION
This package of nroff and troff(1) macro definitions provides a canned formatting facility for technical pa-
pers in various formats. When producing 2-column output on a terminal, filter the output through col; see
column(1).

The macro requests are defined below. Many nroff and troff requests are unsafe in conjunction with this
package, but the following requests may be used with impunity after the first .PP: .bp, .br, .sp, .ls,
.na.

Output of the eqn(1), neqn, tbl(1), pic(1), refer(1), and prefer(1) preprocessors for equations, tables, pic-
tures, and references is acceptable as input.

Diacritical marks may be applied to letters, as in these examples:

\∗‘e \∗‘a \∗’e \∗ˆe \∗ˆo \∗:u \∗ n \∗,c \∗vc
è à é ê ô

..
u n ,c

v
c

FILES
/usr/lib/tmac/tmac.s

SEE ALSO
M. E. Lesk, ‘Typing Documents on the UNIX System: Using the -ms Macros with Troff and Nroff’, this
manual, Volume 2
eqn(1), troff(1), refer(1), prefer(1), tbl(1), pic(1), mcs(6)

REQUESTS
Request Initial Cause Explanation

Value Break
.1C yes yes One column format on a new page.
.2C no yes Two column format.
.AB no yes Begin abstract.
.AE - yes End abstract.
.AI no yes Author’s institution follows. Suppressed in .TM.
.AT no yes Print ‘Attached’ and turn off line filling.
.AU x y no yes Author’s name follows. x is location and y is extension, ignored except in TM.
.B x y no no Print x in boldface, append y; if no argument switch to boldface.
.B1 no yes Begin text to be enclosed in a box.
.B2 no yes End boxed text.
.BI x y no no Print x in bold italic and append y; if no argument switch to bold italic.
.BT date no Bottom title, automatically invoked at foot of page. May be redefined.
.BX x no no Print x in a box.
.CW x y no no Constant width font for x, append y; if no argument switch to CW.
.CT no yes Print ‘Copies to’ and turn off line filling.
.DA x nroff no ‘Date line’ at bottom of page is x. Default is today.
.DE - yes End displayed text. Implies .KE.
.DS x no yes Start of displayed text, to appear verbatim line-by-line: I indented (default), L left-justi-

fied, C centered, B (block) centered with straight left margin. Implies .KS.
.EG no - Print document in BTL format for ‘Engineer’s Notes.’ Must be first.
.EN - yes Space after equation produced by neqn or eqn(1).
.EQ x y - yes Display equation. Equation number is y. Optional x is I, L, C as in .DS.
.FE - yes End footnote.
.FP x - no Set font positions for a family, e.g., .FP
.FS no no Start footnote. The note will be moved to the bottom of the page.
.HO - no ‘AT&T Bell Laboratories, Holmdel, New Jersey 07733’.
.I x y no no Italicize x, append y; if no argument switch to italic.

871

MS(6) Games Manual MS(6)

.IH no no ‘AT&T Bell Laboratories, Naperville, Illinois 60540’

.IM no no Print document in BTL format for an internal memorandum. Must be first.

.IP x y no yes Start indented paragraph, with hanging tag x. Indentation is y ens (default 5).

.KE - yes End keep. Put kept text on next page if not enough room.

.KF no yes Start floating keep. If the kept text must be moved to the next page, float later text back
to this page.

.KS no yes Start keeping following text.

.LG no no Make letters larger.

.LP yes yes Start left-blocked paragraph.

.LT x r p no yes Start a letter with today’s date. If x is missing, use letterhead paper; otherwise print let-
terhead with room r and phone p; address follows.

.MF - - Print document in BTL format for ‘Memorandum for File.’ Must be first.

.MH - no ‘AT&T Bell Laboratories, Murray Hill, New Jersey 07974’.

.MR - - Print document in BTL format for ‘Memorandum for Record.’ Must be first.

.ND date troff no Use date supplied (if any) only in special BTL format positions; omit from page footer.

.NH n - yes Same as .SH, with automatic section numbers like ‘1.2.3’; n is subsection level (default
1).

.NL yes no Make letters normal size.

.PE - yes End picture; see pic(1).

.PF - yes End picture; restore vertical position.

.PP no yes Begin paragraph. First line indented.

.PS h w - yes Start picture; height and width in inches.

.PY - no ‘AT&T Bell Laboratories, Piscataway, New Jersey 08854’

.QE - yes End quoted material.

.QP - yes Begin quoted paragraph (indent both margins).

.QS - yes Begin quoted material (indent both margins).

.R yes no Roman text follows.

.RE - yes End relative indent level.

.RP no - Cover sheet and first page for released paper. Must precede other requests.

.RS - yes Start level of relative indentation from which subsequent indentation is measured.

.SG x no yes Insert signature(s). In .TM x is initials of author and typist; in .LT x is author’s name.

.SH - yes Section head follows, font automatically bold.

.SM no no Make letters smaller.

.TA x... 5... no Set tabs in ens. Default is 5 10 15 ...

.TE - yes End table; see tbl(1).

.TH - yes End heading section of table.

.TL no yes Title follows.

.TM x... no - Print document in BTL technical memorandum format. Arguments are TM number,
(quoted list of) case number(s), and file number. Must precede other requests.

.TR x - - Print in BTL technical report format; report number is x. Must be first.

.TS x - yes Begin table; if x is H table heading is repeated on new pages.

.UL x - no Underline argument (even in troff).

.UX y z - no ‘zUNIXy’; first use gives registered trademark notice.

.WH - no ‘AT&T Bell Laboratories, Whippany, New Jersey 07981’.

.[- no Begin reference; see refer(1).

.] - no End reference.

872

NUMBER(6) Games Manual NUMBER(6)

NAME
number − convert Arabic numerals to English

SYNOPSIS
number

DESCRIPTION
Number copies the standard input to the standard output, replacing all decimal numbers by their spelled-
out equivalent. Punctuation is added to make the output sound well when played through voice synthesiz-
ers.

873

OGRE(6) Games Manual OGRE(6)

NAME
ogre - war game

SYNOPSIS
/usr/games/ogre [type]

DESCRIPTION
Ogre is a game of tank warfare in the 21st century. You command a force of infantry, armor, and how-
itzers pitted against a giant cybernetic tank, the Ogre. Your mission is to destroy the Ogre, or at least ren-
der it immobile, before it reaches and destroys your command post.

A more complete reference on how to play can be found in the Ogre rule book for the Metagaming Mi-
croGame, now distributed by Steve Jackson’s company. Here’s some very sketchy and incomplete docu-
mentation for Ogre players:

The game has the following phases:

1) Initialization. The player’s armor units, infantry, and command post are placed on the map. Nothing
can be placed on the leftmost 7 columns of hexes, or on craters (∗ ’s), or on any unit already placed. Valid
commands are:

w e
a d (hex movement keys)

z x
place a:

H howitzer
T heavy tank
M missile tank
G GEV
I Infantry unit (attack strength 3)
C Command Post

on the space currently pointed at by the cursor. Note that these are capital letters.

Units are displayed as these characters, except infantry, which appear as ’1’, ’2’, or ’3’ depending on their
attack strength.

2) The Ogre (an O) now appears.

3) You are given the opportunity to move all your vehicles and infantry that can move. The cursor motion
keys are used to move the unit indicated by the cursor. Additionally, ’s’ or ’ ’ can be used to let a vehicle
stay motionless. No vehicle can move through a crater hex, or into a hex occupied by another friendly
unit on its last turn, although it can move through a friendly hex on its way elsewhere. Moving through
the hex occupied by the Ogre is an attempt to ram the Ogre. This reduces the Ogre’s treads by some
amount, and destroys the unit.

4) You now fire all your vehicles in range at designated targets on the Ogre. The following commands are
used:

m fire at missiles

b fire at main batteries

s fire at secondary batteries

a fire at anti-personnel guns

t fire at treads

The odds of destroying the target are displayed, but no action is taken until ’r’ is used, or until you run out
of attack points (except for attacks on treads - see below). (In the odds display, ’+’ means a sure thing.)

p Pass. The unit is passed over, and given the opportunity to fire later.

r resolve all allocations so far, and display the results. This is implied by ’t’, as tread attacks can-
not be grouped. A resolve is done automatically when you run out of attacking units.

5) Second movement phase for GEVs. Just like step 3, except that only GEVs can move.

6) The Ogre moves. If it runs over any of your units, they are damaged or destroyed.

874

OGRE(6) Games Manual OGRE(6)

7) The Ogre fires at all units in range. Destroyed units are removed from the map. Disabled units are dis-
played in lower case, and may not move or fire until the end of the NEXT Ogre attack.

Steps 3 through 7 are repeated until either a) the Ogre has no movement points left, in which case you
win, or b) your command post is destroyed, in which case the Ogre wins.

MISCELLANEOUS
The display "a/r Dd Mm" means the unit concerned attacks at a, at range r, defends at d, and moves m
hexes per turn.

The Ogre by default is a Mark III. An argument of ’5’ on the command line makes it a Mark V, and gives
you more armor points.

The game can be interrupted at any point with a control-C. There’s now no way to restart.

The paper game is copyright (c) 1977 by Steve Jackson. This computer implementation is copyright (c)
1984 by Michael Caplinger.

AUTHOR
Michael Caplinger, Rice University (mike@rice.ARPA), from a Microgame of the same name published
by Metagaming of Austin, Texas, and written by Steve Jackson. This implementation is not authorized in
any way by Mr. Jackson, and should not be sold for profit.

SEE ALSO
termcap(5)

BUGS
The Ogre sometimes gets confused and doesn’t know where to go, so it oscillates from one hex to another,
and then back.

875

QUIZ (6) Games Manual QUIZ (6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [-i file] [-t] [category1 category2]

DESCRIPTION
Quiz gives associative knowledge tests on various subjects. It asks items chosen from category1 and ex-
pects answers from category2. If no categories are specified, quiz gives instructions and lists the available
categories.

Quiz tells a correct answer whenever you type a bare newline. At the end of input, upon interrupt, or
when questions run out, it reports a score and terminates.

The -t flag specifies ‘tutorial’ mode, where missed questions are repeated later, and material is gradually
introduced as you learn.

The -i flag causes the named file to be substituted for the default index file. The lines of these files have
the syntax:

line = category newline category ‘:’ line
category = alternate category ‘|’ alternate
alternate = empty alternate primary
primary = character ‘[’ category ‘]’ option
option = ‘{’ category ‘}’

The first category on each line of an index file names an information file. The remaining categories spec-
ify the order and contents of the data in each line of the information file. Information files have the same
syntax. Backslash \ is used as with sh(1) to quote syntactically significant characters or to insert transpar-
ent newlines into a line. When either a question or its answer is empty, quiz will refrain from asking it.

FILES
/usr/games/lib/quiz.k/∗

BUGS
The construct a|ab doesn’t work in an information file. Use a{b} or ab|a.
Case distinctions cannot be checked even when they count.

876

REDCODE(6) Games Manual REDCODE(6)

COMMANDS.SH NAME redcode - assembler for mars game

SYNOPSIS
redcode file ...

DESCRIPTION
Redcode is an assembler for the assembly language given by Kee Dewdney in the ‘Computer Recre-
ations’, Scientific American, May, 1984. The command line lists of source file names ending in .red.
They are assembled into corresponding object files with names ending in .obj.

A source file consists of a name directive giving the program’s name, then any number of program and
data statements, then an end directive that gives the starting location of the program. Statements have the
following syntax:

[label] opcode arg1 [arg2] [; comment]

There are three addressing modes; all address calculations are done modulo 8000.

Syntax Meaning
#[0-9]+ immediate
[0-9]+ relative
@[0-9]+ indirect, relative

The following opcodes are implemented, along with the corresponding
semantics specified in pseudo-C:

Instruction Mnem Opcode Args Explanation
Move mov 1 A B B=A
Add add 2 A B B+=A
Subtract sub 3 A B B-=A
Jump jmp 4 A PC=A
Jump if zero jmz 5 A B PC=(B==0)?A:PC+1
Jump if greater jmg 6 A B PC=(B<4000)?A:PC+1
Dec, Jmp if 0 djz 7 A B PC=(--B==0)?A:PC+1
Compare cmp 8 A B PC=(A==B)?PC+1:PC+2

The following non-executable directives may be used
to reserve and initialize data space:

Directive Mnem Arg Explanation
Buffer space bss n Reserve n words
Data data A Initialize 1 word
Name name ’t’ Name of program
End end start Specify starting location

The program was written by Paul Milazzo at Rice.
For documentation on the object code format, see
mars(6).

EXAMPLES
name ’dwarf’

site data -1 ; address of last 0 ’bomb’
start add #5 site ; move site forward

mov #0 @site ; write 0 ’bomb’
jmp start ; loop
end start

SEE ALSO
mars(6)

5/20/84 877

SNAKE(6) Games Manual SNAKE(6)

NAME
snake, worm - display chase games

SYNOPSIS
/usr/games/snake

/usr/games/worm

DESCRIPTION
Snake must be played on a HP2621 terminal or equivalent. The object of the game is to make as much
money as possible without getting eaten by the snake.

You are represented on the screen by I. The snake is 6 squares long, each marked S. The money is $ and
an exit is #. Your score is posted in the upper left hand corner.

You can move around using keys h for left, up, down, right. To earn money, move to the same square the
money is on. A new $ will appear when you earn the current one. As you get richer, the snake gets hun-
grier. To leave the game, move to the exit.

Worm also requires a 2621-compatible terminal. Once started, with h keys as for snake, the worm moves
forward unless directed otherwise. The object is to collect points displayed on the screen without running
into the wall or any part of the worm itself. The points are added to the worm’s length.

878

TERM(6) Games Manual TERM(6)

NAME
terminals - conventional names

DESCRIPTION
These names are used by certain commands and are maintained as part of the shell environment; see sh(1),
environ(5).

2621 Hewlett-Packard HP262? series terminals

1620 DIABLO 1620 (and others using HyType II)

33 Teletype Model 33

37 Teletype Model 37

43 Teletype Model 43

5620 Teletype Model 5620 dotmap display

dumb terminals with no special features

4014 Tektronix 4014

vt52 Digital Equipment Corp. VT52

The list goes on and on. Consult /etc/termcap (see termcap(5)) for the whole truth.

Commands whose behavior may depend on the terminal typically consult TERM in the environment or
accept arguments of the form -Tterm, where term is one of the names given above.

SEE ALSO
stty(1), tabs(1), plot(1), sh(1), environ(5), ul(1), column(1), termcap(5), nroff in troff(1)

BUGS
The programs that ought to adhere to this nomenclature do so only fitfully.

879

warp(6) Games Manual warp(6)

NAME
warp - war games

SYNOPSIS
/usr/games/warp

DESCRIPTION
Warp is a space-war game; it volunteers instructions.

Battle is the classic grid game of battleship. It needs a cursor-addressed terminal.

880

WORMS(6) Games Manual WORMS(6)

NAME
worms, hanoi, rain - silly demos

SYNOPSIS
/usr/games/worms

/usr/games/hanoi

/usr/games/rain

DESCRIPTION
These games draw various moving patterns on a cursor-addressed terminal.

881

APNEWS(7) Miscellaneous Information Manual APNEWS(7)

NAME
apnews, ap.keys - present AP wire stories

SYNOPSIS
apnews [-f dir] [-r]

DESCRIPTION
Apnews presents news from the AP wire on a cursor-addressed screen. The top half of the screen contains
20 story slugs (two-word labels). Apnews responds to these commands:

n Print story for slug n; page through it by typing newlines.

m Present more slugs.

. Return to current slug list.

t Top. Return to first list of slugs

s keywords
Present slugs for stories containing these keywords.

y Present slugs for stories containing words from the last story read.

c file
Copy. Add story being read to named file or directory.

? Print some help.

To suggest interest, slugs may be followed by a bracketed number that shows the average number of pages
(up to 5) that readers have perused. Option -r turns this feature off.

Option -f directs the attention of apnews to a specified directory of AP stories, as may be collected by

To monitor news automatically, put a file ap.keys in your home directory. This file contains instructions
marked by ∗ , each followed by one or more search lines. Instructions specify what to capture:

S whole story
P first paragraph
H heading

then what to do with it:

| command
specifying a command (often mail) to be executed with the story as standard input

> file specifying a file or directory to add the story to; pathnames are relative to your home directory

If no instruction is present, the default is

∗S

Search lines may contain:

(1) a sequence of blank-separated words; these words must occur in this order
(2) a sequence of words separated by commas; these words must appear in the same sentence
(3) a sequence of words separated by periods; these words may occur anywhere in the story, but all

must appear

Combinations are allowed, e.g. x . y, z specifies y and z in the same sentence and x somewhere in
the same story. The character ! means not, so that !chocolate means chip not preceded by
chocolate. Some suffixes are removed; and capitals are ignored except when entire words are capital-
ized. Thus ERA and era are distinguished, but Waters and waters are not. Special ‘words’ specify
story types:

#f flash
#b bulletin
#u urgent news
#r regular news
#d deferred news

alice 882

APNEWS(7) Miscellaneous Information Manual APNEWS(7)

EXAMPLES
∗S > stuff
bell laboratories
FCC . telephone, regulation
∗P | mail joe
#b
AM-NewsDigest

FILES
ap.keys
/usr/spool/ap/∗

BUGS
Apnews can fail to work well in a mux(9) window, for two reasons.
(1) The window needs a terminal emulator. Before invoking apnews, do exec term 5620 (or 2621);
see term(9)
(2) Remote execution needs a transparent connection. If logged in elsewhere make the connection to the
serving machine by doing, for example, ndcon alice or nrx alice apnews (after downloading an
emulator, if necessary); see dcon(1).

alice 883

DIST (7) Miscellaneous Information Manual DIST (7)

NAME
dist, dme, plan, path, cross − aviation navigation

SYNOPSIS
/usr/ken/bin/dist obj obj ...

/usr/ken/bin/dme obj radial dist

/usr/ken/bin/plan [-dist1 [-dist2]] obj obj

/usr/ken/bin/path [-dist] obj obj ...

/usr/ken/bin/cross [-dist] obj

DESCRIPTION
These routines provide navigation services using an aviation database. Objects in the database are of four
types: VORs ending in .v, airports ending in .a, NDBs ending in .n, and intersections ending in .i. An am-
biguous object specified without suffix is interpreted in the above order.

The canonical program in this series, dist, prints the magnetic bearing and distance in nautical miles be-
tween a set of two or more specified objects. The magnetic correction is applied at the first of a pair of
objects, so the bearing from Morristown to San Diego is 281 degrees while the reverse is 50 degrees. Dist
also prints a frequency for objects. For VORs and NDBs, the frequency is obvious. For airports, the fre-
quency is sometimes the tower frequency, sometimes UNICOM and sometimes zero. Intersections have
no frequency.

Dme prints the latitude and longitude of a point that is a bearing and distance from an object. The format
printed is the source form of the database of objects. Dme is used to create new objects for the database −
usually intersections.

Plan finds a shortest distance from one object to another traveling along a route of VORs. The optional
argument dist1 is the maximum allowable distance between VORs en route (default 100 nautical miles)
and dist2 is the maximum allowable distance between the starting object and the first VOR and the last
VOR and terminal object (default 50).

Path lists all objects in the database that lie within dist (default 10 nautical miles) of the great circle route
between two objects. If more than two arguments are given, routes are calculated for each pair of objects.
The list is ordered by distance along the route. The tangential distance to each object is given with nega-
tive to the left and positive to the right.

Cross prints all objects in the database within dist (default 50 nautical miles) from the given object.

FILES
objects

SEE ALSO
avw(7)

BUGS
The database is old and should not be used for navigation purposes.
Frequencies for airports are inconsistent.
Plan uses low power (terminal) VORs when very often these cannot be tracked from 50 miles.
Plan will cheerfully plan routes through prohibited areas, over open water and over high mountains. The
only criterion is the distance between objects.
Cross has bugs.

purdy 884

AVW (7) Miscellaneous Information Manual AVW (7)

NAME
w, fp, ft, fd, rad − aviation weather

SYNOPSIS
/usr/ken/bin/w [station ...]

/usr/ken/bin/fp [obj ...]

/usr/ken/bin/ft [obj ...]

/usr/ken/bin/fd [obj ...]

/usr/ken/bin/rad

DESCRIPTION
W looks up each of its arguments in a set of weather files. The weather files are constantly maintained by
a daemon that reads the National Weather Service Wire. If w is called with no arguments, it reads the
standard input and looks up each line.

The active weather files are:

AA airport name and runway direction and length
NT NOTAM − Notices to Airmen − special cautions at airports
FT 24-hour terminal forcasts at airports issued three times a day
SA hourly surface observations taken at airports
FD daily winds aloft forcasts taken at certain reporting points
FP daily area forcasts taken at certain reporting points
SD hourly radar precipitation taken at certain reporting points

If w is given an airport name, it will print the latest AA, NT, FT, and SA data. The other files are printed
by providing the reporting point name. In most cases this is a meaningless string of characters that are
supplied by other programs.

Fp takes a series of navagation stations as arguments; see av(A) for a description of these objects. If fp
has no argument, it uses the default here which specifies Murray Hill, NJ. If fp is given one argument, it
will print the name of the nearest FP (area forecast) station to the argument. If fp is given two arguments,
it will print the names of all FP stations that are nearest to some point on the great circle route between the
objects. If more than two arguments are given then the stations are printed for each pair of arguments.
The output of fp is meant to be piped into w.

Ft and fd behave the same as fp but print the station names reporting winds aloft and terminal forcasts
respectively.

Rad creates a radar summary weather map and prints the map on the laser printer.

FILES
/usr/weather/∗

weather files

/usr/ken/lib/obj
navigation aids

/usr/weather/rd
weather wire daemon

SEE ALSO
av(7)

purdy 885

CAL(7) Miscellaneous Information Manual CAL(7)

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that month is
printed. Year can be between 1 and 9999. The month is a number between 1 and 12. The calendar pro-
duced is that for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.
Beware that cal 90 refers to the early Christian era, not the 20th century.

886

DICT (7) Miscellaneous Information Manual DICT (7)

NAME
dict - look up words in English dictionaries

SYNOPSIS
dict [-p] [dictionary [word]]

DESCRIPTION
Dict looks up words in the specified dictionary, webster by default. Words are read, one per line from the
standard input, and entries are written on the standard output. Characters other than letters, digits, and
space are ignored. A single word may be specified in the command. The options are

-p Find all entries of which the specified word is a prefix.

-r Print raw form, including diacriticals, font marks, etc. Different for each dictionary to which it
applies.

Dictionary is one of

webster
Merriam-Webster Collegiate Dictionary, Seventh Edition, full text. No option -p.

web7 Same, words only.

etym[ology]
Inverted index to webster by root words.

web2 Merriam-Webster New International Dictionary, Second Edition, unabridged, words only.

oed The Oxford New English Dictionary, or OED, full text. No option -p.

oxford
The Oxford Advanced Learner’s Dictionary of Contemporary English, full text. No -p.

slang New Dictionary of American Slang (Harper). Field identifiers: me main entry (perhaps flagged
@), nu sense number (also given as ∗n∗), pr pronunciation, ps part of speech, vr variations la
provenance, df definition, dx definition by example, ex example, ed editorial note, et etymology,
xr cross reference, xx indirect address, sq sequence number in original text.

names
The Oxford Dictionary of British surnames.

thesaurus
Collins Thesaurus.

thesaurusa
Same, augmented with complete backreferences among words.

places
USGS Gazetteer of populated places in US and possessions, with standard county code, latitude,
longitude, year of listing, altitude (feet), 1980 population, topo sheet code. For full name search,
use thus: dict places ’new york, ny’; without state, use prefix search: dict -p places ’new york’.

towns A shorter gazetteer (PICADAD) of US populated places with latitude, longitude, zip code, and
population class (0:0-1000, 1:1000-2500, 2:2500-5000, 3:5000-10,000, 4:10,000-25,000,
5:25,000-50,000, 6:50,000-100,000, 7:100,000-250,000, 8:250,000-500,000, 9:500,000+), and
something else.

spell Word list of spell(1).

acro[nym]
17000 AT&T acronyms

anything else
Print list of available dictionaries.

The dictionaries are copyrighted and must not be copied without permission, except for web2, spell,
and acro.

bowell,murray 887

DICT (7) Miscellaneous Information Manual DICT (7)

FILES
/usr/dict/∗

(/n/bowell)

/usr/dict/words
spell or web7, depending on machine

/usr/dict/oed
(/n/kwee)

/usr/lib/dict/∗

/usr1/maps/usplaces
(/n/bowell)

/usr/spool/town/ustowns∗
(/n/alice)

SEE ALSO
look(1), town(7)

BUGS
In webster, web7, and pron, diacriticals are done right - by overstrikes - which means they disappear on
most screen terminals.
In towns, all data are lower case; missing zip codes look like normal codes ending in ‘000’. Latitude and
longitude denote the center of population of the containing political entity; unincorporated places are spot-
ted at the county center.
In slang, some entries contain extra trash; option -p helps overcome the trouble.

bowell,murray 888

DKNAME(7) Miscellaneous Information Manual DKNAME(7)

NAME
dkname − map system name to Datakit address

SYNOPSIS
dkname sysname ...

DESCRIPTION
Dkname looks up machine names and prints the corresponding full Datakit address on the standard out-
put. The addresses are not necessarily printed in the same order as the arguments. The addresses are ob-
tained by the first possible match in the file

FILES
/usr/lib/uucp/Systems.dk

889

GREEK (7) Miscellaneous Information Manual GREEK (7)

NAME
greek - graphics for extended TTY-37 type-box

SYNOPSIS
cat /usr/pub/greek [greek -Tterminal]

DESCRIPTION
Greek gives the mapping from ascii to the ‘shift out’ graphics in effect between SO and SI on model 37
Teletypes with a 128-character type-box. These are the default greek characters produced by nroff. The
filters of greek(1) attempt to print them on various other terminals. The file contains:

alpha α A beta β B gamma γ \
GAMMA Γ G delta δ D DELTA ∆ W
epsilon ε S zeta ζ Q eta η N
THETA Θ T theta θ O lambda λ L
LAMBDA Λ E mu µ M nu ν @
xi ξ X pi π J PI Π P
rho ρ K sigma σ Y SIGMA Σ R
tau τ I phi φ U PHI Φ F
psi ψ V PSI Ψ H omega ω C
OMEGA Ω Z nabla ∇ [not ¬ _
partial ∂] integral ∫ ˆ

SEE ALSO
greek(1)
troff(1)

890

HIER(7) Miscellaneous Information Manual HIER(7)

NAME
hier - file system hierarchy

DESCRIPTION
The following outline gives a quick tour through a representative directory hierarchy.

/ root
/vmunix the kernel binary (UNIX itself)
/lost+found

directory for connecting detached files for fsck(8)
/dev/ devices (4)

console main console, ttyld(4)
tty∗ terminals, ttyld(4)
ra∗ disks, ra(4)
rra∗ raw disks, ra(4)
...

/bin/ utility programs, cf /usr/bin/ (1)
as assembler
cc C compiler executive, cf /lib/ccom, /lib/cpp, /lib/c2
csh C shell
...

/lib/ object libraries and other stuff, cf /usr/lib/
libc.a system calls, standard I/O, etc. (2,3,3S)
...
ccom C compiler proper
cpp C preprocessor
c2 C code improver
...

/etc/ essential data and maintenance utilities; sect (8)
dump dump program dump(8)
passwd password file, passwd(5)
group group file, group(5)
motd message of the day, login(8)
whoami system name, uname(3)
termcap description of terminal capabilities, termcap(5)
ttytype table of what kind of terminal is on each port, ttytype(5)
mtab mounted file table, mtab(5)
dumpdates

dump history, dump(8)
fstab file system configurtion table fstab(5)
ttys properties of terminals, ttys(5)
getty part of login, getty(8)
init the parent of all processes, init(8)
rc shell program to bring the system up
cron the clock daemon, cron(8)
mount mount(8)
wall wall(1)
...

/tmp/ temporary files, usually on a fast device, cf /usr/tmp/
e∗ used by ed(1)
ctm∗ used by cc(1)
...

/usr/ general-pupose directory, usually a mounted file system
adm/ administrative information

wtmp login history, utmp(5)
messages

hardware error messages

891

HIER(7) Miscellaneous Information Manual HIER(7)

tracct phototypesetter accounting, troff(1)
lpacct line printer accounting lpr(1)

/usr /bin
utility programs, to keep /bin/ small
tmp/ temporaries, to keep /tmp/ small

stm∗ used by sort(1)
raster used by plot(1)

dict/ word lists, etc.
words principal word list, used by look(1)
spellhist history file for spell(1)

games/
hangman
lib/ library of stuff for the games

quiz.k/ what quiz(6) knows
index category index
africa countries and capitals
...

...
...

include/ standard #include files
a.out.h object file layout, a.out(5)
stdio.h standard I/O, stdio(3)
math.h (3M)
...
sys/ system-defined layouts, cf /usr/sys/h

lib/ object libraries and stuff, to keep /lib/ small
atrun scheduler for at(1)
lint/ utility files for lint

lint[12] subprocesses for lint(1)
llib-lc dummy declarations for /lib/libc.a, used by lint(1)
llib-lm dummy declarations for /lib/libc.m
...

struct/ passes of struct(1)
...
tmac/ macros for troff(1)

tmac.an macros for man(7)
tmac.s macros for ms(7)
...

font/ fonts for troff(1)
ftR Times Roman
ftB Times Bold
...

uucp/ programs and data for uucp(1)
L.sys remote system names and numbers
uucico the real copy program
...

units conversion tables for units(7)
eign list of English words to be ignored by ptx(1)

/usr/ man/
volume 1 of this manual, man(1)

man0/ general
intro introduction to volume 1, ms(7) format
xx template for manual page

man1/ chapter 1
as.1

892

HIER(7) Miscellaneous Information Manual HIER(7)

mount.1m
...

...
cat1/ preformatted pages for section 1
...

spool/ delayed execution files
at/ used by at(1)
lpd/ used by lpr(1)

lock present when line printer is active
cf∗ copy of file to be printed, if necessary
df∗ daemon control file, lpd(8)
tf∗ transient control file, while lpr is working

uucp/ work files and staging area for uucp(1)
LOGFILE

summary log
LOG.∗ log file for one transaction

mail/ mailboxes for mail(1)
name mail file for user name
name.lock

lock file while name is receiving mail
secretmail/

like mail/
uucp/ work files and staging area for uucp(1)

LOGFILE
summary log

LOG.∗ log file for one transaction
wd initial working directory of a user, typically wd is the user’s login name

.profile
set environment for sh(1), environ(5)

calendar
user’s datebook for calendar(1)

doc/ papers, mostly in volume 2 of this manual, typically in ms(7) format
as/ assembler manual
c C manual
...

/usr/ src/
source programs for utilities, etc.
cmd/ source of commands

as/ assembler
ar.c source for ar(1)
...
troff/ source for nroff and troff(1)

font/ source for font tables, /usr/lib/font/
ftR.c Roman
...

term/ terminal characteristics tables, /usr/lib/term/
tab300.c DASI 300
...

...
games/ source for /usr/games
libc/ source for functions in /lib/libc.a

crt/ C runtime support
csu/ startup and wrapup routines needed with every C program

crt0.s regular startup
mcrt0.s modified startup for cc -p

893

HIER(7) Miscellaneous Information Manual HIER(7)

sys/ system calls (2)
access.s
alarm.s
...

stdio/ standard I/O functions (3S)
fgets.c
fopen.c
...

gen/ other functions in (3)
abs.c
...

local/ source which isn’t normally distributed
new/ source for new versions of commands and library routines
old/ source for old versions of commands and library routines
sys/ system source

h/ header (include) files
acct.h acct(5)
stat.h stat(2)
...

sys/ system source proper
main.c
pipe.c
sysent.c system entry points

ucb/ binaries of programs developed at UCB
...
edit editor for beginners
ex command editor for experienced users
...
mail mail reading/sending subsystem
man on line documentation
...
pi Pascal translator
px Pascal interpreter
...
vi visual editor

SEE ALSO
ls(1), du(1), icheck(8), find(1), grep(1)

BUGS
The position of files is subject to change without notice.

894

LIBRARY (7) Miscellaneous Information Manual LIBRARY (7)

NAME
library, bellcat - bell labs library services

SYNOPSIS
library [option ...] [item ...]

bellcat [-q] [database]

DESCRIPTION
Library mails orders to the Bell Labs library network for books, technical reports, etc. Its use is self-ex-
planatory.

A long response may be inserted with e or r as in Mail(A)Interaction may be forestalled by answering
questions on the command line (see example) and in a personal identity file, named in environment vari-
able LIBFILE (.lib by default), which contains one or more lines like these:

ID: PAN or SSN
LIBNAME: last name
LIBLOG: log file, readable with mail -f
LIBCNTL: concatenated search control codes: a acknowledge, mnumber max on retrieved
items
LIBLOCAL: interaction control code: x brief prompts

Most LIBFILE items may be entered as environment variables by the same names.

Bellcat places a call to on-line library databases. Once entered, bellcat is self-explanatory. to exit. Op-
tion -q gets a ‘quick search’, which uses no special terminal features and does not offer help.

Some of the databases are

books (default)
journals
released

released papers by Bell Labs authors
tech_reports

non-AT&T technical reports
xxx unknown name causes a list of databases to be printed

The databases of Bellcat and more are available through the LINUS service of the library network. You
may use the library command to sign up for LINUS.

EXAMPLES
library -1 123456-851234-56tm

Order a technical memorandum, giving answer 1 for kind of query and specifying a document
number.

library -4 -p waldstein, r k
Consult the people file.

FILES
$HOME/.lib
/usr/lib/bellcat

BUGS
Except under option -q, bellcat requires a native-mode Teletype 5620 or a (possibly simulated) HP2621
terminal. Under mux(9) bellcat invokes a simulator if necessary. This introduces an extra level of shell,
which can can be avoided thus: exec bellcat.

895

MAP(7) Miscellaneous Information Manual MAP(7)

NAME
map - draw maps on various projections

SYNOPSIS
map projection [param ...] [option ...]

DESCRIPTION
Map prepares on the standard output a map suitable for display by any plotting filter described in plot(1).
A menu of projections is produced in response to an unknown projection. For the meanings of params
pertinent to particular projections see proj(3).

The default data for map are world shorelines. Option -f accesses the higher-resolution World Data Bank
II.

-f [feature ...]
Features are ranked 1 (default) to 4 from major to minor. Higher-numbered ranks include all
lower-numbered ones. Features are

shore[1-4]
seacoasts, lakes, and islands; in the absence of -m, option -f automatically includes
shore1

ilake[1-2]
intermittent lakes

river[1-4]
rivers

iriver[1-3]
intermittent rivers

canal[1-3]
3=irrigation canals

glacier

iceshelf[12]

reef

saltpan[12]

country[1-3]
2=disputed boundaries, 3=indefinite boundaries

state states and provinces (US and Canada only)

In other options coordinates are in degrees, with north latitude and west longitude counted as positive.

-l S N E W
Set the southern and northern latitude and the eastern and western longitude limits. Missing arguments
are filled out from the list -90, 90, -180, 180.

-k S N E W
Set the scale as if for a map with limits -l S N E W and no -w option.

-o lat lon rot
Orient the map in a nonstandard position. Imagine a transparent gridded sphere around the globe. Turn
the overlay about the North Pole so that the Prime Meridian (longitude 0) of the overlay coincides with
meridian lon on the globe. Then tilt the North Pole of the overlay along its Prime Meridian to latitude lat
on the globe. Finally again turn the overlay about its ‘North Pole’ so that its Prime Meridian coincides
with the previous position of meridian rot. Project the map in the standard form appropriate to the over-
lay, but presenting information from the underlying globe. Missing arguments are filled out from the list
90, 0, 0. In the absence of -o, the orientation is 90, 0, m, where m is the middle of the longitude range.

-w S N E W
Window the map by the specified latitudes and longitudes in the tilted, rotated coordinate system. Miss-
ing arguments are filled out from the list -90, 90, -180, 180. (It is wise to give an encompassing -l option
with -w. Otherwise for small windows computing time varies inversely with area!)

896

MAP(7) Miscellaneous Information Manual MAP(7)

-d n
For speed, plot only every nth point.

-r
Reverse left and right (good for star charts and inside-out views).
-s1
-s2
Superpose. Outputs for a -s1 map (no closing) and a -s2 map (no opening) may be concatenated.

-g dlat dlon res
Grid spacings are dlat, dlon. Zero spacing means no grid. Missing dlat is taken to be zero. Missing dlon
is taken the same as dlat. Grid lines are drawn to a resolution of res (2° or less by default). In the ab-
sence of -g, grid spacing is 10°.

-p lat lon extent
Position the point lat, lon at the center of a square plotting area. Scale the map so that a side of the square
is extent times the size of one degree of latitude at the center. By default maps are scaled and positioned
to fit within the plotting area. An extent overrides option -k.

-c x y rot
After all other positioning and scaling operations, rotate the image rot degrees counterclockwise about the
center and move the center to position x, y, of the plotting area, whose nominal extent is -1≤x≤ 1, -1≤y≤1.
The map is clipped to this area. Missing arguments are taken to be 0.

-m [file ...]
Use map data from named files. If no files are named, omit map data. Files that cannot be found directly
are looked up a standard directory, which contains, in addition to the data for -f,

world World Data Bank I from CIA (default)

states US map from Census Bureau

counties
US map from Census Bureau

The environment variables MAP and MAPDIR change the default map and default directory.

-b [lat1 lon1 lat2 lon2 ...]
Suppress the drawing of the normal boundary (defined by options -l and -w). Coordinates, if present, de-
fine the vertices of a polygon to which the map is clipped. If only two vertices are given, they are taken to
be the diagonal of a rectangle. To draw the polygon, give its vertices as a -u track.

-t file ...
The arguments name ASCII files that contain lists of points, given as latitude-longitude pairs in degrees.
If the first file is named -, the standard input is taken instead. The points of each list are plotted as con-
nected ‘tracks’.

Points in a track file may be followed by label strings. A label breaks the track. A label may be prefixed
by ", :, or ! and is terminated by a newline. An unprefixed string or a string prefixed with " is displayed
at the designated point. The first word of a : or ! string names a special symbol (see option -y). An
optional numerical second word is a scale factor for the size of the symbol, 1 by default. A : symbol is
aligned with its top to the north; a ! symbol is aligned vertically on the page.

-u file ...
Same as -t, except the tracks are unbroken lines. (-t tracks are dot-dash lines.)

-y file
The file contains plot(5)-style data for : or ! labels in -t or -u files. Each symbol is defined by a com-
ment :name then a sequence of m and v commands. Coordinates (0,0) fall on the plotting point. Default
scaling is as if the nominal plotting range were ra -1 -1 1 1; ra commands in file change the scaling.

EXAMPLES
map perspective 1.025 -o 40.75 74 A view looking down on New York from 100 miles (0.025 of
the 4000-mile earth radius). The job can be done faster by limiting the map so as not to ‘plot’ the
invisible part of the world: map perspective 1.025 -o 40.75 74 -l 20 60 30 100.
A circular border can be forced by adding option -w 77.33. (Latitude 77.33° falls just inside a

897

MAP(7) Miscellaneous Information Manual MAP(7)

polar cap of opening angle arccos(1/1.025) = 12.6804°.)

map mercator -o 49.25 -106 180 A map whose ‘equator’ is a great circle pasing east-west
through New York. The pole of the map is placed 90° away (40.75+49.25=90) on the other side
of the earth. A 180° twist around the pole of the map arranges that the Prime Meridian of the
map runs from the pole of the map over the North Pole to New York instead of down the back
side of the earth. The same effect can be had from map mercator -o 130.75 74

map albers 28 45 -l 20 50 60 130 -m states A customary curved-latitude map of the United
States.

map albers 28 45 -l 20 50 60 130 -y yfile -t tfile An example of tracks, labels, and symbols.
Arrows at New York and Miami are 8% and 12% as long as the map is wide. The contents of
yfile and tfile are
ra -50 -50 50 50 25.77 80.20 :arrow 12
:arrow 25.77 80.20 Miami
m -1 0 25.77 80.20
v 0 0 35.00 74.02
v -.6 .3 40.67 74.02 !arrow 8
m -.6 -.3 40.67 74.02 " New York
v 0 0 34.05 118.25 Los Angeles

map harrison 2 30 -l -90 90 120 240 -o 90 0 0
A fan view covering 60° on either
side of the Date Line, as seen from one earth radius
above the North Pole gazing at the
earth’s limb, which is 30° off vertical.
Option
-o
overrides the default
-o 90 0 180,
which would rotate
the scene to behind the observer.

FILES
All files in directory $MAPDIR

[1-4]??
World Data Bank II for option -f

world,states,counties
default and other maps for option -m

∗.x map indexes

map the program proper

SEE ALSO
map(5), proj(3), plot(1)

DIAGNOSTICS
‘Map seems to be empty’—a coarse survey found zero extent within the -l and -w bounds; for maps of
limited extent the grid resolution, res, or the limits may have to be refined.

BUGS
The syntax of range specifications in -y files differs from that in options.
Windows (option -w) cannot cross the Date Line.
No borders appear along edges arising from visibility limits.
Segments that cross a border are dropped, not clipped.
Certain very long line segments are dropped on the assumption that they were intended to go the other
way around the world.
Automatic scaling may miss the extreme points of peculiarly shaped maps; use option -p to recover.
Although map draws grid lines dotted and -t tracks dot-dashed, many plotting filters cannot cope and
make them solid.

898

ME(7) Miscellaneous Information Manual ME(7)

NAME
me - macros for formatting papers

SYNOPSIS
nroff -me [options] file ...
troff -me [options] file ...

DESCRIPTION
This package of nroff and troff macro definitions provides a canned formatting facility for technical pa-
pers in various formats. When producing 2-column output on a terminal, filter the output through col(1)

The macro requests are defined below. Many nroff and troff requests are unsafe in conjunction with this
package, however these requests may be used with impunity after the first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=1 single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the eqn, neqn, refer, and tbl(1) preprocessors for equations and tables is acceptable as input.

FILES
/usr/lib/tmac/tmac.e
/usr/lib/me/∗

SEE ALSO
eqn(1), troff(1), refer(1), tbl(1)
-me Reference Manual, Eric P. Allman
Writing Papers with Nroff Using -me

REQUESTS
In the following list, “initialization” refers to the first .pp, .lp, .ip, .np, .sh, or .uh macro. This list is in-
complete; see The -me Reference Manual for interesting details.

Request Initial Cause Explanation
Value Break

.(c - yes Begin centered block

.(d - no Begin delayed text

.(f - no Begin footnote

.(l - yes Begin list

.(q - yes Begin major quote

.(x x - no Begin indexed item in index x

.(z - no Begin floating keep

.)c - yes End centered block

.)d - yes End delayed text

.)f - yes End footnote

.)l - yes End list

.)q - yes End major quote

.)x - yes End index item

.)z - yes End floating keep

.++ m H - no Define paper section. m defines the part of the paper, and can be C (chapter), A (ap-
pendix), P (preliminary, e.g., abstract, table of contents, etc.), B (bibliography), RC
(chapters renumbered from page one each chapter), or RA (appendix renumbered from
page one).

.+c T - yes Begin chapter (or appendix, etc., as set by .++). T is the chapter title.

.1c 1 yes One column format on a new page.

.2c 1 yes Two column format.

.EN - yes Space after equation produced by eqn or neqn.

3rd Berkeley Distribution 11/16/79 899

ME(7) Miscellaneous Information Manual ME(7)

.EQ x y - yes Precede equation; break out and add space. Equation number is y. The optional argu-
ment x may be I to indent equation (default), L to left-adjust the equation, or C to cen-
ter the equation.

.TE - yes End table.

.TH - yes End heading section of table.

.TS x - yes Begin table; if x is H table has repeated heading.

.ac A N - no Set up for ACM style output. A is the Author’s name(s), N is the total number of
pages. Must be given before the first initialization.

.b x no no Print x in boldface; if no argument switch to boldface.

.ba +n 0 yes Augments the base indent by n. This indent is used to set the indent on regular text
(like paragraphs).

.bc no yes Begin new column

.bi x no no Print x in bold italics (nofill only)

.bx x no no Print x in a box (nofill only).

.ef ’x’y’z’ ’’’’ no Set even footer to x y z

.eh ’x’y’z’ ’’’’ no Set even header to x y z

.fo ’x’y’z’ ’’’’ no Set footer to x y z

.hx - no Supress headers and footers on next page.

.he ’x’y’z’ ’’’’ no Set header to x y z

.hl - yes Draw a horizontal line

.i x no no Italicize x; if x missing, italic text follows.

.ip x y no yes Start indented paragraph, with hanging tag x. Indentation is y ens (default 5).

.lp yes yes Start left-blocked paragraph.

.lo - no Read in a file of local macros of the form .∗x. Must be given before initialization.

.np 1 yes Start numbered paragraph.

.of ’x’y’z’ ’’’’ no Set odd footer to x y z

.oh ’x’y’z’ ’’’’ no Set odd header to x y z

.pd - yes Print delayed text.

.pp no yes Begin paragraph. First line indented.

.r yes no Roman text follows.

.re - no Reset tabs to default values.

.sc no no Read in a file of special characters and diacritical marks. Must be given before initial-
ization.

.sh n x - yes Section head follows, font automatically bold. n is level of section, x is title of section.

.sk no no Leave the next page blank. Only one page is remembered ahead.

.sz +n 10p no Augment the point size by n points.

.th no no Produce the paper in thesis format. Must be given before initialization.

.tp no yes Begin title page.

.u x - no Underline argument (even in troff). (Nofill only).

.uh - yes Like .sh but unnumbered.

.xp x - no Print index x.

3rd Berkeley Distribution 11/16/79 900

NETLIB(7) Miscellaneous Information Manual NETLIB(7)

NAME
netlib - retrieve public-domain software

SYNOPSIS
mail research!netlib

DESCRIPTION
Netlib retrieves files by electronic mail from a set of libraries of public-domain software, mostly mathe-
matical. Netlib responds to mail messages containing one or more of the requests described below.

send index
send [option ...] file ... [but not file ...] from library ...

Retrieve files from specified libraries. The index lists all libraries and gives other helpful infor-
mation. A file is delivered together with all files it depends on from its library, unless option
only is present. Files are retrieved in upper case for requests written in upper case.

whois names
Retrieve addresses and telephone numbers from a database of applied mathematicians.

find word ... [from library ...]
Retrieve one-line index descriptions by content from all or any directories.

mailsize size
Limit the length of mail messages to size. The size may be given in kilobytes, e.g. 100k.

For information about a particular library, retrieve its index, which lists routines with one-line descrip-
tions, or its directory. The library core contains machine constants and basic linear algebra modules
that are needed with many other libraries.

EXAMPLES
send index from eispack

What’s in eispack?

send directory from eispack
Get file names and sizes.

send dgeco from linpack
Retrieve a routine and all it depends on.

send list of dgeco from linpack
How big would that retrieval be?

find cubic spline
What does netlib have about ‘cubic’ or ‘spline’?

901

NETNEWS(7) Miscellaneous Information Manual NETNEWS(7)

NAME
netnews − send or receive news articles

SYNOPSIS
netnews [option ...]

netnews -s [newsgroup ...]

netnews -i title [-n newsgroup ...]

DESCRIPTION
Netnews is an intercomputer news service. Used now only locally, it has been replaced by postnews(7)
and readnews(7) for outside connections. When invoked without options it prints recent articles. Nor-
mally the articles printed are restricted to newsgroups you have signed up for and are newer than your last
use of netnews. After each article a command is read from the standard input:

newline
Go on to next article.

p Print article again.
- Go back to previous article.
c Cancel (restricted to contributor and super-user).
w file

Append a copy of the article to the named file.
r Reply to author (via mail).
q Exit.
x Exit without update.

The options are:

-p Print with no questions asked.

-r Print in reverse time order.

-l Print titles only.

-a date
Print articles received after date; no date means the beginning of time.

-n newsgroup ...
Print articles from named newsgroups.

-t string ...
Print only titles containing one of the strings.

-s newsgroup ...
Subscribe to named newsgroups. If no newsgroups are given, list your current subscriptions.
Newsgroup all receives all articles; net.all receives all newsgroups that begin with net., etc.
All users subscribe to the newsgroup general.

-i Insert an article (read from standard input) with title title to the newsgroups specified by -n
(default general).

FILES
$HOME/.newsrc

user’s subscription list

/usr/spool/news/sys.nnn
news articles

/usr/spool/news/.bitfile
bit map of users with news

/usr/spool/news/.ngfile
list of legal newsgroups

/usr/spool/news/.uindex
index of netnews users

local, not alice 902

NETNEWS(7) Miscellaneous Information Manual NETNEWS(7)

/usr/spool/news/.nindex
index of news articles

/usr/spool/news/.seq
sequence number of last article

/usr/spool/news/.history
list of all articles ever seen

/usr/spool/news/.sys
system subscription list

SEE ALSO
news(7), readnews(7), netnews(5)

local, not alice 903

NEWS(7) Miscellaneous Information Manual NEWS(7)

NAME
news − print news items

SYNOPSIS
news [-a] [-n] [-s] [item ...]

DESCRIPTION
When invoked without options, this simple local news service prints files that have appeared in /usr/news
since last reading, most recent first, with each preceded by an appropriate header. The time of reading is
recorded. The options are

-a Print all items, regardless of currency. The recorded time is not changed.

-n Report the names of the current items without printing their contents, and without changing the
recorded time.

-s Report the number of current items.

Other arguments select particular news items.

If an interrupt is received during a news item, the next item is started immediately. Another interrupt
within a second of the first causes the program to terminate.

To post a news item, create a file in

You may arrange to receive news automatically by registering your mail address in A daemon mails newly
posted news items to all addresses on the list.

FILES
/usr/news/∗
$HOME/news_time date of last read news
/usr/lib/subscribers

SEE ALSO
calendar(1), readnews(7)

904

PAPERS(7) Miscellaneous Information Manual PAPERS(7)

NAME
findauthor, papers, makepaper - consult database of locally authored papers

SYNOPSIS
findauthor person

papers person

makepaper papername

DESCRIPTION
Findauthor produces a shell cd command to set the current directory to the place where papers by person
(a login name or a last name) are stored.

Papers lists the names and titles of the papers stored under person.

Makepaper produces troff(1) output for papername.

The database is stored in file system File /n/bowell/pap/Titles lists titles, authors and installation
date of papers in the database. Many papers have been preprocessed for quick presentation of figures and
equations with reader(9) These papers are stored in directories named papername.d; other papers are
stored as single files.

EXAMPLES
‘findauthor aho‘

Change to directory of Aho’s works.

FILES
/n/bowell/pap/Titles

titles, authors and installation dates

/n/bowell/pap/∗org
membership list

/n/bowell/pap/center/department/author/papername[.d]

SEE ALSO
reader(9) docsubmit(1), troff(1), doctype(1)

BUGS
Makepaper depends on doctype(1) to determine what preprocessors to run.
Makepaper does not know the author’s original arguments to refer, so papers are produced with refer’s
default arguments.
Makepaper does not work with non-troff formatters such as tex(1) or monk(1).

bowell 905

POLY (7) Miscellaneous Information Manual POLY (7)

NAME
polypic, polypr - database of polyhedra

SYNOPSIS
polypic [-phfis] solid ...
polypr [-cfhnpsifile] solid ...

DESCRIPTION
Polypic outputs a picture of the planar nets for the specified solids in plot(5) format. The options are:

-f Print the face numbers.

-h Print the hinge numbers.

-i file Use file instead of the normal database.

-s Produce an orthogonal view of the 3D solid rather than the net.

-p Produce pic(1) output.

Polypr gives more general access to the data. By default, all the data is output. If no solid is specified, all
the solids in the database are output. The options are:

-n Print only the database index number and the name.

-h Print only a header line with name and number of faces and hinges.

-f Print only the data for the flat net.

-s Print only the data for the 3D solid.

-i file Use file instead of the normal database.

-c Produce output for Tom Duff’s polygon renderer (implies -s).

-p Produce useful parameters for a perspective view; implies -c.

For both polypic and polypr, the solid may be specified by either its index number or by any prefix of the
name. Ambiguities are resolved by database order.

FILES
/usr/include/poly.h
/usr/lib/polyhedra

SEE ALSO
plot(1), poly(5)
A. G. Hume, ‘Exact Descriptions of Regular and Semi-regular Polyhedra and Their Duals’ Computing
Science Technical Report 130, AT.T Bell Laboratories, November, 1986

BUGS
Not all the polyhedra have valid 3D data.
Option -s doesn’t work yet.

bowell 906

POSTNEWS(7) Miscellaneous Information Manual POSTNEWS(7)

NAME
postnews − submit netnews articles

SYNOPSIS
postnews [file]

DESCRIPTION
Postnews submits the file as a readnews(7) article. It prompts for title, primary newsgroup, and other
newsgroup distribution. Good manners decree an informative title and accurate, minimal, distribution.

The names of newsgroups are relative pathnames of directories depending from with slashes replaced by
dots.

If no file is specified, postnews invokes an editor specified by the environment variable EDITOR (default
vi). The editor’s buffer is initialized with header information, which may be changed. The text of the
article may be appended.

SEE ALSO
readnews(7)
BSD manual for more sophisticated uses, such as posting news from a program.

BUGS
The editor default is distinctly nonclassical.

alice 907

PQ(7) Miscellaneous Information Manual PQ(7)

NAME
pq - telephonet directory assistance

SYNOPSIS
pq [option ...] query

DESCRIPTION
Pq queries ‘Post’ directory assistance computers for information from the AT.T phone book. A normal
query is a name, in the form first.middle.middle2.last,suffix, where only last is required. Earlier names
may be truncated, even to a null string, and extra punctuation may be dropped. Other fields can be speci-
fied, in the form attribute=value, with fields separated by /. The attributes are

pn

name personal (full) name; for prefix match on last name, append ∗ or ...; for phonetic search, append
or prepend ?

first, middle, middle2, last, suffix
parts of name, prefix-matched except for suffix

pid, ssn
personnel identification number, social security number

org organization code

tl title: abbreviated or prefix-matched; e.g. tl=dh, tl=dep.he

tel phone number: (908)582-6050, punctuation optional, parts may be omitted from left

area, exch, ext
parts of phone number

loc location code; for prefix match, append ∗

room, street, city, state, zip
parts of address, prefix-matched except for state

ema email address; for prefix match, append ∗

multi which of multiple addresses for one employee; e.g. multi=2

The options are

-l The query is a location code.

-o format
Provide output in the specfied format, a string like that of printf(3), with format codes being at-
tribute names.

EXAMPLES
pq penzias
pq a.a.penzias
pq ema=research!aap

Three ways to find a person.
pq loc=mh/room=2b519

Find members of an office.
pq -l mt

Find information about a location.
pq -o "24pn 10org 6loc 6room 12tel ema" a.a.penzias

The default output format.

FILES
$POST/lib/dispatch directory configuration file

SEE ALSO
tel (7)

908

QNS(7) Miscellaneous Information Manual QNS(7)

NAME
qns - query name server

SYNOPSIS
qns [-n server] [request]

DESCRIPTION
Qns retrieves information from a database of naming information. It is used by rsh and rlogin (see
dcon(1)) to translate names to internet addresses and by mail(1) to route electronic mail.

Entries in the database consist of one or more value,type pairs or simple values. A simple value declares
the name of some entity. An entry may contain no name or several, and different entries containing the
same name need not refer to the same entity.

These types are used:

dk Value is a Datakit address.

in Value is a numeric IP address.

dom Value is an internet domain name.

tel Value is a telephone number, possibly prefixed by a uucp Dialcodes name.

org Value is an organization name.

svc Value names a service.

origin Value must be local, for sorting by ‘distance’; see below.

