
GNU/Linux
THE MAN PAGES BOOK

Maintainers:
Alejandro Colomar <alx@kernel.org> 2020 - present (5.09 - HEAD)

Michael Kerrisk <mtk.manpages@gmail.com> 2004 - 2021 (2.00 - 5.13)
Andries Brouwer <aeb@cwi.nl> 1995 - 2004 (1.6 - 1.70)

Rik Faith 1993 - 1995 (1.0 - 1.5)

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

NAME
perl5004delta - what’s new for perl5.004

DESCRIPTION
This document describes differences between the 5.003 release (as documented in Programming Perl,
second edition — the Camel Book) and this one.

Supported Environments
Perl5.004 builds out of the box on Unix, Plan 9, LynxOS, VMS, OS/2, QNX, AmigaOS, and Windows
NT. Perl runs on Windows 95 as well, but it cannot be built there, for lack of a reasonable command
interpreter.

Core Changes
Most importantly, many bugs were fixed, including several security problems. See the Changes file in
the distribution for details.

List assignment to %ENV works
%ENV = () and %ENV = @list now work as expected (except on VMS where it generates a fatal
error).

Change to ‘‘Can’t locate Foo.pm in @INC’’ error
The error ‘‘Can’t locate Foo.pm in @INC’’ now lists the contents of @INC for easier debugging.

Compilation option: Binary compatibility with 5.003
There is a new Configure question that asks if you want to maintain binary compatibility with Perl
5.003. If you choose binary compatibility, you do not have to recompile your extensions, but you
might have symbol conflicts if you embed Perl in another application, just as in the 5.003 release. By
default, binary compatibility is preserved at the expense of symbol table pollution.

$PERL5OPT environment variable
You may now put Perl options in the $PERL5OPT environment variable. Unless Perl is running with
taint checks, it will interpret this variable as if its contents had appeared on a ‘‘#!perl’’ line at the
beginning of your script, except that hyphens are optional. PERL5OPT may only be used to set the
following switches: -[DIMUdmw].

Limitations on -M, -m, and -T options
The -M and -m options are no longer allowed on the #! line of a script. If a script needs a module, it
should invoke it with the use pragma.

The -T option is also forbidden on the #! line of a script, unless it was present on the Perl command
line. Due to the way #! works, this usually means that -T must be in the first argument. Thus:

#!/usr/bin/perl -T -w

will probably work for an executable script invoked as scriptname, while:

#!/usr/bin/perl -w -T

will probably fail under the same conditions. (Non-Unix systems will probably not follow this rule.)
But perl scriptname is guaranteed to fail, since then there is no chance of -T being found on the
command line before it is found on the #! line.

More precise warnings
If you removed the -w option from your Perl 5.003 scripts because it made Perl too verbose, we
recommend that you try putting it back when you upgrade to Perl 5.004. Each new perl version tends
to remove some undesirable warnings, while adding new warnings that may catch bugs in your scripts.

Deprecated: Inherited AUTOLOAD for non-methods
Before Perl 5.004, AUTOLOAD functions were looked up as methods (using the @ISA hierarchy), even
when the function to be autoloaded was called as a plain function (e.g. Foo::bar()), not a method
(e.g. Foo->bar() or $obj->bar()).

Perl 5.005 will use method lookup only for methods’ AUTOLOADs. However, there is a significant base
of existing code that may be using the old behavior. So, as an interim step, Perl 5.004 issues an
optional warning when a non-method uses an inherited AUTOLOAD.

The simple rule is: Inheritance will not work when autoloading non-methods. The simple fix for old
code is: In any module that used to depend on inheriting AUTOLOAD for non-methods from a base
class named BaseClass, execute *AUTOLOAD = \&BaseClass::AUTOLOAD during startup.

perl v5.36.0 2019-02-18 1

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

Previously deprecated %OVERLOAD is no longer usable
Using %OVERLOAD to define overloading was deprecated in 5.003. Overloading is now defined using
the overload pragma. %OVERLOAD is still used internally but should not be used by Perl scripts. See
overload for more details.

Subroutine arguments created only when they’re modified
In Perl 5.004, nonexistent array and hash elements used as subroutine parameters are brought into
existence only if they are actually assigned to (via @_).

Earlier versions of Perl vary in their handling of such arguments. Perl versions 5.002 and 5.003 always
brought them into existence. Perl versions 5.000 and 5.001 brought them into existence only if they
were not the first argument (which was almost certainly a bug). Earlier versions of Perl never brought
them into existence.

For example, given this code:

undef @a; undef %a;
sub show { print $_[0] };
sub change { $_[0]++ };
show($a[2]);
change($a{b});

After this code executes in Perl 5.004, $a{b} exists but $a[2] does not. In Perl 5.002 and 5.003, both
$a{b} and $a[2] would have existed (but $a[2]’s value would have been undefined).

Group vector changeable with $)
The $) special variable has always (well, in Perl 5, at least) reflected not only the current effective
group, but also the group list as returned by the getgroups() C function (if there is one). However,
until this release, there has not been a way to call the setgroups() C function from Perl.

In Perl 5.004, assigning to $) is exactly symmetrical with examining it: The first number in its string
value is used as the effective gid; if there are any numbers after the first one, they are passed to the
setgroups() C function (if there is one).

Fixed parsing of $$<digit>, &$<digit>, etc.
Perl versions before 5.004 misinterpreted any type marker followed by ‘‘$’’ and a digit. For example,
‘‘$$0’’ was incorrectly taken to mean ‘‘${$}0’’ instead of ‘‘${$0}’’. This bug is (mostly) fixed in Perl
5.004.

However, the developers of Perl 5.004 could not fix this bug completely, because at least two widely-
used modules depend on the old meaning of ‘‘$$0’’ in a string. So Perl 5.004 still interprets
‘‘$$<digit>’’ in the old (broken) way inside strings; but it generates this message as a warning. And in
Perl 5.005, this special treatment will cease.

Fixed localization of $<digit>, $&, etc.
Perl versions before 5.004 did not always properly localize the regex-related special variables. Perl
5.004 does localize them, as the documentation has always said it should. This may result in $1, $2,
etc. no longer being set where existing programs use them.

No resetting of $. on implicit close
The documentation for Perl 5.0 has always stated that $. is not reset when an already-open file handle
is reopened with no intervening call to close. Due to a bug, perl versions 5.000 through 5.003 did
reset $. under that circumstance; Perl 5.004 does not.

wantarray may return undef
The wantarray operator returns true if a subroutine is expected to return a list, and false otherwise.
In Perl 5.004, wantarray can also return the undefined value if a subroutine’s return value will not
be used at all, which allows subroutines to avoid a time-consuming calculation of a return value if it
isn’t going to be used.

eval EXPR determines value of EXPR in scalar context
Perl (version 5) used to determine the value of EXPR inconsistently, sometimes incorrectly using the
surrounding context for the determination. Now, the value of EXPR (before being parsed by eval) is
always determined in a scalar context. Once parsed, it is executed as before, by providing the context
that the scope surrounding the eval provided. This change makes the behavior Perl4 compatible,
besides fixing bugs resulting from the inconsistent behavior. This program:

perl v5.36.0 2019-02-18 2

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

@a = qw(time now is time);
print eval @a;
print '|', scalar eval @a;

used to print something like ‘‘timenowis881399109|4’’, but now (and in perl4) prints ‘‘4|4’’.

Changes to tainting checks
A bug in previous versions may have failed to detect some insecure conditions when taint checks are
turned on. (Taint checks are used in setuid or setgid scripts, or when explicitly turned on with the -T
invocation option.) Although it’s unlikely, this may cause a previously-working script to now fail,
which should be construed as a blessing since that indicates a potentially-serious security hole was just
plugged.

The new restrictions when tainting include:

No glob() or <*>
These operators may spawn the C shell (csh), which cannot be made safe. This restriction will be
lifted in a future version of Perl when globbing is implemented without the use of an external
program.

No spawning if tainted $CDPATH, $ENV, $BASH_ENV
These environment variables may alter the behavior of spawned programs (especially shells) in
ways that subvert security. So now they are treated as dangerous, in the manner of $IFS and
$PATH.

No spawning if tainted $TERM doesn’t look like a terminal name
Some termcap libraries do unsafe things with $TERM. However, it would be unnecessarily harsh
to treat all $TERM values as unsafe, since only shell metacharacters can cause trouble in $TERM.
So a tainted $TERM is considered to be safe if it contains only alphanumerics, underscores,
dashes, and colons, and unsafe if it contains other characters (including whitespace).

New Opcode module and revised Safe module
A new Opcode module supports the creation, manipulation and application of opcode masks. The
revised Safe module has a new API and is implemented using the new Opcode module. Please read the
new Opcode and Safe documentation.

Embedding improvements
In older versions of Perl it was not possible to create more than one Perl interpreter instance inside a
single process without leaking like a sieve and/or crashing. The bugs that caused this behavior have all
been fixed. However, you still must take care when embedding Perl in a C program. See the updated
perlembed manpage for tips on how to manage your interpreters.

Internal change: FileHandle class based on IO::* classes
File handles are now stored internally as type IO::Handle. The FileHandle module is still supported for
backwards compatibility, but it is now merely a front end to the IO::* modules, specifically IO::Handle,
IO::Seekable, and IO::File. We suggest, but do not require, that you use the IO::* modules in new
code.

In harmony with this change, *GLOB{FILEHANDLE} is now just a backward-compatible synonym
for *GLOB{IO}.

Internal change: PerlIO abstraction interface
It is now possible to build Perl with AT&T’s sfio IO package instead of stdio. See perlapio for more
details, and the INSTALL file for how to use it.

New and changed syntax
$coderef->(PARAMS)

A subroutine reference may now be suffixed with an arrow and a (possibly empty) parameter list.
This syntax denotes a call of the referenced subroutine, with the given parameters (if any).

This new syntax follows the pattern of $hashref->{FOO} and $aryref->[$foo]: You
may now write &$subref($foo) as $subref->($foo). All these arrow terms may be
chained; thus, &{$table->{FOO}}($bar) may now be written
$table->{FOO}->($bar).

perl v5.36.0 2019-02-18 3

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

New and changed builtin constants
_ _PACKAGE_ _

The current package name at compile time, or the undefined value if there is no current package
(due to a package; directive). Like _ _FILE_ _ and _ _LINE_ _, _ _PACKAGE_ _ does not
interpolate into strings.

New and changed builtin variables
$ˆE Extended error message on some platforms. (Also known as $EXTENDED_OS_ERROR if you

use English).

$ˆH
The current set of syntax checks enabled by use strict. See the documentation of strict
for more details. Not actually new, but newly documented. Because it is intended for internal use
by Perl core components, there is no use English long name for this variable.

$ˆM
By default, running out of memory it is not trappable. However, if compiled for this, Perl may use
the contents of $ˆM as an emergency pool after die()ing with this message. Suppose that your
Perl were compiled with -DPERL_EMERGENCY_SBRK and used Perl’s malloc. Then

$ˆM = 'a' x (1<<16);

would allocate a 64K buffer for use when in emergency. See the INSTALL file for information on
how to enable this option. As a disincentive to casual use of this advanced feature, there is no
use English long name for this variable.