The following entries describe an entity research with a Datakit address, an IP address and domain name,
belonging to organization att, and offering the uucp service:

192.11.4.55,in research research.astro.nj.att.com.,dom att,org
research nj/astro/research,dk uucp,svc att,org

Qns prints database entries that match requests. If a request is supplied on the command line, qns prints
the answer and exits; otherwise it reads and answers requests from the standard input until end-of-file.
The possible requests are:

set key...
Print every entry matching all keys.

value tlist key...
Examine entries matching the keys until a pair with type tlist is found; print the matching value
and stop. Tlist may be a single type, or several separated by |.

reset Cause the name server to reinitialize its database.

help Print a list of requests.

quit Exit qns.

A key is a value,type pair; an entry matches if it contains that pair. If ,type is omitted, any pair with the
specified value will do. A ∗ at the end of a value stands for an arbitrary suffix.

When a database search returns several entries with dk or dom types, and the database contains an entry
with the conventional pair local,origin, the entries are sorted by increasing ‘distance’ from the dk or dom
pairs in the local,origin entry. Datakit names in the same exchange are nearer than names in different
exchanges in the same area, which are nearer than names in different areas. Domain names matching to
four levels of domain hierarchy are nearer than names matching to only three levels, and so on.

Qns expects to reach the name server ns(8); option -n points it at service server instead.

SEE ALSO
ipc(3), ns(8)

909

READNEWS(7) Miscellaneous Information Manual READNEWS(7)

NAME
checknews, readnews - read netnews articles

SYNOPSIS
readnews [-a date] [-n newsgroup ...] [-t title ...] [-lprxhfuM] [-c [command]]

readnews -s

checknews [ynqve] [readnews-options]

DESCRIPTION
Readnews prints unread articles that have arrived via the informal, worldwide ‘netnews’ network. With-
out arguments it prints unread articles from newsgroups to which you subscribe. The options are:

-M An interface to Mail(A)A mail(1)-like interface.

-c command
Articles are written to a temporary ‘mailbox’ and the command (e.g. mail -f) invoked, with
the mailbox in place of . A missing command gets something like mail(1).

-p Articles are sent to the standard output, no questions asked.

-l Titles only. The file .newsrc will not be updated.

-r Print articles in reverse order.

-f No followup articles.

-h Printed in a briefer format.

-u Update file .newsrc every 5 minutes.

-n newsgroup ...
Select articles that belong to newsgroups.

-t titles
Select articles whose titles contain one of the title strings.

-a date
Select articles that were posted since date; a missing date means the beginning of time.

-x Ignore select previously read as well as unread articles.

-s Print subscription list.

The file or a file specified by environment variable NEWSRC, tells what topics you are interested in and
what you have read. If .newsrc contains a line starting with options (left justified, continued by trailing
\), or if the environment variable NEWSOPTS is present, options are taken from there as well as the
command line. In case of conflict, an option on the command line take precedence, followed by .newsrc
and finally NEWSOPTS.

Readnews invokes some other programs to perform services. To reply to a news item it uses mail(1) or an
alternate in environment parameter MAILER. It paginates with p(1), or an alternate in PAGER.
PAGER is a command, perhaps containing as in option -c, or empty for no pagination.

The default and mail interfaces support the following commands, and prompt with common alternatives: a
newline accepts the first one. For example, [ynq] proposes yes, no, and quit; newline gets yes.

y Yes. Print current article and go on to next.
n No. Skip the current article. (In mail interface, it means y.)
q Quit; update
c Cancel the article. Only the author or the super-user can do this.
r Reply. Reply to article’s author via mail. You are placed in mail, or an alternate in environment

parameter EDITOR, with a header constructed from the article. You may change or add head-
ers. Add your reply after the blank line. Upon exit the message is mailed.

rd Reply directly. You are placed in MAILER (mail by default). Type the text of the reply and
then control-D.

f title Submit a followup article. If you omit the title, readnews generates an appropriate one. You will
be placed in your EDITOR to compose the followup.

alice,research 910

READNEWS(7) Miscellaneous Information Manual READNEWS(7)

fd Follow up directly. This is like f, but does not construct headers.
N newsgroup

Go to the named newsgroup, or the next newsgroup if none is named
s file Save. Append the article to file. The default is If file is not a full pathname, it is taken relative

to HOME, overridden by environment parameter NEWSBOX. If the first character of file is |,
the rest is taken as the name of a program, into which the article is piped.

Report the name and size of the newsgroup.
e Erase. Forget that this article was read.
h Print a more verbose header.
H Print a very verbose, complete header.
U Unsubscribe from this newsgroup and go on to the next.
d Read a digest. Presents a digest as separate articles.
D number

Decrypt a Caesar cipher (usually used to obscure off-color material in net.jokes). The rota-
tion is normally determined line-by-line from character frequencies. If this fails, an explicit
number (usually 13) may be given.

v Print the current version of the news software.
! Shell escape.
number

Go to article number.
±n Skip n articles, 1 by default. The articles skipped are recorded as ‘unread’.
- Go back to last article. This is a toggle, typing it twice returns you to the original article.
x Exit. Like q except that .newsrc is not updated.
X system

Transmit article to the named system.

A - following c, f, fd, r, rd, e, h, H, or s refers to the previous article: r - is the normal way to reply to a
just-read article when the next one is being offered.

Checknews reports whether there is news present, with options:

y Report only if news is present (default).
n Report only if news is absent.
q Turn off reports; nonzero exit status indicates news.
v Show the name of the first newsgroup containing unread news.
vv Explain any claim of new news, useful if checknews and readnews disagree.
e Execute readnews if there is news.

EXAMPLES
readnews Read all unread articles.
readnews -n net.langs.c -a last thursday Print every unread article about C since last Thursday.
readnews -p >/dev/null . Discard all unread news: useful after returning from a long trip.
readnews -c "ed " -l Invoke ed(1) on a file containing the titles of all unread articles.

FILES
/usr/spool/news/newsgroup/number

News articles
/usr/lib/news/active

Active newsgroups and numbers of articles
/usr/lib/news/help

Help file for default interface
$HOME/.newsrc

SEE ALSO
postnews(7), Mail(A)

BUGS
Readnews is baroque; many users prefer to browse among the files in

alice,research 911

SCAT (7) Miscellaneous Information Manual SCAT (7)

NAME
scat - sky catalogue

SYNOPSIS
scat

DESCRIPTION
Scat looks up items in catalogues of objects outside the solar system. Items are read, one per line, from
the standard input, and their descriptions or cross-index listings (suitable for input to scat) are printed on
the standard output. An item is in one of the following formats:

ngc1234
Number 1234 in the Revised New General Catalogue of Nonstellar Objects. The output identi-
fies the type pn=planetary nebula, gc=globular cluster, oc=open cluster, dn=diffuse nebula or
nc=nebular cluster), possibly contained within the Large Magellanic Cloud (in lmc) or Small
Magellanic Cloud (in smc), its position in 2000.0 coordinates and galactic coordinates, and a
brief description.

sao12345
Number 12345 in the Smithsonian Astrophysical Star Catalogue. Output identifies the visual and
photographic magnitudes, 2000.0 coordinates, proper motion, spectral type, multiplicity and vari-
ability class, and HD number.

m4 Catalog number 4 in Messier’s catalog. The output is the NGC number.

"alpha umi"
Star names are provided in double quotes. Known names are the Greek letter designations,
proper names such as Betelgeuse, and bright variable stars. Constellation names must be the
three-letter abbreviations. The output is the SAO number. For non-Greek names, SAO numbers
and names are listed for all stars with names for which the given name is a prefix.

12h34m -16
Coordinates in the sky are translated to the nearest ‘patch’, approximately one square degree of
sky. The output is the coordinates identifying the patch, the constellations touching the patch,
and the NGC and SAO objects in the patch.

c umi Gives voluminous output consisting of the patches covering the named constellation.

FILES
/n/kwee/usr/rob/sky2/∗.sky

SEE ALSO
sky(7)
/n/kwee/usr/rob/sky2/constelnames for the three-letter abbreviations of the constellation names.

BUGS
The database is fine, but the program is feeble.
Coordinates printed by the program in the listings for SAO and NGC objects are not understood as input.

912

SKY (7) Miscellaneous Information Manual SKY (7)

NAME
sky - astronomical ephemeris

SYNOPSIS
sky [-l]

DESCRIPTION
Sky predicts the apparent locations of the sun, moon, visible planets, and stars brighter than magnitude
2.5. It reads one line from the standard input to obtain the desired time expressed as five numbers: year,
month, day, hour, and minute in GMT. An empty line means now. Each object is printed with astronomi-
cal coordinates, azimuth-elevation coordinates relative to Murray Hill, NJ, and magnitude. For variable
stars the maximum magnitude is printed with ∗.

Option -l causes sky to prompt for another viewing location.

Standard astronomical effects are accounted for: nutation and precession of the equinox, annual aberra-
tion, diurnal parallax, and proper motion. Atmospheric effects (extinction and refraction) are not calcu-
lated, nor is perturbation of the earth by other bodies.

In ephemeris (slighly different from civil) time, the program yields positions of sun, moon, and stars good
to a few tenths of an arc-second. Planets are good to a few seconds.

FILES
/usr/lib/startab

SEE ALSO
scat(7)
American Ephemeris and Nautical Almanac and Explanatory Supplement to the American Ephemeris and
Nautical Almanac

bowell 913

SUBMIT (7) Miscellaneous Information Manual SUBMIT (7)

NAME
submit - install document in database

SYNOPSIS
submit name [option ...]

DESCRIPTION
Submit ships a paper to from whence the paper will be installed under the given name in a database of lo-
cally-authored papers. The paper then becomes available for printing with makepaper (see papers(7)) or
for on-line inspection with reader(9)

Submit expects to be run from a directory that contains the files for the paper. If only the name argument
is given, submit assumes that the paper is maintained by make(1) and follows instructions in the makefile,
which must be present. The options are

-mk Use mk(1) instead of make.

-M makefile
Use the given makefile.

-m target
Make the given target.

-s script arg ...
Use a shell script instead of a makefile.

-i file ...
Format the paper with troff(1) from the listed files, using macro packages and preprocessors as
determined by doctype(1). Do not use a makefile or a shell script.

-t file ...
Format the paper with tex(1) from the listed files. Do not use a makefile or a shell script. Only
the basenames of the files need be given.

-tatex The paper uses tatex (see latex(7)). This option is used only in conjunction with -t.

FILES
/n/bowell/pap/spool/∗

DIAGNOSTICS
Submit complains if it can’t find input or if it encounters a troff .sy command.

SEE ALSO
reader(9) troff(1), papers(7)

BUGS
Submit fails if the troff preprocessors are run in a ‘hidden’ way by calling a program (or shell script).
When troff preprocessor output (i.e. pic, grap, tbl, tped, ideal) is included directly in the paper or with
.so commands, an attempt is made to find the preprocessor input file. If this attempt fails, submit refuses
to ship the paper.
Automatic installation fails if the system can’t find the author’s name or the author is not in the file con-
taining the center organization.
Doesn’t work with monk(1).

914

TEL(7) Miscellaneous Information Manual TEL(7)

NAME
tel, telno, dq - phone books

SYNOPSIS
tel key

telno key ...

dq

DESCRIPTION
Tel looks up key in a private telephone book, if it exists, and in a local book

Tel is simply a script for grep (see gre(1)), so lookup may be by any part of a name or number. Customar-
ily the local telephone book contains names, userids, home numbers, and office numbers of users. It also
contains a directory of area codes and miscellaneous people of some general interest.

Telno and dq retrieve information from a central, current database of AT.T personnel. The former is a
simple one-line interface to the latter.

For telno, a key is typically a name. Other fields in the database may be matched by using tabs within the
key (the key must be quoted to protect spaces and tabs from the shell). The fields are, in order:

name (last; last,first; first last; or payroll account no.)
organization (e.g. att or bl)
area code and exchange
extension
location
room
department
electronic mail address

Only a prefix of a first name need by given. In some positions ∗ (or ...) and ? may be used as a wild
cards as in sh(1). Case is unimportant.

Dq provides interactive access to the central database. Under mux(9) it is best run in a terminal-simulator
layer, either term 5620 or term 2621; see term(9) It displays a form with the same fields as telno. Fill
in one or more fields, using tabs to move (circularly) between them, backspace to erase, and space to
delete a field. Upon carriage return a group of answers is displayed. Type ? instead of a name to get
more instructions.

EXAMPLES
In these examples, \t represents a literal tab.

telno emlin Anyone named Emlin.

telno ’\t\t\t3744’ Anyone whose phone extension is 3744.

telno ’e∗\t\t\t\t\t\t\tresearch!∗ ’ Anyone whose last name begins with E and who gets electronic
mail on machine research.

FILES
/usr/lib/tel

SEE ALSO
bellcat in library(7), pq(7)

BUGS
The algorithm used by dq (and hence telno) to match each field is distinct and unknown to us.
Not all entries have electronic mail addresses.

915

TELNO(7) Miscellaneous Information Manual TELNO(7)

NAME
telno - retrieve from bell labs phone book

SYNOPSIS
telno [datum ... datum]

DESCRIPTION
If there are no arguments on the command line, telno reads its arguments, one to a line, from the standard
input. Arguments are names, phone numbers, or organization numbers, possibly preceded by a keyword
and an equal sign. The first character of a name must be a letter, of a phone number or organization num-
ber a digit. Otherwise regular expressions a la grep(1) are accepted. Names are prefixes of last names, or
the last name followed by a comma and one initial.

Giving a name, a phone number, or an organization number (org=127) produces white pages information.

SEE ALSO
tel(7)

DIAGNOSTICS
too long means that the given name has more letters than any name in the phone book. (All the names are
truncated to 8 characters before the data arrives on the machine.) None is printed when there are no
matches.

BUGS
The phone book is badly out of date.

916

TOWN (7) Miscellaneous Information Manual TOWN (7)

NAME
town - gazetteer of US places

SYNOPSIS
town [place]

DESCRIPTION
Town produces information about the place, which is the name of a US town, possibly followed by a
comma and a two-letter state abbreviation. If no place is given, place names are read one per line from
the standard input.

The information produced is latitude, longitude, approximate population, a forecast from weather(7), and
a recent item from apnews(7).

FILES
/usr/spool/town/ustown∗ gazetteer in cbt(1) format

SEE ALSO
av(A), dict(7)

alice 917

UNITS(7) Miscellaneous Information Manual UNITS(7)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION
Units converts quantities expressed in various standard scales to their equivalents in other scales. It works
interactively in this fashion:

You have: inch
You want: cm
∗ 2.54
/ 0.393701

Quantities are specified using the following grammar:

Unit: Empty | Unit Term | Unit / Term

Term: Number | Name | (Unit) |
square Term | sq Term | cube Term | cu Term |
Term ˆ Number

Numbers are specified in the form expected by atof(3). Names are maximal strings of non-numeric, non-
punctuation characters. Powers are indicated by the ˆ operator or by the words square and cube Paren-
theses alter grouping. The empty unit has value 1. Terms are multiplied together unless connected by /
for inversion, e.g. 15 pounds force/sq in.

Most familiar units, abbreviations, and metric prefixes are recognized, together with a generous leavening
of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light
e charge on an electron
g acceleration of gravity
force same as g
mole Avogadro’s number
water pressure head per unit height of water
au astronomical unit

The pound is a unit of mass. Compound names are run together, e.g. lightyear. British units that dif-
fer from their US counterparts are prefixed thus: brgallon. Currency is denoted belgiumfranc,
britainpound, etc.

A response of ? to ‘You want:’ displays all known units conformable with the ‘You have:’ quantity.

The complete list of units can be found in /usr/lib/Units and

FILES
/usr/lib/Units
/n/alice/usr/td/Monetary.units
/usr/lib/Units.bin

BUGS
Since units does only multiplicative scale changes, it can convert Kelvin to Rankine, but not Centigrade to
Fahrenheit.
Currency conversions are only as accurate as the most recent report of foreign exchange prices from the
AP wire.

918

WEATHER(7) Miscellaneous Information Manual WEATHER(7)

NAME
weather - conditions and forecast by town

SYNOPSIS
weather [-h] [-m]

DESCRIPTION
Weather reports current weather conditions and a forecast for towns in the contiguous United States. It
reads town names from the standard input, one per line. Each input line should be in the style of

walla

where the state is given as the 2-letter Post Office abbreviation.

The information provided is the temperature, humidity, whether or not it is raining or snowing, and an
indication of cloudiness and visibility if it is not. If the wind is above 10 knots the wind speed and direc-
tion are given. Up to three forecasts are given (assuming they can be found within a 4× 4 degree latitude-
longitude square): a forecast of high and low temperatures plus probability of precipitation taken from
some numerical model of the atmosphere, a general area forecast and a marine forecast (if near the coast
and if the -m argument is given).

The command weather -h is equivalent to weather followed by a single input line of murray hill,
nj.

SEE ALSO
avw(A)

alice 919

WX(7) Miscellaneous Information Manual WX(7)

NAME
wx - get weather information

SYNOPSIS
wx [-cemnoOs] [-a state]

DESCRIPTION
Wx writes the local (greater New York and Philadelphia) weather forecast.

The following options are available:

-e Print only the extended forecasts.

-m Print the marine weather and forecast, which gives coastal and offshore information
(winds, tides, wave heights, visibilities, etc.) for an area from Watch Hill, R.I. to Man-
asquan, N.J.

-c Print a summary of temperatures and weather for selected U.S. cities.

-n Print the national weather summary.

-s Print ski conditions for New York and New England.

-oO Print the previous (-o) and oldest avalable (-O) national weather summaries.

-a state (where state is a two-letter, lower case state abbreviation) Print (cat) an area forecast
(if available) for any state requested in the continental U.S.; e.g. wx -a mi will print the
state forecast for Michigan. The required 2-letter abbreviation for any state may be
found by typing, wx -a ?.

Except for wx -a, all information is printed under the p command. For details of p, refer to the manual
page.

FILES
/usr/lbin/wx

/usr/pub/weather/∗ weather and forecast files, updated daily

BUGS
What comes out is only as good as what went in. If the information you are requesting was not sent over
the weather line, you will get no meaningful output. If information over the line came in with faulty sepa-
rator codes, you will get strange, often cryptic, output.

920

11(8) System Manager’s Manual 11(8)

NAME
11as, 11cc, 11ld, 11nm, 11ranlib, 11reloc, 11size, 11strip - pdp11 support

DESCRIPTION
These programs do cross-compiling and related support functions for the DEC PDP-11 family of comput-
ers. Their descriptions correspond closely with those of similarly named programs in Section 1 of this
manual.

FILES
11a.out output file

921

AC(8) System Manager’s Manual AC(8)

NAME
ac - login accounting

SYNOPSIS
/etc/ac [option ...] [person ...]

DESCRIPTION
Ac prints the total connect time recorded in the accounting file, If persons are named, only those login
names are considered. The options are

-w file Use file instead of - means the standard input.

-p Print total connect time for each user.

-d Print totals for each day.

The accounting file /usr/adm/wtmp is maintained by init and login(8), provided it exists. To start
accounting, create it with length 0. When accounting is turned on, the file grows without limit. It is pru-
dent periodically to process the data and truncate the file.

FILES
/usr/adm/wtmp

SEE ALSO
init(8), sa(8), login(8), utmp(5), who(1)

922

ADDUSER(8) System Manager’s Manual ADDUSER(8)

NAME
adduser - procedure for adding new users

DESCRIPTION
A new user must choose a login name, which must not already appear in /etc/passwd. An account can be
added by editing a line into the passwd file; this must be done with the password file locked e.g. by using
vipw(8).

A new user is given a group and user id. User id’s should be distinct across a system, since they are used
to control access to files. Typically, users working on similar projects will be put in the same group. Thus
at UCB we have groups for system staff, faculty, graduate students, and a few special groups for large
projects. System staff is group “10” for historical reasons, and the super-user is in this group.

A skeletal account for a new user “ernie” would look like:

ernie::235:20:. Kovacs,508E,7925,6428202:/mnt/grad/ernie:/bin/csh

The first field is the login name “ernie”. The next field is the encrypted password which is not given and
must be initialized using passwd(1). The next two fields are the user and group id’s. Traditionally, users
in group 20 are graduate students and have account names with numbers in the 200’s. The next field gives
information about ernie’s real name, office and office phone and home phone. This information is used by
the finger(1) program. From this information we can tell that ernie’s real name is “Ernie Kovacs” (the .
here serves to repeat “ernie” with appropriate capitalization), that his office is 508 Evans Hall, his exten-
sion is x2-7925, and this his home phone number is 642-8202. You can modify the finger(1) program if
necessary to allow different information to be encoded in this field. The UCB version of finger knows
several things particular to Berkeley - that phone extensions start “2-”, that offices ending in “E” are in
Evans Hall and that offices ending in “C” are in Cory Hall.

The final two fields give a login directory and a login shell name. Traditionally, user files live on a file
system which has the machines single letter net(1) address as the first of two characters. Thus on the
Berkeley CS Department VAX, whose Berknet address is ‘‘csvax’’ abbreviated ‘‘v’’ the user file systems
are mounted on ‘‘/va’’, ‘‘/vb’’, etc. On each such filesystem there are subdirectories there for each group
of users, i.e.: “/va/staff” and “/vb/prof”. This is not strictly necessary but keeps the number of files in the
top level directories reasonably small.

The login shell will default to “/bin/sh” if none is given. Most users at Berkeley choose “/bin/csh” so this
is usually specified here.

It is useful to give new users some help in getting started, supplying them with a few skeletal files such as
.profile if they use “/bin/sh”, or .cshrc and .login if they use “/bin/csh”. The directory “/usr/skel” contains
skeletal definitions of such files. New users should be given copies of these files which, for instance,
arrange to use tset(1) automatically at each login.

FILES
/etc/passwd password file
/usr/skel skeletal login directory

SEE ALSO
passwd(1), finger(1), chsh(1), chfn(1), passwd(5), vipw(8)

BUGS
User information should be stored in its own data base separate from the password file.

4th Berkeley Distribution 923

ANALYZE(8) System Manager’s Manual ANALYZE(8)

NAME
analyze - Virtual UNIX postmortem crash analyzer

SYNOPSIS
/etc/analyze [-s swapfile] [-f] [-m] [-d] [-D] [-v] corefile [system]

DESCRIPTION
Analyze is the post-mortem analyzer for the state of the paging system. In order to use analyze you must
arrange to get a image of the memory (and possibly the paging area) of the system after it crashes (see
crash(8)).

The analyze program reads the relevant system data structures from the core image file and indexing in-
formation from /vmunix (or the specified file). to determine the state of the paging subsystem at the point
of crash. It looks at each process in the system, and the resources each is using in an attempt to determine
inconsistencies in the paging system state. Normally, the output consists of a sequence of lines showing
each active process, its state (whether swapped in or not), its p0br, and the number and location of its page
table pages. Any pages which are locked while raw i/o is in progress, or which are locked because they
are intransit are also printed. (Intransit text pages often diagnose as duplicated; you will have to weed
these out by hand.)

The program checks that any pages in core which are marked as not modified are, in fact, identical to the
swap space copies. It also checks for non-overlap of the swap space, and that the core map entries corre-
spond to the page tables. The state of the free list is also checked.

Options to analyze:

-D causes the diskmap for each process to be printed.

-d causes the (sorted) paging area usage to be printed.

-f which causes the free list to be dumped.

-m causes the entire coremap state to be dumped.

-v (long unused) which causes a hugely verbose output format to be used.

In general, the output from this program can be confused by processes which were forking, swapping, or
exiting or happened to be in unusual states when the crash occurred. You should examine the flags fields
of relevant processes in the output of a pstat(8) to weed out such processes.

It is possible to look at the core dump with adb if you do

adb /vmunix /vmcore
/m 80000000 #ffffffff

which fixes the map of vmcore so that symbols in data space will work. Note that the debugger is looking
at the physical memory at the point of crash; you will have to determine which pages of physical memory
virtual pages are in if you wish to look at them. If analyze says that a processes page tables are in page
218 (hex of course), then you can look at them by looking at address 0x80043000 in the dump, i.e.
“80043000,80/X” will print the page of page tables.

FILES
/vmunix default system namelist

SEE ALSO
ps(1), crash(8), pstat(8)

AUTHORS
Ozalp Babaoglu and William Joy

DIAGNOSTICS
Various diagnostics about overlaps in swap mappings, missing swap mappings, page table entries incon-
sistent with the core map, incore pages which are marked clean but differ from disk-image copies, pages
which are locked or intransit, and inconsistencies in the free list.

It would be nice if this program analyzed the system in general, rather than just the paging system in par-
ticular.

4th Berkeley Distribution 924

ARCV (8) System Manager’s Manual ARCV (8)

NAME
arcv - convert archives to new format

SYNOPSIS
/etc/arcv file ...

DESCRIPTION
Arcv converts archive files (see ar(1), ar(5)) from 32v and Third Berkeley editions to a new portable for-
mat. The conversion is done in place, and the command refuses to alter a file not in old archive format.

Old archives are marked with a magic number of 0177545 at the start; new archives have a first line
‘‘!<arch>’’.

FILES
/tmp/v∗ , temporary copy

SEE ALSO
ar(1), ar(5)

4th Berkeley Distribution 925

ARFF(8) System Manager’s Manual ARFF(8)

NAME
arff - read RT11 files

SYNOPSIS
arff [key] [name ...]

DESCRIPTION
Arff saves and restores files from an RT11 volume, such as the VAX console floppy or tape. Its actions
are controlled by the key argument. The key is a string of characters containing at most one function letter
and possibly one or more function modifiers. Other arguments to the command are file names specifying
which files are to be dumped or restored.

RT11 filenames must be chosen from the character set a-z0-9.. Unix filenames are trimmed to the last
pathname element; upper-case letters are folded to lower-case.

The key must include one of the following letters:

r The named files are replaced where found in the RT11 volume, or added taking up the minimal
possible portion of the first empty spot.

x The named files are extracted from the RT11 volume.

d The named files are deleted from the volume. The resulting empty spots are coalesced where
possible.

t A table of contents for the RT11 volume is printed. If filenames are given, they are echoed if
found.

The following modifiers may be added to the key:

v Normally arff does its work silently. The v (verbose) option causes it to type the name of each
file it treats preceded by the function letter. With the t function, v gives more information about
the file than just the name.

f causes arff to use the next argument as the name of the archive instead of /dev/floppy.

m causes arff not to use the mapping algorithm employed in interleaving sectors around a floppy
disk. In conjunction with the f option it may be used for extracting files from non-floppy
sources, such as the VAX-11/750 console cassette.

FILES
/dev/floppy

AUTHORS
Keith Sklower, Richard Tuck

BUGS
Floppy errors are handled ungracefully.
The program is too floppy-dependent. Mapping belongs in the device driver, or at least shouldn’t be the
default.

926

ASD(8) System Manager’s Manual ASD(8)

NAME
asd - automatic software distribution

SYNOPSIS
/usr/lib/asd/cdaemon
/usr/lib/asd/dkinstall
/usr/lib/asd/mkspool
/usr/lib/asd/rmlocks
/usr/lib/asd/udaemon

DESCRIPTION
These programs constitute the innards of the automatic software distribution system invoked by ship(8).

Mkspool creates an ASD spool directory for its invoker (if necessary), puts a file named dummy in the
directory to prevent cdaemon from deleting it, and prints the directory’s name.

Udaemon examines its invoker’s ASD spool directory in lexical order for things to do. To forestall multi-
ple daemons, it first makes an empty file named L.pid in the spool directory and tries to link to it a file If
the link fails, L.pid is removed and udaemon exits.

Shipping instructions appear in pairs of files with .s and .d suffixes. Udaemon examines each status (.s)
file for destination names and places a network call to send the corresponding data (.d) file to dkinstall at
each destination. Dkinstall verifies the data and gives it to inspkg, see mkpkg(8).

A status file contains zero or more entries, each of which has one or more lines. The first line of an entry
is a network address, with default network dk and default service asd, possibly followed by a blank and a
failure report. An entry with destination # is a comment and is ignored. Lines after the first begin with a
tab, and contain output generated by the entry. If an entry has output, it is considered complete and will
be processed no further.

Udaemon scans each status file once, and attempts to send the corresponding data file to the destination
for each incomplete entry. If the attempt fails, a failure report is appended to the entry, and it remains
incomplete. If the attempt succeeds, or the failure is severe, an error message or output from dkinstall is
appended to the entry, which makes the entry complete. If an entry is completed successfully but there are
no output lines, the entry is deleted.

Each instance of udaemon remembers which network addresses failed with non-severe errors; entries with
the same address in later status files are given failure status ‘deferred for sequence.’

If at least one additional entry was completed, udaemon sends the new status file to the owner by mail(1)
after the whole file has been scanned. If no incomplete entries remain, both status and data files are
removed.

Cdaemon examines every subdirectory of deletes empty directories and, impersonating the owner, invokes
udaemon for nonempty directories. Cdaemon should be run regularly by cron(8) with super-user permis-
sions.

Rmlocks removes all lock files in subdirectories of It should be called from rc(8).

Entries in an ASD spool directory may be made without regard to locks provided that everything is done in
the right sequence: (1) call mkspool; (2) create the data file; (3) create the status file under a temporary
name; (4) rename the status file to end with .s; (5) remove the dummy file, if present; and (6) call udae-
mon.

Because mail will not send an empty file, a status file must have a comment entry if acknowledgment is
desired after a successful udaemon run.

FILES
/usr/spool/asd/userid user’s ASD spool directory

SEE ALSO
mkpkg(8), ship(8)

927

BACKUP(8) System Manager’s Manual BACKUP(8)

NAME
backup - backup client administration

SYNOPSIS
/usr/lib/backup/sel

/usr/lib/backup/fcheck maxsize maxdays files ...

/usr/lib/backup/act [stat]

DESCRIPTION
These programs select and back up files to the incremental file backup system, backup(1).

Sel prints on the standard output a list of filenames that might need to be backed up. The initial version
picks out files that have been changed in the past few days, skipping huge files and eliding boring names
like core. Sel is a shell script; the local administrator is expected to customize it.

Fcheck is a fast, specialized file scanning program, used by sel. It examines each of the files, descending
into directories, and prints the name of each file that has been changed in the last maxdays days and is
smaller than maxsize kilobytes. Symbolic links are followed when presented as arguments, examined but
not followed otherwise.

Act reads a list of filenames from the standard input. It searches the backup database backup(5) for the
current version of each file, and backs up files that aren’t registered.

By default, act sends errors by mail(1) to user backup. If the stat argument is non-empty, errors and ad-
ditional comforting chatter are printed on the standard output instead.

One way to request automatic backups is to run

/usr/lib/backup/sel | /usr/lib/backup/act

regularly from cron(8). Particular files may be backed up by hand at any time by running act with a list
of filenames. There are no special permissions involved; any user may run act.

SEE ALSO
backup(1), backup(5)
A. Hume, ‘The File Motel: An Owner’s Manual’, this manual, Volume 2

928

CHOWN (8) System Manager’s Manual CHOWN (8)

NAME
chown - change owner or group

SYNOPSIS
/etc/chown owner,group file ...

DESCRIPTION
Chown changes the owner of the files to owner and the groupid to group. Either owner or group may be
omitted to leave the owner or groupid unchanged.

Owner may be either a decimal userid or a login name found in Group may be either a decimal groupid or
a group name found in

The owner of a file may change its group to that of the current process. Other changes are restricted to the
super-user.

FILES
/etc/passwd
/etc/group

SEE ALSO
chown in chmod(2), passwd(5), chmod(1), chdate(1)

929

CHUCK (8) System Manager’s Manual CHUCK (8)

NAME
chuck - a file system checking program

SYNOPSIS
/etc/chuck [option ...] device

/etc/chuck -M blocks device

/etc/upchuck [-w] [-p program]

DESCRIPTION
Chuck checks and optionally repairs the file system on the named device. It is normally invoked by up-
chuck by rc(8) during reboots. The -w flag to upchuck is passed on to program. If program is not
present, the default is (Try, as super-user, /etc/upchuck -p /bin/echo to see the normal arguments to
chuck.) If upchuck can read the raw version of device, it will, except for the root file system.

The options are

-w Try to do standard repairs.

-b blocksize
Specify file system block size; default is 4096.

-i Interactive. Ask approval for each change.

-I inode ...
-B block ...

Report on inodes or blocks specified by number.

-v Verbose. Give more commentary.

Chuck can also make a new file system: chuck -M size device makes a bitmapped file system (only) of
size 4096-byte blocks on device. It asks approval before writing.

FILES
/etc/fstab

SEE ALSO
fstab(5), filsys(5), fsck(8), reboot(8)

BUGS
Chuck does not replace real expertise. It will not automatically repair a file system with duplicate blocks.
In complicated situations it may have to be run several times to get complete consistency.
It will not recover from I/O errors in reading the inodes, and does not yet extend lost+found when nec-
essary.
It uses memory freely (about 12 bytes per file system block and 84 bytes per inode).
Chuck is still experimental, and acts the part. Error messages are usually inscrutable.
It believes even preposterous super-blocks and consequently can get core images.

930

CLRI (8) System Manager’s Manual CLRI (8)

NAME
clri - clear inode

SYNOPSIS
/etc/clri special i-number ...

DESCRIPTION
Clri writes zeros on the inodes with the decimal i-numbers on the file system in file special. After clri,
any blocks in the affected file will show up as ‘missing’ in icheck(8).

The inode becomes allocatable.

The primary purpose of this program is to remove a file which for some reason appears in no directory. If
it is used to clear an inode which does appear in a directory, care should be taken to track down the entry
and remove it. Otherwise, when the inode is reallocated to some new file, the old entry will still point to
that file. At that point removing the old entry will destroy the new file. The new entry will again point to
an unallocated inode, so the cycle is likely to be repeated.

Clri is a last resort; normally fsck(8) can do the necessary repairs.

SEE ALSO
fsck(8), icheck(8)

BUGS
If the file is open, clri is likely to be ineffective.

931

CONFIG(8) System Manager’s Manual CONFIG(8)

NAME
config - configure a Unix kernel

SYNOPSIS
/etc/config [machine]

DESCRIPTION
Config generates files used to build a Unix kernel for the named machine. The working directory should
be /usr/sys/conf or /usr/sys/machine; if the latter, machine may be omitted from the command.

A machine description is expected in machine/conf; a makefile, a number of header files, and some C and
assembler programs are generated from the description.

The usual way to configure a new system is:

mkdir /usr/sys/newmach
cd /usr/sys/newmach
(create conf)
/etc/config
make

FILES
All these files are in the configuration directory.
../conf/makefile

makefile template

../conf/files
list of kernel source files

files
more sources specific to this machine

../conf/devices
list of device handlers

devices
more devices specific to this machine

conf machine description

SEE ALSO
config(5)

BUGS
At the moment, it’s also necessary to create

932

CPP(8) System Manager’s Manual CPP(8)

NAME
cpp - C language preprocessor

SYNOPSIS
/lib/cpp [option ...] [ifile [ofile]]

DESCRIPTION
Cpp interprets preprocessor directives and does macro substitution for cc(1) and other compilers. The in-
put ifile and output ofile default to standard input and standard output respectively.

The options are:

-P Do not place line number markings in output.

-C Do not remove comments.

-Uname
-Dname
-Dname=def
-Idir Same as in cc(1). -U overrides -D.

-H Report all included files on standard error file,.

-M Attach modification date to file names in line number directives thus: file@modtime, where mod-
time is the integer number of seconds since the epoch.

-T Truncate preprocessor symbols to eight characters.

-Ydir Use dir instead of /usr/include as the last resort in searching for include files.

The output file contains processed text sprinkled with lines that show the original input line numbering:

linenumber "ifile"

The input language is as described in the reference, with a few additions:

The # linenumber marks placed in the output are accepted as an alternative to the official #line directive.

These symbols are predefined in various implementations:

ibm gcos os tss unix
interdata pdp11 u370 u3b u3b5 vax
RES RT
lint

Preprocessor formal parameters are recognized within quoted strings in the replacement text.

When comments are removed they are replaced by null strings; this unofficial feature makes it possible to
construct identifiers by concatenation.

FILES
/usr/include

standard directory for include files

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1988

933

CRASH(8) System Manager’s Manual CRASH(8)

NAME
crash - what happens when the system crashes

DESCRIPTION
This section explains what happens when the system crashes and how you can get a crash dump for analy-
sis of non-transient problems.

When the system crashes voluntarily it prints a message of the form

panic: why i gave up the ghost

on the console, and then invokes an automatic reboot procedure as described in reboot(8). If the auto-re-
boot switch is off on the console, then the processor will simply halt at this point. Otherwise the registers
and the top few locations of the stack will be printed on the console, and then the system will check the
disks and (unless some unexpected inconsistency is encountered), resume multi-user operations.

The system has a large number of internal consistency checks; if one of these fails, then it will panic with
a very short message indicating which one failed. In the absence of a dump, little can be done about one
of these. If the problem recurs, you should arrange to get a dump for further analysis by running with
auto-reboot disabled during normal working hours and then following the procedure described below.

The most common cause of system failures is hardware failure, which can reflect itself in different ways.
Here are the messages which you are likely to encounter, with some hints as to causes. Left unstated in all
cases is the possibility that hardware or software error produced the message in some unexpected way.

IO err in push
hard IO err in swap

The system encountered an error trying to write to the paging device or an error in reading criti-
cal information from a disk drive. You should fix your disk if it is broken or unreliable.

Timeout table overflow
ran out of bdp’s
ran out of uba map

These really shouldn’t be panics, but until we fix up the data structures involved, running out of
entries causes a crash. If the timeout table overflows, you should make it bigger. If you run out
of bdp’s or uba map you probably have a buggy device driver in your system, allocating and not
releasing UNIBUS resources.

KSP not valid
SBI fault
Machine check
CHM? in kernel

These indicate either a serious bug in the system or, more often, a glitch or failing hardware. For
the machine check, the top part of the resulting stack frame gives more information. You can re-
fer to a VAX 11/780 System Maintenance Guide for information on machine checks. If machine
checks or SBI faults recur, check out the hardware or call field service. If the other faults recur,
there is likely a bug somewhere in the system, although these can be caused by a flakey proces-
sor. Run processor microdiagnostics.

trap type d, code=d
A unexpected trap has occurred within the system; the trap types are:

reserved addressing mode
1 privileged instruction
2 BPT
3 XFC
4 reserved operand
5 CHMK (system call)
6 arithmetic trap
7 reschedule trap (software level 3)
8 segmentation fault
9 protection fault

4th Berkeley Distribution VAX-11 934

CRASH(8) System Manager’s Manual CRASH(8)

10 trace pending (TP bit)

The favorite trap type in system crashes is trap type 9, indicating a wild reference. The code is
the referenced address. If you look down the stack, just after the trap type and the code are the
pc and the ps of the processor when it trapped, showing you where in the system the problem oc-
curred. These problems tend to be easy to track down if they are kernel bugs since the processor
stops cold, but random flakiness seems to cause this sometimes, e.g. we have trapped with code
80000800 three times in six months as an instruction fetch went across this page boundary in the
kernel but have been unable to find any reason for this to have happened.

init died
The system initialization process has exited. This is bad news, as no new users will then be able
to log in. Rebooting is the only fix, so the system just does it right away.

That completes the list of panic types you are likely to see. Now for the crash dump procedure:

At the moment a dump can be taken only on magnetic tape. Before you do anything, be sure that a clean
tape is mounted with a ring-in on the tape drive if you plan to make a dump.

Write the date and time on the console log. Use the console commands to examine the registers, program
status long word, and the top several locations on the stack. A suggested command sequence, which is ex-
ecuted by the “@DUMP” console command script, is:

E PSL<return>
E R0/NE:F<return>
E SP<return>
E/V @ /NE:40<return>

If hardware problems dictate a special set of commands be executed when the system crashes, a sequence
of commands can be saved using the console command “LINK” to be reexecuted with “PERFORM”
(which can be abbreviated “P”). If a dump is to be taken on magnetic tape (this is a good idea in most any
case where the cause of the crash is not immediately obvious) then the following commands will (should)
be executed:

D PSL 0<return>
D PC 80000200<return>
C<return>

These commands are actually part of the standard “@DUMP” script. This should write a copy of all of
memory on the tape, followed by two EOF marks. Caution: Any error is taken to mean the end of mem-
ory has been reached. This means that you must be sure the ring is in, the tape is ready, and the tape is
clean and new.

If there are not 40(hex) locations active on the kernel stack when the procedure is begun, then the console
may begin to print error diagnostics. You can stop this by hitting “ˆC” (control-C), and then give the last
three commands above.

If the dump fails, you can try again, but some of the registers will be lost. See below for what to do with
the tape.

To restart after a crash, follow the directions in reboot(8); if the virtual memory subsystem is suspected as
the cause of the crash, then a version of the system other than “vmunix” should be booted which will
leave the paging areas temporarily intact for use by the post-mortem analysis program analyze. After
checking your root file system consistency with fsck(8), you can read the core dump tape into the file /vm-
core with

dd if=/dev/rmt0 of=/vmcore bs=20b

It does not work to use just cp(1), as the tape is blocked. With the system still in single-user mode, run
the analysis program analyze, e.g.:

analyze -s /dev/drum /vmcore /vmunix

and save the output. Then boot up “vmunix” and let it do the automatic reboot, i.e. to boot multi-user
from an RM03/RM05/RP06 on the MASSBUS

>>> BOOT RPM

After rebooting, to analyze a dump you should execute ps -alxk to print the process table at the time of

4th Berkeley Distribution VAX-11 935

CRASH(8) System Manager’s Manual CRASH(8)

the crash. Use adb(1) to examine /vmcore. The location dumpstack-80000000 is the bottom of a stack
onto which were pushed the stack pointer sp, PCBB (containing the physical address of a u_area),
MAPEN, IPL, and registers r13-r0 (in that order). r13(fp) is the system frame pointer and the stack is
used in standard calls format. Use adb(1) to get a reverse calling order. In most cases this procedure will
give an idea of what is wrong. A more complete discussion of system debugging is impossible here. See,
however, analyze(8) for some more hints.

SEE ALSO
analyze(8), reboot(8)
VAX 11/780 System Maintenance Guide for more information about machine checks.

BUGS

4th Berkeley Distribution VAX-11 936

CRON (8) System Manager’s Manual CRON (8)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION
Cron executes commands at specified dates and times according to the instructions in the file It should be
run once from rc(8).

Crontab entries are lines of seven fields separated by blanks or tabs:

login minute hour day month weekday command

Login is the login name under whose userid and groupid the command should be executed. The next five
fields are integer patterns for

minute 0-59
hour 0-23
day of month

1-31
month of year

1-12
day of week

0-6; 0=Sunday

Each pattern may contain a number in the range above; two numbers separated by a hyphen meaning an
inclusive range; a list of numbers separated by commas meaning any of the numbers; or an asterisk mean-
ing all legal values.

The last field is a string to be executed by the shell, after replacing with newline.

It is wise to spread the times of activities to avoid bogging the system down at favorite hours.

Cron examines crontab every minute.

EXAMPLES
daemon 17 3 ∗ ∗ ∗ /usr/bin/calendar - # reminders at 0317
adm 15 4 1,15 ∗ ∗ ac -p | mail adm # bimonthly accounts
root 0 12 22-28 11 4 /etc/wall Time for Thanksgiving dinner

FILES
/etc/crontab

SEE ALSO
at(1)

BUGS
The behavior of in crontab entries is nonstandard. Strings following should be delivered to the com-
mand as standard input.

937

DCHECK (8) System Manager’s Manual DCHECK (8)

NAME
dcheck - file system directory consistency check

SYNOPSIS
/etc/dcheck [-i numbers] [filesystem]

DESCRIPTION
N.B.: Dcheck is obsoleted for normal consistency checking by fsck(8).

Dcheck reads the directories in a file system and compares the link-count in each i-node with the number
of directory entries by which it is referenced. If the file system is not specified, a set of default file sys-
tems is checked.

The -i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a directory, the
number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in large chunks.

FILES
Default file systems vary with installation.

SEE ALSO
fsck(8), icheck(8), filsys(5), clri(8), ncheck(8)

DIAGNOSTICS
When a file turns up for which the link-count and the number of directory entries disagree, the relevant
facts are reported. Allocated files which have 0 link-count and no entries are also listed. The only dan-
gerous situation occurs when there are more entries than links; if entries are removed, so the link-count
drops to 0, the remaining entries point to thin air. They should be removed. When there are more links
than entries, or there is an allocated file with neither links nor entries, some disk space may be lost but the
situation will not degenerate.

BUGS
Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active
file systems.

Dcheck is obsoleted by fsck and remains for historical reasons.

4th Berkeley Distribution 938

DELIVERMAIL(8) System Manager’s Manual DELIVERMAIL(8)

NAME
delivermail - deliver mail to arbitrary people

SYNOPSIS
/etc/delivermail [-[fr] address] [-a] [-ex] [-n] [-m] [-s] [-i] [-h N] address ...

DESCRIPTION
Delivermail delivers a letter to one or more people, routing the letter over whatever networks are neces-
sary. Delivermail will do inter-net forwarding as necessary to deliver the mail to the correct place.

Delivermail is not intended as a user interface routine; it is expected that other programs will provide
user-friendly front ends, and delivermail will be used only to deliver pre-formatted messages.

Delivermail reads its standard input up to a control-D or a line with a single dot and sends a copy of the
letter found there to all of the addresses listed. If the -i flag is given, single dots are ignored. It deter-
mines the network to use based on the syntax of the addresses. Addresses containing the character ‘@’ or
the word “at” are sent to the ARPANET; addresses containing ‘!’ are sent to the UUCP net, and addresses
containing ‘:’ or ‘.’ are sent to the Berkeley network. Other addresses are assumed to be local.

Local addresses are looked up in a file constructed by newaliases(1) from the data file /usr/lib/aliases and
aliased appropriately. Aliasing can be prevented by preceding the address with a backslash or using the
-n flag. Normally the sender is not included in any alias expansions, e.g., if ‘john’ sends to ‘group’, and
‘group’ includes ‘john’ in the expansion, then the letter will not be delivered to ‘john’. The -m flag dis-
ables this suppression.

Delivermail computes the person sending the mail by looking at your login name. The “from” person can
be explicitly specified by using the -f flag; or, if the -a flag is given, delivermail looks in the body of the
message for a “From:” or “Sender:” field in ARPANET format. The -f and -a flags can be used only by
the special users root and network, or if the person you are trying to become is the same as the person you
are. The -r flag is entirely equivalent to the -f flag; it is provided for ease of interface only.

The -ex flag controls the disposition of error output, as follows:

e Print errors on the standard output, and echo a copy of the message when done. It is assumed that a
network server will return the message back to the user.

m
Mail errors back to the user.

p
Print errors on the standard output.

q
Throw errors away; only exit status is returned.

w
Write errors back to the user’s terminal, but only if the user is still logged in and write permission is
enabled; otherwise errors are mailed back.

If the error is not mailed back, and if the mail originated on the machine where the error occurred, the let-
ter is appended to the file dead.letter in the sender’s home directory.

If the first character of the user name is a vertical bar, the rest of the user name is used as the name of a
program to pipe the mail to. It may be necessary to quote the name of the user to keep delivermail from
suppressing the blanks from between arguments.

The message is normally edited to eliminate “From” lines that might confuse other mailers. In particular,
“From” lines in the header are deleted, and “From” lines in the body are prepended by ‘>’. The -s flag
saves “From” lines in the header.

The -h flag gives a “hop-count”, i.e., a measure of how many times this message has been processed by
delivermail (presumably on different machines). Each time delivermail processes a message, it increases
the hop-count by one; if it exceeds 30 delivermail assumes that an alias loop has occurred and it aborts the
message. The hop-count defaults to zero.

Delivermail returns an exit status describing what it did. The codes are defined in <sysexits.h>
EX_OK Successful completion on all addresses.

4th Berkeley Distribution 939

DELIVERMAIL(8) System Manager’s Manual DELIVERMAIL(8)

EX_NOUSER User name not recognized.
EX_UNAVAILABLE Catchall meaning necessary resources were not available.
EX_SYNTAX Syntax error in address.
EX_SOFTWARE Internal software error, including bad arguments.
EX_OSERR Temporary operating system error, such as “cannot fork”.
EX_NOHOST Host name not recognized.

FILES
/usr/lib/aliases raw data for alias names
/usr/lib/aliases.dir data base of alias names
/usr/lib/aliases.pag
/bin/mail to deliver uucp mail
/usr/net/bin/v6mail to deliver local mail
/usr/net/bin/sendmail to deliver Berknet mail
/usr/lib/mailers/arpa to deliver ARPANET mail
/tmp/mail∗ temp file
/tmp/xscript∗ saved transcript

SEE ALSO
biff(1), binmail(1), mail(1), newaliases(1), aliases(5)

BUGS
Delivermail sends one copy of the letter to each user; it should send one copy of the letter to each host
and distribute to multiple users there whenever possible.

Delivermail assumes the addresses can be represented as one word. This is incorrect according to the
ARPANET mail protocol RFC 733 (NIC 41952), but is consistent with the real world.

4th Berkeley Distribution 940

DKMGR(8) System Manager’s Manual DKMGR(8)

NAME
dkhup, dkmgr, dkzap - manage Datakit interface

SYNOPSIS
/usr/ipc/mgrs/dkhup [-N prefix]
/usr/ipc/mgrs/dkmgr [-N prefix] [-m outname] [-n service]
/usr/ipc/mgrs/dkzap [-N prefix]

DESCRIPTION
Dkhup starts the common signaling channel protocol for a Datakit interface. Initially it sends several reset
messages, and tells the controller to hang up all outstanding calls; thereafter it simply keeps the signaling
protocol running.

Dkmgr receives and places Datakit calls. Outbound calls may be placed by calling ipcopen (ipc(3)) with
the outname specified by option -m; the default is dk. Dkmgr announces itself to the Datakit network
with the service name specified by option -n; the default is taken from Inbound calls to service are con-
nected to the local login service; inbound calls to Datakit address service.serv are handed to local ser-
vice serv.

Dkhup and dkmgr are normally run once from rc(8). Both programs must be running to make the net-
work available.

Dkzap arranges for a KMC11-assisted Datakit interface to be reset, reloaded, and restarted. This should
be done only if things are badly broken, as it hangs up all existing calls through that interface.

Datakit devices are expected to have names of the form /dev/dk/dknn with nn a two-digit channel num-
ber. If there are more than 100 channels, the first digit overflows to lower-case letters: channel 100 is a0.
The common signaling control channel is named /dev/dk/dkctl. All three programs accept an option -N
prefix to change the naming convention; for example, -N /dev/kb/kb means that the files have names like
/dev/kb/kb32 and /dev/kb/kbctl.

Support also exists for a less general naming convention: there may be two sets of files, named
/dev/dk/dk0nn and /dev/dk/dk2nn, with control channels /dev/dk/dkctl0 and /dev/dk/dkctl2. Dkhup
and dkzap take the extra argument 0 or 2 to point at one or the other of the control names. A separate
copy of dkhup is needed for each name. Dkmgr takes an option -u c, where c is 0 or 2 to use one set of
files, or b to use both simultaneously; in the latter case, service is announced to both networks. This
scheme is obsolete and overdue for replacement; the missing piece is something to pick an interface for
outcalls.

Dkmgr records its activity in file service in directory /usr/ipc/log, default /usr/ipc/log/dk.

FILES
/dev/dk

SEE ALSO
con(1), kmc(8), svcmgr(8), ipc(3)

BUGS
Dkhup should be folded into dkmgr; it is separate for historic reasons.

941

DMESG(8) System Manager’s Manual DMESG(8)

NAME
dmesg - system diagnostic messages

SYNOPSIS
/etc/dmesg [-] [-i] [core namelist]

DESCRIPTION
Dmesg looks in a system buffer for recent console messages from the operating system and reproduces
them on the standard output. Under option -, dmesg produces only those messages printed by the system
since the last time dmesg - was run. It is normally run periodically by cron(8) to produce the error log

Option -i prints messages produced since the last dmesg - without changing any records.

If core and namelist are specified, they are used in place of /dev/kmem and

FILES
/usr/adm/messages

error log

/usr/adm/msgbuf
record of option -

BUGS
Since the system error message buffer is small, not all error messages are guaranteed to be logged.
Error messages generated immediately before a system crash may not be logged.

942

DUMP(8) System Manager’s Manual DUMP(8)

NAME
dump - incremental file system dump

SYNOPSIS
/etc/dump [key [argument ...] filesystem]

DESCRIPTION
Dump copies to magnetic tape all files changed after a certain date in the filesystem. The key specifies the
date and other options about the dump. Key consists of characters from the set 0123456789fuJsdWn.

0-9
This number is the ‘dump level’. All files modified since the last date stored in the file /etc/dump-
dates for the same filesystem at lesser levels will be dumped. If no date is determined by the level,
the beginning of time is assumed; thus the option 0 causes the entire filesystem to be dumped.

f Place the dump on the next argument file instead of the tape.

u If the dump completes successfully, write the date of the beginning of the dump on file /etc/dump-
dates. This file records a separate date for each filesystem and each dump level. The format of
/etc/dumpdates is readable by people, consisting of one free format record per line: filesystem
name, increment level and ctime(3) format dump date. /etc/dumpdates may be edited to change any
of the fields, if necessary. Note that /etc/dumpdates is in a format different from that previous ver-
sions of dump maintained in /etc/ddate, although the information content is identical.

J This option is intended to be invoked only when the old format /etc/ddate files are updated to the
new format /etc/dumpdates format. The effect of this option is to convert between the old, obsolete
format and to the new format. If the J option is invoked, all other options are ignored, and dump
terminates immediately.

s The size of the dump tape is specified in feet. The number of feet is taken from the next argument.
When the specified size is reached, dump will wait for reels to be changed. The default tape size is
2300 feet.

d The density of the tape, expressed in BPI, is taken from the next argument. This is used in calculat-
ing the amount of tape used per reel. The default is 1600.

W Dump tells the operator what file systems need to be dumped. This information is gleaned from the
files /etc/dumpdates and /etc/fstab. The W option causes dump to print out, for each file system in
/etc/dumpdates the most recent dump date and level, and highlights those file systems that should
be dumped. If the W option is set, all other options are ignored, and dump exits immediately.

w Is like W, but prints only those filesystems which need to be dumped.

n Whenever dump requires operator attention, notify by means similar to a wall(1) all of the operators
in the group “operator”.

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to the default
tape.

Dump requires operator intervention on these conditions: end of tape, end of dump, tape write error, tape
open error or disk read error (if there are more than a threshold of 32). In addition to alerting all operators
implied by the n key, dump interacts with the operator on dump’s control terminal at times when dump
can no longer proceed, or if something is grossly wrong. All questions dump poses must be answered by
typing “yes” or “no”, appropriately.

Since making a dump involves a lot of time and effort for full dumps, dump checkpoints itself at the start
of each tape volume. If writing that volume fails for some reason, dump will, with operator permission,
restart itself from the checkpoint after the old tape has been rewound and removed, and a new tape has
been mounted.

Dump tells the operator what is going on at periodic intervals, including usually low estimates of the num-
ber of blocks to write, the number of tapes it will take, the time to completion, and the time to the tape
change. The output is verbose, so that others know that the terminal controlling dump is busy, and will be
for some time.

Now a short suggestion on how to perform dumps. Start with a full level 0 dump

4th Berkeley Distribution 943

DUMP(8) System Manager’s Manual DUMP(8)

dump 0un

Next, dumps of active file systems are taken on a daily basis, using a modified Tower of Hanoi algorithm,
with this sequence of dump levels:

3 2 5 4 7 6 9 8 9 9 ...
For the daily dumps, a set of 10 tapes per dumped file system is used on a cyclical basis. Each week, a
level 1 dump is taken, and the daily Hanoi sequence repeats with 3. For weekly dumps, a set of 5 tapes
per dumped file system is used, also on a cyclical basis. Each month, a level 0 dump is taken on a set of
fresh tapes that is saved forever.

FILES
/dev/rrp1g default filesystem to dump from
/dev/rmt8 default tape unit to dump to
/etc/ddate old format dump date record (obsolete after -J option)
/etc/dumpdates new format dump date record
/etc/fstab Dump table: file systems and frequency
/etc/group to find group operator

SEE ALSO
restor(1), dump(5), dumpdir(1), fstab(5)

DIAGNOSTICS
Many, and verbose.