New and changed builtin functions
delete on slices

This now works. (e.g. delete @ENV{'PATH', 'MANPATH'})

flock
is now supported on more platforms, prefers fcntl to lockf when emulating, and always flushes
before (un)locking.

printf and sprintf
Perl now implements these functions itself; it doesn’t use the C library function sprintf() any
more, except for floating-point numbers, and even then only known flags are allowed. As a result,
it is now possible to know which conversions and flags will work, and what they will do.

The new conversions in Perl’s sprintf() are:

%i a synonym for %d
%p a pointer (the address of the Perl value, in hexadecimal)
%n special: *stores* the number of characters output so far

into the next variable in the parameter list

The new flags that go between the % and the conversion are:

prefix octal with "0", hex with "0x"
h interpret integer as C type "short" or "unsigned short"
V interpret integer as Perl's standard integer type

Also, where a number would appear in the flags, an asterisk (‘‘*’’) may be used instead, in which
case Perl uses the next item in the parameter list as the given number (that is, as the field width or
precision). If a field width obtained through ‘‘*’’ is negative, it has the same effect as the ’-’ flag:
left-justification.

See ‘‘sprintf’’ in perlfunc for a complete list of conversion and flags.

keys as an lvalue
As an lvalue, keys allows you to increase the number of hash buckets allocated for the given
hash. This can gain you a measure of efficiency if you know the hash is going to get big. (This is
similar to pre-extending an array by assigning a larger number to $#array.) If you say

keys %hash = 200;

then %hash will have at least 200 buckets allocated for it. These buckets will be retained even if
you do %hash = (); use undef %hash if you want to free the storage while %hash is still in

perl v5.36.0 2019-02-18 4

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

scope. You can’t shrink the number of buckets allocated for the hash using keys in this way (but
you needn’t worry about doing this by accident, as trying has no effect).

my() in Control Structures
You can now use my() (with or without the parentheses) in the control expressions of control
structures such as:

while (defined(my $line = <>)) {
$line = lc $line;

} continue {
print $line;

}

if ((my $answer = <STDIN>) =˜ /ˆy(es)?$/i) {
user_agrees();

} elsif ($answer =˜ /ˆn(o)?$/i) {
user_disagrees();

} else {
chomp $answer;
die "`$answer' is neither `yes' nor `no'";

}

Also, you can declare a foreach loop control variable as lexical by preceding it with the word
‘‘my’’. For example, in:

foreach my $i (1, 2, 3) {
some_function();

}

$i is a lexical variable, and the scope of $i extends to the end of the loop, but not beyond it.

Note that you still cannot use my() on global punctuation variables such as $_ and the like.

pack() and unpack()
A new format ’w’ represents a BER compressed integer (as defined in ASN.1). Its format is a
sequence of one or more bytes, each of which provides seven bits of the total value, with the most
significant first. Bit eight of each byte is set, except for the last byte, in which bit eight is clear.

If ’p’ or ’P’ are given undef as values, they now generate a NULL pointer.

Both pack() and unpack() now fail when their templates contain invalid types. (Invalid types
used to be ignored.)

sysseek()
The new sysseek() operator is a variant of seek() that sets and gets the file’s system read/write
position, using the lseek (2) system call. It is the only reliable way to seek before using sysread()
or syswrite(). Its return value is the new position, or the undefined value on failure.

use VERSION
If the first argument to use is a number, it is treated as a version number instead of a module
name. If the version of the Perl interpreter is less than VERSION, then an error message is printed
and Perl exits immediately. Because use occurs at compile time, this check happens immediately
during the compilation process, unlike require VERSION, which waits until runtime for the
check. This is often useful if you need to check the current Perl version before useing library
modules which have changed in incompatible ways from older versions of Perl. (We try not to do
this more than we have to.)

use Module VERSION LIST
If the VERSION argument is present between Module and LIST, then the use will call the
VERSION method in class Module with the given version as an argument. The default VERSION
method, inherited from the UNIVERSAL class, croaks if the given version is larger than the value
of the variable $Module::VERSION. (Note that there is not a comma after VERSION!)

This version-checking mechanism is similar to the one currently used in the Exporter module, but
it is faster and can be used with modules that don’t use the Exporter. It is the recommended
method for new code.

perl v5.36.0 2019-02-18 5

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

prototype(FUNCTION)
Returns the prototype of a function as a string (or undef if the function has no prototype).
FUNCTION is a reference to or the name of the function whose prototype you want to retrieve.
(Not actually new; just never documented before.)

srand
The default seed for srand, which used to be time, has been changed. Now it’s a heady mix of
difficult-to-predict system-dependent values, which should be sufficient for most everyday
purposes.

Previous to version 5.004, calling rand without first calling srand would yield the same
sequence of random numbers on most or all machines. Now, when perl sees that you’re calling
rand and haven’t yet called srand, it calls srand with the default seed. You should still call
srand manually if your code might ever be run on a pre-5.004 system, of course, or if you want
a seed other than the default.

$_ as Default
Functions documented in the Camel to default to $_ now in fact do, and all those that do are so
documented in perlfunc.

m//gc does not reset search position on failure
The m//g match iteration construct has always reset its target string’s search position (which is
visible through the pos operator) when a match fails; as a result, the next m//g match after a
failure starts again at the beginning of the string. With Perl 5.004, this reset may be disabled by
adding the ‘‘c’’ (for ‘‘continue’’) modifier, i.e. m//gc. This feature, in conjunction with the \G
zero-width assertion, makes it possible to chain matches together. See perlop and perlre.

m//x ignores whitespace before ?*+{}
The m//x construct has always been intended to ignore all unescaped whitespace. However,
before Perl 5.004, whitespace had the effect of escaping repeat modifiers like ‘‘*’’ or ‘‘?’’; for
example, /a *b/x was (mis)interpreted as /a*b/x. This bug has been fixed in 5.004.

nested sub{} closures work now
Prior to the 5.004 release, nested anonymous functions didn’t work right. They do now.

formats work right on changing lexicals
Just like anonymous functions that contain lexical variables that change (like a lexical index
variable for a foreach loop), formats now work properly. For example, this silently failed
before (printed only zeros), but is fine now:

my $i;
foreach $i (1 .. 10) {

write;
}
format =

my i is @#
$i

.

However, it still fails (without a warning) if the foreach is within a subroutine:

my $i;
sub foo {

foreach $i (1 .. 10) {
write;

}
}
foo;
format =

my i is @#
$i

.

perl v5.36.0 2019-02-18 6

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

New builtin methods
The UNIVERSAL package automatically contains the following methods that are inherited by all other
classes:

isa(CLASS)
isa returns true if its object is blessed into a subclass of CLASS

isa is also exportable and can be called as a sub with two arguments. This allows the ability to
check what a reference points to. Example:

use UNIVERSAL qw(isa);

if(isa($ref, 'ARRAY')) {
...

}

can(METHOD)
can checks to see if its object has a method called METHOD, if it does then a reference to the sub
is returned; if it does not then undef is returned.

VERSION([NEED])
VERSION returns the version number of the class (package). If the NEED argument is given then
it will check that the current version (as defined by the $VERSION variable in the given package)
not less than NEED; it will die if this is not the case. This method is normally called as a class
method. This method is called automatically by the VERSION form of use.

use A 1.2 qw(some imported subs);
implies:
A->VERSION(1.2);

NOTE: can directly uses Perl’s internal code for method lookup, and isa uses a very similar method
and caching strategy. This may cause strange effects if the Perl code dynamically changes @ISA in any
package.

You may add other methods to the UNIVERSAL class via Perl or XS code. You do not need to use
UNIVERSAL in order to make these methods available to your program. This is necessary only if you
wish to have isa available as a plain subroutine in the current package.

TIEHANDLE now supported
See perltie for other kinds of tie()s.

TIEHANDLE classname, LIST
This is the constructor for the class. That means it is expected to return an object of some sort.
The reference can be used to hold some internal information.

sub TIEHANDLE {
print "<shout>\n";
my $i;
return bless \$i, shift;

}

PRINT this, LIST
This method will be triggered every time the tied handle is printed to. Beyond its self reference it
also expects the list that was passed to the print function.

sub PRINT {
$r = shift;
$$r++;
return print join($, => map {uc} @_), $\;

}

PRINTF this, LIST
This method will be triggered every time the tied handle is printed to with the printf()
function. Beyond its self reference it also expects the format and list that was passed to the printf
function.

perl v5.36.0 2019-02-18 7

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

sub PRINTF {
shift;

my $fmt = shift;
print sprintf($fmt, @_)."\n";

}

READ this LIST
This method will be called when the handle is read from via the read or sysread functions.

sub READ {
$r = shift;
my($buf,$len,$offset) = @_;
print "READ called, \$buf=$buf, \$len=$len, \$offset=$offset";

}

READLINE this
This method will be called when the handle is read from. The method should return undef when
there is no more data.

sub READLINE {
$r = shift;
return "PRINT called $$r times\n"

}

GETC this
This method will be called when the getc function is called.

sub GETC { print "Don't GETC, Get Perl"; return "a"; }

DESTROY this
As with the other types of ties, this method will be called when the tied handle is about to be
destroyed. This is useful for debugging and possibly for cleaning up.

sub DESTROY {
print "</shout>\n";

}

Malloc enhancements
If perl is compiled with the malloc included with the perl distribution (that is, if perl
-V:d_mymalloc is ’define’) then you can print memory statistics at runtime by running Perl thusly:

env PERL_DEBUG_MSTATS=2 perl your_script_here

The value of 2 means to print statistics after compilation and on exit; with a value of 1, the statistics are
printed only on exit. (If you want the statistics at an arbitrary time, you’ll need to install the optional
module Devel::Peek.)

Three new compilation flags are recognized by malloc.c. (They have no effect if perl is compiled with
system malloc().)

-DPERL_EMERGENCY_SBRK
If this macro is defined, running out of memory need not be a fatal error: a memory pool can
allocated by assigning to the special variable $ˆM. See ‘‘$ˆM’’.

-DPACK_MALLOC
Perl memory allocation is by bucket with sizes close to powers of two. Because of these malloc
overhead may be big, especially for data of size exactly a power of two. If PACK_MALLOC is
defined, perl uses a slightly different algorithm for small allocations (up to 64 bytes long), which
makes it possible to have overhead down to 1 byte for allocations which are powers of two (and
appear quite often).

Expected memory savings (with 8-byte alignment in alignbytes) is about 20% for typical Perl
usage. Expected slowdown due to additional malloc overhead is in fractions of a percent (hard to
measure, because of the effect of saved memory on speed).

-DTWO_POT_OPTIMIZE
Similarly to PACK_MALLOC, this macro improves allocations of data with size close to a power of
two; but this works for big allocations (starting with 16K by default). Such allocations are typical

perl v5.36.0 2019-02-18 8

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

for big hashes and special-purpose scripts, especially image processing.

On recent systems, the fact that perl requires 2M from system for 1M allocation will not affect
speed of execution, since the tail of such a chunk is not going to be touched (and thus will not
require real memory). However, it may result in a premature out-of-memory error. So if you will
be manipulating very large blocks with sizes close to powers of two, it would be wise to define
this macro.