BUGS
Sizes are based on 1600 BPI blocked tape; the raw magtape device has to be used to approach these densi-
ties. Fewer than 32 read errors on the filesystem are ignored. Each reel requires a new process, so parent
processes for reels already written just hang around until the entire tape is written.

It would be nice if dump knew about the dump sequence, kept track of the tapes scribbled on, told the op-
erator which tape to mount when, and provided more assistance for the operator running restor.

4th Berkeley Distribution 944

DUMPDIR(8) System Manager’s Manual DUMPDIR(8)

NAME
dumpdir - print the names of files on a dump tape

SYNOPSIS
/etc/dumpdir [f filename]

DESCRIPTION
Dumpdir is used to read magtapes dumped with the dump command and list the names and inode num-
bers of all the files and directories on the tape.

The f option causes filename as the name of the tape instead of the default.

FILES
default tape unit varies with installation
rst∗

SEE ALSO
dump(1), restor(1)

DIAGNOSTICS
If the dump extends over more than one tape, it may ask you to change tapes. Reply with a new-line when
the next tape has been mounted.

BUGS
There is redundant information on the tape that could be used in case of tape reading problems. Unfortu-
nately, dumpdir doesn’t use it.

4th Berkeley Distribution 945

EXPIRE(8) System Manager’s Manual EXPIRE(8)

NAME
expire - remove outdated news articles

SYNOPSIS
/usr/lib/news/expire [-n newsgroups] [-i] [-I] [-v [level]] [-edays
]
[-a
]

DESCRIPTION
Expire is normally started up by cron(8) every night to remove all expired news. If no newsgroups are
specified, the default is to expire all.

Articles whose specified expiration date has already passed are considered expirable. The -a option
causes expire to archive articles in /usr/spool/oldnews. Otherwise, the articles are unlinked.

The -v option causes expire to be more verbose. It can be given a verbosity level (default 1) as in -v3 for
even more output. This is useful if articles aren’t being expired and you want to know why.

The -e flag gives the number of days to use for a default expiration date. If not given, an installation de-
pendent default (often 2 weeks) is used.

The -i and -I flags tell expire to ignore any expiration date explicitly given on articles. This can be used
when disk space is really tight. The -I flag will always ignore expiration dates, while the -i flag will only
ignore the date if ignoring it would expire the article sooner. WARNING: If you have articles archived by
giving them expiration dates far into the future, these options might remove these files anyway.

SEE ALSO
checknews(1), inews(1), readnews(1), recnews(8), sendnews(8), uurec(8)

946

FSCK (8) System Manager’s Manual FSCK (8)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck -p [special ...]
/etc/fsck [-y] [-n] [-sX] [-SX] [-t filename] [special ...]

DESCRIPTION
Fsck inspects the disk filesystems in the named special files and repairs inconsistencies. If no files are
named, every file system listed in fstab(5) with type 0 and a nonzero pass number is checked.

Under option -p, fsck runs without intervention, repairing minor inconsistencies and aborting on major
ones. This form is usually called from rc(8). If no special files are named, file systems in fstab are
checked in parallel passes: all file systems with pass number 1 are checked simultaneously, then all file
systems with pass number 2, and so on until fstab is exhausted.

Here are the minor ailments repaired automatically under -p:
unreferenced inodes;
wrong link counts in inodes;
missing blocks in the free list;
blocks in the free list also in files; and
counts wrong in the super-block.

Other inconsistencies cause fsck to abandon the inconsistent file system, and exit with a nonzero status
when the current pass finishes.

Without the -p option, fsck inspects one file system at a time, interactively. Each inconsistency causes
fsck to print a message and ask permission to fix the problem. The operator may require arcane knowl-
edge to guide fsck safely through repair of a badly damaged file system.

Here are the remaining options. They are allowed only if -p is absent.

-y Assume a yes response to all questions. This should be used with great caution.

-n Assume a no response to all questions; do not open the file system for writing. This option is as-
sumed if the file system cannot be opened for writing.

-sX Ignore the actual free list and (unconditionally) reconstruct a new one by rewriting the super-
block of the file system. The file system should be unmounted while this is done; if this is not
possible, care should be taken that the system is quiescent and that it is rebooted immediately af-
terwards. This precaution is necessary so that the old, bad, in-core copy of the superblock will
not continue to be used, or written on the file system. If the file system has a bitmap free list (see
filsys(5)), the free list is always reconstructed unless the -n option is enabled.

Parameter X allows free-list parameters to be specified: -sblocks-per-cylinder:blocks-to-skip. If
X is not given, the values used when the file system was created are used; see mkfs(8). If these
values were not specified, X is assumed to be 400:9.

-SX Conditionally reconstruct the free list. This option is like -sX except that the free list is rebuilt
only if no discrepancies were found. -S implies -n.

-t If fsck cannot obtain enough memory to keep its tables, it uses a scratch file. If the -t option is
specified, the file named in the next argument is used as the scratch file, if needed. Without -t,
fsck will prompt the operator for the name of the scratch file. The file chosen should not be on
the file system being checked. If it did not already exist, it is removed when fsck completes.

Inconsistencies checked are:

Blocks claimed more than once.
Blocks designated outside the file system.
Incorrect link counts.
Directory size not 16-byte aligned.
Bad inode format.
Blocks not accounted for anywhere.
Directory entry pointing to unallocated inode.
Inode number out of range.

947

FSCK (8) System Manager’s Manual FSCK (8)

More than 65536 inodes.
More blocks for inodes than there are in the file system.
Bad free block list format.
Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are reconnected by placing them in the direc-
tory lost+found in the root of the file system being checked. The name assigned is the inode number,
prefixed by #.

Checking the raw device is almost always faster, but fsck distinguishes bitmapped from non-bitmapped
file systems by examining the minor device number, so the block device is safer.

FILES
/etc/fstab

SEE ALSO
fstab(5), filsys(5), mkfs(8), reboot(8)
T. J. Kowalski, ‘Fsck—the UNIX File System Check Program’, this manual, Volume 2

BUGS
Inode numbers for . and .. in each directory should be checked for validity.

Some systems save core images after a crash in the swap area; on such machines, checking many large file
systems in parallel may cause swapping, overwriting the crash dump. It is best just to write crash dumps
in a a safer place. If disk space for dumps and swapping is scarce, avoid checking more than three
120-megabyte file systems in parallel on a machine with four megabytes of physical memory.

Examining the minor device number is a botch; there should be an explicit flag somewhere.

Fsck does not have supernatural powers.

948

FSTAT (1) General Commands Manual FSTAT (1)

NAME
fstat - file status

SYNOPSIS
/etc/fstat [-u user] [-p pid] [-f filename]

DESCRIPTION
Fstat identifies open files. A file is considered open if a process has it open, if it is the working directory
for a process, or if it is an active pure text file. Under default options, fstat reports on all open files.

Options:

-u Report all files open by a specified user.

-p Report all files open by a specified process id.

-f Restrict reports to the specified file. If the file is a character special file, fstat additionally reports
on any open files on that device, treating it as a mounted file system.

SEE ALSO
ps(1), pstat(8)

DIAGNOSTICS
Yet to be determined.

BUGS
Fstat tries to be clever if you elide the -u , -f , or -p flags for the argument. Like any expert system, it is
sometimes wrong.

949

GETTY (8) System Manager’s Manual GETTY (8)

NAME
getty - set terminal mode

SYNOPSIS
/etc/getty [char]

DESCRIPTION
Getty is invoked by init(8) after a terminal is opened. While reading the user’s name getty attempts to
adapt the system to the speed and type of terminal being used.

Init calls getty with an argument specified by the ttys(5) entry for the terminal line. The argument char
determines the line speed and other characteristics; see below. Getty then types a banner identifying the
system (from and the login: message. The user’s name is then read, a character at a time. If a null char-
acter is received, it is assumed to be the result of the user pushing the ‘break’ (‘interrupt’) key. The speed
is then changed to another baud rate and login: is typed again. Successive breaks cycle through a set of
speeds.

The user’s name is terminated by a newline or carriage return. The latter results in the system being set to
treat carriage returns appropriately (see ioctl(2)).

Finally, login(8) is called with the user’s name as argument.

Here are the possible values for char. If more than one speed is given, the first speed is used initially; oth-
ers are selected by successive depressions of the BREAK key. Other things, like delays and tab expan-
sion, are set in various ways as well.

char speed
0 300-1200-150-110
2 9600
3 1200-300
4 300
5 300-1200
6 2400
7 4800
8 9600-1200-300
9 300-9600-1200
a 2400-1200
b 1200-2400
j exta (usually 19200)

SEE ALSO
init(8), login(8), ioctl(2), ttys(5)

950

HALT (8) System Manager’s Manual HALT (8)

NAME
halt - halt the processor

SYNOPSIS
/etc/halt [-n]

DESCRIPTION
Halt writes out sandbagged information to the disks and then halts the processor. The machine does not
reboot, even if the auto-reboot switch is set on the console.

The -n option prevent the sync before the reboot.

SEE ALSO
reboot(8)

BUGS

4th Berkeley Distribution 951

ICHECK (8) System Manager’s Manual ICHECK (8)

NAME
icheck, dcheck, ncheck - file system consistency check

SYNOPSIS
/etc/icheck [option ...] filesystem ...

/etc/dcheck [option ...] filesystem ...

/etc/ncheck [option ...] filesystem ...

DESCRIPTION
These programs perform consistency checks on file systems. For normal file system maintenance, see
fsck(8). Common options are

-B The file system is bitmapped. If filesystem is a special file, this option is set automatically from
the minor device number.

-i number ...
Report only on specified inode numbers (dcheck and ncheck only).

Icheck examines each filesystem, builds a list of used blocks, and compares this list against the free list
maintained on the file system. The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and character spe-
cial files.

The total number of blocks in use and the numbers of single-, double-, and triple-indirect blocks
and directory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor in the free list.

Other icheck options are

-s Ignore the free list and reconstruct a new one by rewriting the super-block of the file system.
The file system should be dismounted while this is done; if this is not possible (for example if the
root file system has to be salvaged) care should be taken that the system is quiescent. The words
in the super-block which indicate the size of the free list and of the i-list are believed. If the
super-block has been curdled these words will have to be patched. The normal output reports are
suppressed.

-b number ...
Report each appearance of the selected block numbers in a file or on the free list.

-d Report each duplicate block.

-m Report each missing block.

-e Print at most one diagnostic per file; useful for badly curdled file systems.

Dcheck reads the directories in each filesystem and compares the link count in each inode with the number
of directory entries by which it is referenced.

Ncheck generates a list of pathname vs i-number for each named filesystem. Other ncheck options are

-a Report . and .., which are normally ignored.

-s Report only special files, and files with set-userid or set-groupid mode; helpful in finding secu-
rity breaches.

SEE ALSO
filsys(5), chuck(8), fsck(8), clri(8)

DIAGNOSTICS
For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the difficulty, the
i-number, and the kind of block involved. If a read error is encountered, the block number of the bad
block is printed and icheck considers it to contain 0. ‘Bad freeblock’ means that a block number outside
the available space was encountered in the free list. ‘Dups in free’ means that blocks were found in the
free list which duplicate blocks either in some file or in the earlier part of the free list.

952

ICHECK (8) System Manager’s Manual ICHECK (8)

When a file turns up for which the link-count and the number of directory entries disagree, dcheck reports
the relevant facts. Allocated files which have 0 link-count and no entries are also listed. The only danger-
ous situation occurs when there are more entries than links; if entries are removed, so the link-count drops
to 0, the remaining entries point to thin air. They should be removed. When there are more links than
entries, or there is an allocated file with neither links nor entries, some disk space may be lost but the situ-
ation will not degenerate.

When the filesystem structure is improper, ncheck prints ?? to denote the ‘parent’ of a parentless file. A
pathname beginning with ... denotes a loop.

BUGS
Extraneous diagnostics may be produced if these commands are applied to active file systems.
They believe even preposterous super-blocks and consequently can get core images.
Ncheck’s report is in no useful order, and probably should be sorted. Ncheck fails to report the root inode.

953

INEWS(8) System Manager’s Manual INEWS(8)

NAME
inews - submit news articles

SYNOPSIS
inews [-h] -t title [-n newsgroup ...] [-e expiration]

inews -p [file]

inews -C newsgroup

DESCRIPTION
Inews submits netnews articles. It is not intended for people; see postnews(1) for routine use. The first
form is for submitting articles; the second for receiving articles from other machines; the third for creating
newsgroups.

In the first form, the article is read from the standard input. A title must be specified, one or more news-
groups (default ‘general’) may be specified, and a nonstandard expiration date may be specified. Option
-f substitutes another sender’s name instead of the user. Option -h specifies that headers are present at
the beginning of the article and should be included with the article header instead of as text.

The sender’s full name is taken from the environment variable NAME, or from the system index (often
passwd(5)). The environment variable ORGANIZATION overrides the system default.

In the second form inews reads the article from the named file.

The third form is for creating new newsgroups. This may be limited to specific users such as the super-
user or news administrator.

FILES
/usr/spool/news/.sys.nnn temporary articles
/usr/spool/news/newsgroup/article_noarticles
/usr/spool/oldnews/expired articles
/usr/lib/news/activeknown newsgroups and highest article number in each
/usr/lib/news/seqsequence number of last article
/usr/lib/news/historylist of all articles ever seen
/usr/lib/news/syssystem subscription list

SEE ALSO
news(5), newsrc(5), postnews(1), readnews(1), recnews(8), sendnews(8) uurec(8)

954

INIT (8) System Manager’s Manual INIT (8)

NAME
init - process control initialization

SYNOPSIS
/etc/init

DESCRIPTION
Init is invoked by the operating system as the last step in the boot procedure. It is always process 1.

When started normally, init calls rc(8) with parameter autoboot. If this succeeds, init begins multi-user
operation. If rc fails, init commences single user operation by giving the super-user a shell on the con-
sole. It is possible to pass parameters from the boot program to init so that single user operation is com-
menced immediately. When the single user shell terminates, init runs rc without the parameter, and be-
gins multi-user operation.

Rc performs housekeeping such as checking and mounting file systems and starting daemons; see rc(8).

In multi-user operation, init’s role is to create a process for each directly connected terminal port on which
a user may log in. To begin such operations, it reads the ttys(5) file and forks to create a process for each
terminal specified in the file. Each of these processes opens the appropriate terminal for reading and writ-
ing on file descriptors 0, 1, 2, and 3 (the standard input and output, the diagnostic output and Opening the
terminal will usually involve a delay, since the open is not completed until someone dials and carrier is es-
tablished on the channel. Then getty(8) is called with argument as specified by the second character of the
ttys file line. Getty reads the user’s name and invokes login(8) to log in the user and execute the shell.

Ultimately the shell will terminate because of an end-of-file or as a result of hanging up. The main path
of init, which has been waiting for such an event, wakes up and removes the appropriate entry from the
file utmp(5), which records current users, and makes an entry in wtmp, which maintains a history of logins
and logouts. Then the appropriate terminal is reopened and getty is invoked again.

Init catches signal SIGHUP and interprets it to mean that the ttys file should be read again. The shell
process on each line that has become inactive according to ttys is terminated; a new process is created for
each line added; lines unchanged in the file are undisturbed. Thus it is possible to drop or add terminal
lines without rebooting the system by changing the ttys file and sending a hangup signal to the init
process: use kill -1 1.

Init will terminate multi-user operations, kill all outstanding processes, and resume single-user mode if
sent signal SIGTERM: use kill 1. Init will wait at most 30 seconds for outstanding processes to die,
to avoid waiting forever.

If, at bootstrap time, the init program cannot be executed, the system will loop in user mode at a low
address.

FILES
/dev/console
/dev/tty
/etc/utmp
/usr/adm/wtmp
/etc/ttys
/etc/rc

SEE ALSO
login(8), kill(1), sh(1), ttys(5), getty(8), rc(8), reboot(8)

BUGS
Init’s multi-user functions should be integrated with the world of svcmgr(8).

955

INSTALL(8) System Manager’s Manual INSTALL(8)

NAME
install - place files in their proper homes

SYNOPSIS
/etc/install [-c] [-s] file dest

DESCRIPTION
Install moves or copies the file to dest. If dest is a directory, the file is installed in the directory. Its main
use is in makefiles subsidiary to the primary source directory /src.

Option -c causes the file to be copied, otherwise it is moved. Option -s invokes strip(1) on the file first.

If possible, the group and owner of dest are changed to ‘bin’.

BUGS
Only one option can appear.

bowell 956

IPCONFIG(8) System Manager’s Manual IPCONFIG(8)

NAME
ipconfig, dkipconfig, udpconfig - set up DARPA Internet protocols

SYNOPSIS
/usr/ipc/mgrs/ipconfig [-m mask] [-df] ip-device localhost network [arp-device] .
/usr/ipc/mgrs/dkipconfig gatemachine localhost remotehost .
/usr/ipc/mgrs/udpconfig udp-device .

DESCRIPTION
Ipconfig activates the DARPA Internet protocol on a communications device, with Internet address local-
host for the host and network address network for the device.

If arp-device is specified, the ARP address resolution protocol is started on that device. Option -d causes
ipconfig to print ARP requests on the standard output as they are received.

Option -m declares a subnet mask for the network reached through ip-device. Mask may be a four-piece
IP address like 255.255.255.0 or a 32-bit hexadecimal number like ffffff00.

Option -f is a special workaround for networks with obsolete hosts. It causes ipconfig to answer illegal
ARP requests for the subnet’s broadcast address with an illegal Ethernet address, to prevent broadcast
storms.

Dkipconfig places a network call to gatemachine and activates the IP protocol on the connection, so that
the remote machine becomes a gateway for the caller’s IP traffic. Localhost becomes the calling
machine’s Internet address through this IP interface; remotehost is the Internet address to which local IP
packets should be sent to reach the gateway.

Ipconfig and dkipconfig record unusual events and errors in log files /usr/ipc/log/ipconfig and

Udpconfig activates the UDP datagram protocol on the named udp-device, usually Only one udpconfig is
needed for the entire collection of IP networks.

These programs are usually run once from rc(8).

EXAMPLES
The following calls start IP on system fs on the first Interlan Ethernet controller, with ARP active; arrange
for machine nj/astro/research to pass IP packets to fs; and activate UDP.
/usr/ipc/mgrs/ipconfig /dev/il00 fs mh-astro-net /dev/il01 .
/usr/ipc/mgrs/dkipconfig nj/astro/research fs-dk research-dk127 .
/usr/ipc/mgrs/udpconfig /dev/ipudp .

FILES
/usr/ipc/log/ipconfig
/usr/ipc/log/dkipconfig

SEE ALSO
con(1), qns(7), route(8), tcpmgr(8)

957

KMC(8) System Manager’s Manual KMC(8)

NAME
kmc, kdiload, kmcdump - control KMC11 input/output processors

SYNOPSIS
/etc/kdiload [dev [file]]

/etc/kmcdump [dev]

DESCRIPTION
These commands control the KMC11-B microprocessors used for Datakit protocol processing.

Kdiload resets KMC device dev, copies the microcode in file into the KMC’s memory, and starts the
KMC. Dev may be a pathname or a single character key identifying the KMC; the default is 2. File
defaults to that specified in /etc/kmctab if a single character key is used, /etc/dkk.dubhi otherwise.

Kmcdump stops the KMC and copies its state into files in the working directory. Dev may be a single
character key or a pathname; the default is 2. The KMC’s memory is copied to the file core.k.nnn, where
k is the keyletter and nnn is some number; the state of the KMC’s registers and some trace information
from Unix is written to regs.k.nnn.

These commands search the file /etc/kmctab for KMC devices and microcode files. The file contains
lines of three blank-separated fields:

single character identifying this KMC
full pathname of the KMC device file
full pathname of the microcode to be used in this KMC

The KMC with key K uses Datakit special files with names like /dev/dk/dkK03. If there is only one
KMC for Datakit, its key is 2. If the only KMC is the only Datakit interface in a machine, its key is 2,
and its special files look like /dev/dk/dk03.

FILES
/etc/kmctab
/bin/kasb

SEE ALSO
dkmgr(8)

BUGS
For the moment, the only permissible keys are 0 and 2. The KMC and Datakit filename conventions are
arcane, and based on obsolete notions; they should be replaced.

958

LDPCS(8) System Manager’s Manual LDPCS(8)

NAME
ldpcs - load comet microcode

SYNOPSIS
/etc/ldpcs [-f] [-v] pcsfile

DESCRIPTION
Ldpcs loads microcode from pcsfile into the VAX-11/750 patchable control store. Normally, the hard-
ware ID register is checked to see that the system is an 11/750 and that its base microcode revision level is
appropriately high; the -f option removes the checks. The -v option causes the microcode version number
to be printed after loading.

Ldpcs is usually called from rc(8) to load the most recent DEC microcode patches from

The patch file consists of 1024 bytes of patch bits, followed by 10240 bytes of actual patches. Each patch
bit represents a 20-bit microcode word; the patches themselves are 20-bit words packed together. The for-
mat is the same as that distributed by DEC.

FILES
/dev/mem
/dev/mtpr

BUGS
Calling ldpcs is a good idea, but it is not mandatory; the system will run without the patches.

VAX-11/750 959

LOGIN (8) System Manager’s Manual LOGIN (8)

NAME
login - sign on

SYNOPSIS
/etc/login name
/etc/login -f name [cmd]
/etc/login -p passwd-line [cmd]

DESCRIPTION
Login is executed by getty(8). See the Introduction to this volume for how to dial up initially.

Login asks for a password if appropriate. Echoing is turned off during the typing of the password. The -f
option forces login of the named user, without a password. -p is similar to -f, but an entire line of pass-
word file information is supplied.

Login initializes the userid, the groupid, and the working directory according to specifications found in
the password file; see passwd(5). It also initializes environment variables PATH and HOME . Finally it ex-
ecutes a command interpreter (usually sh(1)). Argument 0 of the command interpreter is its name with a
dash prepended. If a cmd argument was present, two additional arguments -c cmd are passed, and envi-
ronment variable REXEC is set to 1.

Upon a successful login, accounting files are updated and, if no options are present, the message of the
day is printed and the user is informed of the existence of mail.

Successful logins are recorded in /etc/utmp and If cmd was present, ∗ is appended to the login name in
wtmp, and no record is made in utmp.

Only the super-user may execute login.

FILES
/etc/utmp

accounting

/usr/adm/wtmp
accounting

/usr/spool/mail/∗
mail

/etc/motd
message-of-the-day

/etc/passwd
password file

/etc/group
groups file

SEE ALSO
newgrp(1), passwd(1), environ(5), passwd(5), getty(8), init(8), su(8), svcmgr(8).

DIAGNOSTICS
‘Login incorrect’: the name or the password is bad.
‘No Shell’ or ‘no directory’: the initial shell or home directory specified in the password file does not
exist.
‘Cannot open password file’: things are badly curdled.

BUGS
Information passed to options -p and -f is not checked. Only trusted programs should run login. Only
trusted programs may usefully do so anyway; login has no privileges.

960

MAKEKEY (8) System Manager’s Manual MAKEKEY (8)

NAME
makekey - generate encryption key

SYNOPSIS
/usr/lib/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the amount of
time required to search the key space. It reads 10 bytes from its standard input, and writes 13 bytes on its
standard output. The output depends on the input in a way intended to be difficult to compute (i.e. to re-
quire a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the salt) are
best chosen from the set of digits, upper- and lower-case letters, . and /. The salt characters are repeated
as the first two characters of the output. The remaining 11 output characters are chosen from the same set
as the salt and constitute the output key.

The salt is used to select one of 4096 cryptographic machines all based on the National Bureau of Stan-
dards DES algorithm, but modified in 4096 different ways. Using the input key as key, a constant string is
fed into the machine and recirculated a number of times. The 64 bits that come out are distributed into the
66 useful key bits in the result.

Makekey is intended for programs, such as crypt(1), that perform encryption. Usually its input and output
will be pipes.

SEE ALSO
crypt(1)

961

MKFS(8) System Manager’s Manual MKFS(8)

NAME
mkfs, mkbitfs, mklost+found - construct a disk file system

SYNOPSIS
/etc/mkfs special size [spacing cylsize]

/etc/mkbitfs special size [spacing cylsize]

/etc/mklost+found

DESCRIPTION
Mkfs (mkbitfs) constructs a regular (bitmapped) file system on the block device special. Size is the num-
ber of 1KB (4KB) blocks on the special file. Values of size for various special files, e.g. ra(4), are given
in Section 4. The new file system has a single empty directory and a number of inodes that depends on
the size.

Spacing and cylsize are used for block allocation. Spacing is the preferred distance between successive
blocks of a file; cylsize is the number of blocks the system can use without causing a disk seek. Subopti-
mal default values are built into the programs; some reasonable values are suggested below.

Mklost+found creates a directory called lost+found in the working directory with several empty slots.
This directory is used as a repository for disconnected files recovered by fsck(8) and chuck(8).

EXAMPLES
/etc/mkbitfs /dev/ra03 31231
/etc/mount /dev/ra03 /mnt
cd /mnt
/etc/mklost+found

Notice the change of units between ra(4) and here: 31231 = 249848∗512/4096.

SEE ALSO
filsys(5), fsck(8)

BUGS
Fsck should make lost+found automatically when needed.

MACHINE DEPENDENCIES
Here are empirically good values for spacing and cylsize for VAX hardware. Minor changes, such as a
new version of a controller, can invalidate them. To be certain, run your own experiments. Cylinder size
doesn’t seem to matter much on RA81 disks. On RA90s, it doesn’t matter as long as it is large.

Bitmapped (4K) file systems
space cyl disk, controller, CPU
2 500 RA90, KDB50, VAX 8550
4 500 RA90, UDA50, VAX 8550
2 40 RA81, KDB50, VAX 8550
3 40 RA81, old KDB50, VAX 8550
3 40 RA81, UDA50, VAX 8550
3 105 Wren VI, Viking UDD, VAX 8550
4 40 RA81, UDA50, VAX-11/750
3 40 RA60, UDA50, VAX-11/750
3 40 RA81, KDA50, MicroVAX II
1 40 RD54, RQDX3, MicroVAX II
3 40 RA81, KDA50, MicroVAX III
Old-style (1K) file systems
space cyl disk, controller, CPU
5 357 RA81, KDB50, VAX 8550
7 357 RA81, UDA50, VAX-11/780
7 357 RA81, KDA50, MicroVAX II
7 128 RD54, RQDX3, MicroVAX II
6 357 RA81, KDA50, MicroVAX III

962

MKNOD(8) System Manager’s Manual MKNOD(8)

NAME
mknod - construct special file

SYNOPSIS
/etc/mknod name [c] [b] major minor

DESCRIPTION
Mknod makes a special file. The first argument is the name of the entry. The second is b to make a file
for a block device, c to make a character device. The last two arguments are numbers specifying the ma-
jor device type and the minor device (e.g. unit, drive, or line number).

Minor devices are specific to each device driver; see the writeups in Section 4. The assignment of major
device numbers varies with the implementation. Here are some conventional ones in the system used on
VAXes:

Block devices
0 MASSBUS SMD disk
1 block TE16 tape, mt(4)
2 UNIBUS SMD disk
3 VAX 8550 console disk
7 MSCP disk, ra(4)
8 block TU78 tape, mt(4)
10 block TMSCP tape, mt(4)

Character devices
0 console terminal, console(4)
1 DZ11 serial interface
2 VAX-11/750 console tape
3 memory, null device, mem, null(4)
4 raw MASSBUS SMD disk
5 TE16 tape, mt(4)
7 interleaved swap devices, drum(4)
8 VAX-11/780 console floppy
12 raw VAX 8550 console disk
13 raw UNIBUS SMD disk
14 DEBNA Ethernet controller, ethernet(4)
17 DR11-C Datakit interface, dk(4)
22 TU78 tape, mt(4)
26 KMC11-B control interface, kmc(4)
28 raw MSCP disk, ra(4)
31 KMC11-B protocol-support Datakit interface, dk(4)
40 file descriptor device, fd(4)
42 IP protocol endpoints
43 TCP protocol endpoints
44 Interlan NI1010A Ethernet controller, ethernet(4)
50 UDP protocol endpoints
57 DHV11 serial line controller
58 DEQNA Ethernet controller, ethernet(4)
59 TMSCP tape, mt(4)

SEE ALSO
mknod(2)

963

MKPKG(8) System Manager’s Manual MKPKG(8)

NAME
mkpkg, inspkg, seal, unseal - package files for automatic software distribution

SYNOPSIS
mkpkg [option ...] file ...

inspkg [option ...] [file ...]

seal [option] [file ...]

unseal [option] [file ...]

DESCRIPTION
These programs are used by ship(8) to keep files identical across machines.

Mkpkg packages files and writes the result on the standard output. Inspkg installs the named packages or
the standard input.

Non-existent files given to mkpkg are deleted upon installation. Directories are copied with all their con-
tents. Hard links are reproduced. Symbolic links and special files are reproduced with the same inode
contents. File modification and access times and owner and group names are reproduced as far as possi-
ble. Old versions of files are removed before installation: inspkg needs write permission in containing di-
rectories.

Options for both mkpkg and inspkg:

-v Place running commentary on the standard error file.
-Dpath1=path2

Pretend that any pathname beginning with path1 really begins with path2. Relative pathnames
are extended to full pathnames before comparison.

Options for mkpkg; only one may occur:

-xcommand
Include in the package instructions to execute the shell command after all files have been in-
stalled. Command is unaffected by option -D.

-Xfile Include in the package instructions to run the shell script file after all files have been installed.
The file name is subject to option -D.

Options for inspkg:

-n Skip the actual installation, but verify the input packages and produce a backup if requested.
-b Write on the standard output a backup package that contains whatever was destroyed.

A package is an ar(1) archive containing an extra ASCII file named

Seal concatenates the named files or the standard input onto the standard output in an error-detecting form
suitable for shipment by mail(1). Unseal reverses the process, concatenating copies of all the original in-
puts onto the standard output. When asd(8) uses uucp(1), it sends sealed packages.

A sealed file is printable, has fewer than 128 characters per line, and has no lines consisting of a single pe-
riod. The first line is !<seal> and the last one begins with !end. Other lines, such as mail headers, can
be added to either end of a sealed file without hindering unseal.

Options for seal and unseal:

-k A key will be demanded to encrypt the checksum calculation.
-K keyfile

Same, but taking the first line of keyfile as the key.

SEE ALSO
ar(1), cpio(1), tar(1), bundle(1), ship(8), ar(5), asd(8)

BUGS
The pipeline mkpkg fails if input and output files overlap.
Inspkg fills any holes in files.

964

MOUNT (8) System Manager’s Manual MOUNT (8)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [special name [fstype [flags]]]

/etc/mount -a

/etc/mount [special name [-r]]

/etc/umount name

/etc/umount -a

DESCRIPTION
Mount announces to the system that a removable file system of type fstype is present on the file special.
The file name must exist already; it becomes the name of the newly mounted root. Fstype and flags are
integers; if omitted, they default to 0. Type 0 is an ordinary disk file system. Other types and possible
flag values are listed in fmount(2).

The shorthand mount special file -r is equivalent to mount special file 0 1: mount an ordinary file system
read-only.

If option -a is present, mount attempts to mount, in order, every file system listed in fstab(5).

Umount announces to the system that the file system mounted on file name is to be removed.

These commands maintain a table of mounted file systems in see fstab(5). If invoked without an argu-
ment, mount prints the table. If option -a is present, umount attempts to remove, in reverse order, each
file system listed in mtab.

Physically write-protected and magnetic tape file systems must be mounted read-only or errors will occur
when access times are updated, even if no explicit write is attempted.

EXAMPLES
/etc/mount /dev/ra02 /usr

Mount the file system on disk /dev/ra02 on directory /usr.

/etc/mount /dev/null /proc 2
Mount the process file system.

FILES
/etc/mtab

mount table

/etc/fstab
file system table

SEE ALSO
fmount(2), fstab(5), netfs(8)

BUGS
Mounting file systems full of garbage may crash the system.
Mounting a root directory on a non-directory makes some apparently good pathnames invalid.

965

NETFS(8) System Manager’s Manual NETFS(8)

NAME
netfs - network file system

SYNOPSIS
/usr/netb/setup.go

DESCRIPTION
The network file system is conventionally a set of directories contained in and a set of files and programs
in Connections in the network file system are asymmetric: files on a ‘server’ system are made accessible
on a ‘client’ system, usually in directory /n/server-name.

Client
The client runs to maintain connections; it is started by invoking /usr/netb/setup.go from rc(8).
Setup uses /usr/netb/friends to control the connections to servers. Each line in friends contains six
fields:

network address
network call argument
mount point
protocol id
unique identifier
debugging flag
network calling username

The network address and argument give the location of the server. They are interpreted differently accord-
ing to the protocol id, which should be one of

d Call the server on the named network address, with default network dk and default service name
fsb. The network call argument is ignored. The server machine should respond by calling zarf ,
described below; see svcmgr(8).

t Call the named network address, with default network tcp, and invoke the program named in the
network call argument using the protocol of rsh; con(1).

Setup calls setlogname (see getuid(2)) to make the network call appear to have been placed by the calling
username. The username may be omitted; daemon is the default.

The mount point is the directory on which the remote file system is to appear. The unique identifier is a
integer in the range 0-255; it is used internally to distinguish connections, and must be unique among all
active remote file systems (including those not maintained by setup, e.g. faced(9) The debugging flag is
usually 0; nonzero numbers increase the chatter in various logfiles.

Setup reads the friends file when it starts, and checks for changes once a minute. Each remote file system
is probed once a minute; if there is no response to several consecutive probes, the connection is torn down
and restarted. Failed connections are retried every minute.

Server
The server program is A separate zarf process exists for each client.

When a connection is started, the client sends the server a list of valid user and group names and the cor-
responding numerical IDs on the client system. The userid and groupid of user and group names that exist
on both machines are mapped so that client and server see IDs under the same names. Unmapped IDs on
the server appear as -1 on the client. Client processes with unmapped IDs are denied access.

Zarf is subject to access control on the server. It will have access only to files that its own userid and
groupid admit. Unless run as super-user, it will create files with its own, not mapped, userid.

Zarf reads configuration information from /usr/netb/except.local and The files are read only
once, when zarf starts, except.local first. Usually except is the same on all machines in some administra-
tive cluster, except.local contains things specific to a particular server system.

The files contain sections beginning with the line client origin. Origin is the name of the calling client, as
provided by the network; ∗ matches any client. The first matching section is used.

Within each section, lines have of one of the following forms. Lines beginning with # are ignored.

966

NETFS(8) System Manager’s Manual NETFS(8)

uid cname=sname
Regardless of the contents of password files, map client user name cname to server user name
sname. If cname is not announced as valid by the client, the line is ignored. If sname is not a
valid name on the server, any previous mapping for cname is discarded.

gid cname=sname
Map client group name cname to server group name sname, as above.

param otherok=val
If val is 1, client processes with unmapped userids are granted world access to existing files on
the server. Unmapped userids may never create files (who would own them?). If val is anything
else, no access is permitted to unmapped client userids.

param root=pathname
Use pathname rather than / as the root of the filename hierarchy made visible on the client.

EXAMPLES
A friends file for a connection to alice over Datakit, shamash over TCP/IP, and bebop over TCP/IP with-
out administrative help:

alice - /n/alice d 0 0
tcp!shamash!400 - /n/sun d 1 0
bebop /usr/pjw/netb/zarf /n/bebop t 2 0 pjw

Some except file rules:
client dk!nj/astro/research
param otherok=1
client ∗
uid root=
gid mail=other
param otherok=0
param root=/usr/spool

If the research machine calls as a client, the whole file system tree is visible, all userids including the
super-user are permitted normal access, and user names unknown to the server are permitted world access.
If any other machine calls, only the contents of /usr/spool are visible, root and unknown users are explic-
itly denied access, and processes in group mail on the client are treated as if in group other on the server.

FILES
/n/∗
/usr/netb/friends

client connection info
/usr/netb/except.local
/usr/netb/except
/usr/netb/setupl

log file for setup
/usr/netb/zarf.log

log file for zarf server control info
SEE ALSO

S. A. Rago, ‘A Look at the Version 9 Network File System’, this manual, Volume 2
BUGS

The scheme works only in a modest-sized, friendly community, as it requires a process per client, trust of
clients’ security, and common login names.
File modification times are adjusted for clock-time differences between machines. Thus, when viewed
across the network, identical files installed on different machines by asd(8) may appear to have different
modification times, and symbol tables of random libraries (ar(1)) may appear to be out of date.

967

NETSTAT (8) System Manager’s Manual NETSTAT (8)

NAME
netstat, dkstat - show network status for internet and datakit networks

SYNOPSIS
netstat [-acCirRst] [system] [core]

dkstat [interval [count]]

DESCRIPTION
Netstat displays internet (TCP/IP and UDP/IP) traffic and configuration data. Without options, it lists all
TCP and UDP connection assignments. A single option changes the listing:

-a known mappings between internet names and Ethernet addresses.

-c all TCP and UDP connection assignments (the default).

-C detailed state of active TCP connections.

-i active IP interfaces.

-n display numeric internet addresses rather than host and network names.

-s protocol statistics.

-r routing tables.

-R routing tables, including deleted entries (for debugging).

-tbuf running trace of packets passing through buf : il for the Interlan Ethernet controller, qe for the
DEQNA, tcp (the default) for all packets passing through TCP.

The arguments system and core are substitutes for the defaults /unix and

Dkstat reports the number of bytes received and sent over the Datakit network, together with error reports
if any occurred. The first report is cumulative since a reboot. Further reports may be requested every
interval seconds; these reports are incremental.

The optional count argument restricts the number of reports.

DIAGNOSTICS
nlist /unix failed: netstat could not find pertinent system information, perhaps because this system isn’t
set up for TCP/IP.

968

NS(8) System Manager’s Manual NS(8)

NAME
ns - name server database

SYNOPSIS
/usr/ipc/mgrs/ns [-m server] [-d]

DESCRIPTION
Ns maintains a database of naming information, accessed by qns(7) and other programs. It should be run
once from rc(8).

The database is accessed through local service ns, or service server if option -m was specified.

The file /usr/ipc/lib/ns.db contains instructions for building the database. These instructions are
lines of one of the following forms:

#uusys file Read the named uucp Systems file. For entries using caller ACU, add a database entry
containing

system telephone-number,tel uucp,svc

For entries using caller DK or DKH, add an entry containing

system datakit-address,dk uucp,svc

For any other entry, add

system uucp,svc

#inhost file For each line in the named 4BSD-style internet hosts file, add a database entry of the
form

ip-address,in hostname host-domain-name,dom

#innet file For each line in the named 4BSD-style internet networks file, add a database entry of
the form

ip-net-address,in netname

#include file Interpret the contents of file in the same format as ns.db.

In all cases, file may be followed by a list of value,attribute pairs to be included with any database entries
caused by that file. If the filename doesn’t begin with /, it is prefixed with /usr/ipc/lib.

Blank lines and lines beginning with # followed by a space or tab are ignored.

Any other lines are taken as literal database entries: a collection of value,attribute pairs separated by
spaces. Each line is a single entry.

The database is ephemeral; it is rebuilt whenever ns starts, when requested by qns reset, or when ns
notices that ns.db or one of the files named therein has changed. Rebuilding can take several minutes,
especially on a busy machine. During a rebuild, the server appears active but does not answer requests;
calls will block until the rebuild finishes.

Ns leaves remarks in file There are more remarks if the -d option was used.

FILES
/usr/ipc/lib/ns.db

SEE ALSO
ipc(3), qns(7)

969

POSTBGI (8) System Manager’s Manual POSTBGI (8)

NAME
postbgi - PostScript translator for BGI (Basic Graphical Instructions) files

SYNOPSIS
postbgi [options] [files]

DESCRIPTION
Postbgi translates BGI (Basic Graphical Instructions) files into PostScript and writes the results on the
standard output. If no files are specified, or if - is one of the input files, the standard input is read. The
following options are understood:

-cnum Print num copies of each page. By default only one copy is printed.

-fname Print text using font name. Any PostScript font can be used, although the best results
will only be obtained with constant width fonts. The default font is Courier.

-mnum Magnify each logical page by the factor num. Pages are scaled uniformly about the ori-
gin, which by default is located at the center of each page. The default magnification is
1.0.

-nnum Print num logical pages on each piece of paper, where num can be any positive integer.
By default num is set to 1.

-olist Print pages whose numbers are given in the comma-separated list. The list contains sin-
gle numbers N and ranges N1-N2. A missing N1 means the lowest numbered page, a
missing N2 means the highest.

-pmode Print files in either portrait or landscape mode. Only the first character of mode is sig-
nificant. The default mode is portrait.

-wnum Set the line width used for graphics to num points, where a point is approximately 1/72
of an inch. By default num is set to 0.0 points, which forces lines to be one pixel wide.

-xnum Translate the origin num inches along the positive x axis. The default coordinate system
has the origin fixed at the center of the page, with positive x to the right and positive y
up the page. Positive num moves everything right. The default offset is 0 inches.

-ynum Translate the origin num inches along the positive y axis. Positive num moves every-
thing up the page. The default offset is 0 inches.

-Afile Append a simple accounting record to file after all the input files have been successfully
translated. By default no accounting data is produced.

-Lfile Use file as the PostScript prologue, which by default is /usr/lib/postscript/postbgi.ps.

DIAGNOSTICS
0 exit status is returned if files were successfully processed.

BUGS
The default line width is too small for ’write to white’ print engines, like the one used by the PS-2400.

FILES
/usr/lib/postscript/postbgi.ps

SEE ALSO
dpost(1), postprint(1), posttek(1), postdmd(1)

local 970

POSTIO(8) System Manager’s Manual POSTIO(8)

NAME
postio - serial interface for postscript printers

SYNOPSIS
/usr/bin/postscript/postio [option ...] [file ...]

DESCRIPTION
Postio sends files to a PostScript printer. It is usually called by the innards of lp(1). If no files are named,
the standard input is sent.

Mandatory argument -l names the printer. If the first character of line is /, it is assumed to be a local file-
name like /dev/tty37. Otherwise it is taken to be a network address, with default network dk, to which
the printer is connected.

These options are probably the most useful:

-bspeed Transmit data at baud rate speed, one of 1200, 2400, 4800, 9600 (default), and 19200.

-q Disable status queries while files are being sent to the printer. When status queries are dis-
abled a dummy message is appended to the log file before each block is transmitted.

-Bnum Set the internal buffer size for reading and writing files to num bytes, 2048 by default.

-D Debug mode: copy everything read from the printer to the log file or standard error.

-Lfile Log data read from the printer in file. Standard error is the default. Normally only mes-
sages indicating a change in the printer’s state are logged.

-Pstring Send string to the printer before any input files. The default is PostScript code that disables
timeouts.

-Rnum If num is 1, run as a single process; if 2, use separate processes for reading and writing.

These options are not useful to spoolers like lp.

-i Interactive mode: send the files to the printer, then copy standard input to the printer and
printer output to standard error. Overrides many other options. To have a friendly chat with
the printer, begin by typing executive on a line by itself.

-t Copy printer output that doesn’t look like status information to the standard output; intended
for use with PostScript programs that write results.

This option should be used only as a last resort:

-S Take special measures to send data slowly. Limits the internal buffer to 1024 bytes, implies
-R1 and disables -q and -i. Expensive in CPU time.

When postio starts, it attempts to force the printer into IDLE state by sending a sequence of control-t (sta-
tus query), control-c (interrupt), and control-d (end of job) characters. When the printer is idle, the files
are transmitted with an occasional control-t interspersed (except under -q). After all data have been sent,
postio waits until the printer appears to have finished before exiting. Fatal error messages from the
printer cause postio to exit prematurely.

EXAMPLES
postio -l/dev/tty01 file1 file2 Runing as a single process at 9600 baud, send file1 and file2 to
printer /dev/tty01.

postio -R2 -B4096 -l/dev/tty01 -Llog file1 file2 Similarly, but use two processes and a 4096-byte
buffer, and copy printer messages to file log.

postio -t -l/dev/tty22 -Llog program >results Send the PostScript program to printer /dev/tty22,
place any data in results, put error messages in log.

postio -i -l/cs/dk!my/printer Connect interactively to the printer at network address
/cs/dk!my/printer.

SEE ALSO
lp(1), postscript(8)

971

POSTIO(8) System Manager’s Manual POSTIO(8)

DIAGNOSTICS
Exit status 1 means a system error (e.g. can’t open the printer), 2 means a PostScript error, 3 means both.
Status 2 is usually caused by a syntax error in an input file.

BUGS
Multiple files with PostScript end-of-job marks are not guaranteed to work.

If a network is involved, -b may be ineffective and attempts by postio to flow-control data in both direc-
tions may not work. Option -q can help if the printer is connected to Radian Datakit.

972

POSTREVERSE(8) System Manager’s Manual POSTREVERSE(8)

NAME
postreverse - reverse the page order in a postscript file

SYNOPSIS
postreverse [options] [file]

DESCRIPTION
Postreverse reverses the page order in a minimally conforming PostScript file and writes the results on the
standard output. If no file is specified, the standard input is read. The following options are understood:

-olist Select pages whose numbers are given in the comma-separated list. The list contains
single numbers N and ranges N1-N2. A missing N1 means the lowest numbered page,
a missing N2 means the highest.

-r Don’t reverse the pages in file.

-Tdir Use dir as the temporary file directory when reading from the standard input. By de-
fault dir is set to /tmp.

Postreverse can handle files the violate page independence, provided all global definitions are bracketed
by BeginGlobal and EndGlobal comments. In addition files that mark the end of each page with
EndPage: label ordinal comments will also reverse properly, provided the prologue and trailer sec-
tions can be located. If the end of the prologue isn’t found, the entire file is copied, unmodified, to the
standard output.

Since global definitions are pulled out of individual pages and put in the prologue, the output file can be
minimally conforming, even if the input file wasn’t.

EXAMPLES
Select pages 1 to 100 from file and reverse the pages,

postreverse -o1-100 file

Print 4 logical pages on each physical page and reverse all the pages,

postprint -n4 file | postreverse

Produce a minimally conforming file from output generated by dpost without reversing the pages,

dpost file | postreverse -r

DIAGNOSTICS
0 exit status is returned if file was successfully processed.

BUGS
No attempt has been made to deal with redefinitions of global variables or procedures. If standard input is
used, the input file will be read three times before being reversed.

SEE ALSO
dpost(1), postprint(1), posttek(1), postbgi(1), postdmd(1)

local 973

POSTSCRIPT (8) System Manager’s Manual POSTSCRIPT (8)

NAME
dpost, postdaisy, postdmd, postprint - filters to produce postscript

SYNOPSIS
/usr/bin/postscript/dpost [option ...] [file ...]

/usr/bin/postscript/postdaisy [option ...] [file ...]

/usr/bin/postscript/postdmd [option ...] [file ...]

/usr/bin/postscript/postprint [option ...] [file ...]

/usr/bin/postscript/posttek [option ...] [file ...]

DESCRIPTION
These programs convert files of various formats into PostScript. The input formats are

dpost troff(1) output

postdaisy Diablo 1640 daisy-wheel

postdmd bitfile(9) files, as produced by blitblt(9)

postprint ASCII text

posttek Tektronix 4014 graphics

Except as noted, the options are common to all the programs:

-cnum Print num copies of each page. By default only one copy is printed.

-mnum Magnify each logical page by the factor num. Pages are scaled uniformly about the origin,
located near the upper left corner of the page. The default magnification is 1.0.

-nnum Print num logical pages on each piece of paper. The default is 1.

-olist Print only pages specified in the comma-separated list of numbers and ranges. A range N -
M means pages N through M ; an initial -N means from the beginning to page N ; and a fi-
nal N - means from N to the end. Print only pages whose numbers are given in the comma-
separated list. The list contains single numbers N and ranges N1-N2. A missing N1 means
the lowest numbered page, a missing N2 means the highest.

-pmode Print in mode p (portrait) or l (landscape). The default is p.

-xnum Translate the origin num inches along the positive x axis. By default, the origin is fixed near
the upper left corner of the page, with positive x to the right and positive y down the page.
Positive num moves everything right. The default offset is 0 inches.

-ynum Translate the origin num inches along the positive y axis. Positive num moves text down the
page. The default offset is 0.

-Afile Append a simple accounting record to file after all input files have been successfully trans-
lated. By default no accounting data is produced.

-Lfile Use file as the PostScript prologue.

-fname Print files using font name. Any PostScript font can be used, but constant width fonts yield
the best results. The default font is Courier. (postdaisy, postprint, and posttek only)

-f Flip the sense of the bits in files before printing the bitmaps. (postdmd only)

In addition, three options allow the insertion of arbitrary PostScript at controlled points in the translation
process:

-Cfile Copy file to the output file. File follows the prologue but precedes any job initialization
commands. File becomes part of the job’s global environment and must contain legitimate
PostScript commands.

-Pstring Like -C, using a string instead of the contents of a file.

-Raction Requests special action (e.g. manualfeed) on a per page or global basis. The action string
has the general form request:page:file, from which :page:file or : file can be omitted. An
omitted or 0 page number applies to all pages. If file is omitted the request lookup is done

974

POSTSCRIPT (8) System Manager’s Manual POSTSCRIPT (8)

in The collection of recognized requests can be modified or extended by changing this file.
Multiple occurrences of the -R option behave as expected.

FILES
/usr/lib/font/devpost/∗.out

/usr/lib/font/devpost/charlib/∗

/usr/lib/postscript/∗.ps
default prologues

/usr/lib/tmac/tmac.pictures
troff macros for PostScript

SEE ALSO
lp(1), postio(8)

DIAGNOSTICS
Exit status 2 usually means a syntax error in some input file.

BUGS
Output files will often violate Adobe’s file structuring conventions. Pipe the output of dpost through
postreverse to produce a minimally conforming PostScript file.

Although dpost can handle files formatted for any troff device, emulation is expensive and can easily dou-
ble the print time and the size of the output file.

No attempt has been made to implement the character sets or fonts available on all devices supported by
troff. Missing characters are replaced by white space; unrecognized fonts are replaced by one of the
Times fonts.

Dpost requires an x res command before the first x init and any file data.

975

PSTAT (8) System Manager’s Manual PSTAT (8)

NAME
pstat - print system facts

SYNOPSIS
/etc/pstat [-afipstuxT] [suboptions] [file] [namelist]

DESCRIPTION
Pstat interprets the contents of certain system tables. If file is given, the tables are sought there, otherwise
in The required namelist is taken from namelist, default Options are

-a Under -p, describe all process slots rather than just active ones.

-i Print the inode table with the these headings:
LOC The core location of this table entry.
FLAGS

Miscellaneous state variables encoded thus:
L locked
U modified time (filsys(5)) must be corrected
A access time must be corrected
O file was opened
W wanted by another process (L flag is on)
T contains an active text

CNT Number of active references to this inode.
FS File system type, see fmount(2).
DEVICE

Device number of file system in which this inode resides.
INO I-number within the file system.
MODE

Mode, see stat(2).
NLN Number of links to this inode.
UID Userid of owner.
SPTR Core location of corresponding stream header, 0 if this is not a stream.
SIZ/DEV

Number of bytes in an ordinary file, or device number of a special file.
MROOT

Core location of root inode of file system mounted here, 0 if none.

-x
Print the text table with these headings:
LOC The core location of this table entry.
FLAGS

Miscellaneous state variables encoded thus:
P resulted from demand-page-from-inode exec format, see exec(2)
T traced through proc(4)
W text not yet written to swap device
L loading in progress
K locked
w wanted (L flag is on)

DADDR
Disk address in swap, in multiples of 512 bytes.

CADDR
Head of a linked list of loaded processes using this text segment.

RSS Size of physical memory occupied by text segment, in multiples of 512 bytes.
SIZE Size of text segment, in multiples of 512 bytes.
IPTR Core location of corresponding inode.
CNT Number of processes using this text segment.
CCNT

Number of processes in core using this text segment.

976

PSTAT (8) System Manager’s Manual PSTAT (8)

-p
Print process table for active processes with these headings:

LOC The core location of this table entry.
S Run state encoded thus:

0 no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace

F Miscellaneous state variables, or-ed together (hexadecimal):
0000001

loaded in memory
0000002

special system process (swapper or pager)
0000004

being swapped out
0000008

obscure swapout flag
0000010

traced
0000020

used in tracing
0000040

locked in core
0000080

waiting for pagein
0000100

prevented from swapping during fork(2)
0000200

gathering pages for raw i/o
0000400

exiting
0008000

associated text is demand paged from file
0030000

anomalous paging behaviour expected, see vlimit in deprecated(2)
0040000

in a sleep which will time out
0400000

in select(2)
0800000

traced via proc(4)
1000000

i/o via proc in progress
2000000

stop on exec
4000000

wanted by proc after pagein
ADDR

The core location of the page table entry for the first page of the ‘u-area.’
PRI Scheduling priority; smaller numbers run first.
SIG Signals received; signals 1-32 coded in bits 0-31.
UID Real userid.
SLP Time blocked in seconds; times over 127 coded as 127.

977

PSTAT (8) System Manager’s Manual PSTAT (8)

TIM Time resident in seconds; times over 127 coded as 127.
CPU Weighted integral of CPU time, for scheduler.
NI Nice level, see nice(2).
PGRP

Process group number.
PID Process ID number.
PPID Process ID of parent process.
RSS Number of physical page frames allocated to this process.
SRSS RSS at last swap, 0 if never swapped.
SIZE Virtual size of process image (data+stack) in multiples of 512 bytes.
WCHAN

Event address if waiting.
LINK Pointer to next entry in list of runnable processes.
TEXTP

If text is pure, pointer to location of text table entry.
CLKT

Countdown for alarm(2) measured in seconds.

-u
Print information about a user process; the next argument is its address as given by ADDR under -p above.
The process must be in main memory, or the file used can be a core image (core(5)) and the address 0.

-f
Print the open file table with these headings:
LOC The core location of this table entry.
FLG Miscellaneous state variables encoded thus:

R open for reading
W open for writing

CNT Number of processes that know this open file.
INO The core location of the inode table entry for this file.
OFFS The file offset, see lseek(2).

-s
Print information about swap space usage: the number of 1024 byte pages used and free, and the number
of pages belonging to text images.

-T
Print the number of used and free slots in several system tables; useful to see if they are nearly full.

FILES
/unix

namelist

/dev/kmem
default source of tables

SEE ALSO
ps(1), stat(2), filsys(5)
M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall, 1986

BUGS
This program is never up to date.

978

QUOT (8) System Manager’s Manual QUOT (8)

NAME
quot, findo - file system usage and hogs

SYNOPSIS
/etc/quot [option ...] [filesystem]

findo [-f] [-n] [-u userid] device mount-directory

DESCRIPTION
Quot prints the number of blocks in the named filesystem device currently owned by each user. If no
filesystem is named, /dev/usr is assumed. The options are:

-n Use as in the example below to list all files and owners.

-c Print three columns giving file size in blocks, number of files of that size, and cumulative total of
blocks in files of that size or smaller.

-f Print count of number of files as well as space owned by each user.

-b Print space-time product in block-years in addition to space owned by each user.

Findo discovers files you might want to delete on the given block device, which must be mounted on the
given directory. It lists, on the standard output, the sizes, ages in days, and names of files with any of the
following characteristics:

- Troff (1) output files older than 24 hours. The names are marked troff: in the output.

- Week-old files named core, a.out, mon.out, .pilog, junk∗, temp∗, ed.hup, qed.hup:∗,
jim.recover, sam.save, sam.err, sam , [a-z], dead.letter, foo[0-9]∗, rst[0-9]+, .jx∗, ∗.dvi, and
files whose names resemble apnews(7) spool entries.

- Files over a month old named ∗.o. The names are marked old:.

- Files owned by users selected with option -u; the names are marked user:.

The options are

-f List files owned by users not in the password file.

-u userid
List files over 2 days old owned by the user with the given numeric userid.

-n List files of any age owned by the specified users.

EXAMPLES
ncheck filesystem | sort -n | quot -n filesystem List all files and their owners.