Expected saving of memory is 0-100% (100% in applications which require most memory in such
2**n chunks); expected slowdown is negligible.

Miscellaneous efficiency enhancements
Functions that have an empty prototype and that do nothing but return a fixed value are now inlined
(e.g. sub PI () { 3.14159 }).

Each unique hash key is only allocated once, no matter how many hashes have an entry with that key.
So even if you have 100 copies of the same hash, the hash keys never have to be reallocated.

Support for More Operating Systems
Support for the following operating systems is new in Perl 5.004.

Win32
Perl 5.004 now includes support for building a ‘‘native’’ perl under Windows NT, using the Microsoft
Visual C++ compiler (versions 2.0 and above) or the Borland C++ compiler (versions 5.02 and above).
The resulting perl can be used under Windows 95 (if it is installed in the same directory locations as it
got installed in Windows NT). This port includes support for perl extension building tools like
ExtUtils::MakeMaker and h2xs, so that many extensions available on the Comprehensive Perl Archive
Network (CPAN) can now be readily built under Windows NT. See http://www.perl.com/ for more
information on CPAN and README.win32 in the perl distribution for more details on how to get started
with building this port.

There is also support for building perl under the Cygwin32 environment. Cygwin32 is a set of GNU
tools that make it possible to compile and run many Unix programs under Windows NT by providing a
mostly Unix-like interface for compilation and execution. See README.cygwin32 in the perl
distribution for more details on this port and how to obtain the Cygwin32 toolkit.

Plan 9
See README.plan9 in the perl distribution.

QNX
See README.qnx in the perl distribution.

AmigaOS
See README.amigaos in the perl distribution.

Pragmata
Six new pragmatic modules exist:

use autouse MODULE => qw(sub1 sub2 sub3)
Defers require MODULE until someone calls one of the specified subroutines (which must be
exported by MODULE). This pragma should be used with caution, and only when necessary.

use blib
use blib ’dir’

Looks for MakeMaker-like ’blib’ directory structure starting in dir (or current directory) and
working back up to five levels of parent directories.

Intended for use on command line with -M option as a way of testing arbitrary scripts against an
uninstalled version of a package.

use constant NAME => VALUE
Provides a convenient interface for creating compile-time constants, See ‘‘Constant Functions’’ in
perlsub.

use locale
Tells the compiler to enable (or disable) the use of POSIX locales for builtin operations.

When use locale is in effect, the current LC_CTYPE locale is used for regular expressions and

perl v5.36.0 2019-02-18 9

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

case mapping; LC_COLLATE for string ordering; and LC_NUMERIC for numeric formatting in
printf and sprintf (but not in print). LC_NUMERIC is always used in write, since lexical scoping of
formats is problematic at best.

Each use locale or no locale affects statements to the end of the enclosing BLOCK or, if
not inside a BLOCK, to the end of the current file. Locales can be switched and queried with
POSIX::setlocale().

See perllocale for more information.

use ops
Disable unsafe opcodes, or any named opcodes, when compiling Perl code.

use vmsish
Enable VMS-specific language features. Currently, there are three VMS-specific features
available: ’status’, which makes $? and system return genuine VMS status values instead of
emulating POSIX; ’exit’, which makes exit take a genuine VMS status value instead of assuming
that exit 1 is an error; and ’time’, which makes all times relative to the local time zone, in the
VMS tradition.

Modules
Required Updates

Though Perl 5.004 is compatible with almost all modules that work with Perl 5.003, there are a few
exceptions:

Module Required Version for Perl 5.004
------ -------------------------------
Filter Filter-1.12
LWP libwww-perl-5.08
Tk Tk400.202 (-w makes noise)

Also, the majordomo mailing list program, version 1.94.1, doesn’t work with Perl 5.004 (nor with perl
4), because it executes an invalid regular expression. This bug is fixed in majordomo version 1.94.2.

Installation directories
The installperl script now places the Perl source files for extensions in the architecture-specific library
directory, which is where the shared libraries for extensions have always been. This change is intended
to allow administrators to keep the Perl 5.004 library directory unchanged from a previous version,
without running the risk of binary incompatibility between extensions’ Perl source and shared libraries.

Module information summary
Brand new modules, arranged by topic rather than strictly alphabetically:

CGI.pm Web server interface ("Common Gateway Interface")
CGI/Apache.pm Support for Apache's Perl module
CGI/Carp.pm Log server errors with helpful context
CGI/Fast.pm Support for FastCGI (persistent server process)
CGI/Push.pm Support for server push
CGI/Switch.pm Simple interface for multiple server types

CPAN Interface to Comprehensive Perl Archive Network
CPAN::FirstTime Utility for creating CPAN configuration file
CPAN::Nox Runs CPAN while avoiding compiled extensions

IO.pm Top-level interface to IO::* classes
IO/File.pm IO::File extension Perl module
IO/Handle.pm IO::Handle extension Perl module
IO/Pipe.pm IO::Pipe extension Perl module
IO/Seekable.pm IO::Seekable extension Perl module
IO/Select.pm IO::Select extension Perl module
IO/Socket.pm IO::Socket extension Perl module

Opcode.pm Disable named opcodes when compiling Perl code

perl v5.36.0 2019-02-18 10

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

ExtUtils/Embed.pm Utilities for embedding Perl in C programs
ExtUtils/testlib.pm Fixes up @INC to use just-built extension

FindBin.pm Find path of currently executing program

Class/Struct.pm Declare struct-like datatypes as Perl classes
File/stat.pm By-name interface to Perl's builtin stat
Net/hostent.pm By-name interface to Perl's builtin gethost*
Net/netent.pm By-name interface to Perl's builtin getnet*
Net/protoent.pm By-name interface to Perl's builtin getproto*
Net/servent.pm By-name interface to Perl's builtin getserv*
Time/gmtime.pm By-name interface to Perl's builtin gmtime
Time/localtime.pm By-name interface to Perl's builtin localtime
Time/tm.pm Internal object for Time::{gm,local}time
User/grent.pm By-name interface to Perl's builtin getgr*
User/pwent.pm By-name interface to Perl's builtin getpw*

Tie/RefHash.pm Base class for tied hashes with references as keys

UNIVERSAL.pm Base class for *ALL* classes

Fcntl
New constants in the existing Fcntl modules are now supported, provided that your operating system
happens to support them:

F_GETOWN F_SETOWN
O_ASYNC O_DEFER O_DSYNC O_FSYNC O_SYNC
O_EXLOCK O_SHLOCK

These constants are intended for use with the Perl operators sysopen() and fcntl() and the basic
database modules like SDBM_File. For the exact meaning of these and other Fcntl constants please
refer to your operating system’s documentation for fcntl() and open().

In addition, the Fcntl module now provides these constants for use with the Perl operator flock():

LOCK_SH LOCK_EX LOCK_NB LOCK_UN

These constants are defined in all environments (because where there is no flock() system call, Perl
emulates it). However, for historical reasons, these constants are not exported unless they are explicitly
requested with the ‘‘:flock’’ tag (e.g. use Fcntl ':flock').

IO
The IO module provides a simple mechanism to load all the IO modules at one go. Currently this
includes:

IO::Handle
IO::Seekable
IO::File
IO::Pipe
IO::Socket

For more information on any of these modules, please see its respective documentation.

Math::Complex
The Math::Complex module has been totally rewritten, and now supports more operations. These are
overloaded:

+ - * / ** <=> neg ˜ abs sqrt exp log sin cos atan2 "" (stringify)

And these functions are now exported:

perl v5.36.0 2019-02-18 11

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

pi i Re Im arg
log10 logn ln cbrt root
tan
csc sec cot
asin acos atan
acsc asec acot
sinh cosh tanh
csch sech coth
asinh acosh atanh
acsch asech acoth
cplx cplxe

Math::Trig
This new module provides a simpler interface to parts of Math::Complex for those who need
trigonometric functions only for real numbers.

DB_File
There have been quite a few changes made to DB_File. Here are a few of the highlights:

• Fixed a handful of bugs.

• By public demand, added support for the standard hash function exists().

• Made it compatible with Berkeley DB 1.86.

• Made negative subscripts work with RECNO interface.

• Changed the default flags from O_RDWR to O_CREAT|O_RDWR and the default mode from
0640 to 0666.

• Made DB_File automatically import the open() constants (O_RDWR, O_CREAT etc.) from Fcntl,
if available.

• Updated documentation.

Refer to the HISTORY section in DB_File.pm for a complete list of changes. Everything after DB_File
1.01 has been added since 5.003.

Net::Ping
Major rewrite - support added for both udp echo and real icmp pings.

Object-oriented overrides for builtin operators
Many of the Perl builtins returning lists now have object-oriented overrides. These are:

File::stat
Net::hostent
Net::netent
Net::protoent
Net::servent
Time::gmtime
Time::localtime
User::grent
User::pwent

For example, you can now say

use File::stat;
use User::pwent;
$his = (stat($filename)->st_uid == pwent($whoever)->pw_uid);

Utility Changes
pod2html

Sends converted HTML to standard output
The pod2html utility included with Perl 5.004 is entirely new. By default, it sends the converted
HTML to its standard output, instead of writing it to a file like Perl 5.003’s pod2html did. Use the
--outfile=FILENAME option to write to a file.

perl v5.36.0 2019-02-18 12

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

xsubpp
void XSUBs now default to returning nothing

Due to a documentation/implementation bug in previous versions of Perl, XSUBs with a return
type of void have actually been returning one value. Usually that value was the GV for the
XSUB, but sometimes it was some already freed or reused value, which would sometimes lead to
program failure.

In Perl 5.004, if an XSUB is declared as returning void, it actually returns no value, i.e. an empty
list (though there is a backward-compatibility exception; see below). If your XSUB really does
return an SV, you should give it a return type of SV *.

For backward compatibility, xsubpp tries to guess whether a void XSUB is really void or if it
wants to return an SV *. It does so by examining the text of the XSUB: if xsubpp finds what
looks like an assignment to ST(0), it assumes that the XSUB’s return type is really SV *.

C Language API Changes
gv_fetchmethod and perl_call_sv

The gv_fetchmethod function finds a method for an object, just like in Perl 5.003. The GV it
returns may be a method cache entry. However, in Perl 5.004, method cache entries are not visible
to users; therefore, they can no longer be passed directly to perl_call_sv. Instead, you
should use the GvCV macro on the GV to extract its CV, and pass the CV to perl_call_sv.

The most likely symptom of passing the result of gv_fetchmethod to perl_call_sv is
Perl’s producing an ‘‘Undefined subroutine called’’ error on the second call to a given method
(since there is no cache on the first call).

perl_eval_pv
A new function handy for eval’ing strings of Perl code inside C code. This function returns the
value from the eval statement, which can be used instead of fetching globals from the symbol
table. See perlguts, perlembed and perlcall for details and examples.

Extended API for manipulating hashes
Internal handling of hash keys has changed. The old hashtable API is still fully supported, and
will likely remain so. The additions to the API allow passing keys as SV*s, so that tied hashes
can be given real scalars as keys rather than plain strings (nontied hashes still can only use strings
as keys). New extensions must use the new hash access functions and macros if they wish to use
SV* keys. These additions also make it feasible to manipulate HE*s (hash entries), which can be
more efficient. See perlguts for details.