FILES
/etc/passwd to get user names

SEE ALSO
ls(1), du(1), icheck(8), fstab(5)

BUGS
Quot counts holes in files as if they actually occupied space.
Patterns specifying the names and ages are compiled into findo.
Findo’s age distinction for files owned by a specific user is a historical dreg.

979

RAREPL(8) System Manager’s Manual RAREPL(8)

NAME
rarepl, rarct - replace bad blocks on MSCP disks

SYNOPSIS
/etc/rarct [-c] [-h] special ...

/etc/rarepl special lbn ...

DESCRIPTION
Rarct prints status information about MSCP disk drives like the RA60 and RA81. Normally the replace-
ment table (RCT) is listed, as lines of the form

rbn: flags: lbn

where rbn is the replacement block number, lbn is the logical block number replaced by rbn, and flags
are constructed from the following bits:

01 alternate (not primary) replacement block
02 normal, allocated replacement block
04 this replacement block is bad
010 this replacement block does not exist

Entries whose flags are zero, indicating a good, unused replacement block, are not listed.

The options suppress the RCT listing and perform other functions:

-h Print some header data from the first block of the RCT. The system does not use this informa-
tion.

-c Print geometry information for the drive.

Rarepl causes logical block lbn on device dev to be marked as bad and replaced. The nearest available re-
placement block is used. The contents of lbn are copied into the replacement block if possible; if lbn is
unreadable, the replacement block is initialized with zeros.

Both programs work only on the raw devices. Rarepl should be used only on a device which covers the
entire drive (usually partition 7).

SEE ALSO
ra(4), smash(8)

BUGS
There are various controller- and drive-dependent anomalies. Some controllers, like the RQDX3, report
an RCT but don’t allow forwarding. On many controllers, the RCT exists only so programs in the host
can look at it; the controller ignores its contents. There is no way to read the controller’s ‘real’ forwarding
data, only a way to set it for a particular block. Hence if the RCT is corrupted, the disk may still be used,
but must be reformatted before additional bad blocks are remapped.

980

RC(8) System Manager’s Manual RC(8)

NAME
rc - boot script

SYNOPSIS
/etc/rc

DESCRIPTION
Rc is the command script invoked by init(8) to control reboots. During an automatic reboot, rc is invoked
with the argument autoboot; typically this invokes /etc/fsck to repair minor filesystem inconsisten-
cies. If rc exits with a successful status, init proceeds to multi-user mode.

When the system enters multi-user mode, either during an auto-reboot or after the single-user shell termi-
nates, rc is invoked without arguments. This usually causes it to mount filesystems, start daemons, clear
and perform other housekeeping.

If any call to rc returns a nonzero status, init reverts to single-user mode.

EXAMPLES
A typical rc script:

date
case $1 in
autoboot)

echo Autoboot:
/etc/fsck -p || {echo "error in reboot"; exit 1}

esac
/etc/ldpcs /etc/pcs750.bin
>/etc/mtab
/etc/mount -a
/etc/savecore /tmp/dump /dev/ra11
/etc/swapon -a
trap "" 1 2 3
/etc/update
/etc/cron .
rm -f /tmp/∗
/usr/lib/asd/rmlocks
date >> /usr/adm/lastboot
/etc/accton /tmp/acct > /tmp/acct
/usr/ipc/mgrs/svcmgr
/etc/kdiload
/usr/ipc/mgrs/dkhup; sleep 10
/usr/ipc/mgrs/dkmgr
/usr/netb/setup.go
/usr/net/face.go
wwv -s

SEE ALSO
init(8), reboot(8)

981

REBOOT (8) System Manager’s Manual REBOOT (8)

NAME
reboot - bootstrapping procedures

DESCRIPTION
Here are some recipes for booting and crashing the operating system on VAXes.

Rebooting a running system
The preferred way to reboot is to log in on the console as super-user, invoke kill 1 to take the system to
single user, unmount file systems with /etc/umount -a and halt and restart the system as described below
under ‘Console boots.’

Power fail and crash recovery
The system will reboot itself at power-up or after crashes if auto-boot is enabled on the machine front
panel or in the console software. If auto-restart is enabled, the system will first attempt to save a copy of
physical memory on a reserved piece of disk. An automatic consistency check of the file systems is per-
formed. Unless this fails the system will resume multi-user operations.

Console boots
Sync the disks if necessary and possible. To recover hardware control of the console, type a control-P.
This will yield a >>> prompt from the VAX console subsystem (sic). The command

>>> H

will halt the CPU (except on the 11/750, where control-P halts the CPU right away).

On MicroVAXes, control-P doesn’t work; hit the BREAK key instead.

To boot multi-user with an automatic file system check, give the console command

>>> B

Commands to boot single-user vary. On the VAX-11/750 and on MicroVAXes, use

>>> B/3

On the VAX-11/780 and VAX 8550 and 8700, use

>>> B MAN

This will prompt with ∗ for the name of the file to boot. The filename should be an executable image in
the root directory of the filesystem at the beginning of the disk.

System core images
If the system crashes and auto-restart is enabled, a copy of physical memory is written to a reserved piece
of disk. To save a core image of a hung system, type on the console (after control-P if necessary):

>>> S 80000010

The system will write the core image, then reboot automatically.

If the core image was written on /dev/ra11, the following incantation will print a stack traceback from
the time of the crash:

adb /unix /dev/ra11
$<crash
$c

To save disk space, the core image is sometimes overlaid on part of the swap area, where normal system
operation will soon overwrite it. Savecore(8) will copy the core image to an ordinary disk file.

FILES
/unix

default system binary

SEE ALSO
fsck(8), init(8), rc(8), savecore(8)

BUGS
Older boot programs with different syntax are still around in a few places, especially on machines with
Emulex UNIBUS disk controllers, for which silly boot ROMs are common.

982

REBOOT (8) System Manager’s Manual REBOOT (8)

There are commands /etc/reboot and /etc/halt which attempt to reboot and halt the system; their function
is indeterminate and likely to change.

983

RECNEWS(8) System Manager’s Manual RECNEWS(8)

NAME
recnews - receive unprocessed articles via mail

SYNOPSIS
/usr/lib/news/recnews [newsgroup [sender]]

DESCRIPTION
Recnews reads a letter from the standard input; determines the article title, sender, and newsgroup; and
gives the body to inews with the right arguments for insertion.

If newsgroup is omitted, the to line of the letter will be used. If sender is omitted, the sender will be de-
termined from the from line of the letter. The title is determined from the subject line.

SEE ALSO
inews(8), uurec(8), sendnews(8), readnews(1), checknews(1)

984

RESTOR(8) System Manager’s Manual RESTOR(8)

NAME
restor - incremental file system restore

SYNOPSIS
/etc/restor key [argument ...]

DESCRIPTION
Restor is used to read magtapes dumped with the dump command. The key specifies what is to be done.
Key is one of the characters rRxt optionally combined with f.

f Use the first argument as the name of the tape instead of the default.

r or R
The tape is read and loaded into the file system specified in argument. This should not be done
lightly (see below). If the key is R restor asks which tape of a multi volume set to start on. This
allows restor to be interrupted and then restarted (an icheck -s must be done before restart).

x Each file on the tape named by an argument is extracted. The file extracted is placed in a file
with a numeric name supplied by restor (actually the inode number). In order to keep the
amount of tape read to a minimum, the following procedure is recommended:

Mount volume 1 of the set of dump tapes.

Type the restor command.

Restor will announce whether or not it found the files, give the number it will name the file, and
rewind the tape.

It then asks you to ‘mount the desired tape volume’. Type the number of the volume you choose.
On a multivolume dump the recommended procedure is to mount the last through the first vol-
ume in that order. Restor checks to see if any of the files requested are on the mounted tape (or a
later tape, thus the reverse order) and doesn’t read through the tape if no files are. If you are
working with a single volume dump or the number of files being restored is large, respond to the
query with ‘1’ and restor will read the tapes in sequential order.

If you have a hierarchy to restore you can use dumpdir(8) to produce the list of names and a shell
script to move the resulting files to their homes.

t Print the date the tape was written and the date the filesystem was dumped from.

The r option should only be used to restore a complete dump tape onto a clear file system or to restore an
incremental dump tape onto this. Thus

/etc/mkfs /dev/rrp0g 145673
restor r /dev/rrp0g

is a typical sequence to restore a complete dump. Another restor can be done to get an incremental dump
in on top of this.

A dump followed by a mkfs and a restor is used to change the size of a file system.

FILES
default tape unit varies with installation
rst∗

SEE ALSO
dump(8), mkfs(8), dumpdir(8)

DIAGNOSTICS
There are various diagnostics involved with reading the tape and writing the disk. There are also diagnos-
tics if the i-list or the free list of the file system is not large enough to hold the dump.

If the dump extends over more than one tape, it may ask you to change tapes. Reply with a new-line when
the next tape has been mounted.

BUGS
There is redundant information on the tape that could be used in case of tape reading problems. Unfortu-
nately, restor doesn’t use it.

4th Berkeley Distribution 985

ROUTE(8) System Manager’s Manual ROUTE(8)

NAME
route, routed, remroutes - IP gateway routing

SYNOPSIS
/usr/ipc/mgrs/routed [-v] [-t] [-q] [-hops] [addr ...]
route add dest gateway
route delete dest
/etc/remroutes

DESCRIPTION
Routed runs the 4BSD RIP routing protocol on an IP network. It broadcasts routing information to the
network at large, listens for routing messages from elsewhere, and informs the system of the routes it re-
ceives.

The options are

-v Log transmitted messages on the standard output.

-t Log received messages on the standard output.

-q Accept routing information but do not broadcast any.

-hops Add hops (a decimal number) to the hop count when broadcasting routes.

Information received for any named addrs is ignored.

Routed is usually run without options on gateway machines, and with the -q option on non-gateway ma-
chines.

Route sets up specific routes, to establish static routing or to adjust that set up by routed . The add com-
mand informs the system that internet address dest may be reached through internet address gateway;
delete removes any routing for dest. The special destination ∗ represents the default routing: route add ∗
gate sets the default, route delete ∗ removes any default.

Remroutes removes all known routes.

FILES
/usr/ipc/log/routed

SEE ALSO
ipconfig(8)

986

SA(8) System Manager’s Manual SA(8)

NAME
sa, accton - system accounting

SYNOPSIS
/etc/sa [-abcdDfgijkKlnrstuv] [-e prefix] [file]

/etc/accton [file]

DESCRIPTION
With an argument naming an existing file, accton causes system accounting information for every process
executed to be placed at the end of the file. If no argument is given, accounting is turned off.

Sa reports on, cleans up, and generally maintains accounting files.

Sa is able to condense the information in /usr/adm/acct into a summary file /usr/adm/savacct
which contains a count of the number of times each command was called and the time resources con-
sumed. This condensation is desirable because on a large system /usr/adm/acct can grow by 10000
blocks per day. The summary file is normally read before the accounting file, so the reports include all
available information.

If a file name is given as the last argument, that file will be treated as the accounting file;
/usr/adm/acct is the default.

Output fields are labeled: cpu for the sum of user and system times (in minutes), re for real time (also in
minutes), k for cpu-time averaged core usage (in 1K units), avio for average number of IO operations per
execution. With options fields labelled tio for total IO operations, k∗sec for cpu storage integral (kilo-
core seconds), u and s for user and system cpu time alone (both in minutes) will sometimes appear.

There are zillions of options:

a Place all command names containing unprintable characters and those used only once under the
name ∗∗∗other.

b Sort output by sum of user and system time divided by number of calls. Default sort is by sum of
user and system times.

c Besides total user, system, and real time for each command print percentage of total time over all
commands.

d Sort by average number of disk IO operations.

D Sort by total number of disk IO operations.

e Set the prefix for accounting file names to the next argument (/usr/adm/ is the default).

f Assume answer y for option -v.

g Ignore /usr/adm/acct. Useful for processing only savacct and usracct.

i Don’t read in summary file.

j Instead of total minutes time for each category, give seconds per call.

k Sort by cpu-time average memory usage.

K Print and sort by cpu-storage integral.

l Separate system and user time; normally they are combined.

m (money) Print number of processes and number of CPU minutes for each user.

n Sort by number of calls.

r Reverse order of sort.

s Merge accounting file into summary file /usr/adm/savacct when done.

t For each command report ratio of real time to the sum of user and system times.

u Superseding all other flags, print for each command in the accounting file the userid and com-
mand name.

987

SA(8) System Manager’s Manual SA(8)

v Followed by a number n, types the name of each command used n times or fewer. Await a reply
from the terminal; if it begins with y, add the command to the category ∗∗junk∗∗ . This is used
to strip out garbage.

FILES
/usr/adm/acct

raw accounting

/usr/adm/savacct
summary

/usr/adm/usracct
per-user summary

SEE ALSO
ac(8), acct(2)

BUGS
Sa needs more options.

988

SAVECORE(8) System Manager’s Manual SAVECORE(8)

NAME
savecore - save a core image of the operating system

SYNOPSIS
/etc/savecore target dump

DESCRIPTION
Savecore copies the core image saved after an operating system crash to an ordinary file. This is worth
doing so that the crash image will not be overwritten immediately by another crash, or sometimes because
the crash image was written in a place where normal system operation will overwrite it (e.g. in the swap
area).

The crash image is taken from dump and written to target. If target exists and is a directory, the image is
copied to a file in that directory with the first nonexistent name in the sequence z.0 z.1 z.2 ...; otherwise
target is created or overwritten.

The crash image to be copied is checked for a magic number in a known location. If the magic number is
correct, it is followed by the size of the image, and the time it was written; these numbers are printed be-
fore the dump is copied. If the magic number is wrong, the image is not copied. Savecore overwrites the
magic number in dump after a successful copy.

The program runs faster if dump is the raw device.

For compatibility with an older program of the same name, the dump argument may be omitted; savecore
will noisily examine each device specified for swapping in fstab(5) and each of several popular default
swap devices for a valid magic number. The first device that looks right is taken to be the crash image.

Savecore is usually called when the system is booted, from rc(8).

EXAMPLE
/etc/savecore /tmp/dump /dev/rra11

SEE ALSO
reboot(8)

BUGS
The argument convention (the file to be written comes first) is unfortunate; it stems from compatibility.

989

SCSISH(8) System Manager’s Manual SCSISH(8)

NAME
scsish - SCSI shell

SYNOPSIS
/usr/lib/worm/scsish

DESCRIPTION
Scsish is a command interpreter for SCSI commands executed through /dev/scsi (see scsi(4)). Many com-
mands are applicable to more or less all SCSI devices; some are specific to the SONY WDA-3000-10 op-
tical disk jukebox. Any details not found here are in the manual for the jukebox.

Typically commands are sent to a particular drive (a number between 0 and 7 inclusive) on a particular de-
vice (normally a number between 0 and 5 inclusive). Most commands take a drive parameter (a number).
The device number is set by the id command.

Occasionally, commands fail and will print the result of a sense command which is normally needed to
clear the error status.

All input is in lower case and keywords and numbers are separated by white space. Commands are sepa-
rated by a newline or semicolon.

General SCSI Commands
capacity drive

Report the capacity of drive as nblocks x blocksize.

disk eject drive
Eject the disk (or other removable medium) from drive.

echo number
Print number on standard output.

help Print a summary of the available commands.

id n Set the destination SCSI bus device number. By default, it is 2 which is the normal device num-
ber for the SONY jukebox.

inquiry drive
Print various bits of status about drive. For example,

drive 2,0: WORM device, ’ SONY WDA-3000-10 2.D’
disk,write protect,,,ready (0x9)

If drive is omitted, an inquiry is performed for drives 0 through 7.

read drive block
Print the contents of the 1024 byte block at block on drive in hexadecimal.

read id drive
Print the string starting at byte 42 in block 1 on drive. This corresponds to the initial vol_id for
worm(8) disks.

reset Attempt to reset the SCSI interface.

sense drive
Print the sense data for drive. Some of the interpretations of the sense bytes are idiosyncratic to
SONY.

ext sense drive
Print the extended sense data for drive. Most of the interpretations of the extended sense bytes
are idiosyncratic to SONY.

sleep n
Sleep for n seconds.

start drive
Start drive spinning.

stop drive
Stop drive.

990

SCSISH(8) System Manager’s Manual SCSISH(8)

test drive
Test unit ready for drive.

SONY Commands
alternate drive

Print the replacement block tables from the disk.

media drive blkno nblks
Print a summary of the media quality in drive for the nblks blocks starting at block number
blkno. For example, a dirty disk can yield

drive 0: media check for 1000 blocks [0-999], upper drive
849 good, 1 unwritten, 147 <50 burst, 3 >96 burst,

Please report any instances of messages including rare error to the jukebox guru.

ext media drive blkno nblks
A verbose form of the media command.

Jukebox Commands
config Print the configuration data for the jukebox.

rel drive shelf side
Release the disk from drive to shelf . The value of side indicates whether it should be inverted
on the way (b) or not (a). If shelf and side are absent, the disk is restored to its former shelf.

set shelf side drive
Put the disk from shelf into drive. The value of side indicates whether it should be inverted on
the way (b) or not (a).

internal n
Execute various internal reports and diagnostics. internal -1 with no argument will print a list of
available diagnostics.

status drive
Print the status for drive. An absent drive is taken as 0. As the status is for the jukebox as a
whole, the value of drive doesn’t matter. A sample status output shows the jukebox hides the
mapping of logical drive number and actual drive:
drive 0: ready,disk in LUN,power on,disk in drive 0, return shelf 2
drive 1: not ready,no disk in LUN,power on,disk in shelf 0
drive 2: not ready,no disk in LUN,power on,disk in shelf 0
drive 3: ready,disk in LUN,power on,disk in drive 1, return shelf 0
drive 4: not ready,no disk in LUN,power on,disk in shelf 0
drive 5: not ready,no disk in LUN,power on,disk in shelf 0
drive 6: not ready,no disk in LUN,power on,disk in shelf 0
drive 7: not ready,no disk in LUN,power on,disk in shelf 0
0: no disk
1: no disk
2: disk,
I/O shelf: no disk
carrier: disk shelf=0
upper drive: disk, LUN=0
lower drive: disk, LUN=3

SEE ALSO
worm(8), scsi(4)

991

SENDCOVER(8) System Manager’s Manual SENDCOVER(8)

NAME
sendcover - send cover sheet to the library

SYNOPSIS
sendcover file ...

DESCRIPTION
Sendcover sends a document cover sheet to the Bell Laboratories library for their document database. It
is invoked automatically as a byproduct of running troff -mcs.

The cover sheet is translated from the form of mcs(6) to a form used in the library and certain other proto-
col information is added. The destination is not the same as that of docsubmit(1).

FILES
/usr/lib/tmac/tmac.cs
/usr/lib/tmac/cstrans

SEE ALSO
docsubmit(1), mcs(6)

992

SENDNEWS(8) System Manager’s Manual SENDNEWS(8)

NAME
sendnews - send news articles via mail

SYNOPSIS
sendnews [-o] [-a] [-b] [-n newsgroups] destination

DESCRIPTION
sendnews reads an article from it’s standard input, performs a set of changes to it, and gives it to the mail
program to mail it to destination.

An ‘N’ is prepended to each line for decoding by uurec(1).

The -o flag handles old format articles.

The -a flag is used for sending articles via the ARPANET. It maps the article’s path from uucphost!xxx
to xxx@arpahost.

The -b flag is used for sending articles via the Berknet. It maps the article’s path from uucphost!xxx to
berkhost:xxx.

The -n flag changes the article’s newsgroup to the specified newsgroup.

SEE ALSO
inews(8), uurec(8), recnews(8), readnews(1), checknews(1)

993

SHIP(8) System Manager’s Manual SHIP(8)

NAME
ship, shipstat − automatic software distribution

SYNOPSIS
ship [option ...] [file ...]

shipstat

DESCRIPTION
Ship distributes the named files to other computers, where the files are installed under the same names.
Shipping privileges are determined by the network manager on the receiving machine; see svcmgr(8).

Destinations are taken from environment variable dest, or from /usr/lib/asd/dest/default if dest
is empty. If a destination is the name of a file in it is replaced by the contents of that file, each word of
which is then examined in the same way. Otherwise the destination is a network address. The sending
machine is omitted unless explicitly named in the environment variable, or unless option -f is present or
environment variable force has a non-empty value.

Ship uses inspkg and mkpkg(8) to do its work. Links among the named files are imitated on the receiving
computer, and named files that do not exist on the sending computer are deleted on the receiving com-
puter. Other options are the same as those of mkpkg:

-v Emit running commentary on the standard error file.

-Dpath1 = path2
Pretend that any file name that begins with path1 really begins with path2. Relative path-
names are extended to full pathnames before comparison.

-xcommand
-Xfile Include in the package instructions to execute the shell command or run the shell script file

after all files have been installed. Only one of these options may occur. The file name in -X
is affected by -D.

Shipments are generally acknowledged by mail after each destination has been tried at least once; see
asd(8) for details.

Shipstat reports the status of all its caller’s incomplete shipments, with the most recent first.

FILES
/usr/lib/asd/dest/∗

distribution lists

/usr/lib/asd/dest/default default distribution list

/usr/spool/asd/logname
outgoing spool directories

SEE ALSO
mkpkg(8), asd(8), svcmgr(8)

BUGS
The -f option, if given, must be the first option and must not be combined with any other.

994

SHOWQ(8) System Manager’s Manual SHOWQ(8)

NAME
showq - status of stream input/output system

SYNOPSIS
/etc/showq [-v -V -s -m] [system] [mem]

DESCRIPTION
Showq reports connectivity and contents of I/O streams. By default, it lists the maximum number of
stream blocks (of various sizes) ever used, then each stream and the queue modules in each stream, and
then blocks that are unaccounted for (not on any queue or the free list).

By default, the system namelist is /unix and the place the streams are kept is /dev/mem.

The options are:

-v Verbose. Show more, in particular the contents of data and control blocks on each queue.

-V Very verbose. Show all blocks on every queue instead of giving up after a while.

-s Silent. Examine queues for consistency, printing only a summary.

-m Missing. Show the contents of missing blocks. (Perhaps this will give a clue about who lost
them.)

FILES
/unix
/dev/mem

SEE ALSO
stream(4), netstat(8)
mesgld(4) for a list of message types

995

SHUTDOWN (8) System Manager’s Manual SHUTDOWN (8)

NAME
shutdown - take system down gracefully

DESCRIPTION
To be supplied.

SEE ALSO
reboot(8)

4th Berkeley Distribution 996

SMASH(8) System Manager’s Manual SMASH(8)

NAME
smash - rewrite bad disk sectors

SYNOPSIS
/etc/smash device sector

DESCRIPTION
Smash attempts to read the named (decimal, 512-byte) sector from the named device, and prints the error
status from the read and the data read, in octal, regardless of the error status. It then prompts write?, to
which there are three answers:

y Write the data back to the sector.

c Write zeros to the sector.

anything else
Quit.

After the sector is written, it is read again and the cycle repeats.

Writing the sector, even if its contents could be correctly read, will recompute the error correcting code.
This may make soft ECC errors vanish, and will recover what can be recovered (sometimes not much)
from hard ECC errors.

SEE ALSO
rarepl(8)

997

SMSTAT (8) System Manager’s Manual SMSTAT (8)

NAME
smstat - list smtp queues

SYNOPSIS
smstat

DESCRIPTION
Smstat prints a summary of pending mail messages queued by the programs in smtp(8). Each line con-
tains the name of a spooling directory; the number of outbound messages, followed by C; and the number
of inbound messages, followed by X.

FILES
/usr/spool/smtpq/∗ spool directories

SEE ALSO
smtp(8)

998

SMTP(8) System Manager’s Manual SMTP(8)

NAME
smtp, smtpqer, smtpd, smtpsched - handle simple mail transfer protocol

SYNOPSIS
/usr/lib/upas/smtp [option ...] replyaddr dest recipient ...

/usr/lib/upas/smtpqer [option ...] replyaddr dest recipient ...

/usr/lib/upas/smtpd [-n] [-H host]

/usr/lib/upas/smtpsched [option ...] [queue ...]

DESCRIPTION
Smtp reads a mail message from the standard input, and sends it with the Internet SMTP protocol to the
named recipients at network address dest. Dest has default network tcp and default service tcp.25 (the
conventional Internet SMTP port). Error reports are mailed to local address replyaddr.

Smtp operates in two modes, ‘Internet’ (default) and ‘Unix’. In Internet mode recipient addresses should
be in full domain form. From: and Date: headers will be inserted as necessary to conform to Internet
standards. In Unix mode addresses and message contents are not touched. The options are

-u Run in Unix mode.

-H host
Use host as the name of the sending system (taken from whoami(5) by default).

-d domain
Append the specified domain suffix to incomplete addresses.

Smtpqer reads a mail message from the standard input and stashes it away to be sent later by smtpsched .
By default, smtpsched is started immediately; option -n prevents this. Other options and arguments are
the same as for smtp.

Smtpd receives a message by speaking the server part of SMTP on the standard input and output. The
message is stashed in a queue for later delivery as by smtpqer. Option -n prevents smtpsched from run-
ning immediately; option -H is as for smtp.

Smtpsched processes the queues assembled by smtpqer and smtpd , calling mail(1) for local messages and
smtp for others. It should be run occasionally from cron(8).

The queue arguments name particular queue directories to be processed; if no queue is named, all queues
are processed. The options are

-w days
Send a warning about each message more than days old to the reply address.

-r days
Mail an error reply about each message more than days old, and discard the message.

-s nproc
Do not run more than nproc simultaneous copies of smtpsched started with this option.

-c Remove empty directories and inconsistent files.

-t Log actions without performing them.

-C Process ‘C’ command files (smtp calls) only.

-X Process ‘X’ command files (rmail calls) only.

-v Enable verbose logging.

The queues are kept in subdirectories of named by splitting the lower case remote system name into com-
ponents separated by periods, concatenating the last two or fewer components, taking the last 14 charac-
ters, and stripping leading periods.

FILES
/usr/spool/smtpq

spooling directory

999

SMTP(8) System Manager’s Manual SMTP(8)

/usr/spool/smtpq/smtpqsched.log
logging

/usr/spool/smtpq/.consumers
list of process IDs running smptqsched -s

SEE ALSO
mail(1), upas(8), smstat(8)
DARPA standards RFC 822, RFC 976

1000

STICKY (8) System Manager’s Manual STICKY (8)

NAME
sticky - executable files with persistent text

DESCRIPTION
While the ‘sticky bit’, mode 01000 (see chmod(2)), is set on a sharable executable file, the text of that file
will not be removed from the system swap area. Thus the file does not have to be fetched from the file
system upon each execution. As long as a copy remains in the swap area, the original text cannot be over-
written in the file system, nor can the file be deleted. (Directory entries can be removed so long as one
link remains.)

Sharable files are made by the -n and -z options of ld(1).

To replace a sticky file that has been used do: (1) Clear the sticky bit with chmod(1). (2) Execute the old
program to flush the swapped copy. This can be done safely even if others are using it. (3) Overwrite the
sticky file. If the file is being executed by any process, writing will be prevented; it suffices to simply re-
move the file and then rewrite it, being careful to reset the owner and mode with chmod and chown(2)(4)
Set the sticky bit again.

Only the super-user can set the sticky bit.

BUGS
Are self-evident.

Is largely unnecessary on the VAX; matters only for large programs that will page heavily to start, since
text pages are normally cached incore as long as possible after all instances of a text image exit.

4th Berkeley Distribution 1001

SU(8) System Manager’s Manual SU(8)

NAME
su, setlog - substitute userid temporarily, become super-user

SYNOPSIS
/etc/su [user]

/etc/setlog logname command ...

DESCRIPTION
Su changes the userid to that of user (root by default) with groupid and login shell determined from the
password file. If the current userid is not the super-user, the password for the new user is demanded. The
userid stays in force until the new shell exits.

The current directory and environment are unchanged unless the new userid is super-user, in which case
the environment variables PS1 and PATH, if present, are set to standard values (white space and
/bin:/usr/bin:/etc).

Setlog executes the specified command with login name logname. The environment is otherwise un-
changed; in particular, the userid is not set. Only the super-user may use this command.

SEE ALSO
sh(1), getuid(2), passwd(5)

1002

SVCMGR(8) System Manager’s Manual SVCMGR(8)

NAME
svcmgr - service remote computing requests

SYNOPSIS
/usr/ipc/mgrs/svcmgr [-d]

DESCRIPTION
Svcmgr performes services such as login and command execution, often in response to requests from net-
work listeners like dkmgr and tcpmgr(8). It should be run once from rc(8).

Svcmgr is controlled by several files in directory services are defined in files serv and serv.local, autho-
rization in auth and auth.local. The .local files are searched first. The idea is that serv and auth will be
the same throughout an administrative cluster of machines, and anything peculiar to specific systems will
be kept in serv.local and auth.local.

Each service is announced as a name in directory /cs using the routines in ipc(3). When a connection is
requested to one of these services, svcmgr receives a file descriptor connected to the requester. A new
process is created to perform the actions listed for that service in the serv files, usually resulting in a
login(8) with standard input, output, and error files attached to the connection. Often there are flags to
login specifying a local user name or a command to be executed. Environment variable CSOURCE is set
to a string of the form

source=remote-machine user=ruser line=lineinfo

Remote-machine and ruser are supplied in the connection message; lineinfo network-dependent stuff of
varying interest and meaning. If a particular command was specified (the cmd or exec action), login sets
environment variable REXEC to 1.

The auth files are used to translate remote user names to local ones. They contain lines with four fields:
service name
calling system name
calling user name
local user name

The service, calling system, and calling user names are regular expressions in the style of regexp(3). The
calling system and calling user fields may be omitted; .∗ is assumed. The local user name is a literal
name, . to repeat the calling user name provided in the request, or : to explicitly reject a call. If the local
user name is omitted, . is assumed.

Several service actions ‘look up the connection in the auth files.’ This means to find the first line in
auth.local or auth for which the service, calling system, and calling user match the patterns, and return
the local user name in that line (the same as the calling user if .). If no matching line is found, or if the
first match has local user name :, the lookup fails.

The serv files contain lines with three fields:
service name
a list of actions, separated by +
the calling system name

The calling system name is a regular expression as in the auth file. The line matching an incoming call is
the first whose service matches the requested service and whose regular expression matches the calling
machine.

The possible actions are:

user(x)
Use local username x.

auth Look up the connection in the auth files. If a match is found, use the resulting local user. Other-
wise reject the call.

v9auth
Look up the connection in the auth files; if a match is found, send OK to the caller, and use the
result. If there is no match, send NO, and read a string of the form ‘login,passwd\n’. If the login
and password describe a valid local user, send OK and use that user; otherwise send NO and try
again (until the caller gives up). This is the authentication protocol used by ipclogin (see ipc(3)),

1003

SVCMGR(8) System Manager’s Manual SVCMGR(8)

hence by con(1), push(1), and pull.

inauth
Read two null-terminated strings from the caller. If they aren’t the same, reject the call. Other-
wise look up the service, calling system, and the null-terminated string (as a user name) in the
auth files, use the resulting local user if there’s a match, reject the call otherwise. This is the
authentication protocol used by ipcrogin, hence by rsh and rlogin; see ipc(3) and con(1).

ttyld
Push the terminal line discipline ttyld(4) onto the connection.

mesgld
Push the reverse message line discipline (see mesgld(4)) onto the connection.

term Read a null-terminated string from the caller, and set environment variable TERM to the result.

args Read a null-terminated string from the caller, and save the result as arguments to a possible com-
mand.

s5parms
Extract arguments from the destination address in a way compatible with the DKHOST network
software used by System V Datakit implementations, and save for later use.

cmd(x)
Execute shell command x, with any saved arguments, and with the connection as standard input,
output, and error.

login
Provide a login session with the connection as standard input, output, and error.

password
Provide a login session, but ignore any local user name; always demand a login and password.

exec Use any saved arguments as a shell command to be executed.

gateout(gateway)
Call network address gateway and send the connection info there, If all is well, pass the new con-
nection’s file descriptor to the original caller: the result is a connection through the gateway.
Gateway should be a svcmgr service, perhaps on some other machine, with action gateway.

gateway(localout)
The intended target for gateout: read new connection info from the connection, and place a call
to the new destination; if it succeeds, loop passing data between the new connection and the orig-
inal one.

If the file /usr/ipc/log/svc can be opened, svcmgr prints miscellaneous chatter there, including a
record of each service request. The -d (debug) option increases the chatter.

FILES
/usr/ipc/lib/serv
/usr/ipc/lib/serv.local
/usr/ipc/lib/auth
/usr/ipc/lib/auth.local
/usr/ipc/log/svc

SEE ALSO
con(1), ipc(3), dkmgr(8), tcpmgr(8), ipc(3)

1004

SWAPON (8) System Manager’s Manual SWAPON (8)

NAME
swapon - specify swapping device

SYNOPSIS
/etc/swapon -a
/etc/swapon name ...

DESCRIPTION
Swapon specifies additional devices on which paging and swapping are to take place. The system begins
by using a single device; swapon must be used to enable others.

Usually there is a call to swapon -a in rc(8). Specific swap devices may be nominated with the second
form.

SEE ALSO
rc(8), vswapon in deprecated(2)

BUGS
There is no way to stop paging and swapping on a device. It is therefore not possible to make use of
devices which may be dismounted during system operation.
Possible swap devices must be listed in a table configured into the system; swapon can only enable
devices in the table.

1005

SYMORDER(8) System Manager’s Manual SYMORDER(8)

NAME
symorder - rearrange name list

SYNOPSIS
symorder orderlist symbolfile

DESCRIPTION
Orderlist is a file containing symbols to be found in symbolfile, 1 symbol per line.

Symbolfile is updated in place to put the requested symbols first in the symbol table, in the order specified.
This is done by swapping the old symbols in the required spots with the new ones. If all of the order sym-
bols are not found, an error is generated.

This program was specifically designed to cut down on the overhead of getting symbols from /vmunix.

SEE ALSO
nlist(3)

3rd Berkeley Distribution 1006

SYNC(8) System Manager’s Manual SYNC(8)

NAME
sync, update - update disk file systems

SYNOPSIS
sync

/etc/update

DESCRIPTION
Sync executes the sync(2) system primitive, to suggest that all disk writes be completed soon. It is wise to
call sync before halting the system.

Update calls sync(2) every 30 seconds, so that file systems are fairly well up to date if the system crashes.
It should be run once from rc(8).

SEE ALSO
sync(2), reboot(8)

1007

TCPMGR(8) System Manager’s Manual TCPMGR(8)

NAME
tcpmgr - accept and place calls via the TCP protocol

SYNOPSIS
/usr/ipc/mgrs/tcpmgr [-m outnet]

DESCRIPTION
Tcpmgr receives and places TCP calls on an Internet TCP/IP network. Outbound TCP calls may be
placed by calling ipcopen with network name tcp (see ipc(3)). Inbound calls to TCP port n are handed to
the local service listed for that port in or to service tcp.n if there is no listing.

Option -m tells tcpmgr to claim to place outbound calls for network outnet rather than tcp.

The TCP protocol runs atop one or more IP networks. Tcpmgr arranges to receive all inbound TCP calls
on all active IP networks, but other arrangements must be used to activate the IP networks themselves; see
ipconfig(8).

Tcpmgr records its activity in file outnet in directory /usr/ipc/log, default /usr/ipc/log/tcp.

This command is usually run once from rc(8).

FILES
/usr/ipc/log/tcp
TCP network devices
/dev/iptcp IP channel for the TCP protocol
/usr/ipc/lib/inservices mapping between service name and port number

SEE ALSO
con(1), ipconfig(8), svcmgr(8), ipc(3)

1008

TP(8) System Manager’s Manual TP(8)

NAME
tp - manipulate tape archive

SYNOPSIS
tp [key] [name ...]

DESCRIPTION
Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key argument. The
key is a string of characters containing at most one function letter and possibly one or more function mod-
ifiers. Other arguments to the command are file or directory names specifying which files are to be
dumped, restored, or listed. In all cases, appearance of a directory name refers to the files and (recur-
sively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the tape. If files with the same names already exist, they are re-
placed. ‘Same’ is determined by string comparison, so ‘./abc’ can never be the same as
‘/usr/dmr/abc’ even if ‘/usr/dmr’ is the current directory. If no file argument is given, ‘.’ is the
default.

u updates the tape. u is like r, but a file is replaced only if its modification date is later than the
date stored on the tape; that is to say, if it has changed since it was dumped. u is the default
command if none is given.

d deletes the named files from the tape. At least one name argument must be given. This function
is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner and mode are restored. If
no file argument is given, the entire contents of the tape are extracted.

t lists the names of the specified files. If no file argument is given, the entire contents of the tape
is listed.

The following characters may be used in addition to the letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

0,...,7 This modifier selects the drive on which the tape is mounted. For DECtape, x is default; for
magtape ‘0’ is the default.

v Normally tp does its work silently. The v (verbose) option causes it to type the name of each
file it treats preceded by the function letter. With the t function, v gives more information
about the tape entries than just the name.

c means a fresh dump is being created; the tape directory is cleared before beginning. Usable
only with r and u. This option is assumed with magtape since it is impossible to selectively
overwrite magtape.

i Errors reading and writing the tape are noted, but no action is taken. Normally, errors cause a
return to the command level.

f Use the first named file, rather than a tape, as the archive. This option currently acts like m;
i.e. r implies c, and neither d nor u are permitted.

w causes tp to pause before treating each file, type the indicative letter and the file name (as
with v) and await the user’s response. Response y means ‘yes’, so the file is treated. Null re-
sponse means ‘no’, and the file does not take part in whatever is being done. Response x
means ‘exit’; the tp command terminates immediately. In the x function, files previously
asked about have been extracted already. With r, u, and d no change has been made to the
tape.

FILES
/dev/tap?
/dev/rmt?

SEE ALSO
ar(1), tar(1)

1009

TP(8) System Manager’s Manual TP(8)

DIAGNOSTICS
Several; the non-obvious one is ‘Phase error’, which means the file changed after it was selected for
dumping but before it was dumped.

BUGS
A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by tp difficult to carry to other machines;
tar(1) avoids the problem.

1010

UPAS(8) System Manager’s Manual UPAS(8)

NAME
upas, rmail, translate - mail delivery system

SYNOPSIS
rmail person ...

/usr/lib/upas/translate name

/usr/lib/upas/auth sender receiver

DESCRIPTION
Users send mail by mail(1). Remote machines use rmail. Both call on upas programs.

Mail addresses are interpreted according to rewrite rules as described below. When the addresses for a
mail or rmail command have been interpreted, they are bundled by network and passed to network-spe-
cific handlers, such as route.inet.

Translate looks up a mail name in an alias list (see mail(6)) and places the result on standard output.

Auth is called by upas to authorize mail delivery for each sender, receiver pair. The mail is accepted if the
previous hop was a trusted gateway machine in or all the machines in the source or destination path are in

Rewrite rules
Each line of the file /usr/lib/upas/rewrite is a rule. Blank lines and lines beginning with # are
ignored.

Each rewriting rule consists of (up to) 4 strings:

pattern
A regular expression in the style of regexp(3). The pattern is applied to mail destination
addresses. The pattern match is case-insensitive and must match the entire address.

type The type of rule; see below.

arg1 An ed(1) style replacement string, with \n standing for the text matched by the nth parenthesized
subpattern.

arg2 Another ed(1) style replacement string.

In each of these fields the substring \s is replaced by the login id of the sender and the substring \l is
replaced by the name of the local machine.

When delivering a message, mail starts with the first rule and continues down the list until a pattern
matches the destination address. It then performs one of the following actions depending on rule type:
>> Append the mail to the file indicated by expanding arg1, provided that file appears to be a valid

mailbox.
| Pipe the mail through the command formed from concatenating the expanded arg1 and arg2.
alias Replace the address by the address(es) specified by expanding arg1 and recur.
translate

Replace the address by the address(es) output by the command formed by expanding arg1 and
recur.

auth Call the program in expanded arg1 and authorize(reject) the mail if it returns a zero(non-zero)
return code.

Mail expands the addresses recursively until each address has matched a >> or | rule or until the recur-
sion depth indicates a rewriting loop (currently 32).

An auth operator is only applied once per address. If no auth rule is encountered, the mail is accepted.

If several addresses match | rules and result in the same expanded arg1, the message is delivered to all
those addresses by a single command, composed by concatenating the common expanded arg1 and each
expanded arg2. This is meant to make less work of a message to several recipients on the same machine.
For example, the rule

([ˆ!]+)!(.+) | "uux - -a \s \1!rmail" \2

causes mail to generate the single delivery command uux -a rob r70!rmail pjw ken.

1011

UPAS(8) System Manager’s Manual UPAS(8)

EXAMPLES
A sample rewrite file:

local mail
[ˆ!@]+ translate "exec translate ’.’"
local!([ˆ!@]+) >> /usr/spool/mail/\1
\l!(.+) alias \1

convert @ format to ! format
(_822_)!((.+)!)?([ˆ!]+)[@]([ˆ!@]+) \

alias \1!\2\5!\4
([ˆ!]+)[@]([ˆ!@]+) alias _822_!\2!\1
822!(.+) alias \1

special domains
[ˆ!]+wisc\.edu!.+ alias xunet!.

network gateways
(csnet|bitnet)!(.+) aliasinet!.
acsnet!.+

real networks
inet!([ˆ!]+)!(.+) | "/usr/lib/upas/route.inet ’\s’ ’\1’" "’\2’"
([ˆ!]+)!(.+) | "/usr/lib/upas/route ’\s’ ’\1’" "’\2’"

FILES
/usr/lib/upas/namefiles

list of files to search

$HOME/lib/names
private aliases

/usr/lib/upas/rewrite
rewriting rules

/usr/lib/upas/attlist
known AT.T machines

/usr/lib/upas/gateways
machines that check mail authorization reliably

/usr/lib/upas/translate
alias lookup

/usr/lib/upas/route.∗
mail interfaces to specific networks

/usr/lib/upas/route
interface to local (i.e. AT.T) Datakit network

/bin/mail
shell file that calls the mailer

/usr/lib/upas/send
actually delivery program

/bin/rmail
linked to /usr/lib/upas/send

/usr/spool/mail/∗
mailboxes

/usr/spool/mail/mail.log∗
delivery logs

/n/bowell/usr/lib/upas/mkfile
updates various mail and uucp files

1012

UPAS(8) System Manager’s Manual UPAS(8)

/etc/passwd
authentication

/tmp/ma∗
temp file

/tmp/ml∗
lock file

$HOME/dead.letter
unmailable text

SEE ALSO
uucp(1), mail(1), mail(6), smtp(8)
D. L. Presotto and W. R. Cheswick, ‘Upas—a simpler approach to network mail’, this manual, Volume 2

1013

UUCICO(8) System Manager’s Manual UUCICO(8)

NAME
uucico, uusched, uuxqt, kick, debug - uucp file transport and execution

SYNOPSIS
/usr/lib/uucp/uucico [-r1 -s system] [-x debug] [-d spool_directory]

/usr/lib/uucp/uusched [-x debug] [-u debug]

/usr/lib/uucp/kick system

/usr/lib/uucp/debug system

/usr/lib/uucp/uuxqt [-s system] [-x debug]

DESCRIPTION
Uucico transfers files between systems for uucp(1). It is normally invoked by login for an incoming con-
nection (a slave), or by uusched to call out to another system (a master). The options are

-r1 This is a master; option -s is required. In the absence of -r1 the process is a slave and expects to
speak to a master on standard input and standard output.

-s system
Call the named system.

-x debug
Turn on debugging output; debug is a single digit, larger for more output.

Uusched invokes uucico for each system with work pending. It is called by uucp and uux(1) after work is
queued, and should be invoked regularly by cron(8). The options are

-x debug
As for uucico.

-u debug
Invoke uucico with option -x debug.

Kick invokes uucico in the background to call out to the specified system. Debug causes a call with a
moderate amount of debugging output (-x4). Both attempt to remove existing system status information
for system, so that a call will be attempted regardless of recent failures.

Uuxqt executes commands requested remotely by uux(1). It searches the uucp spool directories looking
for filenames starting with X., checks the Permissions file to see that all required data files are available
and accessible and that the requested command is permitted for the requesting system, and invokes the
command if all is well.

Before a command is invoked, the file creation mask (umask(2)) is set to 0 and these environment vari-
ables are set:

UU_MACHINE
the name of the last sending machine

UU_USER
the user that sent the job

PATH
set to /bin:/usr/bin

USER
set to uucp

FILES
/usr/lib/uucp/Systems∗

/usr/lib/uucp/Permissions

/usr/lib/uucp/Devices

/usr/lib/uucp/Maxuuscheds
how many copies of uusched may be active at once

1014

UUCICO(8) System Manager’s Manual UUCICO(8)

/usr/lib/uucp/Maxuuxqts
ditto for uuxqt

/usr/spool/uucp/∗

/usr/spool/uucppublic/∗

/usr/spool/uucp/LCK∗

SEE ALSO
uucp(1), uux(1), uustat(1)
D. A. Nowitz, ‘UUCP Administration’, this manual, Volume 2

BUGS
System and user names received by uuxqt should not be believed.

1015

UUCLEANUP(8) System Manager’s Manual UUCLEANUP(8)

NAME
uucleanup - uucp spool directory clean-up

SYNOPSIS
/usr/lib/uucp/uucleanup [options]

DESCRIPTION
Uucleanup removes old files from the uucp spool directories. It is typically called by which may be run
regularly by cron(8). The options are:

-Cdays
Remove C. (control) files that are at least days old, and send a message to the user who queued
the job.

-Ddays
Remove D. (data) files that are at least days old. If the data file appears to contain a mail mes-
sage, an attempt will be made to deliver it; if it contains a netnews article from another system, it
will be handed to rnews.

-Wdays
Send a warning to the user who queued any jobs (C. files) at least days old. If one of the data
files for the job appears to be a mail message, the message is included in the warning.

-Xdays
Remove any X. (remote execution) files at least days old.

-mstring
Include string in warning messages. The default is ‘See your local administrator to locate the
problem.’

-odays
Remove any other files that are at least days old.

-ssystem
Examine only files associated with system.

By default, C. files generate a warning when one day old, and are removed after 7 days; D. files are re-
moved after 7 days; and X. and other files are removed after 2 days.

FILES
/usr/lib/uucp

directory with commands used by uucleanup

/usr/spool/uucp
spool directory

SEE ALSO
uucp(1)
D. A. Nowitz, ‘UUCP Administration’, this manual, Volume 2

1016

UUREC(8) System Manager’s Manual UUREC(8)

NAME
uurec - receive processed news articles via mail

SYNOPSIS
uurec

DESCRIPTION
uurec reads news articles on the standard input sent by sendnews(8), decodes them, and gives them to in-
ews(8) for insertion.

SEE ALSO
inews(8), readnews(1), recnews(8), sendnews(8), newscheck(1)

1017

VIPW (8) System Manager’s Manual VIPW (8)

NAME
vipw - edit the password file with vi

SYNOPSIS
vipw

DESCRIPTION
Vipw edits the password file while setting the appropriate locks, and does any necessary processing after
the password file is unlocked. If the password file is already being edited, then you will be told to try
again later

SEE ALSO
chfn(1), chsh(1), passwd(1), passwd(5), adduser(8)

FILES
/etc/vipw.lock

BUGS
Vipw does not remove the vipw.lock file; this is not a bug, but people tend to think it is.

No one deals with left-over /etc/ptmp (the real lock) files after a system crash.

4th Berkeley Distribution 1018

VMSTAT (8) System Manager’s Manual VMSTAT (8)

NAME
vmstat - report virtual memory statistics

SYNOPSIS
vmstat [-st] [interval [count]]

DESCRIPTION
Vmstat reports statistics about certain system activity. Option -s prints to-
tals for miscellaneous events since the last boot. Option -t reports on paging events.

In the absence of other options, the optional interval argument causes vmstat to report once each interval
seconds, repeated count times or forever.

The default format fields are:

procs information about numbers of processes in various states:
r in run queue
b blocked for resources (I/O, paging, etc.)
w runnable or short sleeper (< 20 secs) but swapped

memory
use of virtual and real memory:
avm number of pages belonging to processes that have run in the last 20 seconds
fre size of memory free list

page paging activity, averaged each five seconds, in units per second:
re page reclaims (simulating reference bits)
at text pages recovered from memory
pi page-in events
po page-out events
fr pages freed per second
de anticipated short term memory shortfall
sr scan rate: pageout daemon rpm

faults trap rates, averaged each five seconds, in units per second:
sy system calls
cs process context switches

cpu percentage use of CPU time:
us user time, both normal and low priority
sy system time
id cpu idle time
st stream queue processing time

FILES
/dev/kmem
/unix

BUGS
This program is never up to date.

1019

VPAC(8) System Manager’s Manual VPAC(8)

NAME
vpac - print raster printer/ploter accounting information

SYNOPSIS
/etc/vpac [-W] [-s] [-r] [-t] [name ...]

DESCRIPTION
Vpac reads the raster printer/plotter accounting files, accumulating the number of pages (for narrow fan-
fold devices) or feet (for wide, roll paper devices) of paper consumed by each user, and printing out how
much each user consumed in pages or feet and dollars (billed at 2 cents / page or 8 cents / foot). If any
names are specified, then statistics are only printed for those users; usually, statistics are printed for every
user who has used any paper.

The -W flag causes accounting to be done for a wide roll paper device. The default is to do accounting
for a narrow, fan-fold device. The -t flag causes the output to be sorted by feet of paper; usually the out-
put is sorted alphabetically by name. The -r flag reverses the sorting order. The -s flag causes the ac-
counting information to be summarized on the summary accounting file; this summarization is necessary
since on a busy system, the accounting file can grow by several lines per day.

FILES
/usr/adm/v?acct raw accounting files
/usr/adm/v?_sum summary accounting files

BUGS
The relationship between the computed price and reality is as yet unknown.

4th Berkeley Distribution 2/21/80 1020

WALL(8) System Manager’s Manual WALL(8)

NAME
wall - write to all users

SYNOPSIS
/etc/wall

DESCRIPTION
Wall reads its standard input until an end-of-file. It then sends this message, preceded by ‘Broadcast Mes-
sage ...’, to all logged in users.

The sender should be super-user to override any protections the users may have invoked.

FILES
/etc/utmp

SEE ALSO
write(1)

DIAGNOSTICS
‘Cannot send to ...’ when the open on a user’s tty file fails.

1021

WORM(8) System Manager’s Manual WORM(8)

NAME
worm, jukebox - optical disk utilities

SYNOPSIS
worm mkfs [-fdevice] [-ccomments] [-bblksz] [-nnblks] [-vnewvol_id] vol_id

worm stat [-fdevice] [-Fn] [-v] [vol_id]

worm ls [-fdevice] [-l] [file ...]

worm rm [-fdevice] vol_id [file ...]

worm mv [-fdevice] vol_id src dest

worm write [-fdevice] vol_id [file ...]

worm read [-fdevice] [-dm] vol_id [file ...]

worm cat [-fdevice] vol_id file

worm copy [-v] [-mmin_free] [-fsrc_dev] src_vol_id dest_dev dest_vol_id

worm offline [-fdevice]

worm btree [-fdevice] vol_id

worm dir [-fdevice] vol_id

worm tmpdir [-fdevice] vol_id

worm mount [-wsecs] [vol_id]

jukebox [-aemprsuU] [-wsecs] [vol_id]

DESCRIPTION
The worm programs manipulate arbitrary files. They are intended for use with the raw device associated
with a Write-Once Read-Many (WORM) optical disk. The default device is Other devices are specified
by -fdevice and a device name of a single digit n is taken as an abbreviation for Most of the commands
implement a simple file system. Programs just wanting a raw device should still use worm mkfs so that
the disk is properly labeled. The vol_id , or label, should be unique and by convention, the vol_id’s for the
A and B sides of a disk should be the same string suffixed by a lowercase a and b respectively.

Worm mkfs labels an optical disk. The comments field is limited to 256 chars. It is purely descriptive and
is printed by worm stat -v. The (default) blocksize is 1024 for our SONY disks. The number of blocks on
a disk can be found by ra(4) or scsish(8); the default size (1,600,000 for single density, 3,250,000 for dou-
ble density) sets aside 30MB or so as a hedge against oversights. If the disk has already been initialised,
its vol_id must match vol_id . A new vol_id can be set with -v.

Worm stat prints out labeling information including the amount of free space left on the disk. Option
vol_id turns off all output except exit status: zero if vol_id matches that of the disk, one otherwise. Op-
tion -F similarly exits with status zero if the disk has more than n free blocks, otherwise three. Option -v
produces more output.

Worm ls simulates an emasculated ls(1).

Worm rm makes the specifed files unavailable to the rest of the worm commands.

Worm mv renames src to dest.

Worm write copies files onto the WORM. If no file arguments are given, filenames are read one per line
from standard input. The total number of files and bytes is printed on standard output.

Worm read restores files from the WORM. If no file arguments are given, filenames are read one per line
from standard input. Option -d causes directories to be created as needed. Option -m restores the original
modification times.

Worm cat copies the named file from the WORM to the standard output.

Worm copy copies files directly from one disk to another. The names of the files to be copied are taken
from standard input; groups (separated by blank lines) will be kept together. The names are typically gen-
erated by worm ls. The -v option prints out progress and summary information. The copy will terminate
before copying a group that would leave the destination volume with less than minfree (deafult value is

wild 1022

WORM(8) System Manager’s Manual WORM(8)

40000) blocks free.

Worm offline makes the WORM go offline, ready for ejecting. This command is harmless; accessing an
offline drive will cause it to spin up and go online without operator intervention. Worm offline only takes
effect after the last close of the WORM and as a bonus, applies to any MSCP device such as an RA81.

Worm tmpdir saves a copy of the directory in /usr/worm/tmp/vol_id if the directory /usr/worm/tmp
exists. This will speed up subsequent access substantially, although it will still be slower than worm btree
below. On the other hand, worm tmpdir typically takes 5 minutes to run (on a VAX 11/750) whereas
worm btree takes about 45 minutes.

Worm btree constructs a new directory for the whole disk (in the form of a cbt(1) database). The new
superblock is at zero. All the worm commands go faster with such an index but it is intended to be done
just once, after the disk is complete. The directory occupies of the order of 10MB but may be more. If
you really have to add more files to the disk, you need to write zeros on the first 1K block of the WORM
before using worm write.

Worm dir takes the btree directory from the disk and stores in Future uses of the disk will be much faster.

Worm mount returns the device on which the disk labelled vol_id is mounted. If the drive(s) are busy and
you have a jukebox, the -ws option tells how many seconds to wait before failing. The default is wait for-
ever. If no vol_id is given, print the drive status.

Jukebox manages the disks in the SONY jukebox. There are several options (default is -s):

-a Allocate a blank disk and label it vol_id . Use worm mkfs to change any fields from their
default value.

-e Eject the disk labeled vol_id. To physically retrieve the disk, press the OUT button (the OUT
READY light should be on). Repeat until the IN READY light goes on.

-m Mount the disk labelled vol_id in some drive and print the drive number on standard output.

-p Print the list of disks in the jukebox.

-r Rebuild the list of disks by examining each disk in the jukebox. Do not do this unless you are
sure you need to. If vol_id is given, it should be one of the following letters and governs how
disks are assigned shelf numbers. The default is to leave the shelf number unchanged. Other
options (mainly useful for demos) are c (compresses the disks in the jukebox towards the bot-
tom or lower numbered shelves), r (distributes the disks randomly), and s (sorts the disks by
vol_id).

-s Print the status of the jukebox.

-u Unload offline disks back onto their shelves.

-U Unload all disks (offline or not) back onto their shelves.

-wsecs This option only affects the behavior of -m. If all drives are busy, try again for secs seconds
before failing.

To load a disk into the jukebox, press the IN button on the jukebox when the IN READY light is on.
After the shutter opens, push the disk in firmly. The disk (blank or initialised) is not examined immedi-
ately but on demand.

Etiquette
Vol_ids should be unique as discussed above. The file /n/wild/usr/worm/vol_ids contains known
vol_ids. The commands for reading and writing require vol_id’s to guard against accessing the wrong
disk.