Documentation Changes
Many of the base and library pods were updated. These new pods are included in section 1:

perldelta
This document.

perlfaq
Frequently asked questions.

perllocale
Locale support (internationalization and localization).

perltoot
Tutorial on Perl OO programming.

perlapio
Perl internal IO abstraction interface.

perlmodlib
Perl module library and recommended practice for module creation. Extracted from perlmod
(which is much smaller as a result).

perldebug
Although not new, this has been massively updated.

perlsec
Although not new, this has been massively updated.

perl v5.36.0 2019-02-18 13

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

New Diagnostics
Several new conditions will trigger warnings that were silent before. Some only affect certain
platforms. The following new warnings and errors outline these. These messages are classified as
follows (listed in increasing order of desperation):

(W) A warning (optional).
(D) A deprecation (optional).
(S) A severe warning (mandatory).
(F) A fatal error (trappable).
(P) An internal error you should never see (trappable).
(X) A very fatal error (nontrappable).
(A) An alien error message (not generated by Perl).

‘‘my’’ variable %s masks earlier declaration in same scope
(W) A lexical variable has been redeclared in the same scope, effectively eliminating all access to
the previous instance. This is almost always a typographical error. Note that the earlier variable
will still exist until the end of the scope or until all closure referents to it are destroyed.

%s argument is not a HASH element or slice
(F) The argument to delete() must be either a hash element, such as

$foo{$bar}
$ref->[12]->{"susie"}

or a hash slice, such as

@foo{$bar, $baz, $xyzzy}
@{$ref->[12]}{"susie", "queue"}

Allocation too large: %lx
(X) You can’t allocate more than 64K on an MS-DOS machine.

Allocation too large
(F) You can’t allocate more than 2ˆ31+‘‘small amount’’ bytes.

Applying %s to %s will act on scalar(%s)
(W) The pattern match (//), substitution (s///), and transliteration (tr///) operators work on scalar
values. If you apply one of them to an array or a hash, it will convert the array or hash to a scalar
value (the length of an array or the population info of a hash) and then work on that scalar value.
This is probably not what you meant to do. See ‘‘grep’’ in perlfunc and ‘‘map’’ in perlfunc for
alternatives.

Attempt to free nonexistent shared string
(P) Perl maintains a reference counted internal table of strings to optimize the storage and access
of hash keys and other strings. This indicates someone tried to decrement the reference count of a
string that can no longer be found in the table.

Attempt to use reference as lvalue in substr
(W) You supplied a reference as the first argument to substr() used as an lvalue, which is pretty
strange. Perhaps you forgot to dereference it first. See ‘‘substr’’ in perlfunc.

Bareword ‘‘%s’’ refers to nonexistent package
(W) You used a qualified bareword of the form Foo::, but the compiler saw no other uses of that
namespace before that point. Perhaps you need to predeclare a package?

Can’t redefine active sort subroutine %s
(F) Perl optimizes the internal handling of sort subroutines and keeps pointers into them. You
tried to redefine one such sort subroutine when it was currently active, which is not allowed. If
you really want to do this, you should write sort { &func } @x instead of sort func
@x.

Can’t use bareword (‘‘%s’’) as %s ref while ‘‘strict refs’’ in use
(F) Only hard references are allowed by ‘‘strict refs’’. Symbolic references are disallowed. See
perlref.

perl v5.36.0 2019-02-18 14

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

Cannot resolve method ‘%s’ overloading ‘%s’ in package ‘%s’
(P) Internal error trying to resolve overloading specified by a method name (as opposed to a
subroutine reference).

Constant subroutine %s redefined
(S) You redefined a subroutine which had previously been eligible for inlining. See ‘‘Constant
Functions’’ in perlsub for commentary and workarounds.

Constant subroutine %s undefined
(S) You undefined a subroutine which had previously been eligible for inlining. See ‘‘Constant
Functions’’ in perlsub for commentary and workarounds.

Copy method did not return a reference
(F) The method which overloads ‘‘=’’ is buggy. See ‘‘Copy Constructor’’ in overload.

Died
(F) You passed die() an empty string (the equivalent of die "") or you called it with no args and
both $@ and $_ were empty.

Exiting pseudo-block via %s
(W) You are exiting a rather special block construct (like a sort block or subroutine) by
unconventional means, such as a goto, or a loop control statement. See ‘‘sort’’ in perlfunc.

Identifier too long
(F) Perl limits identifiers (names for variables, functions, etc.) to 252 characters for simple names,
somewhat more for compound names (like $A::B). You’ve exceeded Perl’s limits. Future
versions of Perl are likely to eliminate these arbitrary limitations.

Illegal character %s (carriage return)
(F) A carriage return character was found in the input. This is an error, and not a warning,
because carriage return characters can break multi-line strings, including here documents (e.g.,
print <<EOF;).

Illegal switch in PERL5OPT: %s
(X) The PERL5OPT environment variable may only be used to set the following switches:
-[DIMUdmw].

Integer overflow in hex number
(S) The literal hex number you have specified is too big for your architecture. On a 32-bit
architecture the largest hex literal is 0xFFFFFFFF.

Integer overflow in octal number
(S) The literal octal number you have specified is too big for your architecture. On a 32-bit
architecture the largest octal literal is 037777777777.

internal error: glob failed
(P) Something went wrong with the external program(s) used for glob and <*.c>. This may
mean that your csh (C shell) is broken. If so, you should change all of the csh-related variables in
config.sh: If you have tcsh, make the variables refer to it as if it were csh (e.g.
full_csh='/usr/bin/tcsh'); otherwise, make them all empty (except that d_csh should
be 'undef') so that Perl will think csh is missing. In either case, after editing config.sh, run
./Configure -S and rebuild Perl.

Invalid conversion in %s: ‘‘%s’’
(W) Perl does not understand the given format conversion. See ‘‘sprintf’’ in perlfunc.

Invalid type in pack: ’%s’
(F) The given character is not a valid pack type. See ‘‘pack’’ in perlfunc.

Invalid type in unpack: ’%s’
(F) The given character is not a valid unpack type. See ‘‘unpack’’ in perlfunc.

Name ‘‘%s::%s’’ used only once: possible typo
(W) Typographical errors often show up as unique variable names. If you had a good reason for
having a unique name, then just mention it again somehow to suppress the message (the use
vars pragma is provided for just this purpose).

perl v5.36.0 2019-02-18 15

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

Null picture in formline
(F) The first argument to formline must be a valid format picture specification. It was found to be
empty, which probably means you supplied it an uninitialized value. See perlform.

Offset outside string
(F) You tried to do a read/write/send/recv operation with an offset pointing outside the buffer.
This is difficult to imagine. The sole exception to this is that sysread()ing past the buffer will
extend the buffer and zero pad the new area.

Out of memory!
(X|F) The malloc() function returned 0, indicating there was insufficient remaining memory (or
virtual memory) to satisfy the request.

The request was judged to be small, so the possibility to trap it depends on the way Perl was
compiled. By default it is not trappable. However, if compiled for this, Perl may use the contents
of $ˆM as an emergency pool after die()ing with this message. In this case the error is trappable
once.

Out of memory during request for %s
(F) The malloc() function returned 0, indicating there was insufficient remaining memory (or
virtual memory) to satisfy the request. However, the request was judged large enough (compile-
time default is 64K), so a possibility to shut down by trapping this error is granted.

panic: frexp
(P) The library function frexp() failed, making printf(‘‘%f’’) impossible.

Possible attempt to put comments in qw() list
(W) qw() lists contain items separated by whitespace; as with literal strings, comment characters
are not ignored, but are instead treated as literal data. (You may have used different delimiters
than the parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

@list = qw(
a # a comment
b # another comment

);

when you should have written this:

@list = qw(
a
b

);

If you really want comments, build your list the old-fashioned way, with quotes and commas:

@list = (
'a', # a comment
'b', # another comment

);

Possible attempt to separate words with commas
(W) qw() lists contain items separated by whitespace; therefore commas aren’t needed to separate
the items. (You may have used different delimiters than the parentheses shown here; braces are
also frequently used.)

You probably wrote something like this:

qw! a, b, c !;

which puts literal commas into some of the list items. Write it without commas if you don’t want
them to appear in your data:

qw! a b c !;

perl v5.36.0 2019-02-18 16

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

Scalar value @%s{%s} better written as $%s{%s}
(W) You’ve used a hash slice (indicated by @) to select a single element of a hash. Generally it’s
better to ask for a scalar value (indicated by $). The difference is that $foo{&bar} always
behaves like a scalar, both when assigning to it and when evaluating its argument, while
@foo{&bar} behaves like a list when you assign to it, and provides a list context to its subscript,
which can do weird things if you’re expecting only one subscript.

Stub found while resolving method ‘%s’ overloading ‘%s’ in %s
(P) Overloading resolution over @ISA tree may be broken by importing stubs. Stubs should never
be implicitly created, but explicit calls to can may break this.

Too late for ‘‘-T’’ option
(X) The #! line (or local equivalent) in a Perl script contains the -T option, but Perl was not
invoked with -T in its argument list. This is an error because, by the time Perl discovers a -T in a
script, it’s too late to properly taint everything from the environment. So Perl gives up.

untie attempted while %d inner references still exist
(W) A copy of the object returned from tie (or tied) was still valid when untie was called.

Unrecognized character %s
(F) The Perl parser has no idea what to do with the specified character in your Perl script (or eval).
Perhaps you tried to run a compressed script, a binary program, or a directory as a Perl program.

Unsupported function fork
(F) Your version of executable does not support forking.

Note that under some systems, like OS/2, there may be different flavors of Perl executables, some
of which may support fork, some not. Try changing the name you call Perl by to perl_,
perl_ _, and so on.

Use of ‘‘$$<digit>’’ to mean ‘‘${$}<digit>’’ is deprecated
(D) Perl versions before 5.004 misinterpreted any type marker followed by ‘‘$’’ and a digit. For
example, ‘‘$$0’’ was incorrectly taken to mean ‘‘${$}0’’ instead of ‘‘${$0}’’. This bug is
(mostly) fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely, because at least two
widely-used modules depend on the old meaning of ‘‘$$0’’ in a string. So Perl 5.004 still
interprets ‘‘$$<digit>’’ in the old (broken) way inside strings; but it generates this message as a
warning. And in Perl 5.005, this special treatment will cease.

Value of %s can be ‘‘0’’; test with defined()
(W) In a conditional expression, you used <HANDLE>, <*> (glob), each(), or readdir() as a
boolean value. Each of these constructs can return a value of ‘‘0’’; that would make the
conditional expression false, which is probably not what you intended. When using these
constructs in conditional expressions, test their values with the defined operator.

Variable ‘‘%s’’ may be unavailable
(W) An inner (nested) anonymous subroutine is inside a named subroutine, and outside that is
another subroutine; and the anonymous (innermost) subroutine is referencing a lexical variable
defined in the outermost subroutine. For example:

sub outermost { my $a; sub middle { sub { $a } } }

If the anonymous subroutine is called or referenced (directly or indirectly) from the outermost
subroutine, it will share the variable as you would expect. But if the anonymous subroutine is
called or referenced when the outermost subroutine is not active, it will see the value of the shared
variable as it was before and during the *first* call to the outermost subroutine, which is probably
not what you want.

In these circumstances, it is usually best to make the middle subroutine anonymous, using the sub
{} syntax. Perl has specific support for shared variables in nested anonymous subroutines; a
named subroutine in between interferes with this feature.

Variable ‘‘%s’’ will not stay shared
(W) An inner (nested) named subroutine is referencing a lexical variable defined in an outer
subroutine.

perl v5.36.0 2019-02-18 17

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

When the inner subroutine is called, it will probably see the value of the outer subroutine’s
variable as it was before and during the *first* call to the outer subroutine; in this case, after the
first call to the outer subroutine is complete, the inner and outer subroutines will no longer share a
common value for the variable. In other words, the variable will no longer be shared.

Furthermore, if the outer subroutine is anonymous and references a lexical variable outside itself,
then the outer and inner subroutines will never share the given variable.

This problem can usually be solved by making the inner subroutine anonymous, using the sub
{} syntax. When inner anonymous subs that reference variables in outer subroutines are called or
referenced, they are automatically rebound to the current values of such variables.

Warning: something’s wrong
(W) You passed warn() an empty string (the equivalent of warn "") or you called it with no args
and $_ was empty.

Ill-formed logical name |%s| in prime_env_iter
(W) A warning peculiar to VMS. A logical name was encountered when preparing to iterate over
%ENV which violates the syntactic rules governing logical names. Since it cannot be translated
normally, it is skipped, and will not appear in %ENV. This may be a benign occurrence, as some
software packages might directly modify logical name tables and introduce nonstandard names, or
it may indicate that a logical name table has been corrupted.

Got an error from DosAllocMem
(P) An error peculiar to OS/2. Most probably you’re using an obsolete version of Perl, and this
should not happen anyway.

Malformed PERLLIB_PREFIX
(F) An error peculiar to OS/2. PERLLIB_PREFIX should be of the form

prefix1;prefix2

or

prefix1 prefix2

with nonempty prefix1 and prefix2. If prefix1 is indeed a prefix of a builtin library search path,
prefix2 is substituted. The error may appear if components are not found, or are too long. See
‘‘PERLLIB_PREFIX’’ in README.os2.

PERL_SH_DIR too long
(F) An error peculiar to OS/2. PERL_SH_DIR is the directory to find the sh-shell in. See
‘‘PERL_SH_DIR’’ in README.os2.

Process terminated by SIG%s
(W) This is a standard message issued by OS/2 applications, while *nix applications die in silence.
It is considered a feature of the OS/2 port. One can easily disable this by appropriate sighandlers,
see ‘‘Signals’’ in perlipc. See also ‘‘Process terminated by SIGTERM/SIGINT’’ in README.os2.

BUGS
If you find what you think is a bug, you might check the headers of recently posted articles in the
comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/perl/ , the Perl
Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Make sure you trim your bug down to a tiny but sufficient test case. Your bug report, along with the
output of perl -V, will be sent off to <perlbug@perl.com> to be analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl. This file has been significantly updated for 5.004, so even
veteran users should look through it.

The README file for general stuff.

The Copying file for copyright information.

perl v5.36.0 2019-02-18 18

PERL5004DELTA(1) Perl Programmers Reference Guide PERL5004DELTA(1)

HISTORY
Constructed by Tom Christiansen, grabbing material with permission from innumerable contributors,
with kibitzing by more than a few Perl porters.

Last update: Wed May 14 11:14:09 EDT 1997

perl v5.36.0 2019-02-18 19

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

NAME
perl5005delta - what’s new for perl5.005

DESCRIPTION
This document describes differences between the 5.004 release and this one.

About the new versioning system
Perl is now developed on two tracks: a maintenance track that makes small, safe updates to released
production versions with emphasis on compatibility; and a development track that pursues more
aggressive evolution. Maintenance releases (which should be considered production quality) have
subversion numbers that run from 1 to 49, and development releases (which should be considered
‘‘alpha’’ quality) run from 50 to 99.

Perl 5.005 is the combined product of the new dual-track development scheme.

Incompatible Changes
WARNING: This version is not binary compatible with Perl 5.004.

Starting with Perl 5.004_50 there were many deep and far-reaching changes to the language internals.
If you have dynamically loaded extensions that you built under perl 5.003 or 5.004, you can continue to
use them with 5.004, but you will need to rebuild and reinstall those extensions to use them 5.005. See
INSTALL for detailed instructions on how to upgrade.

Default installation structure has changed
The new Configure defaults are designed to allow a smooth upgrade from 5.004 to 5.005, but you
should read INSTALL for a detailed discussion of the changes in order to adapt them to your system.

Perl Source Compatibility
When none of the experimental features are enabled, there should be very few user-visible Perl source
compatibility issues.

If threads are enabled, then some caveats apply. @_ and $_ become lexical variables. The effect of this
should be largely transparent to the user, but there are some boundary conditions under which user will
need to be aware of the issues. For example, local(@_) results in a ‘‘Can’t localize lexical variable
@_ ...’’ message. This may be enabled in a future version.

Some new keywords have been introduced. These are generally expected to have very little impact on
compatibility. See "New INIT keyword", "New lock keyword", and "New qr// operator".

Certain barewords are now reserved. Use of these will provoke a warning if you have asked for them
with the -w switch. See "our is now a reserved word".

C Source Compatibility
There have been a large number of changes in the internals to support the new features in this release.

• Core sources now require ANSI C compiler

An ANSI C compiler is now required to build perl. See INSTALL.

• All Perl global variables must now be referenced with an explicit prefix

All Perl global variables that are visible for use by extensions now have a PL_ prefix. New
extensions should not refer to perl globals by their unqualified names. To preserve sanity, we
provide limited backward compatibility for globals that are being widely used like sv_undef
and na (which should now be written as PL_sv_undef, PL_na etc.)

If you find that your XS extension does not compile anymore because a perl global is not visible,
try adding a PL_ prefix to the global and rebuild.

It is strongly recommended that all functions in the Perl API that don’t begin with perl be
referenced with a Perl_ prefix. The bare function names without the Perl_ prefix are
supported with macros, but this support may cease in a future release.

See perlapi.

• Enabling threads has source compatibility issues

Perl built with threading enabled requires extensions to use the new dTHR macro to initialize the
handle to access per-thread data. If you see a compiler error that talks about the variable thr not
being declared (when building a module that has XS code), you need to add dTHR; at the

perl v5.36.0 2019-02-18 20

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

beginning of the block that elicited the error.

The API function perl_get_sv("@",GV_ADD) should be used instead of directly accessing
perl globals as GvSV(errgv). The API call is backward compatible with existing perls and
provides source compatibility with threading is enabled.

See ‘‘C Source Compatibility’’ for more information.

Binary Compatibility
This version is NOT binary compatible with older versions. All extensions will need to be recompiled.
Further binaries built with threads enabled are incompatible with binaries built without. This should
largely be transparent to the user, as all binary incompatible configurations have their own unique
architecture name, and extension binaries get installed at unique locations. This allows coexistence of
several configurations in the same directory hierarchy. See INSTALL.

Security fixes may affect compatibility
A few taint leaks and taint omissions have been corrected. This may lead to ‘‘failure’’ of scripts that
used to work with older versions. Compiling with -DINCOMPLETE_TAINTS provides a perl with
minimal amounts of changes to the tainting behavior. But note that the resulting perl will have known
insecurities.

Oneliners with the -e switch do not create temporary files anymore.

Relaxed new mandatory warnings introduced in 5.004
Many new warnings that were introduced in 5.004 have been made optional. Some of these warnings
are still present, but perl’s new features make them less often a problem. See ‘‘New Diagnostics’’.

Licensing
Perl has a new Social Contract for contributors. See Porting/Contract.

The license included in much of the Perl documentation has changed. Most of the Perl documentation
was previously under the implicit GNU General Public License or the Artistic License (at the user’s
choice). Now much of the documentation unambiguously states the terms under which it may be
distributed. Those terms are in general much less restrictive than the GNU GPL. See perl and the
individual perl manpages listed therein.

Core Changes
Threads

WARNING: Threading is considered an experimental feature. Details of the implementation may
change without notice. There are known limitations and some bugs. These are expected to be fixed in
future versions.

See README.threads.

Compiler
WARNING: The Compiler and related tools are considered experimental. Features may change
without notice, and there are known limitations and bugs. Since the compiler is fully external to perl,
the default configuration will build and install it.

The Compiler produces three different types of transformations of a perl program. The C backend
generates C code that captures perl’s state just before execution begins. It eliminates the compile-time
overheads of the regular perl interpreter, but the run-time performance remains comparatively the same.
The CC backend generates optimized C code equivalent to the code path at run-time. The CC backend
has greater potential for big optimizations, but only a few optimizations are implemented currently.
The Bytecode backend generates a platform independent bytecode representation of the interpreter’s
state just before execution. Thus, the Bytecode back end also eliminates much of the compilation
overhead of the interpreter.

The compiler comes with several valuable utilities.

B::Lint is an experimental module to detect and warn about suspicious code, especially the cases
that the -w switch does not detect.

B::Deparse can be used to demystify perl code, and understand how perl optimizes certain
constructs.

B::Xref generates cross reference reports of all definition and use of variables, subroutines and
formats in a program.

perl v5.36.0 2019-02-18 21

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

B::Showlex show the lexical variables used by a subroutine or file at a glance.

perlcc is a simple frontend for compiling perl.

See ext/B/README, B, and the respective compiler modules.

Regular Expressions
Perl’s regular expression engine has been seriously overhauled, and many new constructs are
supported. Several bugs have been fixed.

Here is an itemized summary:

Many new and improved optimizations
Changes in the RE engine:

Unneeded nodes removed;
Substrings merged together;
New types of nodes to process (SUBEXPR)* and similar expressions

quickly, used if the SUBEXPR has no side effects and matches
strings of the same length;

Better optimizations by lookup for constant substrings;
Better search for constants substrings anchored by $;

Changes in Perl code using RE engine:

More optimizations to s/longer/short/;
study() was not working;
/blah/ may be optimized to an analogue of index() if $& $` $' not seen;
Unneeded copying of matched-against string removed;
Only matched part of the string is copying if $` $' were not seen;

Many bug fixes
Note that only the major bug fixes are listed here. See Changes for others.

Backtracking might not restore start of $3.
No feedback if max count for * or + on "complex" subexpression

was reached, similarly (but at compile time) for {3,34567}
Primitive restrictions on max count introduced to decrease a

possibility of a segfault;
(ZERO-LENGTH)* could segfault;
(ZERO-LENGTH)* was prohibited;
Long REs were not allowed;
/RE/g could skip matches at the same position after a

zero-length match;

New regular expression constructs
The following new syntax elements are supported:

(?<=RE)
(?<!RE)
(?{ CODE })
(?i-x)
(?i:RE)
(?(COND)YES_RE|NO_RE)
(?>RE)
\z

New operator for precompiled regular expressions
See "New qr// operator".