The recommended protocol for changing disks is if no one appears to be using the drive (by using ps(1)),
execute worm offline and go to the drive. If, and only if, the drive has the DRIVE OFF (middle) light on,
hit the EJECT button and change disks. If the light is not on, then someone is still using the disk and you
should wait until they are done before hitting EJECT.

Programming considerations
Programs should not depend on writing any block more than once; however, our SONY optical disks
implement a small number of multiple writes via bad block replacement. A read(2) of an unwritten block

wild 1023

WORM(8) System Manager’s Manual WORM(8)

returns with an errno of ENXIO. On Vaxes, the WORM is an MSCP device; thus geometry information
can be fetched as in ra(4).

For maximum speed, read and write in large blocks (preferably 63K) and avoid seeks. A seek across the
whole disk takes about 1 second.

The device /dev/worm? is simply an appropriate raw ra(4) device, partition 7 (the whole disk).

EXAMPLES
worm mkfs -c"512x512x24 movies" tdmoviesa
worm write tdmoviesa < filenames
worm read -d tdmoviesa bumblebee/act2/frame1

FILES
/dev/worm?
/n/wild/usr/worm/vol_ids
/n/wild/usr/worm/jukedir

SEE ALSO
backup(8), scsish(8), backup(1)

BUGS
The output of worm ls is not necessarily sorted.

wild 1024

XSTR(8) System Manager’s Manual XSTR(8)

NAME
xstr - preprocessor for sharing strings in C programs

SYNOPSIS
xstr [-c] [-] [file]

DESCRIPTION
Xstr maintains a file strings into which strings in component parts of a large program are hashed.
These strings are replaced with references to this common area. This serves to implement shared constant
strings, most useful if they are also read-only.

The command

xstr -c name.c

will extract the strings from the named C source, replacing string references by expressions of the form
(.xstr[number]) for some number. An appropriate declaration of xstr is prepended to the file. The result-
ing C text is placed in the file x.c. The strings from this file are placed in the strings data base if they
are not there already. Repeated strings and strings which are suffixes of existing strings do not cause
changes to the data base.

After all components of a large program have been compiled a file xs.c declaring the common xstr space
can be created by running xstr with no arguments. This xs.c file should then be compiled and loaded with
the rest of the program. If possible, the array can be made read-only (shared) saving space and swap over-
head.

Without option -c, creates files x.c and xs.c as before, but does not use or affect any strings file in the
same directory.

It may be useful to run xstr after the C preprocessor if any macro definitions yield strings or if there is
conditional code which contains strings which may not, in fact, be needed. Xstr reads from its standard
input when the argument - is given. An appropriate command sequence for running xstr after the C pre-
processor is:

cc -E name.c | xstr -c -
cc -c x.c
mv x.o name.o

FILES
strings

Data base of strings

x.c Massaged C source

xs.c C source for definition of array xstr

/tmp/xs∗
Temp file

BUGS
If a string is a suffix of another string in the data base, but the shorter string is seen first by xstr both
strings will be placed in the data base, when just placing the longer one there will do.

1025

INTRO(9) Kernel Developer’s Manual INTRO(9)

NAME
intro - introduction to 5620-related software

SYNOPSIS
PATH=stuff :/usr/jerq/bin

DESCRIPTION
Section 9 of this manual lists software for running or supporting Teletype DMD-5620 terminals. Subsec-
tions 9.1-9.7 mirror the purposes of the preceding sections 1-7, with 9.1 being commands, 9.6 being
games, etc. Command synopses assume that the shell search path includes

Few commands deal with a 5620 in native mode. 32ld(9) loads programs into the terminal and mux(9)
starts the characteristic ‘layer’ or window system. Almost all other commands in section 9 either run on
Unix or within mux layers.

A layer is technically a virtual terminal, but is almost indistinguishable in software from a real terminal; in
particular, the interface described in ttyld(4) applies to layers, except for the additional editing capabilities
discussed in mux(9)

The commands in sections 9.1 and 9.6 run on Unix, but most implicitly call 32ld to down-load a program
that replaces the default terminal process running in the layer. To Unix the interface is still that of a termi-
nal; in particular /dev/tty (see fd(4)) is always connected to the layer. The default mux terminal pro-
gram implements the teletype driver function itself. When a program is down-loaded, there is no teletype
driver; programs that desire one must push the teletype line discipline on the stream, and arrange to pop
the line discipline on exit; see stream(4) and ttyld(4). Some commands may simply emulate other termi-
nals by down-loading a terminal program (see term(9) others, such as the text editor sam(9) are really two
programs — one on Unix and one in the layer — communicating using standard input/output on Unix and
sendchar()/rcvchar() in the terminal; see request(9)

There is an identity between bitmaps and layers in the graphics software. Graphic objects are bitmaps.
The newlayer(9) primitives that operate on layers are aliased to bitmap primitives of (9.3), and the data
structures are isomorphic. When running under mux, a programmer need not consider layers as graphical
objects at all; the operating system checks the arguments to the graphics primitives and dispatches the
appropriate operator depending on the type of the argument. Except in stand-alone software, layers are an
invisible implementation detail.

Teletype 630
Mux and various programs that run in mux layers have been ported to Teletype DMD-630 terminals. The
ported software is not available on all machines and is not specifically documented. Look in
/usr/630/bin to see what’s there.

FILES
/usr/jerq/bin

jerq-related Unix object programs

/usr/jerq/mbin
terminal programs, usually down-loaded automatically by programs in /usr/jerq/bin

/usr/630/bin
630-related Unix object programs

/usr/630/lib
terminal programs

SEE ALSO
32ld(9) mux(9) stream(4)

BUGS
There are two mechanical-drawing programs, cip and ped, two ‘artistic’ drawing programs, paint and
twid, one ‘graphic’ drawing program, brush, two pixel-level drawing programs, icon and jf, all for work-
ing on binary images. None dominates.

1026

32LD(9.1) 32LD(9.1)

NAME
32ld - bootstrap loader for 5620

SYNOPSIS
32ld [option ...] file [argument ...]

DESCRIPTION
32ld loads the MAC-32 object file for execution in a 5620 connected to the standard output. When load-
ing into a mux(9) layer, the arguments are passed to the program as in Unix. The options are:

-d Print on the standard error file the sizes of the text, data and bss segments of file. The standard
error must be separated from the standard output to avoid corrupting the down-load.

-p Print down-loading protocol statistics on the diagnostic output (for stand-alone loading only).

-z Load the process but don’t run it. It may be started using 3pi; see pi(9) This option works only
under mux.

The environment variable JPATH is the analog of the shell’s PATH variable to define a set of directories
in which to search for file.

SEE ALSO
jx(9) mux(9)

1027

3CC(9.1) 3CC(9.1)

NAME
3cc, 3as, 3ar, 3ld, 3nm, 3size, 3strip, cprs - MAC-32 C compiler

SYNOPSIS
3cc [option ...] file ...

cprs infile outfile

DESCRIPTION
3cc is the C compiler for the MAC-32 microprocessor in the Teletype DMD-5620 terminal. Its default ac-
tion is to compile programs to run under the mux(9) environment.

The behavior of 3cc is similar to cc(1). Here are listed only options with special behavior for 5620s.

-J Compile the named programs, and link them for running stand-alone on a 5620 terminal.

-O Invoke an object-code improver (not recommended).

-m Compile the named programs for ordinary (non-jerq) environments.

-Dname=def
-Dname

Define the name to the preprocessor, as if by #define. If no definition is given, the name is
defined as 1. The symbol MUX is predefined unless -J or -m is set.

-Idir #include files whose names do not begin with / are always sought first in the directory of the
file argument, then in directories named in -I options, then in directories on a standard list, which
includes

Associated object-code manipulating programs exist. Their behavior is similar to the programs cited
below. The loader, assembler and archive program are System V derivatives, and are slightly different in
behavior; see the System V manuals. For typical uses, these differences are irrelevant. The support pro-
grams include:

3as assembler, see as(1)
3ar archive, see ar(1) (there is no 3ranlib)
3ld link editor, see ld(1)
3nm name list, see nm(1), doesn’t work on archives
3size object code size, see size(1)
3strip symbol table; see strip(1). (-r is mandatory for mux-runnable binaries.)

3strip has no -g flag; but cprs removes redundant symbol table entries while copying infile to outfile.

FILES
a.out

loaded output

/tmp/ctm∗
temporary

/lib/cpp
preprocessor

/usr/jerq/lib/m32/comp
compiler

/usr/jerq/lib/m32/optim
optimizer

/usr/jerq/lib/∗.o
runtime startoff, etc.

/usr/jerq/lib/libc.a
standard library

/usr/jerq/lib/libj.a
stand-alone graphics library /usr/jerq/lib/libmj.a mux-runnable graphics library
(default)

1028

3CC(9.1) 3CC(9.1)

/usr/jerq/lib/muxmap
loader I-file

/usr/jerq/include
standard directory for #include files

SEE ALSO
System V manuals for 3ar, 3ld, 3as and cprs documentation.

1029

ADD(9.3) ADD(9.3)

NAME
add, sub, mul, div, eqpt, eqrect, inset, muldiv, ptinrect, raddp, rsubp, rectXrect, rectclip - arithmetic on
points and rectangles

SYNOPSIS
#include <jerq.h>

Point add(p, q) Point p, q;

Point sub(p, q) Point p, q;

Point mul(p, a) Point p; int a;

Point div(p, a) Point p; int a;

int eqpt(p, q) Point p, q;

int eqrect(r, s) Rectangle r, s;

Rectangle inset(r, n) Rectangle r; int n;

int muldiv(a, b, c) int a, b, c;

int ptinrect(p, r) Point p; Rectangle r;

Rectangle raddp(r, p) Rectangle r; Point p;

Rectangle rsubp(r, p) Rectangle r; Point p;

int rectXrect(r, s) Rectangle r, s;

int rectclip(rp, s) Rectangle ∗ rp, s;

DESCRIPTION
Add returns the Point sum of its arguments: Pt(p.x+q.x, p.y+q.y). Sub returns the Point difference of its
arguments: Pt(p.x-q.x, p.y-q.y). Mul returns the Point Pt(p.x∗a, p.y∗a). Div returns the Point Pt(p.x/a,
p.y/a).

Eqpt and eqrect compare their arguments and return 0 if unequal, 1 if equal.

Inset returns the Rectangle Rect(r.origin.x+n, r.origin.y+n, r.corner.x-n, r.corner.y-n). The following
code creates a clear rectangle r with a 2-pixel wide border inside r:

rectf(.display, r, F_OR);
rectf(.display, inset(r, 2), F_CLR);

Muldiv is a macro that returns the 16-bit result (a∗b)/c, with (a∗b) calculated to 32 bits, so no precision is
lost.

Ptinrect returns 1 if p is a point within r, and 0 otherwise.

Raddp returns the Rectangle Rect(add(r.origin, p), add(r.corner, p)); rsubp returns the Rectangle
Rect(sub(r.origin, p), sub(r.corner, p)).

RectXrect returns 1 if r and s share any point; 0 otherwise.

Rectclip clips in place the Rectangle pointed to by rp so that it is completely contained within s. The re-
turn value is 1 if any part of ∗rp is within s. Otherwise, the return value is 0 and ∗rp is unchanged.

SEE ALSO
types(9)

1030

ALLOC(9.3) ALLOC(9.3)

NAME
alloc, free, balloc, bfree, gcalloc, gcfree - allocate memory

SYNOPSIS
#include <jerq.h>

char ∗ alloc(nbytes) unsigned nbytes;

void free(s) char ∗s;

Bitmap ∗ balloc(r) Rectangle r;

void bfree(b) Bitmap ∗b;

char ∗ gcalloc(nbytes, where) unsigned long nbytes; char ∗∗where;

void gcfree(s) char ∗s;

DESCRIPTION
Alloc corresponds to the standard C function calloc; see malloc(3). It returns a pointer to a block of
nbytes contiguous bytes of storage, or 0 if unavailable. The storage is aligned on 4-byte boundaries and is
cleared to zeros. Free frees storage allocated by alloc.

Balloc returns a pointer to a Bitmap large enough to contain the Rectangle r, or 0 for failure. The coordi-
nate system inside the Bitmap is set by r: the origin and corner of the Bitmap are those of r. Bfree frees
the storage associated with a Bitmap allocated by balloc.

Gcalloc provides a simple garbage-compacting allocator. It returns a pointer to a block of nbytes contigu-
ous bytes of storage, or if unavailable. The storage is initialized to zeros. Where is a pointer to the user’s
data where the location of the block is to be saved. The return value of gcalloc is stored in ∗where and
will be updated after each compaction. Therefore, a program using gcalloc should never store the loca-
tion of memory obtained from gcalloc anywhere other than where. Typically, this location is contained in
a structure, such as a Bitmap (balloc uses gcalloc). Gcfree frees the storage block at p.

SEE ALSO
types(9) malloc(3)

1031

BITBLT (9.3) BITBLT (9.3)

NAME
Code, addr, bitblt, point, rectf, screenswap, segment, texture - graphics functions

SYNOPSIS
#include <jerq.h>

typedef int Code;
Code F_STORE, F_XOR, F_OR, F_CLR;

Word ∗ addr(b, p) Bitmap ∗ b; Point p;

void bitblt(sb, r, db, p, f) Bitmap ∗sb, ∗ db; Rectangle r; Point p; Code f;

void point(b, p, f) Bitmap ∗ b; Point p; Code f;

void rectf(b, r, f) Bitmap ∗ b; Rectangle r; Code f;

void screenswap(b, r, s) Bitmap ∗ b; Rectangle r, s;

void segment(b, p, q, f) Bitmap ∗ b; Point p, q; Code f;

void texture(b, r, t, f) Bitmap ∗ b; Rectangle r; Texture ∗ t; Code f;

DESCRIPTION
The type Code tells the graphics primitives what operation perform. The possible values are:

F_STORE target = source
F_OR target |= source
F_XOR target ˆ= source
F_CLR target .= source

In other words, if a Rectangle is copied to another place with Code F_OR, the result will be the bitwise
OR of the contents of the source Rectangle and the target area. For operations with no explicit source,
such as line drawing, the source is taken to be an infinite bitmap with zeros everywhere except on the ob-
ject (e.g. line) generated by the operator, with coordinates aligned with the destination bitmap.
F_STORE is the same as F_OR for non-rectangular operations.

Addr returns the address of the Word containing the bit at Point p in the Bitmap b.

Bitblt (bit-block transfer) copies the data in Rectangle r in Bitmap sb to the congruent Rectangle with ori-
gin p in Bitmap db. The nature of the copy is specified by the Code f .

Point draws the pixel at location p in the Bitmap b according to Code f .

Screenswap does an in-place exchange of the on-screen Rectangle s and the Rectangle r within the
Bitmap b. Its action is undefined if r and s are not congruent. The Rectangle s is not clipped to the
Bitmap b, only to the screen.

Segment draws a line segment in Bitmap b from Point p to q, with Code f . The segment is half-open: p
is the first point of the segment and q is the first point beyond the segment, so adjacent segments sharing
endpoints abut. Like all the other graphics operations, segment clips the line so that only the portion of
the line intersecting the bitmap is displayed.

Texture draws, with function f in the Rectangle r in Bitmap b, the Texture specified by t. The texture is
replicated to cover r. Rectf is equivalent to texture with ∗t set to all one’s.

In the above definitions, the type Bitmap may be replaced with Layer anywhere; see newlayer(9)

SEE ALSO
types(9)

1032

BITFILE(9.5) BITFILE(9.5)

NAME
bitfile - format of bitmap file

DESCRIPTION
Binary files produced by blitblt(9) and other bitmap-generating programs are formatted as follows:

Byte no. Description

0, 1: Zero.

2, 3: x-coordinate of the rectangle origin (low-order byte, high-order byte).

4, 5: Y -coordinate of the rectangle origin (low-order byte, high-order byte).

6, 7: x-coordinate of the rectangle corner (low-order byte, high-order byte).

8, 9: Y -coordinate of the rectangle corner (low-order byte, high-order byte).

remainder: Compressed raster data. Each raster is exclusive-or’d with the previous one, and zero-ex-
tended (if necessary) to a 16-bit boundary. It is then encoded into byte sequences, each of
which consists of a control byte followed by two or more data bytes:

Control Data

n (< 127) 2×n bytes of raster data, running from left to right.

0x80+n 2 bytes of raster data, to be replicated from left to right n times.

There are also two ASCII formats in current use. Textures and 16× 16 icons, as created by icon(9) are en-
coded as a Texture declaration with initializer, to be copied unchanged into C program source; see
types(9) Faces and other large icons are without any surrounding C syntax. In either case, each scan line
of the bitmap is a comma-separated list of C-style short hexadecimal constants; scan lines are separated
by newlines.

SEE ALSO
blitblt(9) icon(9) types(9) vismon(9)

1033

BLITBLT (9.1) BLITBLT (9.1)

NAME
blitblt, menudrop - save or print a screen image

SYNOPSIS
blitblt [-p command]

menudrop

DESCRIPTION
Blitblt copies a selected area of a mux(9) screen into a file or to a program. It is menu-driven off button 3
to select a rectangular area and to treat it by flipping the border from wide to narrow and back, inverting
video, saving the selcted area in a file, or sending it to a program, usually for printing. Details of certain
menu items:

choose layer
layer rectangle

One gets the bits of a layer, obscured or not; the other gets screen bits including super-
posed layers.

run/halt Restart or stop the terminal process in the selected layer.

write file Write the selected area into a file or pipe in bitfile(9) format. The filename is typed at
the bottom of the blitblt layer. A bare newline repeats the previous name. If the first
character is |, the remainder of the line is taken as a shell command to pipe into. (A
likely command is |lp for hard copy.)

| command Pipe the selected area to the command specified by the -p option.

Menudrop may be used with blitblt to make images containing ‘menus’ as fraudulent overlaid layers. The
program is menu-driven off button 3:

drop menu
A non-mux menu selected in another window will be drawn and will remain on screen after
the button selecting the menu has been released. Subsequent menu selections will delete the
previous menu layer and create a new one. Once such a menu-bearing layer is present, the
menudrop menu changes to allow cursor placement, highlighting of menu items, lifting of the
displayed menu, etc. The functionality of the program using the menu is not affected.

mux menus
The next click of button 1 or 2 will drop the corresponding (non-functional) mux menu at the
mouse position.

exit Menudrop will exit in a clean manner.

EXAMPLES
blitlblt

blitblt -p "lp -p bpost" Arrange for piping output to a laser printer: a good way, and a surefire
way.

SEE ALSO
mbits(6), bitfile(9)

BUGS
Animated layers result in broken images. Use the halt function.
If a pipe request fails, the blitblt layer becomes unusable.
The default command for write file is obsolete.
Deleting a menudrop layer, rather than exiting through the menu, can crash the terminal.
Programs that use private menu packages are unaffected by menudrop; using a debugger to stop a pro-
gram in midmenu may get the same effect.

1034

BLITMAP(9.7) BLITMAP(9.7)

NAME
blitmap - road maps and path finding

SYNOPSIS
blitmap [option ...]

DESCRIPTION
Blitmap displays road maps. It relies on the mouse to select regions, functions, and to give formats for
typed commands. The metropolitan N.Y.-N.J. area is the default map. Blitmap’s screen consists of two
frames, a large frame for plotting maps and printing messages to the user, and a one-line command frame
at the bottom. Blitmap recognizes two commands from the keyboard, to designate a region and to scale or
plot a route from one point to another. The commands, which may be typed at any time, follow. Here op-
tion is as in the command line.

[option ...] radius address [, town or zip] Plot an area with the given radius in miles around the ad-
dress.

path [option ...] from address to address [, town or zip] Trace a route on a map and print traveling
directions from point to point.

Address may be a number and street or an intersection such as, main or 600 Mountain av,new
providence.

Button 3 Menu

Regions
Select which region to plot. Available regions are San Francisco, New York City and North Jer-
sey, Washington, Los Angeles and Ann Arbor.

Zoom-in
Using button 3 and the box icon, enclose the area desired and blitmap will plot a map of that area
centered at the center of the drawn rectangle.

Zoom-out
Enclose an area with a rectangle and the map shown will be reduced to the rectangle size and the
rest of the map filled in. The center will be at the center of the drawn rectangle.

Center
With button 3 point to new center. The radius will remain the same.

Prev. map
Blitmap plots the previous frame.

To draw map

To find path
Tell about the keyboard commands

Quit Confirm with button 3.

Button 2 controls map editing functions. No editing is actually done, but by using the -f option, a file of
changes will be written, which may be added to the actual database.

The options specify the algorithm of the path search and plotting choices:

-2 Two ended search (default).
-1 One way search.
-b Breadth search.
-C Cyclists - ignore costs for turns.
-F Stop at first route connect with breadth search.
-H Hierarchical search. (Give priority to major roads.)
-G In breadth search, ignore ones whose cost + dist >4/3 total airline distance.
-J Use precomputed routes. (Available from 600 mountain av,New Providence.)
-V Verbose directions (all intersections given).
-W Walkers - no cost for turns and ignore one-way streets.

seki 1035

BLITMAP(9.7) BLITMAP(9.7)

-A Print every possible label.
-B Print business names.
-MIx Forces a detailed street plot for maps whose radius is greater than 10,000 ft.
-b Don’t print boundaries.
-ix Plot only streets with importance >x; x=0 is default.
-j Do sketch map only.
-l Don’t print labels.
-r Don’t print railroads.
-s Don’t print streets.
-w Don’t print waterways.

FILES
/n/seki/usr/rje/BLIT/term/term

terminal support program

/n/seki/m?/map/∗
map files

BUGS
Since the data bases have not been checked and many streets are not connected, some paths may be cir-
cuitous. There are no connecting roads from N.J into N.Y or from Middlesex county into Union. The
routing programs will churn, trying to find a through street and will not give up.
There are no one-way tags on the streets.
Blitmap does not know if it has been reshaped.

seki 1036

BRUSH(9.1) BRUSH(9.1)

NAME
brush - painting program

SYNOPSIS
brush [-f fontdir] [-p picdir] [-t texdir]

DESCRIPTION
Brush paints images under mouse control. Options are

-f font directory by default)
-p the directory in which to keep pictures (current directory by default)
-t texture directory, where brushes and shades live (current directory by default)

In general, button 1 draws, button 2 erases; the cursor assumes the shape of the current brush. Button 3 is
used to select options, sweep out areas, or cancel operations in progress.

The borders on either side of the drawing area contain menus of available shades and brushes. The cur-
rent brush and shade are outlined by boxes. To choose another, click button 3 at it.

The top border contains a help area, drawing options, and certain commands. Selections are made by
pointing with button 3. Some cycle through options; others bring up menus. The items are:

help Icons in three boxes indicate what buttons 1, 2, and 3 will do at any given time:

paintbrush draw with this button
pencil eraser erase with this button
menu with cursor menu on this button
thumbs down cancel or finish an operation
pointing hand indicate a point
square with arrow sweep a rectangle
circle with arrow sweep a circle
skull exit the program

smooth
Smooth the contours of magnified images.

align Force circles, discs, text, and other images to align with texture cell boundaries.

image Manipulate the ‘current image’, (box, ellipse, etc.) selected from the drawing menu described be-
low. Button 3 makes the image disappear, reserved for future use. The image menu contains:

same Bring back the current image.

magnify
Sweep a rectangle indicating the size of the magnified image. The numbers that appear
are horizontal and vertical magnification factors.

shrink
Shrink to 1/4 size. Indicate whether image is shaded or black . white.

flip Reflect left-right or top-bottom.

rotate Rotate counterclockwise or clockwise 90 degrees.

slant Drag the current image rectangle into a parallelogram.

outline
Replace the current image with its outline.

shadow
Draw a ‘shadow’ behind the current image.

shadow
Draw a ‘shadow’ behind the current image.

new Make a new image by copying a rectangular portion of the screen.

To move an image on the screen, select new from the image menu. Sweep the area to be moved,
click button 2 to erase it, move it, and click button 1 to draw it.

1037

BRUSH(9.1) BRUSH(9.1)

drawing style
Select continuous curves, dotted lines, disconnected dots, or an ‘airbrush’ effect when painting.

constrain
Select freehand (wavy-line icon) or horizontal-vertical drawing (angular icon).

reflect Draw symmetric figures. The icon shows the symmetries: x=0 (left-right), y=0 (top-bottom), or
both, relative to the center of the screen.

draw mode
Set the drawing mode to one of or, xor, store, and, copy (preserves interior whitespace of im-
ages).

text style
Set the text style to one of normal, outline, bold, shadow, italic.

font name
Set the text font. Menu selection new prompts for a font name from the font directory.

i/o Interact with host machine. Menu items are:
save Copy screen, brushes, or shades to a file. Prompts for a file name, starting with the de-

fault picture directory (if any). Backspace past this if you wish to save elsewhere; hit
return to quit. Next sweep a rectangle to be saved. Bitmaps are saved in bitfile(9) for-
mat.

recall Prompts for a file name. The recalled picture becomes the current image.
exit Leave the program. Confirm by two clicks on button 3.

The menu on button 3 in the drawing area contains these selections:

lines Indicate first point, then position cursor with rubber band line for subsequent lines. Button 1
draws, button 2 erases.

curves
Indicate first control point, then position cursor with rubber band line for subsequent control
points. A curve (spline) will be drawn (erased) using these control points, depending on whether
the last button hit is button 1 (draw), or button 2 (erase).

box
ellipse
disc (A disc is a filled ellipse). Sweep a rectangle; numbers show the dimensions. A single dot marks

the center of an ellipse. The image becomes the current image; use buttons 1 and 2 to draw or
erase with it.

string Type in text. The string becomes the current image.

texture
Sweep a rectangle. The current image becomes a rectangle of this size textured with current
shade.

fill Sweep a rectangle, then indicate interior seed points using button 1, or button 3 to quit. Enclosed
regions will be filled with current shade. Any button cancels the fill.

clear
invert Sweep a rectangle to be cleared or color-inverted.

fade Sweep a rectangle. Holding button 2 will fade this area, as if erasing in spray paint mode with a
random pattern instead of a shade.

new brush
new shade

Menu select whether to edit or snarf from screen (with button 3). If editing, the current brush
(shade) will appear magnified in upper left corner. Edit with buttons 1 and 2, quit with 3. Sev-
eral ‘spare’ brushes appear at the bottom of the brush menu.

details
Select an area with box cursor to be magnified for detailed editing.

SEE ALSO
paint(9) mbits(6), bitfile(9)

1038

BRUSH(9.1) BRUSH(9.1)

BUGS
The smoothing operation fully smooths only for magnification factors that are powers of two.
Bitmaps moved off the top or bottom of the physical screen can pick up noise.
Copy mode generates a mask the first time a given image is moved. This can take a while for large im-
ages. Be patient.

1039

BUTTON (9.2) BUTTON (9.2)

NAME
button123, mouse, cursallow, cursinhibit, cursset, cursswitch, getrect123 - mouse control

SYNOPSIS
#include <jerq.h>

extern struct Mouse {
Point xy;
short buttons;

} mouse;

int button(n) int n;
int button1(), button2(), button3();
int button12(), button23(), button123();

void cursinhibit();
void cursallow();

void cursset(p); Point p;

Texture ∗ cursswitch(t); Texture ∗t;

Rectangle getrect(n) int n;
Rectangle getrect1(), getrect2(), getrect3();
Rectangle getrect12(), getrect23(), getrect123();

DESCRIPTION
When the mouse is requested (see request(9) the mouse state is updated asynchronously in the structure
mouse. The coordinates of the mouse are held in mouse.xy, and the state of the buttons in mouse.but-
tons. Each process’s mouse structure is independent of the others, so that (except for cursset) actions
such as changing the tracking cursor do not affect the mouse in other processes.

The macro button and its counterparts return the state of the associated mouse button: non-zero if the but-
ton is depressed, 0 otherwise. The buttons are numbered 1 to 3 from left to right. Button12 and the other
multi-button functions return the OR of their states: true if either button 1 or button 2 is depressed.

Cursinhibit turns off interrupt-time cursor tracking (the drawing of the cursor on the screen), although the
mouse coordinates are still kept current and available. Cursallow enables interrupt-time cursor tracking.
Cursallow and cursinhibit stack: to enable cursor tracking after two calls to cursinhibit, two calls to cur-
sallow are required.

Cursset moves the mouse cursor to the Point p.

Cursswitch changes the mouse cursor (a 16× 16 pixel image) to that specified by the Texture ∗t. If the ar-
gument is (Texture∗)0, the cursor is restored to the default arrow. Cursswitch returns the previous value
of the cursor: the argument of the previous call to cursswitch.

Getrect prompts the user with a box cursor and waits for a rectangle to be swept out with the named but-
ton, identified as with the button primitives. It returns the screen coordinates of the box swept. The box
may be partly or wholly outside the process’s layer.

1040

CIP(9.1) CIP(9.1)

NAME
cip - draw pictures for typesetting

SYNOPSIS
cip

DESCRIPTION
Cip prepares or modifies pic(1) descriptions, which may subsequently be typeset. It provides a palette of
shapes: box, circle, ellipse, line, arc, spline, and text. Button 1 selects shapes from the palette or the
screen. Button 2 places or redraws move) shapes. Button 3 controls menus.

File names and text strings are entered from the keyboard. Keyboard input always ends with a newline. A
current file name is remembered and offered for file operations; backspace over it to substitute a new
name, or type newline to accept it.

The define menu item allows a box to be swept, collecting all contained shapes into a group. Groups
are selected as whole. When a group is selected, a special menu appears. Item separate dissolves the
group; reflect reflects about a horizontal midline; after copy button 2 places copies at the cursor. Item
edit confines activity to the group. Changes are reflected in all copies of the group. To leave the group,
click button 1 at edit depth.

SEE ALSO
pic(1), ped(9)
Sally A. Browning, ‘Cip User’s Manual: One Picture is Worth a Thousand Words’, this manual, Volume 2

BUGS
Cip cannot handle arbitrary pic programs, just programs in the style that it produces.

1041

CIRCLE(9.3) CIRCLE(9.3)

NAME
circle, disc, arc, ellipse, eldisc, elarc - circle-drawing functions

SYNOPSIS
#include <jerq.h>

void circle(bp, p, r, f) Bitmap ∗ bp; Point p; int r; Code f;

void disc(bp, p, r, f) Bitmap ∗ bp; Point p; int r; Code f;

void arc(bp, p0, p1, p2, f) Bitmap ∗ bp; Point p0, p1, p2; Code f;

void ellipse(bp, p, a, b, f) Bitmap ∗ bp; Point p; int a, b; Code f;

void eldisc(bp, p, a, b, f) Bitmap ∗ bp; Point p; int a, b; Code f;

void elarc(bp, p0, a, b, p1, p2, f) Bitmap ∗ bp; Point p0, p1, p2; int a, b; Code f;

DESCRIPTION
Circle draws the best approximate circle of radius r centered at Point p in the Bitmap bp with Code f .
The circle is guaranteed to be symmetrical about the horizontal, vertical and diagonal axes. Disc draws
the corresponding disc.

Arc draws a circular arc centered on p0, traveling counter-clockwise from p1 to the point on the circle
closest to p2.

Ellipse draws an ellipse centered at p with horizontal semi-axis a and vertical semi-axis b in Bitmap bp
with Code f . Eldisc draws the corresponding elliptical disc. Elarc draws the corresponding elliptical arc,
traveling counter-clockwise from the ellipse point closest to p1 to the point closest to p2. (Beware the re-
grettable difference between the calling conventions for arc and elarc.)

BUGS
When an endpoint of an arc lies near a tail of an ellipse so thin that its ends degenerate into straight lines,
elarc does not try to distinguish which side of the tail the point belongs on.

1042

COS(9.3) COS(9.3)

NAME
cos, sin, atan2, sqrt, norm - integer math functions

SYNOPSIS
int cos(d) int d;

int sin(d) int d;

int atan2(x, y) int x, y;

int norm(x, y, z) int x, y, z;

int sqrt(x) long x;

DESCRIPTION
Cos and sin return scaled integer approximations to the trigonometric functions. The argument values are
in degrees. The return values are scaled so that cos(0)==1024. Thus, to calculate the mathematical ex-
pression x = acos(d), the multiplication must be scaled:

x = muldiv(x0, cos(d), 1024)

Atan2 returns the approximate arc-tangent of y/x. The return value is in integral degrees.

Sqrt returns the 16-bit signed integer closest to the square root of its 32-bit signed argument.

Norm returns the Euclidean length of the three-vector (x, y, z).

DIAGNOSTICS
Sqrt returns 0 for negative arguments; and atan2(0,0)==0. Norm does not protect against overflow.

BUGS
Atan2 may be off by as much as two degrees.

1043

CRABS(9.6) CRABS(9.6)

NAME
crabs - graphical marine adventure game

SYNOPSIS
crabs [-i] [-s duration] [-v velocity] [number]

DESCRIPTION
In crabs, difficult situations are encountered in trying to kill or capture crustaceans swarming in a murky
sea. You will have to work very rapidly to keep your territory free of seabed intruders. At first, you may
even find it hard to keep a clear view of your surroundings, but later discoveries about the spirit of the
game will suggest a solution.

There are several options.

-i causes the intruders to play intelligently, allowing them to avoid detection.

-s simplifies the game for the first duration time intervals. Default is 0. 5-10 is recommended for
beginners, although you may want to forgo this option the first time, just to see how interesting it
can get.

-v adjusts the velocity of the crabs, 1 being fastest. Default is 5.

Number specifies the number of intruders. Default is 30.

1044

DEMO(9.6) DEMO(9.6)

NAME
demo, swar, pacman - graphic demonstrations and games

SYNOPSIS
demo [name]

DESCRIPTION
If a demo is named, demo runs it, otherwise demo produces a list of what’s available.

Games that permit interaction are often controlled by the mouse; experiment to find out what it does.
Some less obvious interactions are listed below.

Swar is a two-player game. One player uses the asdwx keys, the other 12350 keys on the keypad.

Pacman is controlled by the hjkl keys or the mouse.

SEE ALSO
crabs(9)

BUGS
Some of the programs don’t play fair.

1045

FACE(9.7) FACE(9.7)

NAME
face, mugs - show faces, make face icons from pictures

SYNOPSIS
face machine!user file ...

mugs [-a]

DESCRIPTION
Face displays the 48× 48 bit icons specified by its arguments. If an argument contains an exclamation
mark, it is assumed to be a machine and user pair and is looked up in the face file system, faced(9) other-
wise it is taken to be a file name. If the file does not exist and contains no slashes, it is looked up in

When face’s layer is full, it waits for a character to be typed before continuing.

Mugs interactively converts grey-scale images in the form of picfile(5) into 48× 48 icons for display by
face and vismon(9) It prompts for the name of a picture file, displaying a large approximation to the origi-
nal picture and a matrix of 48× 48 icons of varying contrast and brightness. Button 1 selects one of the
48× 48’s. Button 3 presents a menu with entries:

window
Select a square window in the large picture using button 3. Touch down at the top and center of
the square and slide around to adjust its size. Appropriately cropped 48× 48’s will be displayed.

in Zoom in on a smaller part of contrast-brightness space, displaying an array of 48× 48’s that look
more-or-less like the selected one. Repeated ins will zoom in farther.

out Opposite of in.

save Type in the name of a file in which to save the currently selected 48×48.

read Type in the name of a picture file containing the next face to process.

exit Confirm with button 3.

Option -a indicates that picture files have non-square pixels with aspect ratio 1.25, as produced by the ITI
frame-grabber attached to kwee. Normally pixels are assumed to be square.

EXAMPLES
face /n/face/coma/∗ /48x48x1 All the users of coma.

SEE ALSO
faced(9) icon(9) vismon(9) imscan(1), picfile(5)

1046

FACED(9.5) FACED(9.5)

NAME
faced - network face server

SYNOPSIS
/usr/net/face.go

DESCRIPTION
The network face server provides a database of 48× 48 bit icons and other facial representations. It is im-
plemented as a network file system similar to netfs(8).

The file system, conventionally mounted on /n/face, has a fixed three-level hierarchy. The first level is a
machine name, the second level a user name, and the third level a resolution. Thus the file
/n/face/kwee/pjw/48x48x1 is the standard face icon (for user pjw) on machine kwee:

..

Many local users also have 512× 512 byte high-resolution faces, named 512x512x8. Other resolutions
may also be present for a particular face. One-bit images are stored in the format used by icon(9) eight-bit
images are arrays of bytes. The directories for machines sharing a user community, such as those on a
Datakit node, are linked together and given a name appropriate to the community. For example,
/n/face/kwee is a link to /n/face/astro.

To access the face for a mail name machine!uid take the result of the first successful open from the fol-
lowing list of files:

/n/face/machine/uid/48x48x1
/n/face/misc./uid/48x48x1
/n/face/machine/unknown/48x48x1
/n/face/misc./unknown/48x48x1

The directory misc. holds faces for generic users such as root and uucp. The face server is made avail-
able on a machine by running /usr/net/face.go from rc(8).

The face server data is administered by a pair of ASCII files that associate related machines and faces.
The machine table machine.tab attaches machines to communities; in it the line

kwee=astro

puts machine kwee in community astro. The people table people.tab associates a machine/user pair
in the face server with a file in one of the source directories /n/kwee/usr/jerq/icon/face48 or
Thus

astro/pjw=pjweinberger

causes the images stored in source files named pjweinberger to be available in the face server in direc-
tory /n/face/astro/pjw. As well, each disk file used by the face server is linked (by its original name) into
the directory /n/face/48x48x1 or /n/face/512x512x8 for easy access to all the images.

FILES
/n/kwee/usr/jerq/icon/face48

directory of low resolution faces

/n/kwee/t0/face/512x512x8
directory of high resolution faces

/n/kwee/usr/net/face/people.tab
people/file equivalences

/n/kwee/usr/net/face/machine.tab
machine/community equivalences

SEE ALSO
netfs(8), face(9) icon(9) vismon(9)

BUGS
After updating the tables, an indeterminate time may pass before the new faces are available.
All face server files are unwritable.

1047

FLICKFILE(9.5) FLICKFILE(9.5)

NAME
movies - graphics movie file formats

DESCRIPTION
Movie files are generated by preflicks and used by fflicks; see flicks(9) The format of a movie files is:

struct Header {
unsigned char version;
short header_length;
short nr_frames;
unsigned char nr_tables;
struct LOOKUP_TABLE {

short number_of_entries;
struct {

short count;
unsigned char value;

} table[256];
} Table[nr_tables];

};
struct Frame {

short width, height;
short compacted_length;
unsigned char which_table;
unsigned char data[compacted_length];

} Frame[nr_frames];
Each short in the above structure is present as a two-byte number in the file, most significant
byte first. Each unsigned char is a single byte.

version
software version number, to ensure compatibility between producer and consumer of the file.

header_length
total length in bytes of the lookup table(s) used to encode the file plus three bytes (the next three
that follow).

nr_frames
total number of movie frames in the file.

nr_tables
number of lookup tables.

nr_entries
number of entries in the lookup table (maximum 256).

count value pixel value and a count of how many times that value is to be repeated.

Immediately following the lookup tables begin the frames encoded in an indirect run-length code. Each
frame is described by width, height, and the compacted_length of the frame in bytes. The frame is
coded in raster-scan order as a sequence of indexes into the table numbered which_table (counting from
0).

FILES
_movie

SEE ALSO
flicks(9) pico(1), rebecca(9)

1048

FLICKS(9.1) FLICKS(9.1)

NAME
flicks, fflicks, preflicks, 2mux - movie graphics for 5620

SYNOPSIS
flicks [-fmte] file ...

preflicks [-fmtvloics] file ...

fflicks [flickfile]

DESCRIPTION
Flicks interprets each of the files as a grey-scale frame in the form of picfile(5) (or a square raster of un-
signed bytes), dithers them, and displays them on the terminal. Once the frames have been downloaded
the frames can be played as a movie, controlled by a menu on button 3. Most menu selections are self-ex-
planatory. Step shows individual frames, stepping forward with button 1, or backward with button 2. But-
ton 3 brings back the main menu.

The size of a frame is an option:

-f full size: same size as the input (typically 512×512)

-m medium size: half the input size (typically 256× 256) default

-t tiny size: quarter of the input size (typically 128×128)

If only one image is processed, full size is the default. For more than 11 pictures, tiny size is default. Any-
thing in between is medium size by default.

The frames are rendered with dithering by default, and with error propagation if -e is specified.

Fflicks downloads frames that have been preprocessed by preflicks into a flickfile. Fflicks downloads
much faster than flicks.

The options for preflicks include -f, -m, and -t as for flicks, plus

-l Use logarithmic dither.

-v Chatter on standard error.

-o Write the flickfile onto standard output; by default output goes into file _movie.

-i Print a summary of the contents of the flickfiles.

-c Catenate named flickfiles onto the standard output.

-sX ,Y the (one only) input file is assumed to be a sequence of X×Y -byte frames. If X and Y may be
omitted, 512× 512 is assumed.

Fflicks display is controlled by a menu on button 3. The selection ‘movie rate’ tries to run the display at
24 frames/sec.

Frames prepared with preflicks are compacted. Thus fflicks can play a longer sequence than flicks: up to
roughly 120 medium sized or 480 tiny frames (20 seconds of movie). Still longer sequences (about twice
as long) can be downloaded if fflicks is run within 2mux instead of mux. The price of compaction is
speed. Menu selections are available for uncompacting some (even- or odd-numbered) frames.

FILES
_movie
/usr/jerq/lib/2term

SEE ALSO
pico(1), picfile(5), rebecca(9) flickfile(9) movie(9)

1049

FONT (9.5) FONT (9.5)

NAME
font - jerq font layouts

SYNOPSIS
#include <jerq.h>
#include <font.h>

typedef struct Fontchar Fontchar;
typedef struct Font Font;

extern Font defont;

DESCRIPTION
A Font is a character set, stored as a single Bitmap with the characters placed side-by-side. It is de-
scribed by the following data structures.

typedef struct Fontchar {
short x; /∗ left edge of bits ∗/
unsigned char top; /∗ first non-zero scan-line ∗/
unsigned char bottom; /∗ last non-zero scan-line ∗/
char left; /∗ offset of baseline ∗/
unsigned char width; /∗ width of baseline ∗/

} Fontchar;
typedef struct Font {

short n; /∗ number of chars in font ∗/
char height; /∗ height of bitmap ∗/
char ascent; /∗ top of bitmap to baseline ∗/
long unused;
Bitmap ∗bits; /∗ where the characters are ∗/
Fontchar info[n+1]; /∗ n+1 character descriptors ∗/

} Font;

Characters in bits abut exactly, so the displayed width of the character c is
Font.info[c+1].x - Font.info[c].x. The first left columns of pixels in a character overlap the previous
character. The upper left corner of the nonempty columns appears at (x,0) in the bitmap. Width is the
distance to move horizontally after drawing a character. The font bitmap has a fixed height; parameters
top and bottom may speed up the copying of a character.

Characters are positioned by their upper left corners.

Fonts are stored on disk in binary with byte order that of the terminal. First in the file is the Font structure
with bits elided. The data for the bitmap follows. The header for the bitmap must be inferred from
Font.height and Font.info[Font.n].x.

EXAMPLES
Fontchar ∗i = f->info + c;
bitblt(f->bits, Rect(i->x, i->top, (i+1)->x, i->bottom),

.display, Pt(p.x+i->left, p.y+i->top), fc);
p.x += i->width;

Copy character c from font f to point p with Code F_XOR or F_OR.

For Code F_STORE, use Rect(i->x, 0, (i+1)->x, f->height).

SEE ALSO
jf(9) string(9) getfont(9)

BUGS
The unused field is used, by getfont(9)

1050

GEBACA(9.6) GEBACA(9.6)

NAME
gebaca, gebam - get back at corporate america

SYNOPSIS
/usr/games/gebaca

demo gebam

DESCRIPTION
Gebaca is an arcade-type shoot-em-down with familiar characters. It runs on Teletype 5620 terminals in
native mode only. Use the mouse to dodge and shoot.

Gebam is a cheap ripoff that runs under mux(9)

1051

GETFONT (9.1) GETFONT (9.1)

NAME
getfont - replace terminal’s default font

SYNOPSIS
getfont [option ...] [font]

DESCRIPTION
Getfont reads font data from file font. The current layer and subsequently created layers use this font as
defont; see string(9) If font does not directly name a file, it is looked for in directory

The options are:

-m The font change applies to the basic mux(9) menu as well as to layers.

-l The font change applies to the current layer only.

-d Print debugging information about fonts before and after.

Getfont discards inaccessible fonts. To reclaim store without loading a font, call it with no font argument.

EXAMPLES
getfont pelm.10 Larger type for demos and eyesight problems.

getfont defont Restore the original font.

FILES
/usr/jerq/font

SEE ALSO
string(9) font(9) font(6)

1052

GRAPHDRAW (9.1) GRAPHDRAW (9.1)

NAME
graphdraw graphpic - edit (combinatoric) graphs, convert to pic files

SYNOPSIS
graphdraw [file]

graphpic [option ...] file

DESCRIPTION
Graphdraw interactively edits and displays undirected graphs, and can also be used to display real-time
animation of algorithms. If a file is mentioned, the graph stored in that file is edited.

Click button 1 in command line (at bottom of window) to type in commands:

r file Read file and display graph.
w file Write current graph to file.
cd directory Change directory.
! program file

Execute animation program with file as input.
q Quit.

Button 3 gets a menu of actions, which are usually accomplished by pointing with button 1. The paren-
thesized equivalents in the following list are explained under ‘Algorithm animation’.

create vertex
Vertex is placed where button 1 is clicked. (vc x y)
delete
Delete selected vertex and associated edges. (vd i)
move
Selected vertex moves with mouse until button 1 is released. (vm i)
copy
Copy of selected vertex and associated edges moves with mouse. (vc i x y)
create/delete edge
Point to first endpoint and click button 1. Point to second endpoint and click button 1. Continue selecting
second endpoints with button 1. To unselect first endpoint, click button 2. (ec i j / ed i j)
restart
Click button 1 to clear screen and discard current graph. (pr)
standard window
Restart and reshape window to standard size, in which the drawing area is square and as large as possible.
small/large/no grid
Impose/remove visible grid to which all new coordinates will be rounded.
exit
Click button 1 to confirm.
labels menu
label vertex

Select vertex with button 1. Current label appears on command line. To accept it, click button 1.
Otherwise, type in new label and hit return. (vl i w)

number vertices
Vertex labels are set to the consecutive integers 1,2,...; this is the default. (vn)

label edge
Default is 1. (el i j w)

show/hide vertex labels (vs, vh)
show/hide edge labels (es, eh)
turn Euclidean edge labels on/off

Distances are measured in pixels. (ee)
show/hide sum of edges
graphics menu
light/heavy/empty/full/invisible vertex

Select style from menu with button 3; select vertices to change with button 1. The default is
light. (vg i c)

1053

GRAPHDRAW (9.1) GRAPHDRAW (9.1)

light/heavy edge (eg i j c)
macros menu
Arrange for sets of vertices to act together. Actions on any vertex in the set apply to the whole set. Copy-
ing duplicates edges internal to the set. Creating an edge between vertexes in two different sets creates
edges from every vertex in one set to every vertex in the other (bipartite subgraph).
select set

Sweep a rectangle around the set with button 1. Dissociate conflicting sets.
unselect set

Dissociate set containing selected vertex.
shrink/expand set

Selected set is shrunk/expanded about its center.
reshape set

Selected set is redrawn in swept rectangle.
complete/disconnect subgraph

Create/delete edges between every pair of vertices in a set.
Graphpic is a filter which, when applied to a file in graphdraw format, outputs pic code for the graph.
The options are:
-v Print vertex labels.
-e Print edge labels.
-i Optimize for imagen printer (default is d202).

File format
Graphs are stored as adjacency lists.

First line: n m t, where n is the number of vertices, m is the number of edges, and t is an optional graph
type. The only legal type is the default type u (undirected).

For each vertex, an initial line: d w x y c, where d is the degree of the vertex, w is its label, x and y are its
coordinates in the window, and c is an optional graphics code, L=light (default), H=heavy (circled dot),
F=full (large bullet), E=empty (empty circle), I =invisible. Window coordinates will be scaled to fit when
graph is read in.

After the initial line follow d lines for the vertex’s edges: i w c, where i is the index (1 to n) of the other
endpoint, w is the edge label, and c is an optional graphics code, L or H.

Algorithm animation
The typed command !program file causes the standard output of program to be captured by the host and
interpreted as commands to graphdraw. The resulting movie can be killed or temporarily halted from the
the terminal by clicking button 2 and choosing the desired option from the resulting menu.

Animation codes (defined parenthetically with menu items above) appear one per line. Their arguments
are: i, index of a vertex (normally the ith to be created); x, y, integer coordinates in the range 0 to maxco-
ord; w a label; or c, a graphic code.

Other animation codes are
pw n Change the value of maxcoord to n. Default is 10,000.
vl i w Give vertex i the label w.
pd t Delay program for t clicks of the 60Hz clock.
ps Halt program until user clicks button 2 to continue.
pm message

Print message on command line.

SEE ALSO
dag(1), pic(1)

BUGS
It is impossible to move or reshape a graphdraw layer, except via standard window.

1054

ICON (9.1) ICON (9.1)

NAME
icon - icon editor

SYNOPSIS
icon

DESCRIPTION
Icon is a pixel-level editor for textures and small bitmaps. Icon presents a magnified pixel grid and a true-
size image. Editing is done on the magnified grid. Pixels can be turned black by pressing the button 1,
and white by pressing button 2.

Button 3 provides an iconic menu of editing commands. Some commands require a rectangle to be swept;
this is done either by the middle button (which supplies a fixed 16× 16 rectangle) or by the right button
(for rectangles of any size).

arrow Move region (sweep rectangle and click at destination).

overlapping regions
Copy region (sweep rectangle and click at destination).

cross Invert region (sweep rectangle).

eraser Erase region (sweep rectangle).

horizontal (vertical) folded arrow
Reflect region horizontally (vertically) (sweep rectangle).

clockwise (counterclockwise) arrow
Rotate region deasil (withershins) (sweep rectangle).

horizontal (vertical) sheared lines
Shear a region horizontally (vertically) (sweep rectangle and point at destination of nearest cor-
ner of rectangle).

scaled square
Scale a region (sweep rectangle and sweep destination rectangle).

tweed pattern
Texture a region (sweep source rectangle and a (bigger) destination rectangle to be tiled with
copies of the source).

glasses
Read file (type file name and position the icon by clicking). The subdirectories of
/usr/jerq/icon/ are searched automatically after the current directory.

grid Switch on or off the background grids.

extend region
Change the size of the drawing area.

pen Write file (sweep rectangle and type file name). See bitfile(9) for the format.

overlapping rectangles
Bitblt region (driven by submenus on the right button).

mouse Pick up a 16× 16 rectangle and make it the current cursor (click a button to pick up a 16×16
region, and click again to revert to normal).

help Display help information (click a button to revert to normal).

band-aid
Undo last drawing operation.

FILES
/usr/jerq/icon/∗/∗

SEE ALSO
bitfile(9)

1055

JF(9.1) JF(9.1)

NAME
jf - font editor

SYNOPSIS
jf [file ...]

DESCRIPTION
Jf edits jerq font files. If file does not begin with a slash and is not a font file, it is looked up in a standard
font directory.

Jf is mostly mouse- and menu-driven, except when prompting for file names. Jf divides its layer into two
types of areas: Font displays show all characters in a given font in actual size. When characters are
opened for editing, they appear magnified in edit displays.

Button 1 is the ‘do it’ button. Clicking button 1 inside a font display opens a character for editing; inside
an edit display it sets a pixel. It may have other functions selected via menus, in which case the function
is indicated by a special cursor.

Button 2 is the ‘undo it’ button. Clicking button 2 closes a character or clears a pixel, unless conditioned
otherwise via menu selection.

Button 3 is the ‘menu’ button. Clicking button 3 selects a menu, pops control back to the top level, or
(when the gunsight cursor shows) picks a font or character to be affected. Sometimes menu selection is
the only (non-trivial) option available, as indicated by a ‘menu’ cursor.

A font is described by several parameters; these are either read from the font file, or set by default by the
make new font function: max width (default 16 pixels), height (16)-measured from the top, ascent
(16)-the distance of the printing baseline from the top, and range (1)-the highest-numbered character in
the font. (The first character is numbered 0.) All may be changed under the set sizes menu. Squeeze
font, in the open/close font menu, reduces max width as much as possible.

Each character has a width, which is shown by the length of the baseline in the edit display. The char
width may be set under the set sizes menu; button 1 sets it to 0, button 2 sets it to a specified pixel within
the max width. The quantity char left may be used for kerning. If positive, it shifts a character right and
causes max width to increase if necessary; if negative, the character will be shifted left. Otherwise char
left is irrelevant to font editing.

The bit function menu controls copying among characters in any of the bitblt(9) Codes: F_STORE,
F_CLR, F_OR, F_XOR. Press button 3 on the source character; hold it down while moving and release
it on the destination.

Several fonts may be open at once. When editing a font, it is often convenient to open a second copy for
recovering botched characters.

FILES
/usr/jerq/font/∗

jerq fonts

/usr/jerq/include/font.h
jerq font header file

SEE ALSO
font(9)

DIAGNOSTICS
When out of memory or screen area, jf ignores the offending operation.

1056

JIM(9.1) JIM(9.1)

NAME
jim, jim.recover - text editor

SYNOPSIS
jim [file ...]
jim.recover [-f] [-t] [file ...]

DESCRIPTION
Jim is an old text editor for the jerq terminal. It relies on the mouse to select text and commands. It runs
only under mux(9) Jim’s screen consists of a number of frames, a one-line command and diagnostic
frame at the bottom and zero or more larger file frames above it. Except where indicated, these frames be-
have identically. One of the frames is always the current frame, to which typing and editing commands
refer, and one of the file frames is the working frame, to which file commands such as pattern searching
and IO refer.

A frame has at any time a selected region of text, indicated by reverse video highlighting. The selected re-
gion may be a null string between two characters, indicated by a narrow vertical bar between the charac-
ters. The editor has a single ‘save buffer’ containing an arbitrary string. The editing commands invoke
transformers between the selected region and the save buffer.

The mouse buttons are used for the most common operations. Button 1 (left) is used for selection. Click-
ing button 1 in a frame which is not the current frame makes the indicated frame current. Clicking button
1 in the current frame selects the null string closest to the mouse cursor. Making the same null selection
twice (‘double clicking’) selects (in decreasing precedence) the bracketed or quoted string, word or line
enclosing the selection. By pushing and holding button 1, an arbitrary contiguous visible string may be
selected. Button 2 provides a small menu of text manipulation functions, described below. Button 3 pro-
vides control for inter-frame operations.

The button 2 menu entries are:

cut Copy the selected text to the save buffer and delete it from the frame. If the selected text is
null, the save buffer is unaffected.

paste Replace the selected text by the contents of the save buffer.

snarf Copy the selected text to the save buffer. If the selected text is null, the save buffer is unaf-
fected.

look Search forward for the next occurrence of the selected text or, if the selection is null, to the
next occurrence of the text in the save buffer.

<mux> Exchange save buffers with mux.

Also stored on the button 2 menu are the last Unix command and last search string typed (see below);
these may be selected to repeat the action.

Typing replaces the selected text with the typed text. If the selected text is not null, the first character
typed forces an implicit cut. Control characters are discarded, but BS (control-H), ETB (control-W) and
ESC have special meanings. BS is the usual backspace character, which erases the character before the
selected text (which is a null string when it takes effect). ETB erases back to the word boundary preced-
ing the selected text. There is no line kill character. ESC selects the text typed since the last button hit or
ESC. If an ESC is typed immediately after a button hit or ESC, it is identical to a cut. ESC and paste
provide the functionality for a simple undo feature.

The button 3 menu entries are:

new Create a new frame, much as in mux.

reshape
Change the shape of the indicated frame, as in mux. The frame is indicated by a button 3 hit af-
ter the selection.

close Close the indicated frame and its associated file.

write Write the indicated frame’s contents to its associated file.

The rest of the menu is a list of file names available for editing. To work in a different file, select the file
from the menu. If the file is not open on the screen, the cursor will switch to an outline box to prompt for

1057

JIM(9.1) JIM(9.1)

a rectangle to be swept out with button 3, as in the New operator of mux. (Unlike mux, there is a short-
hand: sweeping the empty rectangle creates the largest possible rectangle.) The file is not read until its
frame is first opened. If the file is already open, it will simply be made the workframe and current frame
(for typing). The format of the lines in the menu is

- possibly an apostrophe, indicating that the file has been modified since last written,

- possibly a period or asterisk, indicating the file is open (asterisk) or the workframe (period),

- a blank,

- and the file name. The file name may be abbreviated by compacting path components to keep
the menu manageable, but the last component will always be complete.

The work frame has a ‘scroll bar’—a black vertical bar down the left edge. A small tick in the bar indi-
cates the relative position of the frame within the file. Pointing to the scroll bar and clicking a button con-
trols scrolling operations in the file:

button 1 Move the line at the top of the screen to the y position of the mouse.

button 2 Move to the absolute position in the file indicated by the y position of the mouse.

button 3 Move the line at the y position of the mouse to the top of the screen.

The bottom line frame is used for a few typed commands, modeled on ed(1), which operate on the work
frame. When a carriage return is typed in the bottom line, the line is interpreted as a command. The bot-
tom line scrolls, but only when the first character of the next line is typed. Thus, typically, after some
message appears in the bottom line, a command need only be typed; the previous contents of the line will
be automatically cleared. The commands available are:

e file Edit the named file, or use the current file name if none specified. Note that each file frame has
an associated file name.

f file Set the name of the file associated with the work frame, if one is specified, and display the result.

g file ...
Enter the named files into the filename menu, without duplication, and set the work frame to one
of the named files. If the new work frame’s file is not open, the user is prompted to create its
frame. The arguments to g are passed through echo(1) for shell metacharacter interpretation.

w file Write the named file, or use the current file name if none specified. The special command w’
writes all modified files with file names.

q Quit the editor.

= Print the line number of the beginning of the selected text.

/ Search forward for the string matching the regular expression after the slash. If found, the
matching text is selected. The regular expressions are exactly as in egrep(1), with two additions:
the character @ matches any character, including newline, and the sequence \n specifies a new-
line, even in character classes. The negation of a character class does not match a newline. An
empty regular expression (slash-newline) repeats the last regular expression.

? Search backwards for the expression after the query.

94 Select the text of line 94, as in ed .

cd Set the working directory, as in the shell. There is no CDPATH search.

>command
Send the selected text to the standard input of the Unix command .

< command
Replace the selected text by the standard output of the Unix command .

| command
Replace the selected text by the standard output of the Unix command, given the original selected
text as standard input.

If any of < > | is preceded by an asterisk ∗ , the command is applied to the entire file, instead of just the
selected text. If the command for < or | exits with non-zero status, the original text is not deleted;

1058

JIM(9.1) JIM(9.1)

otherwise, the new text is selected. Finally, the standard error output of the command, which is merged
with the standard output for >, is saved in the file If the file is non-empty when the command completes,
the first line is displayed in the diagnostic frame. Therefore the command >pwd will report jim ’s current
directory.

Attempts to quit with modified files, or edit a new file in a modified frame, are rejected. A second q or e
command will succeed. The Q or E commands ignore modifications and work immediately. Some consis-
tency checks are performed for the w command. Jim will reject write requests which it considers danger-
ous (such as writes which would change a file modified since jim read it into its memory). A second w
will always write the file.

If jim receives a hangup signal, it writes a file which is a shell command file that, when executed, will
retrieve the files that were modified when jim exited. The -t option prints a table of contents, but does not
unpack the files. By default, jim.recover is interactive; the -f option suppresses the interaction. If no files
are named to it will recover all the saved files.

FILES
$HOME/jim.err
$HOME/jim.recover

BUGS
The regular expression matcher is non-deterministic, and may be slow for spectacular expressions.
When reshaped, the open frames must be re-opened manually.
The < and | operators should snarf the original text.

1059

JIOCTL(9.4) JIOCTL(9.4)

NAME
jioctl - mux ioctl requests

SYNOPSIS
#include "/usr/jerq/include/jioctl.h"

ioctl(fd, request, 0)

ioctl(fd, JWINSIZE, win)
struct winsize ∗win;

DESCRIPTION
Mux(9) supports several ioctl(2) requests for Unix programs attached to layers. The requests are:

JMUX
returns 0 if file descriptor fd is connected to a mux layer, -1 otherwise.

JTERM
resets the layer connected to fd to the default terminal program.

JBOOT
initiates the down-load protocol to replace the layer’s terminal program. Usually called by
32ld(9)

JZOMBOOT
is the same as JBOOT , but disables execution of the program when the download is complete
(see the -z flag of 32ld).

JWINSIZE
returns, in the location pointed to by the third argument, a structure describing the size of the
layer connected to fd , with character 0 being the unit of size. The structure is:

struct winsize {
char bytesx, bytesy; /∗ size in characters ∗/
short bitsx, bitsy; /∗ size in pixels ∗/

};

JEXIT
causes mux to exit.

SEE ALSO
32ld(9) mux(9) ioctl(2)

1060

JX(9.1) JX(9.1)

NAME
jx - 5620 execution and stdio interpreter

SYNOPSIS
jx file [argument ...]

DESCRIPTION
Jx downloads the program in file to the terminal or layer on its controlling tty and runs it there, simulating
standard I/O functions of stdio(3). Jx works either stand-alone or in a layer.

The stdout and stderr streams, if directed to the controlling terminal, will be squirreled away during exe-
cution and copied to the terminal after the down-loaded program exits.

Programs to be run by jx should include <jerqio.h> and call exit() upon termination in order to restart the
default terminal program. Programs to be run stand-alone should be compiled with the -J option of 3cc(9)
No special options are required for running in a layer.

Stdio(3) functions available under jx are

getc putc fopen popen printf fread
getchar putchar freopen pclose sprintf fwrite
fgets puts fclose fprintf

fputs access
fflush

Unlike in stdio(3), getc and putc are functions, not macros. Printf has only d, s, c, o, and x. u prints an
unsigned decimal number. D prints an unsigned long decimal number.

Since jx uses sendchar, sendnchars, and rcvchar, jx programs should avoid these, and use only the stan-
dard I/O routines.

FILES
/usr/jerq/include/jerqio.h

/usr/jerq/lib/sysint
standard I/O interpreter

$HOME/.jxout
saved standard output

$HOME/.jxerr
saved standard diagnostic output

SEE ALSO
request(9) stdio(3)

BUGS
Keyboard standard input doesn’t work; use kbdchar; see request(9)
Stand-alone programs do not receive arguments.

1061

LENS(9.1) LENS(9.1)

NAME
lens - bitmap magnifiermagnifier 4

magnifier

SYNOPSIS
lens

DESCRIPTION
Lens is an interactive screen bitmap magnifier. When it starts, it displays an enlarged image of a magnify-
ing glass in its layer, which becomes a setting sun when lens wants to confirm a command to exit.

The first item in the button 2 menu, which rotates among go, peek, and stop, determines the activity of the
magnifier. Clicking button 1 serves as an abbreviation for selecting go or peek. When the magnifier is
going, a crawling-bordered rectangle is drawn around the source, and the lens window contains the mag-
nified image. The mouse controls the position of the source rectangle.

During peeking, the rectangle last selected while going is re-examined periodically, and the contents are
magnified, whether or not the lens window is currently selected.

When stopped, the lens window is inactive.

The button 2 menu also allows changing the magnification factor. The magnification factors are chosen
from the Fibonacci numbers, and menu items for the next size smaller and larger are presented as, e.g., 3x
or 8x. The current magnification factor is not displayed in the menu, only the next factors larger and
smaller. The initial magnification factor is two.

Button 2 may also be used to select the intervals at which peeking updates occur. These intervals are
selected, in ticks, from among the powers of two, where a tick is one-sixtieth of a second. These choices
are presented as, e.g., 32 ticks or 128 ticks. The initial interval between peeks is 64 ticks, approxi-
mately one second.

The image window may be controlled by the button 2 menu item which toggles between inset and full
size. In inset mode, the image is displayed inside the image window of the magnified lens icon. In full
size mode, the image is displayed in the entire lens window.

The final button 2 menu entry is exit. A setting sun is displayed, and button 3 must be clicked to confirm.

BUGS
While going, the display is only refreshed when the mouse is moved.
While peeking, it is assumed that the lens window contains an accurate magnification of what was on the
screen at the time of the last magnification. If lens is used to examine its own image, strange things may
occur.
Due to the bitmap reshaping techniques employed by the magnification algorithms, high magnification
factors will not work with large image windows. Precisely, if the product of the vertical magnification
factor and the width of the destination rectangle overflows a signed short integer, predictable but undesir-
able results will occur.

1062

LIBC(9.3) LIBC(9.3)

NAME
libc - standard library functions

DESCRIPTION
Various standard functions from Section 3 are available in 5620 programs:

abs atoi atol chrtab qsort rand srand strcat strchr strrchr strcmp strcpy strncat strncmp strncpy strlen

In addition, certain stdio(3) programs are available under the jx(9) emulator.

SEE ALSO
arith(3), atof(3), chrtab(3), libc(9) qsort(3), rand(3), string(3)

1063

LSH(9.9) LSH(9.9)

NAME
lsh - create layers and run shell commands

SYNOPSIS
lsh [<file] [>file]

DESCRIPTION
Lsh runs under mpx(1) and reproduces a specified setup of layers. Each line of the standard input is of the
form:

x0 y0 x1 y1 shell-command

For each line Lsh creates a layer whose diagonal spans the points (x0,y0) and (x1,y1), where (0,0) is the
upper left corner of the screen and (800,1024) is the lower right. If a shell-command is given, it is exe-
cuted in that layer.

The standard output gives the coordinates of each layer that already exists and its downloaded object file,
if any. This provides coordinates for an input script to duplicate a handmade setup.

BUGS
Standard input cannot be the keyboard.

1064

MCC(9.1) MCC(9.1)

NAME
mcc - MC68000 C compiler

SYNOPSIS
mcc [option] (.,.).SH DESCRIPTION Mcc is the C compiler for the Motorola 68000. Its default action
is to compile programs to run under the mpx(1) environment on a Blit terminal.

Mcc accepts several types of arguments:

Arguments whose names end with ‘.c’ are taken to be C source programs; they are compiled, and each ob-
ject program is left on the file whose name is that of the source with ‘.o’ substituted for ‘.c’. The ‘.o’ file
is normally deleted, however, if a single C program is compiled and loaded all at one go.

In the same way, arguments whose names end with ‘.s’ are taken to be assembly source programs and are
assembled, producing a ‘.o’ file.

Programs using floating-point must be compiled with the -lf load-time option to load the floating-point
support package.

The following options are interpreted by mcc. Load time options, described under mld(1), are passed to
mld.

-c Suppress the loading phase of the compilation; force an object file to be produced even if only
one program is compiled.

-j Compile the named programs, and load and link them for running stand-alone on a Blit termi-
nal.

-m Compile the named programs for ordinary (non-Blit) environments.

-w Suppress warning diagnostics.

-O Invoke an object-code improver.

-S Compile the named C programs, and leave the assembler-language output on corresponding
files suffixed ‘.s’.

-E Run only the macro preprocessor on the named C programs, and send the result to the standard
output.

-C prevent the macro preprocessor from eliding comments.

-o output
Name the final output file output. If this option is used the file ‘a.out’ will be left undisturbed.

-Dname=def
-DSname

Define the name to the preprocessor, as if by ‘#define’. If no definition is given, the name is de-
fined as "1". The symbol mc68000 is predefined.

-USname
Remove any initial definition of name.

-ISdir ‘#include’ files whose names do not begin with ‘/’ are always sought first in the directory of the
file argument, then in directories named in -I options, then in directories on a standard list.

-BSstring
Find substitute compiler passes in the files named string with the suffixes cpp, ccom and c2. If
string is empty, use a standard backup version.

-t[p012]
Find only the designated compiler passes in the files whose names are constructed by a -B op-
tion. In the absence of a -B option, the string is taken to be ‘/usr/c/’.

Other arguments are taken to be either loader option arguments, or C-compatible object programs, typi-
cally produced by an earlier mcc run, or perhaps libraries of C-compatible routines. These programs, to-
gether with the results of any compilations specified, are loaded (in the order given) to produce an exe-
cutable program with name a.out.

1065

MCC(9.1) MCC(9.1)

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/lib/cpp preprocessor
/usr/jerq/lib/ccom compiler
/usr/jerq/lib/occom backup compiler
/usr/jerq/lib/mc2 optimizer
/usr/jerq/lib/l.o runtime startoff for -j
/usr/jerq/lib/notsolow.o runtime startoff for -m
/usr/jerq/lib/libc.a standard library
/usr/jerq/lib/libf.a floating-point library
/usr/jerq/lib/libj.a graphics library (used in -lj).
/usr/jerq/lib/libsys.a system and I/O library (used in -lj).
/usr/jerq/include standard directory for ‘#include’ files

OTHER PROGRAMS
The usual array of associated object-code manipulating programs exists, with specifications identical to
the usual Unix programs, and with names prefixed with an ‘m.’ These programs include:
mas assembler, see as(1)
mlorder order library, lorder(1) (there is no mranlib)
mnm name list, see nm(1)
msize object code size, size(1)
mstrip strip symbol table, strip(1)

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kernighan, Programming in C—a tutorial
D. M. Ritchie, C Reference Manual
mld(1), cc(1)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages may be
produced by the assembler or loader.

1066

MENUHIT (9.3) MENUHIT (9.3)

NAME
menuhit, hmenuhit - present user with menu and get selection

SYNOPSIS
#include <jerq.h>

int menuhit(m, b)
Menu ∗m;

#include <menu.h>

NMitem ∗ hmenuhit(m, b)
NMenu ∗m;

DESCRIPTION
Menuhit presents the user with a menu specified by the Menu pointer m and returns an integer indicating
the selection made, or -1 for no selection. The integer b specifies which button to use for the interaction:
1, 2 or 3. Menuhit assumes that the button is already depressed when it is called. The user makes a selec-
tion by lifting the button when the cursor points at the desired selection; lifting the button outside the
menu indicates no selection.

Menus can be built in two ways, either as an array of strings or with a generator function:

typedef struct {
char ∗∗item; /∗ string array, ending with 0 ∗/
char ∗(∗generator)(); /∗ used if item == 0 ∗/
short prevhit; /∗ offset from top of last select ∗/
short prevtop; /∗ topmost item displayed ∗/

} Menu;
char ∗menutext[]={"Item 0", "Item 1", "Item 2", 0};
Menu stringsmenu={ menutext };

or

char ∗menugen();
Menu genmenu={ (char ∗∗)0, menugen };

The generator function is passed an integer parameter n, and must return the string for the nth menu entry,
or 0 if n is beyond the number of entries in the menu. The n’s may come in any order but the result is
only needed until the next call.

Regardless of the method of generation, characters with the 0200 bit set are regarded as fill characters.
For example, the string "\240X" will appear in the menu as a right-justified X is the ASCII space charac-
ter). Menu strings without fill characters are drawn centered in the menu.

The fields prevhit and prevtop are used to guide which items are displayed and which item the mouse
points to initially. They should be nonnegative. Both menuhit and hmenuhit may choose to ignore these
fields.

Hmenuhit supports hierarchical menus. Submenus are denoted graphically by a right-pointing arrow.
Moving the cursor onto the arrow causes the submenu to appear. Hierarchical menus are built of
NMitems defined as

typedef struct NMenu {
char ∗text;
char ∗help;
struct NMenu ∗next;
void (∗dfn)(), (∗bfn)(), (∗hfn)();
long data;

} NMitem;

The text field is shown to the user; characters with the 0200 bit set behave as above. The contents of the
help field are shown whenever the user holds down button 1 at the same time as the button specified by
the parameter b. If b is 1, you get help all the time. The next field is the address of a submenu or
(NMenu ∗)0 if there is none. The two functions (∗dfn)() and (∗bfn)() support dynamic submenus. Dfn is
called just before the submenu is invoked. Its argument is the current menu item. Similarly, bfn is called

1067

MENUHIT (9.3) MENUHIT (9.3)

with the current menu item just after the submenu has finished. Hfn is called only when a menu item is
selected; its argument is the current menu item. The menu has been undrawn before hfn is called. The
return value from hmenuhit is the menu item selected or (NMenu ∗)0 if none was selected. To permit
communication between menu functions and the calling program, the data field is available for the user; it
is ignored by hmenuhit.

An NMenu, like a Menu, may be built by list or by generator. An NMenu generator takes an integer
parameter n and returns a pointer to an NMitem. In either case, the list of menu items is terminated by an
item with a 0 text field.

EXAMPLES
Simple code to use stringsmenu declared above:

switch(menuhit(.stringsmenu, 3)){
case 0: item_0();

break;
case 1: item_1();

break;
case 2: item_2();

break;
case -1: noselection();

break;
}

To provide a submenu for item 1:

NMitem ∗gen();
NMenu i1list = { 0, gen };
void item_2(), item_3();
NMitem imenu = {

{ "item 1", "item 1 help", .i1list },
{ "item 2", "item 2 help", 0, 0, 0, item_2 },
{ "item 3", 0, 0, 0, 0, item_3 },
{ 0 }

};
NMenu b3 = { imenu };
(void)hmenuhit(.b3, 3);

1068

MLD(9.1) MLD(9.1)

NAME
mld - MC68000 link editor (loader)

SYNOPSIS
mld [option] ... file ...

DESCRIPTION
Mld combines several Motorola 68000 object programs into one, resolves external references, and
searches libraries. In the simplest case several object files are given, and mld combines them, producing
an object module which can be either executed or become the input for a further mld run. (In the latter
case, the -r option must be given to preserve the relocation bits.) The output of mld is left on a.out. This
file is made executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is the begin-
ning of the first routine.

A library is a collection of object modules gathered into a file by ar (1). If any argument is a library, it is
searched exactly once at the point it is encountered in the argument list. Only those routines defining an
unresolved external reference are loaded. If a routine from a library references another routine in the li-
brary, the referenced routine must appear after the referencing routine in the library. Thus the order of
programs within libraries may be important.

The symbols ‘etext’, ‘edata’ and ‘end’ are reserved, and if referred to, are set to the first location above
the program, the first location above initialized data, and the first location above all data respectively. It is
erroneous to define these symbols.

Mld understands several options. Except for -l, they should appear before the file names.

-b relocate the program so its first instruction is at the absolute position indicated by the decimal
address after the -b option.

-B Similar to -b, but only set the base address for the BSS segment. This option is usually used in
conjunction with -b when loading programs to run from ROM.

-d Force definition of common storage even if the -r flag is present.

-lx This option is an abbreviation for the library name ‘/usr/lib/libx.a’, where x is a string. If that
does not exist, mld tries ‘/usr/jerq/lib/libx.a’ A library is searched when its name is encountered,
so the placement of a -l is significant.

-o The name argument after -o is used as the name of the mld output file, instead of a.out.

-r Generate relocation bits in the output file so that it can be the subject of another mld run. This
flag also prevents final definitions from being given to common symbols, and suppresses the ‘un-
defined symbol’ diagnostics.

-s Remove the symbol table and relocation symbols to save space in the resulting binary.

-R Similar to -r, but flag an error if there are undefined symbols.

-M Set the resulting a.out’s magic number to 0406, to signify a binary runnable under mpx(1)

-v Generate copious debugging information on standard output.

FILES
/usr/jerq/lib/lib∗.a libraries
/usr/lib/lib∗ .a more libraries
a.out output file

SEE ALSO
ld(1), mcc(1), ar(1)

1069

MOUSE(9.4) MOUSE(9.4)

NAME
mouse - jerq mouse user interface

DESCRIPTION
Most jerq programs use the mouse for control, either by pointing at things on the screen or by making se-
lections from a menu. The mouse buttons are different from keys on a keyboard in that events are re-
ported when a button is released (let ‘up’) as well as depressed (pressed ‘down’). It therefore matters not
only where and when a button is pressed, but for how long. For example, menus are drawn when a button
is depressed, and remain displayed as long as the button is held down. While the button is down, moving
the cursor over the menu highlights entries in the menu; the entry (possibly none) under the cursor when
the button is released is the selection returned to the program. Large menus also present a ‘scroll bar’ on
the left side of the menu. Moving the mouse inside the scroll bar chooses which subset of the available
entries are displayed and therefore selectable.

There is a convention about how the buttons are used. The left button (button 1) is used to point: selecting
which layer to work in, which file inside the editor, some text in the file, etc. The middle button (button 2)
produces a menu of actions related to the selection: remove the selected text, replace it, etc. The right but-
ton (button 3) presents a menu of global, program-wide actions: pick up a new file, rearrange the files on
the screen, etc. Programs follow this convention well enough that an unfamiliar program can often be
learned simply by trying it. The main violators of the convention are drawing programs, which use button
1 to draw things and button 2 to undraw them, but this is also a consistent convention.

The mouse cursor is usually an arrow pointing at a pixel, but programs often change the cursor to an
iconic representation of the program’s state. The most common cursors are:

arrow standard cursor

coffee cup
Program will be busy for a while.

rectangle and arrow
Program expects a rectangle to be ‘swept out’ by pressing a button (usually 3) at one corner and
releasing at the diagonally opposite corner.

gunsight
Program expects an object to be selected by pointing at it and pressing a button (usually 3).

upside-down mouse
Program is thinking; the mouse is inoperative.

1070

MOVIE(9.1) MOVIE(9.1)

NAME
movie, stills - algorithm animation

SYNOPSIS
movie [-t termprog] [-m memory] [file]

stills [files ...]

DESCRIPTION
Movie converts a ‘movie script’ into an internal representation, then displays it in a window on a Teletype
5620, AT.T630, or X-11 system (depending on which version has been compiled). If the filename is of
the form file.s, movie creates the intermediate form in file.i, which will be used in subsequent calls if it is
more recent than file.s, The options are:

-t termprog
Load termprog instead of the default terminal program.

-mmem Use mem bytes of terminal memory instead of the default.

In the terminal, button 1 stops and starts the movie; button 2 adjusts view sizes and selects clicks; button 3
sets various parameters.

Movie scripts
A movie consists of multiple independent views, each presented as a rectangular sub-window. If no view
statements appear, there is a single implicit view def.view. Any text or geometrical object may be labeled
with a name and colon. Labels and coordinates are local to views. A recurring label erases the previous
object with that label.

Comments follow #; blank lines are ignored.

text options x y string
Text is centered and medium size by default; options: one of center ljust rjust above below,
and one of small medium big bigbig. A leading quote is stripped from string, as is a trailing
quote if a leading one is present.

line options x1 y1 x2 y2
Lines are solid by default; options: one of fat fatfat dotted dashed and one of -> <- <->.

box options xmin ymin xmax ymax
A box may be filled.

circle options x1 y1 radius
Radius is measured in the x dimension. A circle may be filled.

erase label
Erase an object explicitly.

clear Erase all objects currently in the current view.
click optional-name

Place a mark in the intermediate with this name; clicks are used to control stepping in a movie or
to define frames for a set of stills.

view name
Associate subsequent objects with this view, until changed again.

Stills converts selected frames of a movie into commands for pic(1). Commands for stills begin with .be-
gin stills and end with .end stills.

FILES
All files are in /usr/lib/movie.

develop
Shell script to control conversion from script language to internal form.

fdevelop
C program that does the work.

stills.awk
Awk program to process stills language into pic(1).

1071

MOVIE(9.1) MOVIE(9.1)

anim Host end of the animation system.

animterm
terminal end.

newer
Test whether one file is newer than another.

SEE ALSO
flicks(9) pic(1)
J. L. Bentley and B. W. Kernighan, ‘A System for Algorithm Animation’, this manual, Volume 2

BUGS
The 630 can only handle 65000 bytes of memory.

1072

MUX(9.1) MUX(9.1)

NAME
mux, ismux, invert - layer multiplexer for 5620

SYNOPSIS
mux [-l command ...]

mux exit

mux cd directory

ismux [-]

invert

DESCRIPTION
Mux manages asynchronous windows, or layers. Upon invocation, it loads the terminal with a program
(default settable by the environment variable MUXTERM) that is the primary user interface. Option -l
also creates a layer and invokes the shell to run commands in it. (See windows(9)

The command mux leaves mux, destroying all layers; mux changes the directory of mux, and hence of lay-
ers later created, but not of the current layers.

Each layer is essentially a separate terminal. Characters typed into the layer are sent to the standard input
of a Unix process bound to the layer, and characters written on the standard output of that process appear
in the layer. When a layer is created, a separate shell (the value of the SHELL environment variable, or
sh by default) is established, and bound to the layer.

Layers are created, deleted, and rearranged using the mouse. Depressing mouse button 3 activates a menu
of layer operations. Releasing button 3 then selects an operation. At this point, a gunsight or box cursor
indicates that an operation is pending. Hitting button 3 again activates the operation on the layer pointed
to by the cursor.

The New operation, to create a layer, requires a rectangle to be swept out, across any diagonal, while but-
ton 3 is depressed. A box outline cursor indicates that a rectangle is to be created. The Reshape opera-
tion, to change the size and location of a layer on the screen, requires first that a layer be indicated (gun-
sight cursor) and a new rectangle be swept out (box cursor). The other operations are self-explanatory.

In a non-current layer, button 1 is a shorthand for Top and Current, which pulls a layer to the front of the
screen and makes it the active layer for keyboard and mouse input. Th current layer is indicated by a
heavy border.

There is a point in each layer, called the ‘Unix point’, where the next character from the host Unix system
will be inserted. The Unix point advances whenever characters are received from the host, but not when
echoing typed characters. When a newline is typed after the Unix point, characters between the Unix
point and the newline, inclusive, are sent to the host and the Unix point advanced to after the newline.
This means that shell prompts and other output will be inserted before characters that have been typed
ahead. No other characters are sent to the host (but see the discussion of raw mode below). Therefore
partially typed lines or text anywhere before the Unix point may be edited.

The default terminal program allows any text on the screen to be edited, much as in sam(9) Text may be
selected by sweeping it with button 1 depressed. Typed characters replace selected text.

All layers share a common ‘snarf buffer’ (distinct from sam’s). The cut operation on button 2 deletes
selected text and puts it in the buffer; snarf copies selected text to the buffer; paste replaces selected text
(which may be null) from the buffer; and send copies the snarf buffer to after the Unix point.

Normally the terminal doesn’t scroll as text is received, but a button 2 menu item selects scrolling.

A scroll bar indicates what portion of all the text stored for a layer is on the screen. (It measures charac-
ters, not lines.) Releasing button 1 in the scroll bar brings the line at the top of the screen to the cursor;
releasing button 3 takes the line at the cursor to the top of the screen. Button 2, treating the scroll bar as a
ruler, brings the indicated point in the whole stored text to the top of the screen. Slide the cursor off either
end of the scroll bar with button 2 depressed to get right to an end of the file.

The NUM LOCK key advances a half page.

Ismux reports on its standard error whether its standard output is a mux layer, and also generates the
appropriate exit status. With option -, no message is produced.

1073

MUX(9.1) MUX(9.1)

Invert reverses the sense of video, from black on white to white on black, or vice versa.

Independent user-level programs can be loaded into layers, see 32ld(9) SHIFT-SETUP freezes mux and
complements the video of the layer of the running user-level terminal process. Hitting button 2 in this
state will attempt to kill the process; 1 or 3 will leave it running.

In raw mode or no-echo mode (see ttyld(4)) the Unix point advances with each character typed after it. In
8bit mode, characters with octal codes 0200 and greater print according to the ISO Latin1 alphabet; see
ascii(6).

FILES
/tmp/.mux∗ temporary file used by -l option

SEE ALSO
32ld(9) sam(9) jx(9) term(9) windows(9)
R. Pike, ‘Blit Download Protocols’, this manual, Vol. 2

DIAGNOSTICS
Mux refuses to create a layer when there is not enough memory. Space can be recovered by deleting a
layer.
Error messages from mux are written directly to the layer which caused them. They are usually meaning-
ful only to system administrators, and indicate system difficulties.

BUGS
Reshape only works properly for processes that arrange to see if they have been reshaped, although most
programs make this arrangement.
The behavior of raw mode prohibits editing partially typed lines when running cu(1).

1074

MUXSTRING(9.3) MUXSTRING(9.3)

NAME
strinsure, strinsert, strdelete, strzero, setmuxbuf, getmuxbuf, movstring - dynamic strings in mux

SYNOPSIS
#include <jerq.h>

strinsure(s, n); String ∗s;

strinsert(d, i, s); String ∗d, ∗s;

strdelete(d, i, j); String ∗d;

strzero(d); String ∗d;

setmuxbuf(s); String ∗s;

getmuxbuf(d); String ∗d;

movstring(n, sp, dp); char ∗sp, ∗dp;

DESCRIPTION
These functions manipulate strings represented in the following form.

struct String {
char ∗s;
short n;
short size;

};

The string proper occupies the first n characters of a data block of size characters pointed to by s. Ini-
tially both size and s should be 0. Strings are always counted, not terminated by \0. The functions obtain
space as needed from gcalloc; see alloc(9) Thus a String structure should never be copied.

Strinsure arranges that s->size≥n. It must be called before any operation that could overflow the current
size.

Strinsert inserts a copy of source s into destination d beginning at character i (counted from 0), adding
s->n to d->n.

Strdelete removes characters i through j-1 from string d, subtracting j-i, which must be nonnegative,
from d->n.

Strzero frees the memory associated with d and sets both d->n and d->size to zero.

Setmuxbuf copies string s into the snarf buffer maintained by mux(9) getmuxbuf copies from the snarf
buffer into d.

Movstr copies a block of n characters beginning at sp to a block beginning at dp. If n is negative it copies
-n characters ending at sp-1 to a block ending at dp-1. Notice that movstring does not operate on
Strings.

SEE ALSO
libc(9)

1075

NEWLAYER(9.2) NEWLAYER(9.2)

NAME
newlayer, dellayer, downback, lbitblt, lpoint, lrectf, lsegment, ltexture, upfront - layer control and graph-
ics

SYNOPSIS
#include <jerq.h>

Layer ∗ newlayer(r); Rectangle r;

void dellayer(l) Layer ∗l;

void lbitblt(sl, r, dl, p, f) Layer ∗sl, ∗ dl; Rectangle r; Point p; Code f;

void lpoint(l, p, f) Layer ∗ l; Point p; Code f;

void lrectf(l, r, f) Layer ∗ l; Rectangle r; Code f;

void segment(l, p, q, f) Layer ∗ l; Point p, q; Code f;

void ltexture(l, r, t, f) Layer ∗ l; Rectangle r; Texture ∗ t; Code f;

void upfront(l) Layer ∗l;

void downback(l) Layer ∗l;

DESCRIPTION
Newlayer creates a layer in Rectangle r in the physical display bitmap, and returns its address, or 0 on
failure. Newproc(9) explains how to attach a process to a layer.

Dellayer de-allocates a layer; the associated process must also be freed (see newproc(9)

Upfront and downback are the subroutines corresponding to the mux(9) menu items Top and Bottom.

The routines lbitblt, lpoint, lsegment and ltexture are equivalent to their bitblt(9) counterparts except that
they never inhibit the mouse cursor, so they are mainly useful only for implementation of efficient com-
posite graphics operations such as circle-drawing. Because of the duality of Bitmaps and Layers, argu-
ments of either type may be passed freely to any of the graphics primitives.

SEE ALSO
bitblt(9) newproc(9)
Rob Pike, Graphics in Overlapping Bitmap Layers, ACM Trans. on Graphics, April 1983.

1076

NEWPROC(9.2) NEWPROC(9.2)

NAME
P, newproc, muxnewwind, newwindow, tolayer, debug, getproc, getproctab, putname, getname - jerq
process control

SYNOPSIS
#include <jerq.h>

extern struct Proc ∗P;

struct Proc ∗ newproc(f) void (∗f)();

struct Proc ∗ newwindow(f); void (∗f)();

void tolayer(l) Layer ∗l;

void debug();

struct Proc ∗getproc();

struct Proc ∗getproctab();

int putname(string, data) char ∗ string; long data;

struct Nqueue ∗ getname(string) char ∗string;

#include <msgs.h>
void muxnewwind(p, c) struct Proc ∗ p; int c;

DESCRIPTION
Processes in the jerq consist of a coroutine-style process structure and an associated layer (see
newlayer(9) allocated independently. This section describes the process allocation and control primitives.
They are direct links to the system’s own control structures, so given mux’s open addressing, they should
be used with care.

Each process has a global variable P that points to its process structure. The only regular use of P is to
check that the process has been moved or reshaped:

if(P->state . RESHAPED){
do_reshape();
P->state .= RESHAPED;

}

The definition of struct Proc is in the include file <jerqproc.h>, which is included automatically by
<jerq.h>.

Newproc allocates a new process, returning a pointer to it, or 0 if one cannot be allocated. Argument f
points to the program text to be executed. The special case f =0 creates a process running the default ter-
minal program, and is almost always how newproc should be called; use 32ld(9) to run non-standard pro-
grams. A process is disabled by setting p->state to zero. After calling newproc, the process must be
bound to a layer and Unix told of its presence, typically as:

struct Proc ∗p;
Rectangle r;
p = newproc((struct Proc ∗)0);
if(p == 0)

error();
p->layer = newlayer(r);
if(p->layer == 0){

p->state = 0;
error();

}
p->rect = r;
muxnewwind(p, C_NEW);

The second argument to muxnewwind should be C_RESHAPE if an existing process is being given a new
layer. If the process is not running the default terminal program, its variables display and Drect must
be set:

1077

NEWPROC(9.2) NEWPROC(9.2)

struct udata ∗u=((struct udata ∗)p->data);
u->Drect=p->rect;
u->Jdisplayp=p->layer;
This procedure works regardless of whether the process being manipulated is itself.

Newwindow creates a process by the above procedure, going through the standard user interface to select
the rectangle for the process’s layer.

Tolayer takes an argument layer pointer and makes the process in that layer the receiver of mouse and
keyboard events.

Getproc presents the user with a gunsight cursor and returns the address of the process whose layer is
indicated with the mouse. Getproctab simply returns the address of the base of the process table array.
This is an array of NPROC process structures. NPROC is stored in the word immediately lower in
address than the process table.

Debug announces to the system that the calling process is prepared to handle exceptions by other
processes.

Putname and getname manage a bulletin board for interprocess communication. Further communication
may be arranged through shared memory. Putname associates data with string, returning nonzero nor-
mally, or 0 if the data could not be stored. Getname returns a pointer to a structure which contains

struct Proc ∗proc
pointer to the process structure of the layer that most recently announced the string

long data
the corresponding data

Getname returns 0 if no such string has been announced. A pointer returned by getname remains valid: a
client may rendezvous with a server by calling getname once and repeatedly testing the associated proc
pointer thereafter.

BUGS
These primitives are awkward at best, and are subject to change.
Creating a process without a layer or vice versa is dangerous.

1078

PADS(9.5) PADS(9.5)

NAME
pads - user interface package

DESCRIPTION
Pads is a mouse-based interface for browsing a network of windows.

Button 1 points. Pointing at a window makes it current, with a heavy border; pointing at a line of text
makes it current, inverts its video, and scrolls it to the middle of the window. A scroll bar at the left of
each window shows how much of the text of a window is visible; pointing into the scroll region controls
what text is displayed.

Button 2 has a menu of operations that apply to the current line. Operations above the separator are
specific to each line; operations below the separator are generic line operations:

cut Remove the line.

sever Remove the line and all lines above it.

fold If lines pass the right margin, continue them on following lines.

truncate
Truncate lines at the right margin.

Button 3 has a menu of window-level operations, and is in three parts. Below the lower separator is a list
of windows; selecting one makes it current. They appear in front-to-back screen order, current at the top.
Operations above the upper separator are specific to each window; operations between the separators are
generic window operations:

reshape

move

close Like reshape, move, and delete in mux(9)

fold
truncate

apply to all lines in the window.

Keyboard characters accumulate at the bottom of the layer. If the current line accepts input, it flashes with
each keystroke; otherwise, if the current window accepts input, its border flashes. Carriage return is ig-
nored until a line or window accepts the text, whereupon the input line is sent to the line or window. The
ESC key substitutes the mux(9) global snarf buffer.

If the first character of a line from the keyboard is < or > the remainder of the line is interpreted as a shell
command. For <, each line of the command’s standard output is sent to the line or window, as though it
had come from the keyboard. For >, the line or lines of the window become the command’s standard in-
put. Each line or window that accepts keyboard input produces some help in response to ?. Special cur-
sor icons occasionally appear:

arrow-dot-dot-dot
The host is completing an operation; the terminal is ready asynchronously.

exclamation mark
Confirm a dangerous menu selection by pressing that menu’s button again.

SEE ALSO
T. A. Cargill, Pads Programming Guide

1079

PAINT (9.1) PAINT (9.1)

NAME
paint - draw pictures in a layer

SYNOPSIS
paint

DESCRIPTION
Paint is a program for artistic interactive drawing. Buttons 1 and 2 draw in different ways, e.g. depositing
and erasing paint. Button 3 gets a menu. Certain menu items contain arrows, which if touched call sub-
menus. Moving off the right of a submenu causes it to disappear. Some items toggle a state on and off; a
∗ appears in the abnormal state. Pressing button 1 while holding button 3 gets a short help message for
the menu item. The top-level menu contains:

Style → Different kinds of brush strokes
Operation → Ways of putting paint on canvas
Texture → Things to do to the texture pattern
Brush → Things to do to the paintbrush
Canvas → Things to do to the whole picture
State → Change things saved in .paintstate
Fill Fill an area of the picture
Green Erase the entire picture
Mask Display mask instead of image
Exit

The Style submenu:

Paint Multiple brush spots while holding button 1 or 2
Circles Circles; press at center and release at circumference
Lines Rubber-band brush lines
Curves Continuous strokes while holding button 1 or 2
Line Style→ Solid, dotted, dashed, etc. lines

Entries in the Line Style sub-submenu are strings of As, Bs and dot that describe dotted and dashed lines.
A stands for the brush on the button pushed, B stands for the brush on the other button; . for no brush at
all. The string is cycled through at successive points when drawing Lines, Curves, or Circles. Thus A
means a solid line, A... means a 1 in 4 dotted line, and AAAA.... means 4-pixel dashes.

The Operation submenu assigns a pair of operations for buttons 1 and 2. A hidden ‘mask’ plane
describes the shape that has been painted; black pixels in the mask are inside, green outside. Likewise,
the brush consists of a pair of rectangular image and mask planes. There are 11 effective operations to
combine the part of the brush inside its mask with the part of the picture it sits on (see the Porter/Duff
paper for details); selected pairs can be assigned to the buttons:

Above/Erase Button 1 paints on top, Button 2 erases
Below/Erase Button 1 paints behind, Button 2 erases
Above/BelowButton 1 paints on top, Button 2 behind
Inside/Erase Button 1 paints inside, Button 2 erases
Brush/Clear Special effects
AoutB/AinB Special effects
BinA/BatopASpecial effects
Xor/Above Special effects

Above paints on top of the picture, as in ‘normal’ paint programs.

Below paints underneath—only in places that were not previously covered.

Inside paints on top, but only inside the already-painted part.

The other 7 operations are best described as ‘special effects’. Try them out to see what they do, or look at
the Porter/Duff paper.

Texture facilities paint with a repeating 16× 16 pattern instead of copies of a brush. The Texture submenu
contains:

Texture Turn texturing on or off

1080

PAINT (9.1) PAINT (9.1)

Make Pick a texture from the picture
Negate Reverse the texture’s green and black
Save Name a texture and copy it into a file
Library → List and and retrieve textures in library
Get Type a name and get a texture from a file

Make gives a 16× 16 square cursor with which to pick a texture.

The Brush submenu has the same items for brushes. Make allows you to sweep out a region to use as a
brush.

The Canvas submenu contains Negate, Save, Library, and Get, in this case pertaining to entire pictures.
A library picture is saved in a file containing the image plane then the mask plane in bitfile(9) format.

The file .paintstate in the current directory remembers the names of the current brush, texture, and
libraries between sessions. The State submenu displays the library names at the bottom of the layer,
where they can be edited:

Brushes Name the brush directory
Pictures Name the picture directory
Textures Name the texture directory

The Fill menu item gives an arrowhead cursor. If you touch down with button 3 at a point not painted, the
rookwise-connected region containing it will fill with black. On completion, the black will be replaced by
the current texture. While the region is filling, any button click aborts the operation.

The current selections from the Brush Library, Style, Operation, Texture, and Line Style menus are
marked with a ∗ , and are displayed in the information box at the bottom of the layer.

FILES
/usr/jerq/lib/paint/brush

the default brush library

/usr/jerq/lib/paint/tex
the default texture library

.paintstate
state of terminated program

SEE ALSO
mbits(6), bitfile(9) brush(9) cip(9) ped(9)
Thomas Porter and Tom Duff, ‘Compositing Digital Images,’ Siggraph ’84 Proceedings

1081

PED(9.1) PED(9.1)

NAME
ped, tped - picture editor

SYNOPSIS
ped [-f] [file ...]

tped [option ...] [file ...]

DESCRIPTION
Ped is an interactive drawing program for 5620 terminals. A file argument is equivalent to an e command
as described below. Most features of ped are menu-controlled and self-explanatory; further details are in
the reference.

Button 1 selects actions from a permanent menu and to draw or pick up an object. Button 3 terminates
drawing actions or changes the permanent menu. Button 2 causes the permanent menu to revert to
basic.

The operation of ped is split between host and terminal. When a file is first read, it is kept on the host;
bring gets it to the 5620.

Option -f causes ped to display all text in one size to save time and space.

Some of the actions on permanent menus (switched by button 3) are described below. The last action is
usually remembered and may be executed repeatedly until another is selected. Thus, for example, one can
fill many polygons with one button click per polygon. Actions marked (t) in the menu toggle on and off.

basic menu

blitblt
Copy part of the screen to file see blitblt(9)

exit Leave ped , requires a confirming push of button 3.

markers
Make visible the defining points of objects; these are the only points sensitive to selec-
tion by button 1.

type comm
Take input from the keyboard.

e file Begin editing file, remember its name, as in ed(1). Commands f (file name), r (read), w
(write), behave similarly.

qq Same as exit in basic menu; altered files will be saved in

cd Change working directory.

pwd Print working directory.

newline
Reactivate mouse.

u string
Remember string as a shell command for the selection user in menu refine.

ch size
rotate displays a vector from the center (of the bounding box) of an object to the selected

point. The object is rotated and scaled to bring that point to a second selected position.
h-elong

Change aspect ratio. The inverse is v-elong.

move Button 3 cancels a move or copy. To help untangle overlapping objects, the cancellation does not
take place until returning to the basic menu.
attach

Move an open polygon (a broken line) and hook it to the end of another.
join Connect the ends of two polygons with a new line.
link Cause multiple polygons to move and be filled as one (useful for making holes). Linked

polygons must all be open or all be closed.

1082

PED(9.1) PED(9.1)

match
Move objects to bring selected points together.

center
Move objects to bring their centers together.

family/pt
Select objects to be moved or deleted together.

draw Button 1 fixes a point; button 3 terminates an object.
text Type one or more lines terminated by an empty line.
grid Snap points to locations on a grid, which indexes through settings FMC (fine, medium,

coarse, none).
fix sz Set option -f.
family/bx

Sweep a box around objects to be moved or deleted together.

reshape

formal
Adjust nearly rectangular lines to be perfectly so.

spline A piecewise parabolic fit tangent to the midpoints of a broken line.

corner
Make a guiding point of a spline to be multiple - a corner in an otherwise smooth curve.

refine

adj t Left-justify, right-justify, or center text.

edit text
Display text at the top, where button 1 selects a position for inserting by typing or delet-
ing by backspacing. Button 3 concludes the editing.

shade Assign textures for filling polygons, circles, or spline-bounded regions. Curves are filled
schematically on the 5620, but accurately on the host.

color Assign colors for display on other devices.

remote
Perform all editing on the host using the terminal as a display device only.

Tped converts files of graphic information produced by ped into typesetting requests for troff(1). The
options are:

-Tdev Prepare output for particular devices known to troff : -Taps or -T202.
-b Place a box around each picture.

The input may be straight ped output or may be arbitrary text files with ped output embedded between
pairs of delimiting lines:

.GS [size] ped fileGE
or in another file:

.GS [size] pedfilename

The optional size gives width or height: w=inches or h=inches.

FILES
.pederr
ped.save

SEE ALSO
cip(9) paint(9) brush(9) graphdraw(9) pic(1), ideal(1), blitblt(9)
T. Pavlidis, ‘PED Users Manual’, this manual, Volume 2

DIAGNOSTICS
Error messages from the host are placed in file .pederr.

1083

PED(9.1) PED(9.1)

BUGS
Pictures may spill into the menu or message areas.
Some experimentation with tped printout parameters may be needed to obtain satisfactory results.

1084

PENGO(9.6) PENGO(9.6)

NAME
pengo - squash the sno-bees

SYNOPSIS
demo pengo

DESCRIPTION
Pengo plays the video game. Any button replaces the penguin picture by the game.

The mouse controls the movement of the penguin. (The usual hjkl keys also move the penguin, with the
space bar stopping movement.)

Button 1: Stop the penguin at the next block boundary.
Button 2: Push (or break) a block, or splash the water boundary.
Button 3: Display a menu to control aspects of the game.

The penguin moves in one direction at constant speed unless acted upon by an outside force: moving the
mouse or encountering a wall or border. If button 2 is pressed when a block is encountered then the block
is pushed. If another block (or a wall) is behind the first then the block will shatter, scoring 30 points.
Similarly breaking an egg scores 500. An unobstructed block will slide until it hits an obstacle, sweeping
along any sno-bees in its path and crushing them. Getting one sno-bee with a block scores 400 points,
two 1600, three 3200, four 6400.

Lining up the three blocks that bear crosses is worth 5000 points if they are lined against a wall, 10000
otherwise. Bonus penguins are given out every so often.

Pushing on the border causes ripples to propagate along it, stunning any sno-bees that are touching it. A
penguin may crush a stunned sno-bee underfoot for 100 points.

Button 3 gets a menu with entries Pause, Stats, New Game, Quit. All require another click of button 3
to complete. Stats presents three sliders controlled by button 1:

C Change (of time that the sno-bees change direction)

R Random (of time that a random direction is chosen when changing)

B Break of time that a sno-bee will break a block that is blocking its way).

1085

PI (9.1) PI (9.1)

NAME
pi, 3pi - process inspector

SYNOPSIS
pi [-t corefile objectfile]

3pi [-p person]

DESCRIPTION
Pi is a C debugger that is bound dynamically to multiple subject processes or core dumps. It works better
for programs compiled cc -g. Pi uses the Pads(9) multi-window user interface. There are three types of
windows: debugger control windows, which access the global state of the debugger; process control win-
dows (exactly one per process), which start and stop processes and connect to process-specific functions;
and process inspection windows, which include viewers for source text and memory, formatted various
ways.

The most important debugger control window is the pi window itself. Each line within the pi window
refers to a specific process. These lines may be introduced to the window by running ps(1) from the but-
ton 3 menu; by typing a file name, either a proc(4) name, or the name of a core image followed by the
name of the binary that created the core; or by typing a command, prefixed by an exclamation !, to be
executed as a child of pi. There are several ways to access a process (using the button 2 menu), each of
which generates a process control window:

open process
Attach to a running process, often one started with hang(1).

open core
Attach to a core image.

open child
Attach to a process forked by a process being debugged by the current pi.

take over
Rebind an existing process window hierarchy (pointed to with the mouse) to the named process,
which must be an instance of the identical program.

hang . open proc
Execute a command afresh, beginning it in the stopped state, and redirecting IO to

hang . take over
Same, also binding to an existing process window.

The process window indicates the process’s state, shows the call stack traceback and connects to windows
that access source text, local variables within a stack frame, raw memory, and so on. These windows are
cross-connected, so, for example, an instruction in a process’s assembly language window can be
inspected in hexadecimal in the raw memory window. Closing the process control window closes all the
windows under it.

The following menu functions are provided by the various window types in pi. Initially there are these
windows available:

Help Reminder of user interface mechanics.

Pi Overall control of processes, core dumps and programs. A process is identified by its pathname
or command line. Process symbols are found in the executable file from which the process was
loaded, but may be overridden. Symbols for core dumps must be supplied explicitly, after the
core filename. Synopsis: Identify and open process or core dump; run a program as Pi’s child;
take over a process with the debugging environment of a different one.

Pwd/cd
change the working directory of the debugger.

Process Window
Selecting and opening a process from the Pi window creates a new window with overall control of that
process. It shows the process state, and a traceback if the process is halted or dead. States are:

ACTIVE
running normally

1086

PI (9.1) PI (9.1)

HALTED
halted asynchronously by a debugger

BREAKPOINT
halted on reaching breakpoint

STMT STEPPED
halted after executing C source statement(s)

INSTR STEPPED
halted after executing machine instruction(s)

EVENT PENDING
halted about to receive a signal being traced

ERROR STATE
the process has probably exited

The menu operations on the process are:

go let the process run
stop stop the process
kill send SIGKILL to the process; see signal(2)
src text

open source text window(s)
Signals

open window for sending and trapping signals
Globals

open window for evaluating expression in global scope
RawMemory

open window for editing uninterpreted memory
Assembler

open window for disassembler

Each line of the call stack traceback describes one function. Each function in the traceback can open an
expression evaluator window or display its current source line.

Globals and Stack Frame Windows
These windows evaluate expressions with respect to global scope, and scope in a function, respectively. A
stack frame window is opened from a line in the call stack traceback or from a line of source text. A stack
frame can find its active source line in a source window or the stack frame window of its caller.

C expressions can be entered by the keyboard or mouse. The unary operators fabs and sizeof are sup-
ported; the only assignment operator is =. Functions from the user program may be called. New expres-
sions can be derived from old ones by the keyboard or mouse. In menus and the keyboard, $ means the
expression in the current line. The VAX registers are called $r0 to $r15; the address of a register is the
location at which it was saved. The format in which values are displayed can be changed. The raw mem-
ory editor may be entered using an expression’s value as address.

An expression may be made a spy. The value of a spy expression is evaluated and displayed each time the
debugger looks at the process. If the value of a spy changes the process is halted at the next instruction,
statement or breakpoint.

The comma operator is useful in conditional breakpoints because the values of its subexpressions are dis-
played. E.g. x, y, x==y traces the values of x and y when the condition fails; x, y, 0 just traces.

To cross scope boundaries, the environment (a function identifier) in which an expression is to be evalu-
ated may be specified as: { expr } function. From the source directory window, file static variables can be
promoted to appear in the menu of global variables.

Source Text Windows
The source file directory window lists all the source files, if there are two or more. A textual prefix,
entered from the keyboard, points to a source directory, without changing the working directory. Each
source file is in a separate window, opened when needed. The source file’s pathname as given to cc can
be overridden from the keyboard. If things go wrong, use reopen to open the file afresh. Synopsis:

1087

PI (9.1) PI (9.1)

set/clear (conditional) breakpoint; single-step source statements; step into (rather than over) a function; go
the process; show the statement for the current PC; open a stack frame window for a source line’s func-
tion; evaluate expression; disassemble first instruction of source statement; context search for string.

Breakpoints Window
Lists all the active source and assembler breakpoints and related errors. Synopsis: show source or assem-
bler for a breakpoint; clear breakpoint; clear all breakpoints.

Signals Window
Lists all signal types, showing which ones are traced. Synopsis: Change which signals are traced; send a
signal to the subject process; clear pending signal; stop process on exec.

Raw Memory Window
In this window memory is a viewed as a sequence of 1-, 2-, 4- or 8-byte cells. Synopsis: set cell address;
change cell size; change display format; display cells above and below; indirect to cell; change cell value;
spy on memory cell; disassemble instruction at cell.

(Dis)assembler Window
In this window memory is viewed as a sequence of instructions. Synopsis: set instruction address; display
more instructions; change display format; display instruction as cell in raw memory window; set/clear
breakpoint on instruction; open stack frame window for instruction’s function; display instruction at cur-
rent PC; single step instruction(s); step over a function call instead of into the function.

Exec and Fork
If a process controlled by pi does an exec() and an exec break is set in the Signals window, the process is
suspended as if started by hang(1). To debug the process after the exec, close the original process window
and re-open it. When re-opened it will get the new symbol tables.

To debug a child process: (i) set a breakpoint in code that will be executed in the child after the fork; (ii)
execute the fork at full speed (the child inherits the parent’s breakpoints, which aren’t there if the parent is
stepped); (iii) before altering any breakpoints, get a fresh ps in the Pi window and apply open child to the
child. The child should be stopped on the inherited breakpoint, but it and all other breakpoints should
have been cleared.

Kernel
The state of kernel variables associated with a process may be examined by giving their name or virtual
address. The UNIX environment variable specifies the file from which the system was loaded; the default
is /unix. Kernel dumps may be examined by opening the ‘kernel pi’ window.

Just A Traceback
With the -t option pi writes a traceback on its standard output and quits.

3pi
3pi is a variant of pi for debugging 5620 programs running under mux(9) It creates two terminal
processes: one for its access to terminal memory and graphics and a second for its Pads(9) interface.

Remote Debugging
With the -p option 3pi loads its first process, but not Pads. Instead, it mails a 3pi command to person, to
be executed on any host in the local network. That 3pi command loads Pads on person’s terminal, and
connects to the originator’s terminal. If separate hosts are involved and the versions of critical files differ,
be careful with pathnames.

3pi Graphics
Points, rectangles, textures and bitmaps can be displayed graphically.

3pi - pi
Most differences come from obvious differences in the hardware and software architectures. Also, in 3pi
function calls are executed by a debugger process on its own call stack.

SEE ALSO
T. A. Cargill, ‘The Feel of Pi’, this manual, Volume 2
hang(1), proc(4), adb(1), cin(1), nm(1), pads(9)

1088

PI (9.1) PI (9.1)

BUGS
In switch statements there is no boundary between the last case and the branch code; the program appears
to jump to the last case (but is really in the branch) and then to the real case.
A changed spy only stops the process at a breakpoint or while stepping. An expression can be cast only
by menu.
Functions may only be called when the process is stopped and not in a system call.

1089

PROOF(9.1) PROOF(9.1)

NAME
proof - troff output interpreter for 5620

SYNOPSIS
proof [-f fonts] [file]

DESCRIPTION
Proof reads troff(1) intermediate language from file or standard input and simulates the resulting pages on
the screen. If no file name is given and standard input is a terminal, proof terminates immediately leaving
a ‘proof layer’. By invoking proof in a proof layer you can avoid download time.

Fonts are loaded as required. The usual mux(9) font, defont, is used for unknown fonts. Option -f pre-
loads fonts. Names are given relative to /usr/jerq/font and are separated by commas. The most-
used fonts are -fR.10,I.10,B.10,S.10.

After a layer’s worth of text is displayed, proof pauses for a command from keyboard or mouse button 3.
The typed versions of commands are:

newline
Go on to next portion of text. (Button 3 equivalent: more.)

q Quit, leaving a proof layer.

x Exit and restart the regular terminal program. (Equivalent to q followed by term mux; see
term(9)

pn Print page n. An out-of-bounds page number means the end nearer to that number; a missing
number means page 0; a signed number means an offset to the current page.

Button 1 gets a scroll box, which represents a full page of text. An interior rectangle shows what part of
the page is now visible. The interior rectangle moves with the mouse, causing the layer to scroll both ver-
tically and horizontally. Button 2 gets a speedometer. The bar of the speedometer moves with the mouse
to control the rate at which new information is displayed.

EXAMPLES
troff -ms memo | proof Format a memo and display it.

(eqn memo | troff -ms) 2>diags | proof Display a memo with equations. Avoid sending diagnos-
tics to the screen; see BUGS.