Other improvements

perl v5.36.0 2019-02-18 22

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

Better debugging output (possibly with colors),
even from non-debugging Perl;

RE engine code now looks like C, not like assembler;
Behaviour of RE modifiable by `use re' directive;
Improved documentation;
Test suite significantly extended;
Syntax [:ˆupper:] etc., reserved inside character classes;

Incompatible changes
(?i) localized inside enclosing group;
$(is not interpolated into RE any more;
/RE/g may match at the same position (with non-zero length)

after a zero-length match (bug fix).

See perlre and perlop.

Improved malloc()
See banner at the beginning of malloc.c for details.

Quicksort is internally implemented
Perl now contains its own highly optimized qsort() routine. The new qsort() is resistant to inconsistent
comparison functions, so Perl’s sort() will not provoke coredumps any more when given poorly
written sort subroutines. (Some C library qsort()s that were being used before used to have this
problem.) In our testing, the new qsort() required the minimal number of pair-wise compares on
average, among all known qsort() implementations.

See perlfunc/sort.

Reliable signals
Perl’s signal handling is susceptible to random crashes, because signals arrive asynchronously, and the
Perl runtime is not reentrant at arbitrary times.

However, one experimental implementation of reliable signals is available when threads are enabled.
See Thread::Signal. Also see INSTALL for how to build a Perl capable of threads.

Reliable stack pointers
The internals now reallocate the perl stack only at predictable times. In particular, magic calls never
trigger reallocations of the stack, because all reentrancy of the runtime is handled using a ‘‘stack of
stacks’’. This should improve reliability of cached stack pointers in the internals and in XSUBs.

More generous treatment of carriage returns
Perl used to complain if it encountered literal carriage returns in scripts. Now they are mostly treated
like whitespace within program text. Inside string literals and here documents, literal carriage returns
are ignored if they occur paired with linefeeds, or get interpreted as whitespace if they stand alone.
This behavior means that literal carriage returns in files should be avoided. You can get the older, more
compatible (but less generous) behavior by defining the preprocessor symbol PERL_STRICT_CR
when building perl. Of course, all this has nothing whatever to do with how escapes like \r are
handled within strings.

Note that this doesn’t somehow magically allow you to keep all text files in DOS format. The generous
treatment only applies to files that perl itself parses. If your C compiler doesn’t allow carriage returns
in files, you may still be unable to build modules that need a C compiler.

Memory leaks
substr, pos and vec don’t leak memory anymore when used in lvalue context. Many small leaks
that impacted applications that embed multiple interpreters have been fixed.

Better support for multiple interpreters
The build-time option -DMULTIPLICITY has had many of the details reworked. Some previously
global variables that should have been per-interpreter now are. With care, this allows interpreters to
call each other. See the PerlInterp extension on CPAN.

Behavior of local() on array and hash elements is now well-defined
See ‘‘Temporary Values via local()’’ in perlsub.

perl v5.36.0 2019-02-18 23

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

%! is transparently tied to the Errno module
See perlvar, and Errno.

Pseudo-hashes are supported
See perlref.

EXPR foreach EXPR is supported
See perlsyn.

Keywords can be globally overridden
See perlsub.

$ˆE is meaningful on Win32
See perlvar.

foreach (1..1000000) optimized
foreach (1..1000000) is now optimized into a counting loop. It does not try to allocate a
1000000-size list anymore.

Foo:: can be used as implicitly quoted package name
Barewords caused unintuitive behavior when a subroutine with the same name as a package happened
to be defined. Thus, new Foo @args, use the result of the call to Foo() instead of Foo being
treated as a literal. The recommended way to write barewords in the indirect object slot is new
Foo:: @args. Note that the method new() is called with a first argument of Foo, not Foo::
when you do that.

exists $Foo::{Bar::} tests existence of a package
It was impossible to test for the existence of a package without actually creating it before. Now
exists $Foo::{Bar::} can be used to test if the Foo::Bar namespace has been created.

Better locale support
See perllocale.

Experimental support for 64-bit platforms
Perl5 has always had 64-bit support on systems with 64-bit longs. Starting with 5.005, the beginnings
of experimental support for systems with 32-bit long and 64-bit ’long long’ integers has been added.
If you add -DUSE_LONG_LONG to your ccflags in config.sh (or manually define it in perl.h) then
perl will be built with ’long long’ support. There will be many compiler warnings, and the resultant
perl may not work on all systems. There are many other issues related to third-party extensions and
libraries. This option exists to allow people to work on those issues.

prototype() returns useful results on builtins
See ‘‘prototype’’ in perlfunc.

Extended support for exception handling
die() now accepts a reference value, and $@ gets set to that value in exception traps. This makes it
possible to propagate exception objects. This is an undocumented experimental feature.

Re-blessing in DESTROY() supported for chaining DESTROY() methods
See ‘‘Destructors’’ in perlobj.

All printf format conversions are handled internally
See ‘‘printf’’ in perlfunc.

New INIT keyword
INIT subs are like BEGIN and END, but they get run just before the perl runtime begins execution.
e.g., the Perl Compiler makes use of INIT blocks to initialize and resolve pointers to XSUBs.

New lock keyword
The lock keyword is the fundamental synchronization primitive in threaded perl. When threads are
not enabled, it is currently a noop.

To minimize impact on source compatibility this keyword is ‘‘weak’’, i.e., any user-defined subroutine
of the same name overrides it, unless a use Thread has been seen.

New qr// operator
The qr// operator, which is syntactically similar to the other quote-like operators, is used to create
precompiled regular expressions. This compiled form can now be explicitly passed around in variables,
and interpolated in other regular expressions. See perlop.

perl v5.36.0 2019-02-18 24

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

our is now a reserved word
Calling a subroutine with the name our will now provoke a warning when using the -w switch.

Tied arrays are now fully supported
See Tie::Array.

Tied handles support is better
Several missing hooks have been added. There is also a new base class for TIEARRAY
implementations. See Tie::Array.

4th argument to substr
substr() can now both return and replace in one operation. The optional 4th argument is the
replacement string. See ‘‘substr’’ in perlfunc.

Negative LENGTH argument to splice
splice() with a negative LENGTH argument now work similar to what the LENGTH did for substr().
Previously a negative LENGTH was treated as 0. See ‘‘splice’’ in perlfunc.

Magic lvalues are now more magical
When you say something like substr($x, 5) = "hi", the scalar returned by substr() is special,
in that any modifications to it affect $x. (This is called a ’magic lvalue’ because an ’lvalue’ is
something on the left side of an assignment.) Normally, this is exactly what you would expect to
happen, but Perl uses the same magic if you use substr(), pos(), or vec() in a context where they might
be modified, like taking a reference with \ or as an argument to a sub that modifies @_. In previous
versions, this ’magic’ only went one way, but now changes to the scalar the magic refers to ($x in the
above example) affect the magic lvalue too. For instance, this code now acts differently:

$x = "hello";
sub printit {

$x = "g'bye";
print $_[0], "\n";

}
printit(substr($x, 0, 5));

In previous versions, this would print ‘‘hello’’, but it now prints ‘‘g’bye’’.

<> now reads in records
If $/ is a reference to an integer, or a scalar that holds an integer, <> will read in records instead of
lines. For more info, see ‘‘$/’’ in perlvar.

Supported Platforms
Configure has many incremental improvements. Site-wide policy for building perl can now be made
persistent, via Policy.sh. Configure also records the command-line arguments used in config.sh.

New Platforms
BeOS is now supported. See README.beos.

DOS is now supported under the DJGPP tools. See README.dos (installed as perldos on some systems).

MiNT is now supported. See README.mint.

MPE/iX is now supported. See README.mpeix.

MVS (aka OS390, aka Open Edition) is now supported. See README.os390 (installed as perlos390 on
some systems).

Stratus VOS is now supported. See README.vos.

Changes in existing support
Win32 support has been vastly enhanced. Support for Perl Object, a C++ encapsulation of Perl. GCC
and EGCS are now supported on Win32. See README.win32, aka perlwin32.

VMS configuration system has been rewritten. See README.vms (installed as README_vms on some
systems).

The hints files for most Unix platforms have seen incremental improvements.

Modules and Pragmata

perl v5.36.0 2019-02-18 25

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

New Modules
B Perl compiler and tools. See B.

Data::Dumper
A module to pretty print Perl data. See Data::Dumper.

Dumpvalue
A module to dump perl values to the screen. See Dumpvalue.

Errno
A module to look up errors more conveniently. See Errno.

File::Spec
A portable API for file operations.

ExtUtils::Installed
Query and manage installed modules.

ExtUtils::Packlist
Manipulate .packlist files.

Fatal
Make functions/builtins succeed or die.

IPC::SysV
Constants and other support infrastructure for System V IPC operations in perl.

Test
A framework for writing test suites.

Tie::Array
Base class for tied arrays.

Tie::Handle
Base class for tied handles.

Thread
Perl thread creation, manipulation, and support.

attrs
Set subroutine attributes.

fields
Compile-time class fields.

re Various pragmata to control behavior of regular expressions.

Changes in existing modules
Benchmark

You can now run tests for x seconds instead of guessing the right number of tests to run.

Keeps better time.

Carp
Carp has a new function cluck(). cluck() warns, like carp(), but also adds a stack backtrace to the
error message, like confess().

CGI
CGI has been updated to version 2.42.

Fcntl
More Fcntl constants added: F_SETLK64, F_SETLKW64, O_LARGEFILE for large (more than
4G) file access (the 64-bit support is not yet working, though, so no need to get overly excited),
Free/Net/OpenBSD locking behaviour flags F_FLOCK, F_POSIX, Linux F_SHLCK, and
O_ACCMODE: the mask of O_RDONLY, O_WRONLY, and O_RDWR.

Math::Complex
The accessors methods Re, Im, arg, abs, rho, theta, methods can ($z->Re()) now also act as
mutators ($z->Re (3)).

perl v5.36.0 2019-02-18 26

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

Math::Trig
A little bit of radial trigonometry (cylindrical and spherical) added, for example the great circle
distance.

POSIX
POSIX now has its own platform-specific hints files.

DB_File
DB_File supports version 2.x of Berkeley DB. See ext/DB_File/Changes.

MakeMaker
MakeMaker now supports writing empty makefiles, provides a way to specify that site umask()
policy should be honored. There is also better support for manipulation of .packlist files, and
getting information about installed modules.

Extensions that have both architecture-dependent and architecture-independent files are now
always installed completely in the architecture-dependent locations. Previously, the shareable
parts were shared both across architectures and across perl versions and were therefore liable to be
overwritten with newer versions that might have subtle incompatibilities.

CPAN
See perlmodinstall and CPAN.

Cwd
Cwd::cwd is faster on most platforms.

Utility Changes
h2ph and related utilities have been vastly overhauled.

perlcc, a new experimental front end for the compiler is available.

The crude GNU configure emulator is now called configure.gnu to avoid trampling on
Configure under case-insensitive filesystems.

perldoc used to be rather slow. The slower features are now optional. In particular, case-insensitive
searches need the -i switch, and recursive searches need -r. You can set these switches in the
PERLDOC environment variable to get the old behavior.

Documentation Changes
Config.pm now has a glossary of variables.

Porting/patching.pod has detailed instructions on how to create and submit patches for perl.

perlport specifies guidelines on how to write portably.

perlmodinstall describes how to fetch and install modules from CPAN sites.

Some more Perl traps are documented now. See perltrap.

perlopentut gives a tutorial on using open().

perlreftut gives a tutorial on references.

perlthrtut gives a tutorial on threads.

New Diagnostics
Ambiguous call resolved as CORE::%s(), qualify as such or use &

(W) A subroutine you have declared has the same name as a Perl keyword, and you have used the
name without qualification for calling one or the other. Perl decided to call the builtin because the
subroutine is not imported.

To force interpretation as a subroutine call, either put an ampersand before the subroutine name, or
qualify the name with its package. Alternatively, you can import the subroutine (or pretend that
it’s imported with the use subs pragma).

To silently interpret it as the Perl operator, use the CORE:: prefix on the operator (e.g.
CORE::log($x)) or by declaring the subroutine to be an object method (see ‘‘attrs’’).

Bad index while coercing array into hash
(F) The index looked up in the hash found as the 0’th element of a pseudo-hash is not legal. Index
values must be at 1 or greater. See perlref.

perl v5.36.0 2019-02-18 27

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

Bareword ‘‘%s’’ refers to nonexistent package
(W) You used a qualified bareword of the form Foo::, but the compiler saw no other uses of that
namespace before that point. Perhaps you need to predeclare a package?

Can’t call method ‘‘%s’’ on an undefined value
(F) You used the syntax of a method call, but the slot filled by the object reference or package
name contains an undefined value. Something like this will reproduce the error:

$BADREF = 42;
process $BADREF 1,2,3;
$BADREF->process(1,2,3);

Can’t check filesystem of script ‘‘%s’’ for nosuid
(P) For some reason you can’t check the filesystem of the script for nosuid.

Can’t coerce array into hash
(F) You used an array where a hash was expected, but the array has no information on how to map
from keys to array indices. You can do that only with arrays that have a hash reference at index 0.

Can’t goto subroutine from an eval-string
(F) The ‘‘goto subroutine’’ call can’t be used to jump out of an eval ‘‘string’’. (You can use it to
jump out of an eval {BLOCK}, but you probably don’t want to.)

Can’t localize pseudo-hash element
(F) You said something like local $ar->{'key'}, where $ar is a reference to a pseudo-
hash. That hasn’t been implemented yet, but you can get a similar effect by localizing the
corresponding array element directly: local $ar->[$ar->[0]{'key'}].

Can’t use %%! because Errno.pm is not available
(F) The first time the %! hash is used, perl automatically loads the Errno.pm module. The Errno
module is expected to tie the %! hash to provide symbolic names for $! errno values.

Cannot find an opnumber for ‘‘%s’’
(F) A string of a form CORE::word was given to prototype(), but there is no builtin with the
name word.

Character class syntax [. .] is reserved for future extensions
(W) Within regular expression character classes ([]) the syntax beginning with ‘‘[.’’ and ending
with ‘‘.]’’ is reserved for future extensions. If you need to represent those character sequences
inside a regular expression character class, just quote the square brackets with the backslash: ‘‘\[.’’
and ‘‘.\]’’.

Character class syntax [: :] is reserved for future extensions
(W) Within regular expression character classes ([]) the syntax beginning with ‘‘[:’’ and ending
with ‘‘:]’’ is reserved for future extensions. If you need to represent those character sequences
inside a regular expression character class, just quote the square brackets with the backslash: ‘‘\[:’’
and ‘‘:\]’’.

Character class syntax [= =] is reserved for future extensions
(W) Within regular expression character classes ([]) the syntax beginning with ‘‘[=’’ and ending
with ‘‘=]’’ is reserved for future extensions. If you need to represent those character sequences
inside a regular expression character class, just quote the square brackets with the backslash:
‘‘\[=’’ and ‘‘=\]’’.

%s: Eval-group in insecure regular expression
(F) Perl detected tainted data when trying to compile a regular expression that contains the (?{
... }) zero-width assertion, which is unsafe. See ‘‘(?{ code })’’ in perlre, and perlsec.

%s: Eval-group not allowed, use re ’eval’
(F) A regular expression contained the (?{ ... }) zero-width assertion, but that construct is
only allowed when the use re 'eval' pragma is in effect. See ‘‘(?{ code })’’ in perlre.

%s: Eval-group not allowed at run time
(F) Perl tried to compile a regular expression containing the (?{ ... }) zero-width assertion at
run time, as it would when the pattern contains interpolated values. Since that is a security risk, it
is not allowed. If you insist, you may still do this by explicitly building the pattern from an
interpolated string at run time and using that in an eval(). See ‘‘(?{ code })’’ in perlre.

perl v5.36.0 2019-02-18 28

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

Explicit blessing to ’’ (assuming package main)
(W) You are blessing a reference to a zero length string. This has the effect of blessing the
reference into the package main. This is usually not what you want. Consider providing a default
target package, e.g. bless($ref, $p || ’MyPackage’);

Illegal hex digit ignored
(W) You may have tried to use a character other than 0 - 9 or A - F in a hexadecimal number.
Interpretation of the hexadecimal number stopped before the illegal character.

No such array field
(F) You tried to access an array as a hash, but the field name used is not defined. The hash at
index 0 should map all valid field names to array indices for that to work.

No such field ‘‘%s’’ in variable %s of type %s
(F) You tried to access a field of a typed variable where the type does not know about the field
name. The field names are looked up in the %FIELDS hash in the type package at compile time.
The %FIELDS hash is usually set up with the ’fields’ pragma.

Out of memory during ridiculously large request
(F) You can’t allocate more than 2ˆ31+‘‘small amount’’ bytes. This error is most likely to be
caused by a typo in the Perl program. e.g., $arr[time] instead of $arr[$time].

Range iterator outside integer range
(F) One (or both) of the numeric arguments to the range operator ‘‘..’’ are outside the range which
can be represented by integers internally. One possible workaround is to force Perl to use magical
string increment by prepending ‘‘0’’ to your numbers.

Recursive inheritance detected while looking for method ’%s’ %s
(F) More than 100 levels of inheritance were encountered while invoking a method. Probably
indicates an unintended loop in your inheritance hierarchy.

Reference found where even-sized list expected
(W) You gave a single reference where Perl was expecting a list with an even number of elements
(for assignment to a hash). This usually means that you used the anon hash constructor when you
meant to use parens. In any case, a hash requires key/value pairs.

%hash = { one => 1, two => 2, }; # WRONG
%hash = [qw/ an anon array /]; # WRONG
%hash = (one => 1, two => 2,); # right
%hash = qw(one 1 two 2); # also fine

Undefined value assigned to typeglob
(W) An undefined value was assigned to a typeglob, a la *foo = undef. This does nothing.
It’s possible that you really mean undef *foo.

Use of reserved word ‘‘%s’’ is deprecated
(D) The indicated bareword is a reserved word. Future versions of perl may use it as a keyword,
so you’re better off either explicitly quoting the word in a manner appropriate for its context of
use, or using a different name altogether. The warning can be suppressed for subroutine names by
either adding a & prefix, or using a package qualifier, e.g. &our(), or Foo::our().

perl: warning: Setting locale failed.
(S) The whole warning message will look something like:

perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:

LC_ALL = "En_US",
LANG = (unset)

are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").

Exactly what were the failed locale settings varies. In the above the settings were that the LC_ALL
was ‘‘En_US’’ and the LANG had no value. This error means that Perl detected that you and/or
your system administrator have set up the so-called variable system but Perl could not use those
settings. This was not dead serious, fortunately: there is a ‘‘default locale’’ called ‘‘C’’ that Perl
can and will use, the script will be run. Before you really fix the problem, however, you will get

perl v5.36.0 2019-02-18 29

PERL5005DELTA(1) Perl Programmers Reference Guide PERL5005DELTA(1)

the same error message each time you run Perl. How to really fix the problem can be found in
‘‘LOCALE PROBLEMS’’ in perllocale.

Obsolete Diagnostics
Can’t mktemp()

(F) The mktemp() routine failed for some reason while trying to process a -e switch. Maybe
your /tmp partition is full, or clobbered.

Removed because -e doesn’t use temporary files any more.

Can’t write to temp file for -e: %s
(F) The write routine failed for some reason while trying to process a -e switch. Maybe your /tmp
partition is full, or clobbered.

Removed because -e doesn’t use temporary files any more.

Cannot open temporary file
(F) The create routine failed for some reason while trying to process a -e switch. Maybe your
/tmp partition is full, or clobbered.

Removed because -e doesn’t use temporary files any more.

regexp too big
(F) The current implementation of regular expressions uses shorts as address offsets within a
string. Unfortunately this means that if the regular expression compiles to longer than 32767, it’ll
blow up. Usually when you want a regular expression this big, there is a better way to do it with
multiple statements. See perlre.

Configuration Changes
You can use ‘‘Configure -Uinstallusrbinperl’’ which causes installperl to skip installing perl also as
/usr/bin/perl. This is useful if you prefer not to modify /usr/bin for some reason or another but harmful
because many scripts assume to find Perl in /usr/bin/perl.

BUGS
If you find what you think is a bug, you might check the headers of recently posted articles in the
comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/perl/ , the Perl
Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Make sure you trim your bug down to a tiny but sufficient test case. Your bug report, along with the
output of perl -V, will be sent off to <perlbug@perl.com> to be analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

HISTORY
Written by Gurusamy Sarathy <gsar@activestate.com>, with many contributions from The Perl
Porters.

Send omissions or corrections to <perlbug@perl.com>.

perl v5.36.0 2019-02-18 30

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

NAME
perl5100delta - what is new for perl 5.10.0

DESCRIPTION
This document describes the differences between the 5.8.8 release and the 5.10.0 release.

Many of the bug fixes in 5.10.0 were already seen in the 5.8.X maintenance releases; they are not
duplicated here and are documented in the set of man pages named perl58[1-8]?delta.

Core Enhancements
The feature pragma

The feature pragma is used to enable new syntax that would break Perl’s backwards-compatibility
with older releases of the language. It’s a lexical pragma, like strict or warnings.

Currently the following new features are available: switch (adds a switch statement), say (adds a
say built-in function), and state (adds a state keyword for declaring ‘‘static’’ variables). Those
features are described in their own sections of this document.

The feature pragma is also implicitly loaded when you require a minimal perl version (with the use
VERSION construct) greater than, or equal to, 5.9.5. See feature for details.

New -E command-line switch
-E is equivalent to -e, but it implicitly enables all optional features (like use feature ":5.10").

Defined-or operator
A new operator // (defined-or) has been implemented. The following expression:

$a // $b

is merely equivalent to

defined $a ? $a : $b

and the statement

$c //= $d;

can now be used instead of

$c = $d unless defined $c;

The // operator has the same precedence and associativity as ||. Special care has been taken to
ensure that this operator Do What You Mean while not breaking old code, but some edge cases
involving the empty regular expression may now parse differently. See perlop for details.