FILES
/usr/jerq/font/∗

fonts

/usr/jerq/font/.missing
list of referenced but unconverted fonts

SEE ALSO
lp(1), font(6), reader(9) psi(9)
Brian W. Kernighan, A Typesetter-independent Troff

BUGS
Proof breaks if other messages are directed to its layer. In particular, unredirected troff diagnostics will
break the pipeline troff | proof.
Windowing can get confused if the troff output is not approximately sorted in ascending y-order.
A proof layer imitates term 33, not mux. Among other difficulties, it will not be reusable if downloaded
across the network.

1090

PSI (9.1) PSI (9.1)

NAME
psi - postscript interpreter

SYNOPSIS
psi [option ...] [file]

DESCRIPTION
Psi reads Postscript input from file or from standard input and simulates the resulting pages in a mux(9)
layer. The program remains in the layer at exit; further invocations of psi in that layer avoid download
time.

The options are

-pn Display page n, where n is determined from the Page comments in the file. If these are not
present, page selection will not work.

-R Pages in the file are in reverse order. This flag must be used on such files for the -p option to
work.

-r Display the image at full scale, with the bottom left corner positioned at the bottom left corner of
the window. (By default, the image is scaled to fit the window, maintaining the aspect ratio of a
printer.)

-a x y
Display the image at full scale with position x,y of the image placed at the bottom left corner of
the window.

Psi works on either a Teletype 5620, 630 or 730 terminal as determined by the environment variable
TERM.

Fonts are implemented with size-24 bitmap fonts. Those available are Symbol, Courier, Times-Roman,
Times-Italic, Times-Bold, Times-BoldItalic, Helvetica, Helvetica-Oblique, Helvetica-Bold, Helvetica-
BoldOblique. Fonts Courier-Bold, Courier-Oblique, and Courier-BoldOblique are mapped to Courier.
Other postscript fonts, including type1, may be used if they are supplied before they’re referenced.

When the ‘cherries’ icon is displayed, use mouse button 3 to move forward (more), to a particular page
(page), or quit (done). Button 2 exits the program completely.

EXAMPLES
troff -ms memo | lp -dstdout -H | psi
troff -ms memo | dpost | psi Two equivalent ways to format a memo, convert it to PostScript, and
display it.

For best results with TeX documents, use dvips with the -Tjerq, -Tgnot, or -D 100 option to get fonts of
the proper resolution and run psi with the -r or -a flag to prevent psi from scaling.

FILES
psi.err

error messages

SEE ALSO
lp(1), dvips(1), postscript(8), proof(9) psifile(1), psix(1)

DIAGNOSTICS
A ‘dead mouse’ icon signals an error; error comments are placed on file

Symbols that lack bitmaps are replaced by ‘?’ and an error is reported.

BUGS
A psi layer imitates term 33, not mux. Among other difficulties, it will not be reusable if downloaded
across the network.
Unimplemented PostScript features are rotated images and half tone screens. Imagemasks may only be
rotated by multiples of 90 degrees, not by arbitrary angles.
Skipping pages may cause operators to be undefined.

1091

READER(9.7) READER(9.7)

NAME
reader - electronic retrieval of typeset documents

SYNOPSIS
reader name

DESCRIPTION
Reader presents the named paper on a 5620 terminal in a form designed for readability, not for similarity
to the printed version. The name is a pathname for a manuscript in the papers(7) database with any final
.d elided) or the name of a troff(1) input file. Mouse button 1 selects subheads; button 3 moves forward
(‘more’) or backward (‘less’). The program exits completely on button 2, or tentatively (to avoid down-
loading upon reexecution) on button 3 (‘done’).

When the text in a screen overlaps text in a previous screen, a tick mark in the bar (not a scroll bar) at the
left of the screen shows where new material begins.

Fully installed papers in the database, which appear as directories suffixed .d, have been preprocessed so
that reader can present figures and complex equations. In troff input, it understands straightforward text
and eqn(1), the macro packages ms(6), mm, and me, but cannot handle arbitrary motions such as appear in
figures and complex equations.

FILES
/n/bowell/pap/Titles

titles, authors and installation dates

/n/bowell/pap/∗org
membership list

/n/bowell/pap/center/department/author/papername[.d]

SEE ALSO
troff(1), proof(9) docsubmit(1), papers(7)

BUGS
Button 1 knows only already-read subheads unless the paper has been preprocessed.
Reader can only handle papers written in troff with standard (-ms, -mm, -me) macro packages.

1092

REBECCA(9.1) REBECCA(9.1)

NAME
rebecca - graphics touch-up editor

SYNOPSIS
rebecca file

DESCRIPTION
Rebecca is an interactive retouching tool for digitized grey-scale images. The file must be a headerless
512× 512 black-and-white digitized image. Example (read only) files are in directory

‘Floating instruments’ for editing can be dragged with button 2 to different locations.

Resolution. The tick mark on the long bar can be moved up or down with button 1. Printed to the right of
the bar is the current resolution— a power of 2 representing the number of file pixels across the screen im-
age.

Grid. Click button 1 at the circular button to toggle the grid. Turning on the grid is useful sometimes to
see how fast a screen update is proceeding: it eats away the grid.

Write. Write the file on the host by clicking button 1 at the box labeled write. The write box has a ∗ if a
change was made to the file since it was last written.

Runlength encoding. Clicking button 1 at this box toggles the mode of data transmission between host
and terminal.

Reopen. This instrument cancels any changes made to the file since the last time it was written.

Move/Pan. Click button 1 at one of the 5 areas of the diamond. The middle resets the display to a full
size picture. Left, right, up, or down will move (pan) 1/4 screen in the corresponding direction (useful
only on zoomed pictures).

Zoom/Unzoom. Click button 1 at Z (zoom) or U (unzoom). Z prompts with a square box to be positioned
on the area of the picture to be inspected at full resolution. If you click button 1 before you confirm, the
sides of the box are halved. Clicking button 2 doubles them. Any combination of two buttons cancels the
zoom; button 3 confirms it.

Paint. Click button 1 at the box labeled + = -. Painting with + adds grey values to pixels; = assigns val-
ues; - subtracts values. Click button 1 at a pixel location to apply the paint. Click button 3 to sweep a
rectangle to paint all pixels within it. Pick a paint value (default is white) by clicking button 2 at the grey
scale at the bottom or at any pixel in the image. Click button 2 at the paint box to cancel the paint mode.

Smear. Pointing at a pixel with both buttons 1 and 2 down averages it with its 8 neighbors (most useful
when zoomed in to pixel level). Typical usage: apply some white or black paint with the paint box, then
smear it.

Probe. Click button 1 at the probe box P:. Point at a pixel in the image. The x-y coordinates and the
greyscale value of the pixel will be printed.

Contrast. Move the ends of the line under the grey scale bar to expand or compress the grey scale.

Rubber Sheet. The box named sheet prompts for a rectangle. Sweep out the rectangle over an area you
want to manipulate, then reposition the corners by dragging them to new locations with button 1. Confirm
the selection with button 3. Other instruments are usable while the update proceeds.

SEE ALSO
pico(1), flicks(9) picfile(5), flickfile(9)

1093

REQUEST (9.2) REQUEST (9.2)

NAME
request, own, wait, alarm, sleep, nap, kbdchar, rcvchar, realtime, sendchar, sendnchars, kill, exit - 5620
input/output requests

SYNOPSIS
#include <jerq.h>

void request(r) int r;

int own(r) int r;

int wait(r) int r;

void alarm(t) unsigned t;

void sleep(t) unsigned t;

void nap(t) unsigned t;

long realtime();

int kbdchar();

int rcvchar();

void sendchar(c) int c;

void sendnchars(n, cp) int n; char ∗cp;

void kill(s) int s;

void exit();

DESCRIPTION
Request announces a program’s intent to use I/O devices and resources, and is usually called once early in
a program. The bit vector r indicates which resources are to be used by OR’ing together one or more of
the elements KBD (keyboard), MOUSE, RCV (characters received by terminal from Unix), SEND (char-
acters sent from terminal to Unix) and ALARM. For example, request(MOUSE|KBD) indicates that the
process wants to use the mouse and keyboard. If the keyboard is not requested, characters typed will be
sent to the standard input of the Unix process. If the mouse is not requested, mouse events in the
process’s layer will be interpreted by the system rather than passed to the process. SEND and CPU (see
wait below) are always implicitly requested. Request sleeps for one clock tick to synchronize mouse con-
trol with the kernel.

Own returns a bit vector of which I/O resources have data available. For example, own().KBD indicates
whether a character is available to be read by kbdchar (see below), own().MOUSE tells if the process’s
mouse structure (see button(9) is current, and own().ALARM indicates whether the alarm timer has fired.

Wait’s argument r is a bit vector composed as for request. Wait suspends the process, enabling others, un-
til at least one of the requested resources is available. The return value is a bit vector indicating which of
the requested resources are available — the same as own().r.

Processes wishing to give up the processor to enable other processes to run may call wait(CPU); it will
return as soon as all other active processes have had a chance to run. CPU is a fake resource which is al-
ways requested. The SEND pseudo-resource is unused; wait(SEND) always succeeds.

Alarm starts a timer which will fire t ticks (60ths of a second) into the future. A pseudo-resource
ALARM can be used to check the status of the timer with own or wait. Calling alarm implicitly requests
the ALARM pseudo-resource.

Nap busy loops for t ticks of the 60Hz internal clock. To avoid beating with the display, programs draw-
ing rapidly changing scenes should nap for two ticks between updates, to synchronize the display and
memory. Nap busy loops until the time is up; sleep is identical except that it gives up the processor for
the interval. Except when unwilling to give up the mouse, a program should call sleep in preference to
nap. Sleep does not interfere with alarm, and vice versa.

Realtime returns the number of 60Hz clock ticks since mux started.

Kbdchar returns the next keyboard character typed to the process. If no characters have been typed, or
KBD has not been requested, kbdchar returns -1.

1094

REQUEST (9.2) REQUEST (9.2)

Rcvchar returns the next character received from the host, typically written on the standard output of a
Unix process. If there are no characters available, or RCV has not been requested, rcvchar returns -1.

Sendchar sends a single byte to the host, which will normally be read on the standard input of the Unix
process. Sendnchars sends to the host n characters pointed to by p.

Kill sends the associated Unix process the signal s; see signal(2).

Exit terminates the process. Unlike on Unix, exit does not return an exit status to a parent. Calling exit
replaces the running process by the default terminal program. Any associated Unix process must arrange
for its own demise; exit is a purely local function. When a process calls exit, all local resources: key-
board, mouse, storage, etc., are deallocated automatically.

Realtime returns the number of sixtieths of a second elapsed since mux(9) was started.

EXAMPLES
request(KBD|RCV);
for(;;){

r=wait(KBD|RCV);
if(r.KBD)

keyboard(kbdchar());
if(r.RCV)

receive(rcvchar());
}

Take input from either the keyboard or the host.

SEE ALSO
button(9)

BUGS
own().MOUSE does not guarantee that you own the mouse. The correct test is

(own().MOUSE) .. ptinrect(mouse.xy, Drect)

1095

RULER(9.1) RULER(9.1)

NAME
ruler - measure things on the screen

SYNOPSIS
ruler

DESCRIPTION
Ruler measures things on a mux(9) screen. Press button 1 to sweep out a rectangle anywhere on the
screen. For each rectangle swept, ruler displays the coordinates of the rectangle’s corners (labeled down
and up), the size of the rectangle and length of its diagonal.

There is a menu on button 3. The pixels and chars items control whether the size and diagonal are mea-
sured in units of pixels or characters; stop deactivates ruler without exiting; measure reactivates ruler.

BUGS
Character units are arbitrarily defined as the width and height of a 0 in the ruler layer. This may have
nothing to do with character sizes in other layers.
Ruler’s menu must pop up in its own layer, perhaps far away from the cursor.

1096

SAM(9.1) SAM(9.1)

NAME
sam - screen editor with structural regular expressions

SYNOPSIS
sam [option ...] [files]

sam -r machine

sam.save

DESCRIPTION
Sam is a multi-file editor. It modifies a local copy of a Unix file. The copy is here called a file; a Unix
file is distinguished by the trademarked adjective. The files are listed in a menu available through mouse
button 3 or the n command. Each file has an associated name, usually the name of the Unix file from
which it was read, and a ‘modified’ bit that indicates whether the editor’s file agrees with the Unix file.
The Unix file is not read into the editor’s file until it first becomes the current file—that to which editing
commands apply—whereupon its menu entry is printed. The options are

-d Do not download the terminal part of sam. Editing will be done with the command language
only, as in ed(1).

-r machine
Run the host part remotely on the specified machine, the terminal part locally. This extends
graphic editing to files on machines that don’t ordinarily support it or across non-nfs(8) connec-
tions.

Regular expressions
Regular expressions are as in egrep (see gre(1)), with the addition of @ and \n. A regular expression may
never contain a literal newline character. The elements of regular expressions are:

. Match any character except newline.

\n Match newline.

\x For any character except n match the character (here x).

@ Match any character.

[abc] Match any character in the square brackets. \n may be mentioned.

[ˆabc] Match any character not in the square brackets, but never a newline. Both these forms accept a
range of ASCII characters indicated by a dash, as in a-z.

ˆ Match the null string immediately after a newline.

$ Match the null string immediately before a newline.

Any other character except newline matches itself.

In the following, r1 and r2 are regular expressions.

(r1) Match what r1 matches.

r1|r2 Match what r1 or what r2 matches.

r1∗ Match zero or more adjacent matches of r1.

r1+ Match one or more adjacent matches of r1.

r1? Match zero or one matches of r1.

The operators ∗, + and ? are highest precedence, then catenation, then | is lowest. The empty regular ex-
pression stands for the last complete expression encountered. A regular expression in sam matches the
longest leftmost substring formally matched by the expression. Searching in the reverse direction is
equivalent to searching backwards with the catenation operations reversed in the expression.

Addresses
An address identifies a substring in a file. In the following, ‘character n’ means the null string after the n-
th character in the file, with 1 the first character in the file. ‘Line n’ means the n-th match, starting at the
beginning of the file, of the regular expression .∗\n? (The peculiar properties of a last line without a
newline are temporarily undefined.) All files always have a current substring, called dot, that is the

1097

SAM(9.1) SAM(9.1)

default address.

Simple Addresses
#n The empty string after character n; #0 is the beginning of the file.

n Line n.

/regexp/
?regexp?

The substring that matches the regular expression, found by looking toward the end (/) or begin-
ning (?) of the file, and if necessary continuing the search from the other end to the starting
point of the search. The matched substring may straddle the starting point.

0 The string before the first full line. This is not necessarily the null string; see + and - below.

$ The null string at the end of the file.

. Dot.

’ The mark in the file (see the k command below).

"regexp"
Preceding a simple address (default .), refers to the address evaluated in the unique file whose
menu line matches the regular expression.

Compound Addresses
In the following, a1 and a2 are addresses.

a1+a2
The address a2 evaluated starting at the end of a1.

a1-a2 The address a2 evaluated looking in the reverse direction starting at the beginning of a1.

a1,a2 The substring from the beginning of a1 to the end of a2. If a1 is missing, 0 is substituted If a2 is
missing, $ is substituted.

a1;a2 Like a1,a2, but with a2 evaluated at the end of, and dot set to, a1.

The operators + and - are high precedence, while , and ; are low precedence.

In both + and - forms, if a2 is a line or character address with a missing number, the number defaults to 1.
If a1 is missing, . is substituted. If both a1 and a2 are present and distinguishable, + may be elided. a2
may be a regular expression; if it is delimited by ?’s, the effect of the + or - is reversed.

It is an error for a compound address to represent a malformed substring. Some useful idioms: a1+-
(a1-+) selects the line containing the end (beginning) of a1. 0/regexp/ locates the first match of the
expression in the file. (The form 0;// sets dot unnecessarily.) ./regexp/// finds the second following occur-
rence of the expression, and .,/regexp/ extends dot.

Commands
In the following, text demarcated by slashes represents text delimited by any printable ASCII character
except alphanumerics. Any number of trailing delimiters may be elided, with multiple elisions then repre-
senting null strings, but the first delimiter must always be present. In any delimited text, newline may not
appear literally; \n may be typed for newline; and \/ quotes the delimiter, here /. Backslash is otherwise
interpreted literally, except in s commands.

Most commands may be prefixed by an address to indicate their range of operation. Those that may not
are marked with a ∗ below. If a command takes an address and none is supplied, dot is used. The sole
exception is the w command, which defaults to 0,$. In the description, ‘range’ is used to represent what-
ever address is supplied. Many commands set the value of dot as a side effect. If so, it is always set to the
‘result’ of the change: the empty string for a deletion, the new text for an insertion, etc. (but see the s and e
commands).

1098

SAM(9.1) SAM(9.1)

Text commands
a/text/
or
a
lines of text
. Insert the text into the file after the range. Set dot.
c
i Same as a, but c replaces the text, while i inserts before the range.
d Delete the text in the range. Set dot.
s/regexp/text/

Substitute text for the first match to the regular expression in the range. Set dot to the modified
range. In text the character . stands for the string that matched the expression. Backslash
behaves as usual unless followed by a digit: \d stands for the string that matched the subexpres-
sion begun by the d-th left parenthesis. If s is followed immediately by a number n, as in
s2/x/y/, the n-th match in the range is substituted. If the command is followed by a g, as in
s/x/y/g, all matches in the range are substituted.

m a1
t a1 Move the range to after a1 (m), or copy it (t). Set dot.

Display commands
p Print the text in the range. Set dot.
= Print the line address and character address of the range.
=# Print just the character address of the range.

File commands
In these commands a file-list may be expressed <Unix-command in which case the file names are taken as
words (in the shell sense) generated by the Unix command.
∗ b file-list

Set the current file to the first file named in the list that sam also has in its menu.
∗ B file-list

Same as b, except that file names not in the menu are entered there, and all file names in the list
are examined.

∗ n Print a menu of files. The format is:
’ or blank indicating the file is modified or clean,
- or +indicating the the file is unread or has been read (in the terminal, ∗ means more than one window
is open),
. or blankindicating the current file,
a blank,
and the file name.

∗ D file-list
Delete the named files from the menu. If no files are named, the current file is deleted. It is an error to D
a modified file, but a subsequent D will delete such a file.

I/O Commands
∗ e filename

Replace the file by the contents of the named Unix file. Set dot to the beginning of the file.
r filename

Replace the text in the range by the contents of the named Unix file. Set dot.
w filename

Write the range (default 0,$) to the named Unix file.
∗ f filename

Set the file name and print the resulting menu entry.
If the file name is absent from any of these, the current file name is used. e always sets the file name, r
and w do so if the file has no name.
< Unix-command

Replace the range by the standard output of the Unix command.
> Unix-command

Sends the range to the standard input of the Unix command.

1099

SAM(9.1) SAM(9.1)

| Unix-command
Send the range to the standard input, and replace it by the standard output, of the Unix command.

∗ ! Unix-command
Run the Unix command.

∗ cd directory
Change working directory. If no directory is specified, $HOME is used.

In any of <, >, | or !, if the Unix command is omitted the last Unix command (of any type) is substituted.
If sam is downloaded, ! sets standard input to and otherwise unassigned output (stdout for ! and >,
stderr for all) is placed in $HOME/sam.err and the first few lines are printed.

Loops and Conditionals
x/regexp/ command

For each match of the regular expression in the range, run the command with dot set to the
match. Set dot to the last match. If the regular expression and its slashes are omitted, /.∗\n/ is
assumed. Null string matches potentially occur before every character of the range and at the
end of the range.

y/regexp/ command
Like x, but run the command for each substring that lies before, between, or after the matches
that would be generated by x. There is no default behavior. Null substrings potentially occur
before every character in the range.

∗ X/regexp/ command
For each file whose menu entry matches the regular expression, run the command. If the expres-
sion is omitted, the command is run in every file.

∗ Y/regexp/ command
Same as X, but for files that do not match the regular expression, and the expression is required.

g/regexp/ command
v/regexp/ command

If the range contains (g) or does not contain (v) a match for the expression, set dot to the range
and run the command.

These may be nested arbitrarily deeply, but only one instance of either X or Y may appear in a single
command. An empty command in an x or y defaults to p; an empty command in X or Y defaults to f. g
and v do not have defaults.

Miscellany
k Set the current file’s mark to the range. Does not set dot.
∗ q Quit. It is an error to quit with modified files, but a second q will succeed.
∗ u n Undo the last n (default 1) top-level commands that changed the contents or name of the current

file, and any other file whose most recent change was simultaneous with the current file’s
change. Successive u’s move further back in time. The only commands for which u is ineffec-
tive are cd, u, q, w and D.

(empty)
If the range is explicit, set dot to the range. If sam is downloaded, the resulting dot is selected on
the screen; otherwise it is printed. If no address is specified (the command is a newline) dot is
extended in either direction to line boundaries and printed. If dot is thereby unchanged, it is set
to .+1 and printed.

Grouping and multiple changes
Commands may be grouped by enclosing them in braces {}. Commands within the braces must appear on
separate lines (no backslashes are required between commands). Semantically, an opening brace is like a
command: it takes an (optional) address and sets dot for each sub-command. Commands within the
braces are executed sequentially, but changes made by one command are not visible to other commands
(see the next section of this manual). Braces may be nested arbitrarily.

When a command makes a number of changes to a file, as in x/re/c/text/, the addresses of all changes to
the file are computed in the original file. If the changes are in sequence, they are applied to the file. Suc-
cessive insertions at the same address are catenated into a single insertion composed of the several inser-
tions in the order applied.

The terminal
What follows refers to behavior of sam when downloaded, that is, when operating as a display editor on a
bitmap display. This is the default behavior; invoking sam with the -d (no download) option provides

1100

SAM(9.1) SAM(9.1)

access to the command language only.

Each file may have zero or more windows open. Each window is equivalent and is updated simultane-
ously with changes in other windows on the same file. Each window has an independent value of dot,
indicated by a highlighted substring on the display. Dot may be in a region not within the window. There
is usually a ‘current window’, marked with a dark border, to which typed text and editing commands
apply. Text may be typed and edited as in mux(9) also the escape key (ESC) selects (sets dot to) text
typed since the last mouse button hit.

The button 3 menu controls window operations. The top of the menu provides the following operators,
each of which prompts with one or more mux-like cursors to prompt for selection of a window or sweep-
ing of a rectangle. ‘Sweeping’ a null rectangle gets a large window, disjoint from the command window
or the whole screen, depending on where the null rectangle is.

new Create a new, empty file.

xerox Create a copy of an existing window.

reshape
As in mux.

close Delete the window. In the last window of a file, close is equivalent to a D for the file.

write Equivalent to a w for the file.

Below these operators is a list of available files, starting with sam , the command window. Selecting a
file from the list makes the most recently used window on that file current, unless it is already current, in
which case selections cycle through the open windows. If no windows are open on the file, the user is
prompted to open one. Files other than sam are marked with one of the characters -+∗ according as
zero, one, or more windows are open on the file. A further mark . appears on the file in the current win-
dow and a single quote, ’, on a file modified since last write.

Nothing can be done without a command window, for which sam prompts initially. The command win-
dow is an ordinary window except that text typed to it is interpreted as commands for the editor rather
than passive text, and text printed by editor commands appears in it. The behavior is like mux, with a
‘command point’ that separates commands being typed from previous output. Commands typed in the
command window apply to the current open file—the file in the most recently current window.

Manipulating text
Button 1 changes selection, much like mux. Pointing to a non-current window with button 1 makes it cur-
rent; within the current window, button 1 selects text, thus setting dot. Double-clicking selects text to the
boundaries of words, lines, quoted strings or bracketed strings, depending on the text at the click.

Button 2 provides a menu of editing commands:
cut Delete dot and save the deleted text in the snarf buffer.
paste Replace the text in dot by the contents of the snarf buffer.
snarf Save the text in dot in the snarf buffer.
look Search forward for the next occurrence of the literal text in dot. If dot is the null string, the text

in the snarf buffer is used. The snarf buffer is unaffected.
<mux>

Exchange snarf buffers with mux.
/regexp

Search forward for the next match of the last regular expression typed in a command. (Not in
command window.)

send Send the text in dot, or the snarf buffer if dot is the null string, as if it were typed to the command
window. Saves the sent text in the snarf buffer. (Command window only.)

scroll
noscroll

Select whether to reveal automatically text that appears off the end of the command window.
(Command window only.)

Abnormal termination
If sam terminates other than by a q command (by hangup, deleting its layer, etc.), modified files are saved
in an executable file, This program, when executed, asks whether to write each file back to a Unix file.

1101

SAM(9.1) SAM(9.1)

The answer y causes writing; anything else skips the file.

FILES
$HOME/sam.save
$HOME/sam.err

SEE ALSO
ed(1), sed(1), vi(1), gre(1)

BUGS
The u command undoes characters—and backspaces—typed directly into a file window in unpredictable
increments.

1102

SAMUEL(9.1) SAMUEL(9.1)

NAME
samuel − text editor and C browser

SYNOPSIS
samuel [options] [files]

DESCRIPTION
Samuel is the editor sam(9) with additional features, including a browser for C and C++ programs. Most
new features are available from the button 3 menu or commands typed in the command window. The new
menu entries are unopen, smudge, advisor, browser, and interpreter.

Unopen
Unopen closes a window or file without removing the file name from the menu.

Smudge
Smudge associates a descriptive tag with a window and places the tag in the smudge submenu. The tag
may be hit like a file name to switch to the window.

Advisor
Advisor gives information about the selected library function name or C keyword.

Browser
When browser is first hit, the browser’s data base is initialized for the currently active files. A submenu
then shows browsing functions.

reference
Find all references to the selected C symbol. ‘Selected’ means either highlighted with button 1
or contained in the snarf buffer.

definition
Find the definition of the selected function name, #define symbol, structure, union, class or type-
def name.

called by
Find all functions called by the selected function name.

calls to
Find all calls to the selected function name.

find Find all instances of the selected pattern.

egrep Find all instances of the selected pattern, interpreted as in egrep(1)

all defs
Find definitions of all functions.

files List files currently in browser data base.

rebuild
Rebuild the data base with the current list of files.

exit Exit the browser.

samuel
Replace the contents of dot with the results of the last search.

Search results are placed in a browser submenu labeled with the search string. Hitting an item in a search
submenu closes the currently active window (unless that would lose data) and opens a window of the
same size for the file containing the item, with the window positioned at the item.

Interpreter
When interpreter is first hit, the interpreter is initialized for interactive use, and a submenu then shows
interpreting functions.

cin Toggle the use of the command window. The first hit allows the user to send information to the
interpreter from the command window. The second hit returns the command window to the edi-
tor. This interface will change in the near future.

1103

SAMUEL(9.1) SAMUEL(9.1)

doit Send the selected text to the interpreter. ‘Selected’ means either highlighted with button 1 or
contained in the snarf buffer.

load Load a file into the interpreter. The user selects the window to load when the ‘bullseye’ prompt
is presented. The load submenu provides functions to load a single file, loadall files in the edi-
tor, or load the function that contains dot (the edit point).

view Sets the current view. The view submenu provides functions to set the current view, a list of all
views, describe whatis the selected identifier, and where the execution stopped in the interpreter.

return
Returns from a breakpoint. The return submenu provides functions to return from a breakpoint,
set a breakpoint and clear a breakpoint

interrupt
Interrupt the interpreter.

eof Sends an EOF to the interpreter. Useful when the user program expects to see a <control-d>.

exit Exit the interpreter.

Other features
Help. Press button 1 simultaneously with button 2 or 3 to see a short description of the button 2 or 3 item.
In a search submenu, the information includes file name, line number and, where appropriate, function
name; for a smudge submenu, the file name associated with the tag.

File menu. When too many files appear in the button 3 menu, they are moved to a submenu.

Font. On the 630 MTG Terminal, the button 2 menu includes a font item with a submenu that lists fonts
in the terminal’s cache. The font may be set independently in each window. New windows and menus
use the last font selected.

Commands
z Make samuel menu items visible; see -v below. Start the browser unless it is already running.
z- Make samuel menu items invisible.
zF dbfile

If dbfile is specified, start, or restart, the browser with dbfile as a read-only data base file; see
options -f and -F below. Otherwise display the current database file.

zA advisordb
If advisordb is specified, set the ADVISOR environment variable. Otherwise display the value
of ADVISOR.

za keyword
Search for keyword in the advisor database.

zu file-list
Unopen the named files. If no files are named, the current file is unopened. It is an error to zu a
modified file, but a subsequent zu will unopen such a file.

zc Delete dot and save the deleted text in the snarf buffer.
zp Replace the text in dot by the contents of the snarf buffer.
zs Save the text in dot in the snarf buffer. keyword in the advisor database.

Options
-f file.db

Create the data base in the named file. If the file already exists and any files have been modified
since the last build, update the data base.

-F file.db
The data base already exists in the named file. The file is read-only; rebuilds are not allowed.

-i filenames
Use the named files in creating the data base.

-I includedir
Search directory includedir for included files. This option may appear more than once.

-s sourcedir
Search directory sourcedir for referenced function definitions. This option may appear more
than once.

1104

SAMUEL(9.1) SAMUEL(9.1)

-Dname=def
-Dname

Define the name to cin , as if by #define. If no definition is given, the name is defined as 1.
-Uname

Remove any initial definition of name.
-lx This option is an abbreviation for the library name /lib/libx.a, where x is a string. If that does

not exist, cin tries /usr/lib/libx.a. A library is searched when its name is encountered, so the
placement of a -l is significant.

-uname
Enters name as undefined into cin’s symbol table. This is useful for loading wholly from a
library, since initially the symbol table is empty and an unresolved reference is needed to force
the loading of the first routine.

-V func:n
Declare function func to have a variable number of arguments, the first n of which are to be type
checked.

-c If the terminal is a 630 MTG, cache the terminal portion of samuel; later invocations will be exe-
cuted from the cache without downloading.

-v Make samuel behave like sam; use the z command to restore samuel.

Environment Variables
INCLUDEDIRS

Colon-separated list of directories to search for #include files.

SOURCEDIRS
Colon-separated list of directories to search for additional source files.

SAMUEL
Directory containing samuel utilities. Overrides the default locations listed below.

TMPDIR
Directory used to create temporary files, by default.

ADVISOR
Colon-separated list of advisor data base files. These are searched in specified order followed by
the standard samuel data base file.

DMD Directory for standard dmd software, /usr/jerq/lib by default.

FILES
$HOME/sam.err

saved diagnostic output from Unix commands

$HOME/sam.save
bundled files on unexpected exit

$DMD/samuel/samuel.m
terminal support program for samuel

$DMD/samuel/samuel.cs
C browser support program for samuel

$DMD/samuel/samuel.ca
C advisor support program

$DMD/samuel/samuel.ca.dat
C advisor data base

$DMD/samuel/samuel.st
samuel statistics gathering program

$TMPDIR/cscope∗.0
default data base file

1105

SAMUEL(9.1) SAMUEL(9.1)

$TMPDIR/cscope∗.1
results of last search

$TMPDIR/cscope∗.2
temporary

SEE ALSO
sam(9.1)
J. J. Puttress, The C Browser (11229-861017-19TMS).
J. J. Puttress, The C Browser: Examples (11229-861014-18TMS).
T. J. Kowalski, H. H. Goguen, J. J. Puttress, The C Interpreter: A Tutorial for Cin Version 0.18
(11229-880606-07TMS).
R. Pike, The Text Editor Sam (11271-870423-06TMS).
R. Pike, A Tutorial for the SAM Command Language (11271-860924-07TMS).
J. L. Steffen, Interactive Examination of a C Program with Cscope. USENIX Winter Conference Proceed-
ings Dallas 1985, 170-175.

BUGS
Samuel will not correctly browse C source with syntax errors.

1106

STRING(9.3) STRING(9.3)

NAME
string, defont, strwidth, infont, outfont, getfont - text and font operations

SYNOPSIS
#include <jerq.h>
#include <font.h>

Point string(ft, s, b, p, f) Font ∗ ft; char ∗ s; Bitmap ∗ b; Point p; Code f;

extern Font defont;

int strwidth(ft, s) Font ∗ ft; char ∗s;

Font ∗ infont(inch) int (∗inch)();

int outfont(ft, ouch) Font ∗ ft; int (∗ouch)();

void ffree(ft) Font ∗ft;

#include <jerqio.h>

Font ∗ getfont(file) char ∗file;

DESCRIPTION
String draws the null-terminated string s using characters from font ft in Bitmap b at Point p, with Code
f . The return value is the location of the first character after s; passed to another call to string, the two
strings will be concatenated. The characters are drawn such that the origin point of the bounding rectan-
gle of a maximum height character lies at p. Therefore, a character drawn on the screen at (0,0) will oc-
cupy the upper-leftmost character position on the screen. String draws characters as they are in the font.
No special action is taken for control characters such as tabs or newlines.

The global defont is the name of the standard font (not a pointer to it).

Strwidth returns the width in pixels of the null-terminated string s, interpreted in the Font ∗ft. The height
of a character string is simply ft->height.

Infont creates a font by reading the byte-wise binary representation returned by successive calls to inch.
It returns 0 on error. Inch must return successive bytes of the Unix file representation of the font, and -1
at end-of-file. Outfont calls the routine ouch to write successive bytes of the binary representation of font
ft. It returns -1 on error, as must ouch . For programs running under jx, getfont returns a pointer to a
font read from the named file, essentially by calling infont with argument routine getc. It returns 0 on er-
ror. Ffree frees a font allocated by infont or getfont.

1107

TERM(9.1) TERM(9.1)

NAME
term - terminal emulators for mux

SYNOPSIS
exec term termtype

DESCRIPTION
Term replaces the program in the layer on its standard output with an emulator for the terminal type speci-
fied by termtype. In the resulting layer, environment variable TERM is set appropriately. Known types
are

2621 Hewlett-Packard 2621

2621c Same, with data compression between host and terminal; useful at line speeds of 2400 baud and
lower.

4014 Tektronix 4014

5620 Teletype DMD 5620 stand-alone terminal.

5620c Same, with data compression.

33 Teletype Model 33 (actually closer to 35).

Also, termtype mux restores and initializes a standard mux(9) terminal program.

BUGS
Nonstandard terminal emulators do not work across dcon, but usually do across ndcon connections; see
dcon(1).
Unexported shell parameters and functions are lost.

1108

THINKBLT (9.1) THINKBLT (9.1)

NAME
thinkblt, think - print on thinkjet

SYNOPSIS
thinkblt [stream]

think [-o stream] [file ...]

nroff -Tthink ... | think [-o stream]

DESCRIPTION
Thinkblt downloads an interrupt driver for the HP ThinkJet printer, provides a menu of operations for
printing various data residing in the terminal, and sets up a stream by default) on which think can print
data from the host. It is intended to be down-loaded once per terminal session. Most of the menu items
are identical to those of blitblt(9) The remaining ones are:

print bitmap Print whatever bitmap is currently selected, in analogy to blitblt(9) The widest printable
bitmap is 640 pixels across.

print mux buffer
Print the mux ‘snarf’ buffer.

reset printer Sends ESC-E.

While the printer is operating, a different menu allows one to abort or pause the print operation. The
printer has a fairly large internal buffer, so response may be slow.

Files on the host may be printed by giving them as arguments or standard input to think. When used with
nroff , names like \(’e may be used to access the special characters provided by the hardware; the nroff
terminal driving file has a complete list; see troff(1). Both nroff and pr(1) will paginate properly if top-of-
form is set so that the paper tear is aligned flush with the top of the metal clip which holds the absorber.

FILES
$HOME/.THINK
/usr/lib/term/tab.think nroff descriptor file

SEE ALSO
troff(1), pr(1), blitblt(9)

BUGS
The 5620 ROM program is unable to cope with interrupts from the printer; it is therefore necessary to
download mux(9) before turning on the printer.
Thinkblt substitutes its own interrupt routine for the (trivial) one provided by mux(9) The latter is restored
upon exit, but havoc may result if the thinkblt layer is simply deleted.
The special nroff character names are not currently supported by any other device.

1109

THINKCLIENT (9.3) THINKCLIENT (9.3)

NAME
thinkchar, thinknchars, thinkflush, thinkmap, thinkabort - ThinkJet routines

SYNOPSIS
#include <jerq.h>
#include <thinkclient.h>

int thinkchar(c) int c;

int thinknchars(n, p) int n; char ∗p;

int thinkflush()

int thinkmap(b, r) Bitmap ∗ b; Rectangle r;

int thinkabort()

DESCRIPTION
These macros provide access to the routines used internally by thinkblt(9) Thinkchar and thinknchars
send characters to the printer; characters are buffered so that thinkflush must be called after the last trans-
mission. Thinkmap sends all or part of a bitmap (it calls thinkflush automatically). Thinkabort stops
transmission as quickly as possible, throwing away any characters that may be queued up.

SEE ALSO
thinkblt(9) newproc(9) types(9)

DIAGNOSTICS
The routines return zero on success, a positive value on failure, and a negative value if thinkblt(9) is not
loaded.

1110

TWID(9.6) TWID(9.6)

NAME
twid, pen - doodle on the screen

SYNOPSIS
twid

pen

DESCRIPTION
Twid is a beginner’s ‘oil paint’ program; serious artists will use paint(9) Button 3 gets a palette (menus of
paints are unappetizing), and buttons 1 and 2 apply paint.

The palette has a list of names of subpalettes. After making a selection, depress button 3 again to display
the subpalette. The palette names are:

style Choose drawing style: ink (Rembrandt), point (Seurat), line (Mondrian), curve (Matisse) and
disk (Disney).

texture
selects a texture (paint) to be applied with the brush. The default set of textures is sufficient for
Lichtenstein. Use the <new> button to create new ones: use button 1 (2) to select the area under
the cursor (its bitwise complement), and type a name for twid to call it.

brush selects the brush size and shape. Predefined brushes are square, for effects ranging from Dali to
Van Gogh; to be more modern use <new> (again, you must name the new brush).

buttons
By default, button 1 puts paint down and button 2 picks it up again. This palette lets you change
that behavior.

copy provides commands for moving and rotating sections of the picture.

unix offers commands for reading and writing files, and exiting.

The current style, texture and brush are indicated in their palettes by an asterisk ∗.

Pen writes on the screen with smooth strokes. It can scribble on layers or on the background, even while
other programs are running. It can be used to make drawings, annotations, highlights, or graffiti.

To write, hold button 1 while moving the mouse. Button 3 gets a menu to stop drawing and return to nor-
mal fettered activity, resume drawing, clean up, or exit the program.

BUGS
If the pen layer where the ink is kept is too small, furious writing can cause the pen to run dry. When this
happens, release button 1 and press it again.

1111

TYPES(9.5) TYPES(9.5)

NAME
Word, Point, Rectangle, Bitmap, Texture, Pt, Rect, Rpt, display, Drect, Jrect - graphics data types

SYNOPSIS
#include <jerq.h>

typedef int Word;
typedef struct Point Point;
typedef struct Rectangle Rectangle;
typedef struct Bitmap Bitmap;
typedef struct Texture Texture;

extern Bitmap display;
extern Rectangle Drect, Jrect;

Point Pt(x, y) int x, y;

Rectangle Rect(x0, y0, x1, y1) int x0, y0, x1, y1;

Rectangle Rpt() Point p0, p1;

DESCRIPTION
A Word is a 32-bit integer, and is the unit of storage used in the graphics software.

A Point is a location in a Bitmap (see below), such as the display, and is defined as:

typedef struct Point {
short x;
short y;

} Point;

The coordinate system has x increasing to the right and y increasing down. All objects and operators in
the graphics world live in the same coordinate space—that of the display bitmap.

A Rectangle is a rectangular area in a Bitmap.

typedef struct Rectangle {
Point origin; /∗ upper left ∗/
Point corner; /∗ lower right ∗/

} Rectangle;

By definition, origin.x <= corner.x and origin.y <= corner.y. By convention, the right (maximum x) and
bottom (maximum y) edges are excluded from the represented rectangle, so abutting rectangles have no
points in common. Thus, corner contains the coordinates of the first point beyond the rectangle. The im-
age on the display is contained in the Rectangle {0, 0, XMAX, YMAX}, where XMAX=800 and
YMAX=1024.

A Bitmap holds a rectangular image, stored in contiguous memory starting at base.

typedef struct Bitmap {
Word ∗base; /∗ pointer to start of data ∗/
unsigned width; /∗ width in Words of total data area ∗/
Rectangle rect; /∗ rectangle in data area, screen coords ∗/

} Bitmap;

Each width Words of memory form a scan-line of the image, and rect defines the coordinate system in-
side the Bitmap: rect.origin is the location in the Bitmap of the upper-leftmost point in the image. The
coordinate system is arranged so x positions equal to 0 mod 32 are in the leftmost bit of a Word.

A Texture is a 16× 16 dot bit pattern.

typedef struct {
Word bits[16];

} Texture;

Textures are aligned to absolute display positions, so adjacent areas colored with the same Texture mesh
smoothly.

1112

TYPES(9.5) TYPES(9.5)

The functions Pt, Rect and Rpt construct geometrical data types from their components. Since they are
implemented as macros, they only work in function argument lists.

The global display is a Bitmap describing the display area of the process. Drect is a Rectangle defining,
in screen coordinates, the display area available to the program (inside the layer’s border). Jrect is the
Rectangle {0, 0, XMAX, YMAX}.

1113

VISMON (9.1) VISMON (9.1)

NAME
vismon, sysmon, vwhois - system statistics and mail notification

SYNOPSIS
vismon [-n] [-m] [system ...]

sysmon [-n] [-m] [system ...]

vwhois person

DESCRIPTION
Vismon monitors use of one or more Unix systems. It displays time of day, announcements, and CPU us-
age statistics.

CPU usage is reported as a numerical load average (average number of runnable processes) and its change
in the last minute, and a bar graph showing, left-to-right, the proportion of CPU time spent in: default-pri-
ority user processes, low priority (nice) processes, system kernel, stream I/O, and idle time.

Arrival of mail or communications via wall(8) or write(1) is announced. Mail announcements include an
icon of the sender. Communications appear in a shell (sh(1)) layer superimposed on vismon’s layer. This
layer may be used for reply.

The options are:

-n Update the bar graph every n seconds. (n=5 by default.)

-m Do not monitor CPU usage on other systems.

Button 2 selectively toggles the monitoring of other systems. The list of systems is obtained from one of
the following: a file named in the VISMON enviroment variable, or

Sysmon is the same as vismon without icons.

Vwhois causes a dummy mail announcement from person to appear in vismon layers.

FILES
/usr/jerq/mbin/sysmon.m

terminal program

/usr/jerq/lib/sysdaemon
remote monitoring program

/usr/jerq/lib/sysdaemon
responder for remote monitoring

/usr/spool/mail

/usr/spool/mail/mail.log

/n/face/∗
vismon pictures

/usr/jerq/lib/vismon

$HOME/lib/vismon
menu of machines

SEE ALSO
face(9) faced(9)

DIAGNOSTICS
‘Can’t open comm window’ means a shell layer cannot be created. To receive any further communica-
tions, delete some layer.

BUGS
There’s more to system performance than meets the eye.

1114

WINDOWS(9.1) WINDOWS(9.1)

NAME
windows, jps, reshape - create and initialize windows

SYNOPSIS
windows [ox oy cx cy command ...]

jps

reshape [-r] x y

DESCRIPTION
For each set of arguments, windows makes a mux(9) layer with rectangle Rect(ox, oy, cx, cy) (see types(9)
then executes the command therein. The command may be null (""). Any number of layers may be spec-
ified; each command and its arguments must be given as a single argument to windows.

In windows that are not expected to be reused and do not need a shell, it is good practice to invoke the
command with exec; see sh(1).

Jps prints the rectangle coordinates of each window and the arguments (if any) with which it was down-
loaded, to help set up the windows command.

Reshape adjusts its layer so that the display rectangle inside the border is x by y pixels. Under option -r
it adjusts the width/height ratio to x/y, with the new shape as large as will fit inside the old.

SEE ALSO
mux(9) ruler(9)

DIAGNOSTICS
Windows may adjust rectangles to a minimum size or to stay within the usual layer bounds (8 pixels inside
the screen edge).
Layer creation can fail if there are no process slots or memory left in the terminal.
Reshape clips a layer that is too big and does nothing if the layer is too small or if there is not enough
memory.

BUGS
Jps reports what has been downloaded to the 5620; usually this is not the same as the command that must
be used in windows to cause the download.
Reshape destroys the contents of the layer; it should work elsewhere.

1115

CDL(10.5) CDL(10.5)

NAME
cdl - circuit description language

DESCRIPTION
The circuit descriptions used by the various design aid programs are expressed in dialects of the circuit
design language described below. A complete description consists of two parts; an electrical circuit with
chips, pins and connecting signals, and a physical layout with pins and chip positions. The commands de-
scribed below are recommended; others exist and may work but are regarded as obsolete.

LOGICAL DESIGN
A circuit consists of chips connected by signals. The point of connection is denoted by a pin. Each chip
has a type which describes its logical and electrical characteristics. (For example, 74S181 is a chip type.)

Types, signals and chips are identified by name. Pins are identified by name and number. A name is a
string of letters, digits or any of the characters +-. $ /:<=>[] . Sometimes, the first character may not be a
digit. A name may not be longer than 16 characters.

In the following description, literals appear as bold, whereas names are in italic. [] enclose an optional
item and a list of items is written

{item}

Commands are separated by either newline or semi-colon. A comment starts with a and ends with a new-
line and may appear on any line. All white space serves only to separate tokens.

General

.p number
Specifies the page number for subsequent input.

.f [file]
Subsequent input originated in file. If file is not present, the previous file name is restored.

.q
End of file.

Signal Description

signal [pin-number] [[,] pin-name]
name = signal
Lines that do not start with a period are signal definition lines. Signal definitions refer to the most recent
.c command, the pin name and number refers to the chip.

Circuit Description

.c name [[,] type]

.o name [[,] type]
Instantiates a chip name, of type type. This is typically used for I/O connectors. The command may oc-
cur more than once. The type of a chip need only be specified once in a circuit description. Signal de-
scriptions that follow a .c or .o command refer to pins on the chip.

.c name = chip
chip must be previously defined and name is a synonym for chip.

.m name1 name2
Macro parameter definition. The signal name1 is to be associated with macro parameter name2 .

.h signal
Hand wired signal. The argument is the name of a signal that will be ignored by an automatic wiring pro-
gram.

obsolete) UCDS(almost 1116

CDL(10.5) CDL(10.5)

Chip Type Description

.t name package [pin] ...
Define a chip type name. The name of the package in which it is installed, and pin numbers, pin, for the
special signal connections are specified. The special voltage pin numbers, if present, must be in the same
sequence with which the special signals are numbered. This usage is discouraged; use the .t[tT] com-
mands described below. (See .v command.) All commands of the form ".t?" are meant to follow a .t line.

.t name = type
name is a synonym for type.

.tt sequence_of_single_character_pin_descriptors
The number of characters must equal the numbers of pins on this type . The meaning of the descriptors is
given in wcheck .

.tT sequence_of_single_character_pin_descriptors
This means the same as the equivalent .tt command except that every [gvwxyz] pin must have a corre-
sponding .vb pin.

.ta pin1 ... pin2 ...
pin1 ... is the set of address pins, in order, such that the most significant address bit appears first in the
list. pin2 ... is the set of output pins.

.td delay pin1 ... - pin2 ...
The propagation delay (conventionally in nanoseconds) from inputs pin1 ... to outputs pin2 ... is given.

.ti hi lo pin ...
The input (or output) current range for the set of pins is given by hi and lo. Current is conventionally ex-
pressed in milliamperes.

.tp name number ...
The given pin name is associated with the pin number. Name may contain generators such as Q[0-7]
which cause pin names Q0 ... Q7 to be assigned to the pin numbers given. Multiple bracket constructs
may be used. In any case, the resulting list is lexicographically sorted before assigning to pin numbers.

.ts setup pin ...
Specifies the setup time required by the device at the pins given.

.tw c1 c2
c1 is the average current drawn by the device in milliamperes and c2 is the maximum. Both are specified
as floating point numbers.

PHYSICAL DESIGN

The physical design consists of a board containing pin-holes. The description details the positions of the
pin-holes and the position and orientation of the chips. No special case is made of I/O connectors; they
are best considered as unmoveable packages. The description is divided into two files; details can be
found in board(7)

The coordinate system for the board is with x increasing to the right and y increasing upwards. The ori-
gin is at the lower left corner; thus, no coordinate should ever be negative. The circuit board and compo-
nents mounted on it are described as rectangles. They are positioned so that their sides are parallel to one
or other of the axes used to describe circuit board geometry. Measurements are expressed in units of
1/100 of an inch. All are integers and have no explicit decimal point. Coordinates are expressed as pairs
of integers separated by ‘/’ with the x coordinate appearing first. All rectangular regions are half open;
the upper and right edges are outside the rectangle.

It is sometimes necessary to provide a list of coordinates. Invariably each coordinate is associated with a
numbered item (say, a pin number). A one item list consists of the item number followed by its coordi-
nates as in

28 170/250
A series of equally spaced and consecutively numbered items can be described by giving the first and last
item descriptions and separating the two with ‘- ’ as in

28 170/250 - 30 190/200

obsolete) UCDS(almost 1117

CDL(10.5) CDL(10.5)

(item number 29 appears at position 180/225). If the item numbers are equally spaced but not consecutive
a step size can follow the ‘- ’ as in

12 200/700 -9 147 200/100
(which describes the positions of items numbered 12, 21, 30 etc.).

Board Description

.B string
The board name is set to string.

.A coord coord coord coord
The points used in board alignment are coord , coord , coord , coord .

.K name pmin pmax ox oy cx cy
Define a package name with a bounding rectangle with lower left corner (ox,oy) and upper right corner
(cx,cy) as values relative to pin pmin of the package. The package has pins numbered from pmin to pmax
inclusive; expect trouble if pmin is not zero or one. Placement of a package involves both its pins and
rectangle. The rectangle must not intersect any other placed package, and there must be a pin-hole for
each of the pins.

.ka anything
After skipping white space the rest of the line is stored as an artwork reference.

.kd letter
Specifies the drill type for following .kp commands. There can be multiple .kd commands per package.
Currently recognized drill types are found in /usr/jhc/pins/drills.

.kp { pin coord}
One or more .kp commands following a .k command gives the list of pins and their coordinates relative to
pin pmin.

.ku
Guarantees this package will not be moved by any automatic process.

.v number name
Define Voltage and Ground special signals. The special signals are numbered consecutively from zero to
five. The arguments are the special signal number and the signal name to which it corresponds.

.vb {pin coord}
Special signal pin positions. One or more .vb commands following a .v command gives the list of pins
and their positions on the circuit board. The pins should be numbered consecutively from one.

.vd number
Specifies the drill type for following .vb commands. There can be multiple .vd commands. The types are
as descibed for .kd.

.C name coord orientation flags
Specifies the position and orientation for the chip name. The orientation is the number of right angles
clockwise to rotate the package. The meaning of flags can be found in /usr/include/cdl.h; it should be
initialised to zero.

.P coord lx ly spacing diam
Define a rectangular array of pin-holes with diameter of diam. The lower left corner of the rectangle is
coord , and the width and height are lx,ly respectively. The pins are placed spacing apart. If spacing is of
the form sx/sy, the spacings in the xandy directions are set independently.

.R coord lx ly type
Define a special rectangular region. Type .A defines a region that will not be used by the automatic place-
ment algorithm.

.W chip1 pin1 chip2 pin2 net
Define a wire link between pin1 of chip1 and pin2 of chip2. The net name is net.

A line with any undefined key causes most programs to halt.

obsolete) UCDS(almost 1118

CDL(10.5) CDL(10.5)

SEE ALSO
cdm(10)

obsolete) UCDS(almost 1119

FIZZ (10.5) FIZZ (10.5)

NAME
fizz - physical layout input language

DESCRIPTION
Fizz is a set of tools to build circuit boards from a circuit description. This section describes the input for-
mat for the various fizz commands. Most of the UCDS tools produce files in cdl(10) format; these need to
be converted into fizz format by fizz cvt .

Concepts
Types, signals and chips are identified by name. Pins are identified by name and number. A name is a
string of letters, digits or any of the characters +-.$/:<=>[] . Sometimes, the first character may not be a
digit. A name may not be longer than 137 characters.

The physical design consists of a board containing pin-holes. The description details the positions of the
pin-holes and the position and orientation of the chips. I/O connectors may beconsidered as chips with
unmoveable packages.

The coordinate system for the board has x increasing to the right and y increasing upwards. The origin is
at the lower left corner; no coordinate should ever be negative. The circuit board and components
mounted on it are described as rectangles. They are positioned so that their sides are parallel to one or
other of the axes. Measurements are integers measuring 0.001 inch. Coordinates are expressed as pairs of
integers separated by / with the x coordinate appearing first. All rectangular regions are half open; the up-
per and right edges are outside the rectangle.

Syntax
The input is a sequence of items. An item consists of a item-type followed by a number of fields. Multi-
ple fields are indicated by a trailing { on the keyword line and terminated by a line containing a single } .
Fields are a keyword followed by the value for that field. Certain values are spread over multiple lines be-
tween {} as described above.

It is sometimes necessary to provide a list of coordinates. Invariably each coordinate is associated with a
numbered object (say, a pin number). A one coordinate list consists of the index number followed by its
coordinates as in

28 1700/2500
A series of equally spaced and consecutively numbered coordinates can be described by giving the first
and last coordinates and separating the two with - as in

28 1700/2500 - 30 1900/2000
Coordinate 29 is 1800/2250. If the index numbers are equally spaced but not consecutive a step size can
follow the ‘-’ as in

12 2000/7000 -9 147 2000/1000
This describes coordinates numbered 12, 21, 30, and so on. If a letter follows the coordinate specifica-
tions, it specifies the drill to be used for the pinholes. The known drill types are

A 33
B 34
C 39
D 42
E 50
F 62
G 106
H 107
I 108
J 20
K 110
L 111
M 112
N 113
O 114

UCDS 1120

FIZZ (10.5) FIZZ (10.5)

P 115
Q 116
R 117
S 118
T 119
U 100
V 20
W 122
X 123
Y 124
Z 125

Items
In the following descriptions, each item has a sample input defining all possible fields. Some fields are
optional; mandatory fields are marked by ∗∗ which is not part of the actual input.

Board{
name board_name
align 1600/2000 9600/1700 1400/7100 9600/6600
layer signalside 1
plane 1 + VCC 2000 2000 8000 8000
datums 100/100 135 100/8000 45 10000/100 45

}
The board name is set to board_name. The alignment points are used by wrap -s to align the board in
Joe’s semi-automatic wire wrapping machine. All four alignment points must be given. The layer field
associates a layer number with a name to be used in XY artwork output. The layer numbers 0 and 1 are
the two outside layers. The plane fields represent signal planes for circuit boards. The format is layer
sense signame minx miny maxx maxy. Sense is a character meaning add (+) or subtract (-) the rectangle
for the signal signame. The planes can be viewed with place(10) Note that multiple signals can be
present in one layer. The datums field sets the positions and orientations of the three datums (alignment
marks for artwork). The orientation is the angle formed by the two squares in the datum.

Package{
∗∗ name DIP20
∗∗ br -600 0 9600 3000
∗∗ pins 1 20{

1 0/0 - 10 9000/0 V
11 9000/3000 - 20 0/3000 V

}
drills 1 2{

1 500/1500 - 2 8500/1500 V
}
keepout 0 - VCC -1000 -4000 10000 3400
plane 0 - VCC -1000 -4000 10000 3400
plane 0 + VDD -500 -3500 9500 2900
xymask clump {

arbitrary XY mask stuff
}

}
Each package definition may have an arbitrary origin. The bounding rectangle br is used for placement;
the values are ll.x, ll.y, ur.x, ur.y. The drills field is for mounting bolts etc; it does not affect placement.
Both the pins and drills fields take a minimum and maximum pin number. Placement of a package in-
volves both its pins and rectangle. The rectangle must not intersect any other placed package, and there
must be a pin-hole for each of the pins. The keepout field looks like a plane definition (the sense is al-
ways set to -). Multiwire wiring will not enter the specified plane. The plane fields are similar to those in
Board but are instantiated for every chip using this package. The xymask field denotes the clump name
(clump) for this package and some optional XY mask input (used by artwork (10.1)). The XY mask input
has leading tabs deleted, not white space, as blanks are significant to XY mask.

UCDS 1121

FIZZ (10.5) FIZZ (10.5)

Chip{
∗∗ name miscinv
∗∗ type 74F240
}
This simply specifies the chip type.

Type{
∗∗ name 74F240
∗∗ pkg DIP20

tt ii3i3i3i3gi3i3i3i3iv
}
The tt field must have a letter for every pin of the package. Any pin whose letter is one of gvwxyz or
GVWXYZ will be automatically attached to special signal 0,1,2,3,4,5 respectively. Other letters are ig-
nored (they are used by other tools).

Net port 4{
select 8
miscinv 14
syncff 13
ackff 1

}
Signal nets have the net name and number of points on the item line. All other lines are simple chip-
name,pinnumber pairs. Net descriptions are normally produced by fizz cvt from the output of cdm or cd-
mglob .

Route{
∗∗ name port
∗∗ alg hand

route{
ackff 1
miscinv 14
select 8
syncff 13

}
}
This describes the routing for net name. The algorithm must be one of tsp (normal travelling salesman),
tspe (travelling salesman specifying one end), mst (minimal spanning tree), mst3 (minimal spanning tree
of degree three), default (whatever is specified in the wrap command) and hand (the exact order is
given). The routing is a list of chipname,pinnumber pairs.

Positions{
select 3200/2300 0 0
miscinv 4900/1700 0 0
syncff 2400/2700 0 0

}
Specify the position data for each chip. Each line has the form chipname coord orientation flags. The
orientation is the number of right angles clockwise to rotate the package. The following bits in flags have
a defined meaning:

4 this chip is unplaced
8 the bounding rectangle is ignored in placement
16 the pinholes are ignored in placement. 32 the names are ignored in the silk screen out-

put.
Flags should be initialised to zero.

UCDS 1122

FIZZ (10.5) FIZZ (10.5)

Pinholes{
1400/6900 3200 300 10 V
6650/6900 3200 300 10 V
1600/1700 8100 1000 10/30 V
1600/2700 8100 1000 10/30 V

}
Each pinhole specification has the form coord lx ly spacing diam which defines a rectangular array of pin-
holes with diameter of diam. The lower left corner of the rectangle is coord , and the width and height are
lx,ly respectively. The pins are placed spacing apart. If spacing is of the form sx/sy, the spacings in the
xandy directions are set independently.

Vsig 0{
name GND
pins 96{

1 1800/2100 - 16 9300/2100 A
17 1800/3100 - 32 9300/3100 A
33 1800/4100 - 48 9300/4100 A
49 1800/5100 - 64 9300/5100 A
65 1800/6100 - 80 9300/6100 A
81 1800/6700 - 96 9300/6700 A

}
}
This defines the special signals. The special signal number follows Vsig. Pins are numbered from 1; the
number of pins is given in the pins field line. A warning is given if any pins are not specified.

SEE ALSO
fizz(10)

UCDS 1123

FSM(10.5) FSM(10.5)

NAME
fsm - finite state machine language format

DESCRIPTION
Fsm is designed to write finite state machines. It assumes that there are some number of input and output
pins. These must be declared first. The input clock speed can also be declared so that the compiler will
calculate the length of loops given in the time format. The input programs resemble C. There must be a
procedure named main for the compiler to proceed. Procedures declared "inline" are called directly by
the compiler to generate inline code. Otherwise the syntax is very familiar. Note that all procedures must
be declared void. Therefore, there are no expressions on the return statement.

The yacc(1) syntax for fsm is given below:

program : declarations procedures
declarations : declarations declaration ;

| empty
declaration : input

| outputDecl
input : INPUT inputDetails
inputDetails : BIT ID

| FIELD ID < NUMBER : NUMBER >
| CLOCK clockFrequency frequency

clockFrequency : NUMBER
| NUMBER . NUMBER

frequency : MHZ
| KHZ

outputDecl : OUTPUT outputDetails
outputDetails : BIT ID

| FIELD ID < NUMBER : NUMBER >
procedures : procedures procedure

| empty
procedure : inline VOID ID (id_list) statement
inline : INLINE

| empty
statements : statements statement

| empty
statement : output

| loop
| do
| enabled
| ifprefix statement
| ifelseprefix statement
| while
| repeat
| goto
| break
| continue
| call
| label statement
| { statements }
| ;

call : ID (expression_list) ;
loop : LOOP statement
enabled : ENABLED statement
ifprefix : IF boolean
ifelseprefix : ifprefix statement ELSE
while : WHILE whileHead boolean whileTail statement
do : DO statement dopart ;

UCDS 1124

FSM(10.5) FSM(10.5)

dopart : UNTIL boolean
| WHILE boolean

repeat : REPEAT NUMBER DO statement
output : OUTPUT (field_list) outputSuffix ;
outputSuffix : FOR timesOrCycles
timesOrCycles : NUMBER times

| NUMBER CYCLES
times : NS

| US
| MS

goto : GOTO ID
break : BREAK
continue : CONTINUE
label : ID :
boolean : (expression)
id_list : ID

| id_list , ID
| empty

expression_list : expression
| expression_list , expression
| empty

field_list : field
| field_list , field

field : ID = expression
expression : (expression)

| expression + expression
| expression - expression
| expression . expression
| expression | expression
| expression ˆ expression
| expression >> expression
| expression << expression
| expression
| ! expression
| INPUT (ID)
| ID
| NUMBER

UCDS 1125

GRAW (10.5) GRAW (10.5)

NAME
graw - graw file format

DESCRIPTION
Graw files are very simple. There is one primitive per line, each primitive indicated by a single character
identifier. All strings are enclosed in quotes. Definition need not preceed use, though in practice graw
outputs ref (aka include) primitives first and master definitions are seldom found outside libraries.

Graw file interpreters should look up ref files according to some search path.

Syntax:

body: prim | body prim
prim: line | box | string | dots | macro | inst | ref | master
line: l point point
box: b rect
string: s chars disp point
dots: d rect
macro: z rect
inst: i chars point
ref: r filename
master: mstart body mend
mstart: m chars
mend: e
rect: point point
point: INT INT
disp: INT
chars: " STRING "

Graw string displacements are specified by five bit codes defined below:
/∗ string placement displacements ∗/
#define HALFX 1
#define FULLX 2
#define HALFY 4
#define FULLY 8
#define INVIS 16

Invisible strings are typically defined for masters with connection points. Though the text is usually not
displayed or printed, the remaining four bits should nonetheless specify a proper displacement for the sake
of back-annotation.

FILES
/n/ross/lib/graw/gates.g the standard gate file

SEE ALSO
graw(10)

UCDS 1126

LDE(10.5) LDE(10.5)

NAME
lde - logic design expression language format

DESCRIPTION
Lde format contains six declaration areas that must appear in the following order:

.x an optional chip declaration area,

.tt an optional line for use by wcheck and/or smoke,

.i an input declaration area,

.o an output declaration area,

.f an optional field declaration area,

.e and an expression area.

The lde language is much like C. Identifiers may include +-.. Lde does not use ’;’ to end a statement.
Symbols must be declared before used. Declaration is by appearance in the .i or .o areas or appearance on
the left of an = in the .f or .e areas. Since lde is an expression language, no flow control (such as if or
switch) is allowed. An expression selector is available; expra{[[exprb]:]exprc,[[exprd]:]expre,...} has the
value of exprc if expra equals exprb. If there is no exprb and there is a colon then exprc is the default
case. If there is no exprb and no colon the the pre-incremented value of the prior value of exprb is used,
the prior value of exprb is initialized to -1.

The chip declaration area may contain two strings, nameandtype.

The .i and .o areas contain identifier [’=’ or ’:’ numeric_pinnumber] (The ’:’ is used by lde -w as a mark
for externals.) Some programs use the order of appearance of the identifiers.

The field declaration area contains constructions of the form n_id = o_id o_id ... where n_id is a new
identifier for a multibit value the least significant bit of which is the first old identifier, o_id.

The expression area contains assignments of expressions to identifiers. Identifiers may be modified by a
postpended single quote, "’", in which case a value of one has the meaning "don’t_care" for the unmodi-
fied indentifier.

Numeric values may be passed from the command line, they appear as $m. The (zero based) mth oc-
curence of -n one the command line substitutes the value n for the symbol $m.

EXAMPLES
/∗

∗ bkrom
∗ classifies the location of the
∗ black king.
∗ 0-6 manhattan distance to center
∗ 7 orig square
∗ 8-11 k-side
∗ 12-15 q-side
∗/

.x
bkrom 74S287

.i
wkx0 wkx1 wkx2
wky0 wky1 wky2
GND1 GND2 GND3

.o
kb0 kb1 kb2 kb3

.f
kx = wkx0 wkx1 wkx2
ky = wky0 wky1 wky2
kb = kb0 kb1 kb2 kb3

.e
xd = (kx) { 3, 2, 1, 0, 0, 1, 2, 3 }
yd = (ky) { 3, 2, 1, 0, 0, 1, 2, 3 }
d = xd + yd
kb =

(ky == 6)?
(kx) { 12, 13, d, d, d, d, 8, 9 }:

UCDS 1127

LDE(10.5) LDE(10.5)

(ky == 7)?
(kx) { 14, 15, d, d, 7, d, 10, 11 }:

d
/∗

∗ By convention the output enable term for
∗ PAL’s is 100 + the corresponding pin number.
∗ this example includes a .tt line for use by wcheck.
∗/

.x Bpal PAL16L8A

.tt iiiiiiiiign222222n2v

.i
A0 : 1 A1 : 2 A2 : 3 A3 : 4
A4 : 5 A5 : 6 A6 : 7 A7 : 8
A8 : 9

.o
SE+ : 12 RNE+ : 13 TD+ : 14 TU+ : 15
SFSE : 16 Y5 : 17 BRDY : 19

e12 = 112 e13 = 113 e14 = 114 e15 = 115
e16 = 116 e17 = 117 e19 = 119

.f
cnt = A0 A1 A2 A3 A4
ardy = A5
crdy = A6
flushb- = A8
flusha- = A7

.e
tmp = ((cnt == 0) ? ardy ? 1 : 0 :

(cnt == 6) ? (crdy || !flushb-) ? 1 : 0 : 1)

/∗ shift enable + for major data path, also count enable ∗/
SE+ = !tmp

/∗ random number clock enable - ∗/
RNE+ = !(!flusha- ? 0 : tmp)

/∗ transfer down - for ireg ∗/
TD+ = !((cnt == 0) .. ardy)

/∗ transfer up + (invert outside) for oreg<0:3> ∗/
TU+ = !((cnt == 6) .. crdy .. flushb-)

/∗ shift flush status enable ∗/
SFSE = !(cnt == 3)

/∗ ack- back to ardy ∗/
Y5 = !!((cnt == 0) .. ardy)

/∗ ready to A ∗/
BRDY = !((cnt == 0)? 1 : 0)
e12 = 1 e13 = 1 e14 = 1 e15 = 1
e16 = 1 e17 = 1 e19 = 1

/∗
∗ An example using parameter passing and Don’t_care
∗/

.x dram PAL16R6

.tt iiiiiinnngin222222nv

.i
CK:1 OE-:11
dreq:2 stall:3 cerr:4 read:5 qword:6
rasefb=18 casxfb=17 casyfb=16 wefb=15
dsfb0=14 dsfb1=13

.o
rase:18 casx:17 casy:16 we:15
ds0:14
ds1:13

.f

UCDS 1128

LDE(10.5) LDE(10.5)

DS = rase casx casy we ds1 ds0
DSfb = rasefb casxfb casyfb wefb dsfb1 dsfb0

.e
X.NCAS = 0100 /∗ don’t care bits ∗/

DC = 0200 /∗ don’t care state ∗/
S.RAS = 040
S.CAS = 020
S.NCAS = 010
S.WE = 004

/∗ low order 2 bits of state vector ∗/
A = $0 B = $1 C = $2 D = $3

I0 = C /∗ state assignement ∗/
D10 = S.RAS + A
D11 = S.RAS + S.CAS + X.NCAS + B
D12 = S.RAS + S.CAS + X.NCAS + A
D13 = S.RAS + S.NCAS + B
D23 = S.RAS + B
D14 = S.RAS + S.NCAS + D
D24 = S.RAS + D
D15 = S.RAS + S.NCAS + C
D25 = B
D16 = A
D26 = D
D31 = S.RAS + S.CAS + X.NCAS + D
D32 = S.RAS + S.CAS + X.NCAS + S.WE + A
D33 = S.RAS + S.NCAS + S.WE + B
D43 = S.RAS + S.CAS + X.NCAS + S.WE + B
D34 = S.RAS + S.NCAS + S.WE + D
D44 = S.RAS + S.CAS + X.NCAS + S.WE + D
D35 = S.RAS + S.NCAS + S.WE + C
D36 = S.WE

DS- = DSfb {
I0: dreq ? D10 : I0, /∗ idle state ∗/

D10: read ? D11 : D31,
D31: stall ? D31 : D32,
D32: qword ? (stall ? D32 : D33) : D36,
D33: stall ? D43 : D34,
D43: stall ? D43 : D34,
D34: stall ? D44 : D35,
D44: stall ? D44 : D35,
D35: D36,
D36: I0,
D11: stall ? D11 : D12,
D12: qword ? D13 : D16,
D13: cerr ? D23 : D14,
D23: D14,
D14: cerr ? D24 : D15,
D24: D15,
D15: cerr ? D25 : D16,
D25: D16,
D16: cerr ? D26 : I0,
D26: dreq ? D10 : I0,
: DC
}

DS = 077 ˆ DS-
DS’ = (DS- == DC) ? 0 :

((DS- . X.NCAS) ? S.NCAS : 0)

UCDS 1129

MDS(10.5) MDS(10.5)

NAME
mds - kollmorgen symbolic data format

DESCRIPTION
MDS is the symbolic format for the Kollmorgen Pck Division channel router. This is an abbreviated de-
scription of the format.

Introduction

All MDS data is made up of integers, symbols and keywords. All coordinates are expressed in mils, i.e.,
1/1000 of an inch (just like fizz!). Coordinates can be negative or positive and are denoted by matching
parentheses of the form (X Y). Symbols require quotes around them if not made up of numbers, letters, $
or a _.

Data types

There are 15 data types identified by their reserved word. The following is a list of valid types:

Border Board edges and keepouts
Check Design rules to check (not required)
Design Name of the design
F2 From-to (before routing)
Fail Failed from-to (after routing)
File pointer to another file
Fix Hand routed wire
Hole Drill hole
Level Wiring surface (typically only two: COMP and PBSN)
Net Net
Panel Board of some type (optional)
Route Routed from-to with intermediate points at each bend
Term Termination site for a net (optional)
Wire Wire path
Wire_region Routing zone for layers

Border id coordinates

Borders are closed loops composed by the coordinates and named by a identifier.

Check [rule] [-MIN: n] [-ON|-OFF]

Specifies what design rules should be checked by the repair program.

Design [name]

Names a design. Strictly optional.

F2 netname coordinates [switches]

From-tos are the principal data format of the routing system. They are created from nets by F2gen. Inter-
mediate points are specified by following the coordinate by a -I or -W. Valid switches include:

-LEVEL: level
level name (or number)
-ORDER: cost_function
Sets cost function (see section below)
-IFL: n
number of inflection points; default 9
-MIN_FS_END:
sets minimum first and last segment length. Default = 0.
-MIN_WIRE_END:
sets only wire end segment length.
-MDR: n

UCDS 1130

MDS(10.5) MDS(10.5)

manhattan distance ratio (in tenths, default 1.5 = 15)
-AXIAL | -ESCAPE | -EITHER | -DIAGONAL
Route path direction; Axial is along axes, escape indicates
diagonals on ends only.
-AWD: n
Adjacent Wire Distance
-CLW: window
-XDW: window
CLW checks for coupled length violations within window {n,l}
where n is the center to center distance and l is the length.
-XOVER: limit
Crossover limit

Fail netname coordinates [switches]

Fails are identical to from-tos except for be called fails. See above list of switches.

File [filename] [switches]

This include the filename. The switch specifies what kind of file it is.

Fix sequence_no [switches] coordinates

Specifies a hand routed net. It is identical to route records (see below). The endpoints must agree with
the fail it fixes.

Hole code [switches] coordinates

Specifies a drilled or LASER’ed hole. The switches are:
-SIZE: n
size of n mils
-WIRED | -NOTWIRED
dictates if hole can be wired
-TOLERENCE: n
-LASED -LEVEL: n | -DRILLED
if not drilled, only one layer can be specified

Level level [-F2_DENSITY: n]

Specifies wiring level directly; designs are assumed to be on one level unless otherwise told. The optional
switch specifies density of routes on the layer.

Net [pre_switches] or Net name [pre_switches] coordinates [post_switches]

If the net name is omitted, then the switches are global. The pre_switches include all of the from-to
switches plus the following:

-LINK: n
Limit of from-tos using this node; default: 2
-FIX | -DECOMP
Fixes order in from-to list or decomposes it
-FIX_START | -NOFIX_START
-FIX_END | -NOFIX_END
Treat first or last node as if LINK: 1; default: NOFIX
-TERM_TO: pool
-TERM_END: pool
-TERM_WIRE_END: pool
-TERM_LIMIT: n
-NOTERM
Reduces link by 1. Assigns terminator from pool. Default is -NOTERM
-ORDER: cost_function
Possible cost functions are:

UCDS 1131

MDS(10.5) MDS(10.5)

AIR_SL - Airline, shortest to longest
AIR_LS - Airline, longest to shortest
MAN_SL - Manhattan, shortest to longest
MAN_LS - Manhattan, longest to shortest
X_SL - X, shortest to longest
X_LS - X, longest to shortest
Y_SL - Y, shortest to longest
Y_LS - Y, longest to shortest
-BALANCE: cost_function
Possible cost functions are:
COUNT - by from-to count
AIR - by "airline distance"
MAN - by "Manhattan metric"
X - by X coordinate
Y - by Y coordinate
-SUPPLY | -SIGNAL
-SUPPLY nets are ignored; default is -SIGNAL.

The post_switches are:
-LINK: n
-FIX | -DECOMP
-TERM_TO: pool

Panel [name] coordinates [-DESIGN: name]

Defines a coordinate system for translated output data. Strictly optional.

Route [sequence_no] [switches] coordinates

If the sequence number and coordinates are omitted, then the switches are globally applied. Valid
switches include:

-NET: name
-LEVEL: level
-W_DIA: n
Used by wire clearance checks
-CLW: window
-XDW: window
-AWD: n
Adjacent Wire Distance (default 0)
-PASS: n
Set pass number (starts at 1)
-XOVER: limit
Sets limit to wire crossovers; can be NONE, ONE or TWO.

Term pool coordinates

Pool together a set of coordinates of terminals given by XY coordinates. Typically used by the TER-
MGEN program to assign terminators automatically. Used by ECL freaks.

Wire [sequence_no] [switches] coordinates

Just like routes except ...

Wire_region [zone] [switches]

Specifies an XY plane where wiring can be done by the router. If the zone is omitted then the specifica-
tion is global. The switches are:

-LEVEL: level
-AWE_WE: n
Axial Wire Edge to Wire Edge distance
-AWE_HE: n

UCDS 1132

MDS(10.5) MDS(10.5)

Axial Wire Edge to Hole Edge distance
-DWE_WE: n
Diagonal Wire Edge to Wire Edge distance
-DWE_HE: n
Diagonal Wire Edge to Hole Edge distance
-W_DIA: n
Wire diameter
-NSID: n
Normal/Segment Intercept Distance.
-MAX_HTURN: n
Maximum turn angle (in degrees)
-DIR: name | -DBECTORY: name
Prepend this name to map file output name.

The following is a typical map file for input to Mapgen:

Level COMP
Level PBSN -F2_density: 50
Net -balance: air
Wire_region A -Level: COMP -Max_Hturn: 135 -NSID: 15 -W_dia: 8
Wire_region A -AWE_WE: 8 -AWE_HE: 15 -DWE_WE: 27 -DWE_HE: 8
Wire_region B -Level: PBSN -Max_Hturn: 135 -NSID: 15 -W_dia: 8
Wire_region B -AWE_WE: 8 -AWE_HE: 15 -DWE_WE: 27 -DWE_HE: 8

UCDS 1133

MINTERM(10.5) MINTERM(10.5)

NAME
minterm - minterm file format

DESCRIPTION
The minterm file format consists of at least one binary valued function definition. A function definition
begins .o n ... followed by line(s) that have the form term:mask ... The first n following .o is a numeric
symbol of the function (usually an output pin number of a rom or pal integrated circuit). Any other n’s
are numeric symbols of input binary variables. Term and mask are decimal numbers.

There is a correspondence between the bits of the numbers in binary representation and the input symbols,
the first input symbol is associated with the least significant bit. The meaning of a bit with value 1 in
mask is ‘do care’, and the meaning of a bit with value 1 in term is ‘input must be 1’. Thus the term:mask
is a implicant, and a set of them when or’ed together describes the input conditions for which the output
symbol will have a value of 1.

For example:

.o 3 1 2
3:3
.o 4 1 2
1:3 2:3 3:3
.o 5 2 3
1:3 2:3
.o 11
.o 9
0:0

Output 3 is the and function of inputs 1 and 2; output 4 is the or function of inputs 1 and 2 (quine(10.1)
would change this to 1:1 2:2); output 5 is the exclusive-or function of inputs 2 and 3; output 11 is a con-
stant 0 and output 9 is a constant 1.

SEE ALSO
lde(10) quine(10) cover(10) hazard(10) pal(10)

UCDS 1134

PADDLE(10.5) PADDLE(10.5)

NAME
paddle - pal description language

DESCRIPTION
paddle is a description language for detailing the fuse format of programmable devices. paddle is used
by xpal(10) to create the fuse map that urom(1) and friends want. paddle permits multiple fuse arrays
provided they are given unique names. Each definition begins by defining the name of the part along with
possible synonyms. This is followed by (1) an array declaration (2) a fuse block definition (3) a type dec-
laration (the .tt line) and lastly, a (4) pins declaration. The array declaration permits declaration of input
and output pins to the array. The use of the complement keyword create 2 input lines for a given pin. The
general form of a pin declaration is pin:#terms=fuse, where #terms is the maximum number of terms for
the pin and fuse is the optional fuse number. Here is part of the declaration of a 20L10:

20L10=NS20L10=AM20L10 {
array and/or {
inputs {

complement+ external {
2, 1,
.
.
.
11, 13

}
}
outputs {

external {
123:1,
23:3,
.
.
.
}

}
}

type "iiiiiiiiiiig i3455555555v"
}

SEE ALSO
xpal(10)

UCDS 1135

SAF(10.5) SAF(10.5)

NAME
saf - spider a format

DESCRIPTION
Non data format

This is a non-data record which is required if transmission is to be made to the SPIDER DEC 10 machine
at the Northern Illinois Works.

Columns 1-3: (3) Character string "HO1".
Columns 4-5: (2) Number of non-data records. Always "01".
Columns 6-6: (1) Type of records, Fixed or Variable. Set to Fixed "F".
Columns 7-9: (3) Record Length - Set to "132".
Columns 10-13: (4) Data format type - Set to "ASCI".
Columns 14-17: (4) Job type descriptor - Set to "USER".
Columns 18-31: (14) Product Identifier. Set to Circuit Pack Code e.g., TN33Text.
Columns 32-35: (4) Product Issue. Set to Artmaster Issue number. Text.
Columns 36-43: (8) Warrenville/IH Run date (00/00/00).
Columns 44-51: (8) Warrenville/IH Run time (00:00:00).
Columns 52-57: (6) Number of data records in the file. Must be padded with leading zero’s.

Common file format

Columns 1-2: (2) The character string "CF".
Columns 3-35: (33) Circuit Pack Code, e.g., TN334, MC4C001A1, etc. Text.
Columns 36-50: (15) Circuit Pack Series, e.g., 1, 3-5, etc. Text.
Columns 51-54: (5) Artmaster issue number, e.g., 1, 2a, etc. Text.
Columns 55-63: (9) Completed Circuit Pack Comcode number. Integer.
Columns 64-78: (15) Completed Circuit Pack CLEI code. Text.
Columns 79-83: (5) Completed Circuit Pack CLEI code Series number. Text.
Columns 84-88: (5) Circuit Pack Keying Code. Text.
Columns 89-93: (5) Circuit Pack Bar Label Code. Text.
Columns 94-132: (39) Blanks.

Component reference data

There is to be one record for each part including hardware. Coordinates are to be the Equipment location
(Default Datum - Pin 1).

Columns 1-2: (2) The text string "CR".
Columns 3-7: (5) Component Type, e.g., DIO, R, etc. Text.
Columns 8-27: (20) Component Code, e.g., KS16645L1, etc. Text.
Columns 28-37: (10) Component Value, e.g., 10K, 20UF, etc. Text.
Columns 38-46: (9) Component Comcode Number. Integer.
Columns 47-58: (12) Component Generic Code. Text.
Columns 59-68: (10) Microcode Stamping Code. Text.
Columns 69-73: (5) Component Length in mils. Integer.
Columns 74-78: (5) Component Width (mils). Integer.
Columns 79-83: (5) Component Height (mils). Integer.
Columns 84-88: (5) Component Lead Wire Size (mils) - diameter of circular or rectangular smaller side.
Integer.
Columns 89-93: (5) Component Lead Wire Size (mils) - rectangular larger side. Integer.
Columns 94-96: (3) Number of Component leads. Integer.
Columns 97-108: (12) Component reference designation. Text.
Columns 109-115: (7) X-Coordinate (tenths of mils). Real.
Columns 116-122: (7) Y-Coordinate (tenths of mils). Real.
Columns 123-127: (5) Component Lead Span (mils). Integer.
Columns 128-130: (3) Component Rotation in degrees. Integer.

UCDS 1136

SAF(10.5) SAF(10.5)

Column 131: (1) Surface Mount Indicator field. Text.
Column 132: (1) Mounting Option field. Text.

Legal Values Are:
"E" - On End - Front Side Mounting
"O" - On End - Back Side Mounting
"F" - Flat - Front Side Mounting
"B" - Flat - Back Side Mounting
"U" - Up - Front Side Mounting
"P" - Up - Back Side Mounting

Drill data

Columns 1-2: (2) The text string "DD".
Columns 3-9: (7) X-Coordinate (tenths of mils). Real.
Columns 10-16: (7) Y-Coordinate (tenths of mils). Real.
Columns 17-21: (5) Hole Size (mils). Integer.
Columns 22-22: (1) Plated thru indicator. Text.
Columns 23-132: (110) Blanks.

Connectivity data

This data should contain all unused component pins and theates are actual location of the pin involved.

Columns 1-2: (2) The text string "CD".
Columns 3-8: (6) Record type. Must be one of the strings: "VIA", "USED", or "UNUSED".
Columns 9-20: (12) Net Name. Text.
Columns 21-32: (12) Reference Designation. Text.
Columns 33-40: (8) Terminal Name. Text.
Columns 41-47: (7) X Coordinate (tenths of mils). Real.
Columns 48-54: (7) Y Coordinate (tenths of mils). Real.
Columns 55-56: (2) Net type attribute. Text.
Columns 57-57: (1) Text.
Columns 58-132: (75) Blanks.

UCDS 1137

STOCK (10.5) STOCK (10.5)

NAME
stock - stock list

DESCRIPTION
The stock file is a plain text file. The first column is the part name, the second column is the bin (bins
have the form <bin number><section><drawer>), the third column is the quantity and the remaining
string is the chip description. The latest entries include the manufacturer at the end of the line in the form
"[manufacturer]".

SEE ALSO
findparts(10) ics(10)

FILES
/usr/ucds/lib/stock

BUGS
The quantity is seldom up to date.

UCDS 1138

	General Commands Manual
	INTRO(1)
	NAME
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	2500(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	BUGS

	300(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	450(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	ACRO(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	USES
	FILES
	SEE ALSO
	SUPPORT

	ADB(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Expressions
	Commands
	Variables
	Addresses

	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS
	MACHINE DEPENDENCIES
	PDP-11
	VAX
	Cray

	ALTRAN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	APL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	AUTHORS
	BUGS
	ASCII CHAR MNEMONICS

	APPLY(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	APSEND(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	AR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	AS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	as80()
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	DIAGNOSTICS
	BUGS

	ASA(1)
	NAME
	SYNOPSIS
	DESCRIPTION

	ASCII(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	AT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	AWK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	BACKUP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	BADGE(A)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	BUGS
	FILES

	BASENAME(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	BASIC(1)
	NAME
	SYNOPSIS
	DESCRIPTION

	BC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	BCP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	BDIFF(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	BIGCORE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	BISON(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	BITSHIP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	DIAGNOSTICS
	BUGS

	BMD08V(I)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	BPRINT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	BUNDLE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	BYTEYEARS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES

	C++(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	CALENDAR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	CAN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	CAT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	CB(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	CBT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	CC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS
	MACHINE DEPENDENCIES
	VAX
	MIPS
	Sun

	CHARGE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	CHDATE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	CHECKNR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	AUTHOR
	BUGS

	CHMOD(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	CHUNK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	USES
	BUGS
	SUPPORT

	CIN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	CITE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	CLEAR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	CMP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	COLUMN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	COMM(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	CON(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	COSPAN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	COURIER(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS
	SEE ALSO

	CP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	CPIO(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	CRAY(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	BUGS
	THE FIRST TIME

	CRYPT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	CSCAN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	CSH(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	FILES
	LIMITATIONS
	SEE ALSO
	BUGS

	CTAGS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	AUTHOR
	BUGS

	CU(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	CUT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	D202(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	DAG(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	DATE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	DIAGNOSTICS

	DC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	DCON(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	DD(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	DEROFF(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	DICTADD(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	SEE ALSO
	SUPPORT

	DICTPLUS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	SUPPORT

	DIFF(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	DIRED(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	DIS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	DIAGNOSTICS

	DIST(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	DOCGEN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	DOCSUBMIT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	DOCTYPE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	DOUBLE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	SUPPORT

	DU(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	ECHO(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	ED(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	EFL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	=(1)
	NAME
	SYNOPSIS
	DESCRIPTION

	EQN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	esterel(1)
	NAME
	SYNTAX
	DESCRIPTION
	OPTIONS
	EXAMPLES
	DIAGNOSTICS
	BUGS
	FILES
	SEE ALSO
	IDENTIFICATION

	EXPR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS

	F2C(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	F77(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	FACTOR(1)
	NAME
	SYNOPSIS
	DESCRIPTION

	FILE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	FIND(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	FMT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	FTP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Aborting a file transfer
	File naming conventions
	File transfer parameters
	Options
	The .netrc file

	SEE ALSO
	BUGS

	GAMES(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	

	GCC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	SEE ALSO
	BUGS
	COPYING
	AUTHORS

	GETOPT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	EXAMPLES
	SEE ALSO

	GETS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	GETUID(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	GRAM((1))
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS
	SUPPORT

	GRAP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	GRAPH(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	GRE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	GREP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	HANG(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	HOC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	HOSTNAME(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES

	UL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	ICAN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	ICLC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	DIAGNOSTICS
	IDENTIFICATION
	SEE ALSO
	BUGS

	ICONT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	IDEAL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	IDIFF(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	IMSCAN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	JOIN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	KILL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	KSH(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Definitions.
	Commands.
	Comments.
	Aliasing.
	Tilde Substitution.
	Command Substitution.
	Parameter Substitution.
	Blank Interpretation.
	File Name Generation.
	Quoting.
	Arithmetic Evaluation.
	Prompting.
	Input/Output.
	Environment.
	Functions.
	Jobs.
	Signals.
	Execution.
	Command Re-entry.
	In-line Editing Options
	Emacs Editing Mode
	Vi Editing Mode
	 Input Edit Commands
	 Motion Edit Commands
	 Search Edit Commands
	 Text Modification Edit Commands
	 Other Edit Commands
	Special Commands.
	Invocation.
	Rsh Only.

	EXIT STATUS
	FILES
	SEE ALSO
	CAVEATS

	LAB(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	LANGS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	LCOC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	DIAGNOSTICS
	IDENTIFICATION
	SEE ALSO
	BUGS

	LCOMP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	LD(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	ld80(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	LEARN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	LEX(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	LIBRARY(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS
	FILES
	SEE ALSO

	LIM(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	LINT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	LISP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	LOAD(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	LOOK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	LORDER(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	LP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	LPR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	LS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	M4(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES

	Mail(1)
	NAME
	SYNOPSIS
	FILES
	SEE ALSO

	MAIL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Printing Mail
	Sending Mail
	Mailboxes

	FILES
	SEE ALSO
	BUGS

	MAILX(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	COMMANDS
	TILDE ESCAPES
	ENVIRONMENT VARIABLES

	FILES
	SEE ALSO

	MAKE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	MAN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	MAPLE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	FILES
	AUTHOR
	FOR HELP

	MATCH(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	USES
	SEE ALSO
	SUPPORT

	MATLAB(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	MEMO(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	MINT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	COMMAND OPTIONS
	INITIALIZATION FILE
	PROCEDURE DATABASE FILES
	EXAMPLES
	FILES USED
	SEE ALSO
	STATUS

	MK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Definitions
	Building the Dependency Dag
	Execution
	Aggregates
	Environment
	Syntax

	EXAMPLES
	SEE ALSO
	BUGS

	MKDIR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	MKDIST(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	MKSTAND(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	SUPPORT

	MKSTR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	AUTHORS

	MM(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	HINTS
	SEE ALSO
	DIAGNOSTICS

	MMT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	HINT
	SEE ALSO
	DIAGNOSTICS

	MONK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	MP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	NEWCSH(1)
	NAME
	SYNOPSIS
	SUMMARY
	SEE ALSO
	BUGS

	NEWGRP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	NEWSCHECK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	NICE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	FILES
	DIAGNOSTICS
	BUGS

	NM(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	NM80(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	OCC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	IDENTIFICATION
	SEE ALSO
	BUGS

	OCDEBUG(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	IDENTIFICATION
	SEE ALSO
	BUGS

	OCR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Fonts

	SEE ALSO
	BUGS

	LINT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	OPR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	OPS5(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	ORG(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS
	SUPPORT

	SH(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Commands.
	Comments.
	Command Substitution.
	Parameter Substitution.
	Blank Interpretation.
	File Name Generation.
	Quoting.
	Prompting.
	Input/Output.
	Environment.
	Signals.
	Execution.
	Special Commands.
	Invocation.

	EXIT STATUS
	FILES
	SEE ALSO
	BUGS

	P(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	PACK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	PAPER(1)
	NAME
	SYNOPSIS

	PASCAL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PASSWD(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	PATCH(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	ENVIRONMENT
	FILES
	SEE ALSO
	DIAGNOSTICS
	CAVEATS
	BUGS

	PC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PIC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	PICASSO(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	SEE ALSO
	REFERENCE
	BUGS

	PICO(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	PL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	PLOT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	POST(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	DIAGNOSTICS

	PP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	PREFER(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	PRINTENV(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PROF(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	PROOFR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	FILES
	SEE ALSO
	BUGS
	SUPPORT

	PROSE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	SUPPORT

	PS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	PSIFILE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PSIX(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PTX(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	PUNCT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	PUSH(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	PWD(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	PWINTF(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FORMATS
	IDENTIFIERS
	FILES
	SEE ALSO
	DIAGNOSTICS

	PXP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	QED(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	DIAGNOSTICS
	SEE ALSO
	U of T INFO
	BUGS

	QSNAP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	RANDOM(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	RATES(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	RATFOR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	RC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Command Lines
	Simple Commands
	Arguments and Variables
	Free Carets
	I/O Redirections
	Compound Commands
	Built-in Commands
	Environment
	Special Variables
	Invocation

	BUGS

	RCP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	READSLOW(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	REFER(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	REMSHENT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	REV(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES

	RM(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	RSCAN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SDB(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	SED(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	SENDNEWS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SEQ(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	BUGS

	SERVER(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	SEXIST(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	FILES
	SEE ALSO
	BUGS
	SUPPORT

	SH(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Definitions
	Commands
	Comments
	Command Substitution
	Parameter Substitution
	Blank Interpretation
	File Name Generation
	Quoting
	Prompting
	Input/Output
	Environment
	Signals
	Execution
	Builtin Commands
	Invocation

	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	SHSTATS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	SIGN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	SIZE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SIZE80(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	SLEEP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	SML(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	SNO(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SNOCONE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Lexical conventions
	Binary operators, grouped by decreasing precedence
	Unary operators
	Statements

	SEE ALSO
	BUGS

	SOELIM(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	AUTHOR
	BUGS

	SORT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	SPELL(1)
	NAME
	SYNOPSIS
	FILES
	SEE ALSO
	BUGS

	SPELLTELL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	SUPPORT

	SPELLWWB(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	SUPPORT

	SPIN(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SPITBOL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	MISCELLANY
	FILES
	SEE ALSO

	SPLINE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	SPLIT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	STRINGS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	STRIP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	DIAGNOSTICS
	IDENTIFICATION
	SEE ALSO

	STRUCT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	STTY(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SUM(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SYL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	BUGS
	SUPPORT

	TABS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	TAIL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	TALK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	TAPE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	TAR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	TBL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	TDC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES

	TEE(1)
	NAME
	SYNOPSIS
	DESCRIPTION

	TELNET(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	TEST(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	TEX(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	TIME(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	TK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	TR(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	TR2TEX(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS
	AUTHOR

	TRACK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	TROFF(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Troff only
	Nroff only

	FILES
	SEE ALSO

	TRUE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	TSET(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	TSORT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	TTY(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	TWIG(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	UL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	UNIQ(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	UPTIME(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	USTATS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	UUCP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	UUENCODE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	UUREC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	UUSTAT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	UUTO(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	UUX(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	VI(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	VIEW2D(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	VIS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	VISI(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Commands
	Built-in Functions
	Other Special Definitions

	SEE ALSO
	FILES
	BUGS

	VSW(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	W(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	AUTHOR
	BUGS

	WC(1)
	NAME
	SYNOPSIS
	DESCRIPTION

	WHO(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	WORDUSE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	SUPPORT

	WRITE(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	WWB(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS
	SUPPORT

	WWBHELP(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	FILES
	SEE ALSO
	SUPPORT

	WWBINFO(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SUPPORT

	WWBMAIL(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	SUPPORT

	WWBSTAND(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	SUPPORT

	WWV(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	XARGS(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	XD(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	YACC(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	YES(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	DATE(1)
	NAME
	SYNOPSIS
	DESCRIPTION

	Section 1c
	UUCLEAN(1C)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	UUDIFF(1C)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	UUENCODE(1C)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	AUTHOR
	BUGS

	UUSEND(1C)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	SEE ALSO
	AUTHOR
	BUGS

	Section 1g
	GPLOT(1G)
	NAME
	SYNOPSIS
	DESCRIPTION

	PINS(1G)
	NAME
	SYNOPSIS
	DESCRIPTION

	prtx(1G)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	FILES
	DIAGNOSTICS
	BUGS
	AUTHOR

	System Calls Manual
	INTRO(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	File I/O
	Process execution and control
	Timekeeping

	SEE ALSO
	DIAGNOSTICS
	BUGS

	ACCESS(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	ACCT(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	ALARM(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	BRK(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	CHDIR(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	CHMOD(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	DEPRECATED(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	DIRREAD(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	DUP(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	EXEC(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	EXIT(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	FMOUNT(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	FORK(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	GETUID(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	IOCTL(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	LIMITS(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	SEE ALSO

	LINK(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	LSEEK(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	MKDIR(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	MKNOD(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	MPX(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	NICE(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	OPEN(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PIPE(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PROFIL(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	READ(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	SELECT(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	SIGNAL(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	STAT(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	STIME(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	SYNC(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	SYSCALL(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	TIME(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	TIMES(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	UMASK(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	UNLINK(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	VTIMES(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	Section 2j
	KILLPG(2J)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	SETPGRP(2J)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	SIGSYS(2J)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS
	ASSEMBLER (PDP-11)
	NOTES (VAX-11)

	WAIT3(2J)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	Section 2v
	REBOOT(2V)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	VADVISE(2V)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	VFORK(2V)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	VHANGUP(2V)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	VLIMIT(2V)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	VREAD(2V)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	VSWAPON(2V)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	VTIMES(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	VWRITE(2V)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	Library Functions Manual
	INTRO(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	ABORT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	ARITH(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	ASSERT(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS

	ATOF(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	BESSEL(3M)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS

	BITS(3+)
	NAME
	SYNOPSIS
	DESCRIPTION
	Constructors
	Operators
	Other functions

	DIAGNOSTICS
	BUGS

	BLOCK(3+)
	NAME
	SYNOPSIS
	DESCRIPTION
	Constructors
	Operations
	Other functions
	Performance

	EXAMPLES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	CBT(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	CHRTAB(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	CLOSESHARES(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	CRYPT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	CTIME(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	CTYPE(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	CURSES(3X)
	NAME
	DESCRIPTION
	SEE ALSO
	FUNCTIONS

	DBM(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	DIALOUT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	DIRECTORY(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	ECVT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	END(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	ERF(3M)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS

	EXIT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	EXP(3M)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	FERROR(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	FGETS(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	FILEBUF(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS
	SEE ALSO

	FIO(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	FLOOR(3M)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	FOPEN(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	FREAD(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	FREXP(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS

	FSEEK(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	FSTREAM(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	FTW(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	GALLOC(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	GAMMA(3M)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	DIAGNOSTICS
	BUGS

	GETARG(3F)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	GETC(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	GETDATE(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	AUTHOR
	BUGS

	GETENV(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	GETFIELDS(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	GETFLAGS(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS

	GETFLDS(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	BUGS

	GETFSENT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	GETGRENT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	GETLOGIN(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	GETOPT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS

	GETPASS(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	GETPWENT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	GETSHARES(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	GETSHPUT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	GETWD(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	HUFF(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	HYPOT(3M)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	INTERNET(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	IOSTREAM(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS
	SEE ALSO

	IPC(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	IREAD(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	SEE ALSO

	ISTREAM(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS
	SEE ALSO

	L3TOL(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	MALLOC(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	MANIP(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS
	SEE ALSO

	MAP(3+)
	NAME
	SYNOPSIS
	DESCRIPTION
	Map constructors
	Map operators
	Other Map functions
	Map iterators
	Mapiter constructors
	Mapiter operators
	Other mapiter functions

	EXAMPLES
	BUGS

	MEMORY(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	MKTEMP(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	MONITOR(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	MP(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	BUGS

	NLIST(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	OPENSHARES(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	IOS.OUT(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	PERROR(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	PICFILE(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PIPEBUF(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS
	SEE ALSO

	PIPESTREAM(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	PLOT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	POLY(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	POOL(3+)
	NAME
	SYNOPSIS
	DESCRIPTION
	Performance

	EXAMPLES
	SEE ALSO

	POPEN(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PORT(3X)
	NAME
	DESCRIPTION
	SEE ALSO

	PRINT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	PRINTF(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	PROJ(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	Projection generators

	SEE ALSO
	BUGS

	PUTSHARES(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	QSORT(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	RAND(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	RE(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	Regular Expressions

	SEE ALSO
	DIAGNOSTICS
	BUGS

	REGEX(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	REGEXP(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	SBUF.PROT(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS
	SEE ALSO

	SBUF.PUB(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS
	SEE ALSO

	SCANF(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	SETBUF(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SETJMP(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SETLIMITS(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	SEE ALSO

	SETUPGROUPS(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SETUPSHARES(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	SEE ALSO

	SHARESFILE(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SIN(3M)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	BUGS

	SINH(3M)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS

	SLEEP(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SSBUF(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	STDIO(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	STDIOBUF(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	STRING(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	STRSTREAM(3I+)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SWAB(3)
	NAME
	SYNOPSIS
	DESCRIPTION

	SYSTEM(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	TCP(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	TERMCAP(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	TIMEC(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	TOLOWER(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	TTYNAME(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	UDP(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	UNAME(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	DIAGNOSTICS

	UNGETC(3S)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	VALLOC(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	BUGS

	VARARGS(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES

	VIEW2D(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	Section 3j
	JOBS(3J)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	Section 3x
	PLOT(3X)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	Kernel Interfaces Manual
	INTRO(4)
	NAME
	DESCRIPTION
	SEE ALSO

	BK(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	BUFLD(4)
	NAME
	DESCRIPTION
	SEE ALSO

	CONNLD(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	CONSOLE(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	DH(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	DK(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	DRUM(4)
	NAME
	DESCRIPTION
	FILES
	BUGS

	DZ(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	ETHERNET(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	FD(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	FL(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	HP(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	HT(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	IP(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	KL(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	LP(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	MEM(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	MESGLD(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	MT(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	NEWTTY(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	NULL(4)
	NAME
	DESCRIPTION
	FILES

	PROC(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	RA(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	RK(4)
	NAME
	DESCRIPTION
	FILES
	BUGS

	RV(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	SCSI(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	STREAM(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	TBL(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	TCP(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	TTY(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	TTYLD(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	UP(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	VA(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	VC(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	VP(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	File Formats Manual
	80.out(5)
	NAME
	DESCRIPTION
	SEE ALSO
	SYMBOL TABLE

	A.OUT(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	ACCT(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	ALIASES(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	AR(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	BACKUP(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	CONFIG(5)
	NAME
	DESCRIPTION

	CORE(5)
	NAME
	DESCRIPTION
	SEE ALSO

	CPIO(5)
	NAME
	DESCRIPTION
	SEE ALSO

	DIR(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	DUMP(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	ENVIRON(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	FILSYS(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	FONT(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	FSTAB(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	LNODE(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	kern_lnode

	SEE ALSO

	MAP(5)
	NAME
	DESCRIPTION
	SEE ALSO

	MPXIO(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	NETNEWS(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	PASSWD(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	PICFILE(5)
	NAME
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	PLOT(5)
	NAME
	DESCRIPTION
	Open & Close
	Basic Plotting Commands
	Commands Controlling the Environment

	SEE ALSO

	POLY(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	SHARE(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SCHEDULING GROUPS
	CHARGES
	NICE
	MANAGEMENT

	FILES
	SEE ALSO
	REFERENCES

	SHARES(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	STAB(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	TERMCAP(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	TP(5)
	NAME
	DESCRIPTION
	SEE ALSO
	BUGS

	TROFF(5)
	NAME
	DESCRIPTION
	SEE ALSO

	TTYS(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	TTYTYPE(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	TYPES(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	UTMP(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	UUENCODE(5)
	NAME
	DESCRIPTION
	SEE ALSO

	VFONT(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	VIEW2D(5)
	NAME
	DESCRIPTION
	SEE ALSO

	WHOAMI(5)
	NAME
	DESCRIPTION
	FILES

	WORM(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	Section 5g
	prtx(5G)
	NAME
	DESCRIPTION
	HISTORY
	FUTURE PLANS
	SEE ALSO
	AUTHOR

	prtxfont(5G)
	NAME
	DESCRIPTION
	AUTHOR

	Games Manual
	ADVENTURE(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	ARITHMETIC(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	ASCII(6)
	NAME
	DESCRIPTION
	FILES

	ATC(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	BACK(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	BANNER(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	BCD(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	BIANCHI(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	WARNING!
	BUGS

	BOGGLE(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	BRIDGE(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	CARDS(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	CHESS(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	DIAGNOSTICS
	WARNING
	BUGS

	CHING(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	DOCTOR(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	EQNCHAR(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	SAY(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	HANGMAN(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	IMP(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	IPA(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	LATEX(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	MAIL(6)
	NAME
	DESCRIPTION
	Network addresses
	Local addresses
	Addresses to/from major networks

	FILES
	SEE ALSO

	MAN(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	REQUESTS
	BUGS

	MARS(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	MBITS(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	MCS(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	MILLE(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	Cards
	Rules
	Hazards and Remedies

	AUTHOR
	SEE ALSO

	MONOP(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	MPICTURES(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	MPM(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	MS(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	REQUESTS

	NUMBER(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	OGRE(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	MISCELLANEOUS
	AUTHOR
	SEE ALSO
	BUGS

	QUIZ(6)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	REDCODE(6)
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	SNAKE(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	TERM(6)
	NAME
	DESCRIPTION
	SEE ALSO
	BUGS

	warp(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	WORMS(6)
	NAME
	SYNOPSIS
	DESCRIPTION

	Miscellaneous Information Manual
	APNEWS(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	BUGS

	DIST(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	AVW(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	CAL(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	DICT(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	DKNAME(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES

	GREEK(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	HIER(7)
	NAME
	DESCRIPTION
	SEE ALSO
	BUGS

	LIBRARY(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	BUGS

	MAP(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	ME(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	REQUESTS

	NETLIB(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES

	NETNEWS(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	NEWS(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	PAPERS(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	POLY(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	POSTNEWS(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	PQ(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	QNS(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	READNEWS(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	SCAT(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	SKY(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	SUBMIT(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	DIAGNOSTICS
	SEE ALSO
	BUGS

	TEL(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	TELNO(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	TOWN(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	UNITS(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	WEATHER(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	WX(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	System Manager's Manual
	11(8)
	NAME
	DESCRIPTION
	FILES

	AC(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	ADDUSER(8)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	ANALYZE(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	AUTHORS
	DIAGNOSTICS

	ARCV(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	ARFF(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	AUTHORS
	BUGS

	ASD(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	BACKUP(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	CHOWN(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	CHUCK(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	CLRI(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	CONFIG(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	CPP(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	CRASH(8)
	NAME
	DESCRIPTION
	SEE ALSO
	BUGS

	CRON(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	DCHECK(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	DELIVERMAIL(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	DKMGR(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	DMESG(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	DUMP(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	DUMPDIR(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	EXPIRE(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	FSCK(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	FSTAT(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	GETTY(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	HALT(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	ICHECK(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	INEWS(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	INIT(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	INSTALL(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	IPCONFIG(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	KMC(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	LDPCS(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	LOGIN(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	MAKEKEY(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	MKFS(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS
	MACHINE DEPENDENCIES

	MKNOD(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	Block devices
	Character devices

	SEE ALSO

	MKPKG(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	MOUNT(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	NETFS(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	Client
	Server

	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	NETSTAT(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS

	NS(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	POSTBGI(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	BUGS
	FILES
	SEE ALSO

	POSTIO(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	POSTREVERSE(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	DIAGNOSTICS
	BUGS
	SEE ALSO

	POSTSCRIPT(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PSTAT(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	QUOT(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	RAREPL(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	RC(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	REBOOT(8)
	NAME
	DESCRIPTION
	Rebooting a running system
	Power fail and crash recovery
	Console boots
	System core images

	FILES
	SEE ALSO
	BUGS

	RECNEWS(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	RESTOR(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	ROUTE(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	SA(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	SAVECORE(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	SEE ALSO
	BUGS

	SCSISH(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	General SCSI Commands
	SONY Commands
	Jukebox Commands

	SEE ALSO

	SENDCOVER(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	SENDNEWS(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SHIP(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	SHOWQ(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	SHUTDOWN(8)
	NAME
	DESCRIPTION
	SEE ALSO

	SMASH(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SMSTAT(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	SMTP(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	STICKY(8)
	NAME
	DESCRIPTION
	BUGS

	SU(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SVCMGR(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	SWAPON(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	SYMORDER(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	SYNC(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	TCPMGR(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	TP(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	UPAS(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	Rewrite rules

	EXAMPLES
	FILES
	SEE ALSO

	UUCICO(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	UUCLEANUP(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	UUREC(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	VIPW(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	FILES
	BUGS

	VMSTAT(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	VPAC(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	WALL(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	WORM(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	Etiquette
	Programming considerations

	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	XSTR(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	Kernel Developer's Manual
	INTRO(9)
	NAME
	SYNOPSIS
	DESCRIPTION
	Teletype 630

	FILES
	SEE ALSO
	BUGS

	32LD(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	3CC(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	ADD(9.3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	ALLOC(9.3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	BITBLT(9.3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	BITFILE(9.5)
	NAME
	DESCRIPTION
	SEE ALSO

	BLITBLT(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	BLITMAP(9.7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	BRUSH(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	BUTTON(9.2)
	NAME
	SYNOPSIS
	DESCRIPTION

	CIP(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	CIRCLE(9.3)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	COS(9.3)
	NAME
	SYNOPSIS
	DESCRIPTION
	DIAGNOSTICS
	BUGS

	CRABS(9.6)
	NAME
	SYNOPSIS
	DESCRIPTION

	DEMO(9.6)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	BUGS

	FACE(9.7)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	FACED(9.5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	FLICKFILE(9.5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	FLICKS(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	FONT(9.5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	GEBACA(9.6)
	NAME
	SYNOPSIS
	DESCRIPTION

	GETFONT(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO

	GRAPHDRAW(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	File format
	Algorithm animation

	SEE ALSO
	BUGS

	ICON(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	JF(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS

	JIM(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	BUGS

	JIOCTL(9.4)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	JX(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	LENS(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	LIBC(9.3)
	NAME
	DESCRIPTION
	SEE ALSO

	LSH(9.9)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	MCC(9.1)
	NAME
	SYNOPSIS
	FILES
	OTHER PROGRAMS
	SEE ALSO
	DIAGNOSTICS

	MENUHIT(9.3)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES

	MLD(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	MOUSE(9.4)
	NAME
	DESCRIPTION

	MOVIE(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Movie scripts

	FILES
	SEE ALSO
	BUGS

	MUX(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	MUXSTRING(9.3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	NEWLAYER(9.2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	NEWPROC(9.2)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	PADS(9.5)
	NAME
	DESCRIPTION
	SEE ALSO

	PAINT(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	PED(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	PENGO(9.6)
	NAME
	SYNOPSIS
	DESCRIPTION

	PI(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Process Window
	Globals and Stack Frame Windows
	Source Text Windows
	Breakpoints Window
	Signals Window
	Raw Memory Window
	(Dis)assembler Window
	Exec and Fork
	Kernel
	Just A Traceback
	3pi
	Remote Debugging
	3pi Graphics
	3pi - pi

	SEE ALSO
	BUGS

	PROOF(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	BUGS

	PSI(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	READER(9.7)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	REBECCA(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	REQUEST(9.2)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	BUGS

	RULER(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	SAM(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Regular expressions
	Addresses
	Simple Addresses
	Compound Addresses
	Commands
	Text commands
	Display commands
	File commands
	I/O Commands
	Loops and Conditionals
	Miscellany
	Grouping and multiple changes
	The terminal
	Manipulating text
	Abnormal termination

	FILES
	SEE ALSO
	BUGS

	SAMUEL(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Unopen
	Smudge
	Advisor
	Browser
	Interpreter
	Other features
	Commands
	Options
	Environment Variables

	FILES
	SEE ALSO
	BUGS

	STRING(9.3)
	NAME
	SYNOPSIS
	DESCRIPTION

	TERM(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	THINKBLT(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	BUGS

	THINKCLIENT(9.3)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS

	TWID(9.6)
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	TYPES(9.5)
	NAME
	SYNOPSIS
	DESCRIPTION

	VISMON(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	WINDOWS(9.1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	DIAGNOSTICS
	BUGS

	Section 10
	CDL(10.5)
	NAME
	DESCRIPTION
	LOGICAL DESIGN

	SEE ALSO

	FIZZ(10.5)
	NAME
	DESCRIPTION
	Concepts
	Syntax
	Items

	SEE ALSO

	FSM(10.5)
	NAME
	DESCRIPTION

	GRAW(10.5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	LDE(10.5)
	NAME
	DESCRIPTION
	EXAMPLES

	MDS(10.5)
	NAME
	DESCRIPTION

	MINTERM(10.5)
	NAME
	DESCRIPTION
	SEE ALSO

	PADDLE(10.5)
	NAME
	DESCRIPTION
	SEE ALSO

	SAF(10.5)
	NAME
	DESCRIPTION

	STOCK(10.5)
	NAME
	DESCRIPTION
	SEE ALSO
	FILES
	BUGS