Switch and Smart Match operator
Perl 5 now has a switch statement. It’s available when use feature 'switch' is in effect. This
feature introduces three new keywords, given, when, and default:

given ($foo) {
when (/ˆabc/) { $abc = 1; }
when (/ˆdef/) { $def = 1; }
when (/ˆxyz/) { $xyz = 1; }
default { $nothing = 1; }

}

A more complete description of how Perl matches the switch variable against the when conditions is
given in ‘‘Switch statements’’ in perlsyn.

This kind of match is called smart match, and it’s also possible to use it outside of switch statements,
via the new ˜˜ operator. See ‘‘Smart matching in detail’’ in perlsyn.

This feature was contributed by Robin Houston.

Regular expressions
Recursive Patterns

It is now possible to write recursive patterns without using the (??{}) construct. This new way
is more efficient, and in many cases easier to read.

Each capturing parenthesis can now be treated as an independent pattern that can be entered by
using the (?PARNO) syntax (PARNO standing for ‘‘parenthesis number’’). For example, the
following pattern will match nested balanced angle brackets:

perl v5.36.0 2020-12-28 31

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

/
ˆ # start of line
(# start capture buffer 1

< # match an opening angle bracket
(?: # match one of:

(?> # don't backtrack over the inside of this group
[ˆ<>]+ # one or more non angle brackets

) # end non backtracking group
| # ... or ...

(?1) # recurse to bracket 1 and try it again
)* # 0 or more times.
> # match a closing angle bracket

) # end capture buffer one
$ # end of line

/x

PCRE users should note that Perl’s recursive regex feature allows backtracking into a recursed
pattern, whereas in PCRE the recursion is atomic or ‘‘possessive’’ in nature. As in the example
above, you can add (?>) to control this selectively. (Yves Orton)

Named Capture Buffers
It is now possible to name capturing parenthesis in a pattern and refer to the captured contents by
name. The naming syntax is (?<NAME>....). It’s possible to backreference to a named buffer
with the \k<NAME> syntax. In code, the new magical hashes %+ and %- can be used to access the
contents of the capture buffers.

Thus, to replace all doubled chars with a single copy, one could write

s/(?<letter>.)\k<letter>/$+{letter}/g

Only buffers with defined contents will be ‘‘visible’’ in the %+ hash, so it’s possible to do
something like

foreach my $name (keys %+) {
print "content of buffer '$name' is $+{$name}\n";

}

The %- hash is a bit more complete, since it will contain array refs holding values from all capture
buffers similarly named, if there should be many of them.

%+ and %- are implemented as tied hashes through the new module
Tie::Hash::NamedCapture.

Users exposed to the .NET regex engine will find that the perl implementation differs in that the
numerical ordering of the buffers is sequential, and not ‘‘unnamed first, then named’’. Thus in the
pattern

/(A)(?B)(C)(?<D>D)/

$1 will be ’A’, $2 will be ’B’, $3 will be ’C’ and $4 will be ’D’ and not $1 is ’A’, $2 is ’C’ and
$3 is ’B’ and $4 is ’D’ that a .NET programmer would expect. This is considered a feature. :-)
(Yves Orton)

Possessive Quantifiers
Perl now supports the ‘‘possessive quantifier’’ syntax of the ‘‘atomic match’’ pattern. Basically a
possessive quantifier matches as much as it can and never gives any back. Thus it can be used to
control backtracking. The syntax is similar to non-greedy matching, except instead of using a ’?’
as the modifier the ’+’ is used. Thus ?+, *+, ++, {min,max}+ are now legal quantifiers. (Yves
Orton)

Backtracking control verbs
The regex engine now supports a number of special-purpose backtrack control verbs: (*THEN),
(*PRUNE), (*MARK), (*SKIP), (*COMMIT), (*FAIL) and (*ACCEPT). See perlre for their
descriptions. (Yves Orton)

perl v5.36.0 2020-12-28 32

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

Relative backreferences
A new syntax \g{N} or \gN where ‘‘N’’ is a decimal integer allows a safer form of back-
reference notation as well as allowing relative backreferences. This should make it easier to
generate and embed patterns that contain backreferences. See ‘‘Capture buffers’’ in perlre. (Yves
Orton)

\K escape
The functionality of Jeff Pinyan’s module Regexp::Keep has been added to the core. In regular
expressions you can now use the special escape \K as a way to do something like floating length
positive lookbehind. It is also useful in substitutions like:

s/(foo)bar/$1/g

that can now be converted to

s/foo\Kbar//g

which is much more efficient. (Yves Orton)

Vertical and horizontal whitespace, and linebreak
Regular expressions now recognize the \v and \h escapes that match vertical and horizontal
whitespace, respectively. \V and \H logically match their complements.

\R matches a generic linebreak, that is, vertical whitespace, plus the multi-character sequence
"\x0D\x0A".

Optional pre-match and post-match captures with the /p flag
There is a new flag /p for regular expressions. Using this makes the engine preserve a copy of the
part of the matched string before the matching substring to the new special variable
${ˆPREMATCH}, the part after the matching substring to ${ˆPOSTMATCH}, and the matched
substring itself to ${ˆMATCH}.

Perl is still able to store these substrings to the special variables $`, $', $&, but using these
variables anywhere in the program adds a penalty to all regular expression matches, whereas if
you use the /p flag and the new special variables instead, you pay only for the regular expressions
where the flag is used.

For more detail on the new variables, see perlvar; for the use of the regular expression flag, see
perlop and perlre.

say()
say() is a new built-in, only available when use feature 'say' is in effect, that is similar to
print(), but that implicitly appends a newline to the printed string. See ‘‘say’’ in perlfunc. (Robin
Houston)

Lexical $_
The default variable $_ can now be lexicalized, by declaring it like any other lexical variable, with a
simple

my $_;

The operations that default on $_ will use the lexically-scoped version of $_ when it exists, instead of
the global $_.

In a map or a grep block, if $_ was previously my’ed, then the $_ inside the block is lexical as well
(and scoped to the block).

In a scope where $_ has been lexicalized, you can still have access to the global version of $_ by using
$::_, or, more simply, by overriding the lexical declaration with our $_. (Rafael Garcia-Suarez)

The _ prototype
A new prototype character has been added. _ is equivalent to $ but defaults to $_ if the corresponding
argument isn’t supplied (both $ and _ denote a scalar). Due to the optional nature of the argument, you
can only use it at the end of a prototype, or before a semicolon.

This has a small incompatible consequence: the prototype() function has been adjusted to return _ for
some built-ins in appropriate cases (for example, prototype('CORE::rmdir')). (Rafael Garcia-
Suarez)

perl v5.36.0 2020-12-28 33

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

UNITCHECK blocks
UNITCHECK, a new special code block has been introduced, in addition to BEGIN, CHECK, INIT and
END.

CHECK and INIT blocks, while useful for some specialized purposes, are always executed at the
transition between the compilation and the execution of the main program, and thus are useless
whenever code is loaded at runtime. On the other hand, UNITCHECK blocks are executed just after the
unit which defined them has been compiled. See perlmod for more information. (Alex Gough)

New Pragma, mro
A new pragma, mro (for Method Resolution Order) has been added. It permits to switch, on a per-class
basis, the algorithm that perl uses to find inherited methods in case of a multiple inheritance hierarchy.
The default MRO hasn’t changed (DFS, for Depth First Search). Another MRO is available: the C3
algorithm. See mro for more information. (Brandon Black)

Note that, due to changes in the implementation of class hierarchy search, code that used to undef the
*ISA glob will most probably break. Anyway, undef’ing *ISA had the side-effect of removing the
magic on the @ISA array and should not have been done in the first place. Also, the cache
*::ISA::CACHE:: no longer exists; to force reset the @ISA cache, you now need to use the mro
API, or more simply to assign to @ISA (e.g. with @ISA = @ISA).

readdir() may return a ‘‘short filename’’ on Windows
The readdir() function may return a ‘‘short filename’’ when the long filename contains characters
outside the ANSI codepage. Similarly Cwd::cwd() may return a short directory name, and glob() may
return short names as well. On the NTFS file system these short names can always be represented in the
ANSI codepage. This will not be true for all other file system drivers; e.g. the FAT filesystem stores
short filenames in the OEM codepage, so some files on FAT volumes remain inaccessible through the
ANSI APIs.

Similarly, $ˆX, @INC, and $ENV{PATH} are preprocessed at startup to make sure all paths are valid in
the ANSI codepage (if possible).

The Win32::GetLongPathName() function now returns the UTF-8 encoded correct long file name
instead of using replacement characters to force the name into the ANSI codepage. The new
Win32::GetANSIPathName() function can be used to turn a long pathname into a short one only if
the long one cannot be represented in the ANSI codepage.

Many other functions in the Win32 module have been improved to accept UTF-8 encoded arguments.
Please see Win32 for details.

readpipe() is now overridable
The built-in function readpipe() is now overridable. Overriding it permits also to override its operator
counterpart, qx// (a.k.a. ``). Moreover, it now defaults to $_ if no argument is provided. (Rafael
Garcia-Suarez)

Default argument for readline()
readline() now defaults to *ARGV if no argument is provided. (Rafael Garcia-Suarez)

state() variables
A new class of variables has been introduced. State variables are similar to my variables, but are
declared with the state keyword in place of my. They’re visible only in their lexical scope, but their
value is persistent: unlike my variables, they’re not undefined at scope entry, but retain their previous
value. (Rafael Garcia-Suarez, Nicholas Clark)

To use state variables, one needs to enable them by using

use feature 'state';

or by using the -E command-line switch in one-liners. See ‘‘Persistent Private Variables’’ in perlsub.

Stacked filetest operators
As a new form of syntactic sugar, it’s now possible to stack up filetest operators. You can now write -f
-w -x $file in a row to mean -x $file && -w _ && -f _. See ‘‘-X’’ in perlfunc.

UNIVERSAL::DOES()
The UNIVERSAL class has a new method, DOES(). It has been added to solve semantic problems
with the isa() method. isa() checks for inheritance, while DOES() has been designed to be
overridden when module authors use other types of relations between classes (in addition to

perl v5.36.0 2020-12-28 34

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

inheritance). (chromatic)

See ‘‘$obj->DOES(ROLE)’’ in UNIVERSAL.

Formats
Formats were improved in several ways. A new field, ˆ*, can be used for variable-width, one-line-at-a-
time text. Null characters are now handled correctly in picture lines. Using @# and ˜˜ together will
now produce a compile-time error, as those format fields are incompatible. perlform has been
improved, and miscellaneous bugs fixed.

Byte-order modifiers for pack() and unpack()
There are two new byte-order modifiers, > (big-endian) and < (little-endian), that can be appended to
most pack() and unpack() template characters and groups to force a certain byte-order for that type or
group. See ‘‘pack’’ in perlfunc and perlpacktut for details.

no VERSION
You can now use no followed by a version number to specify that you want to use a version of perl
older than the specified one.

chdir, chmod and chown on filehandles
chdir, chmod and chown can now work on filehandles as well as filenames, if the system supports
respectively fchdir, fchmod and fchown, thanks to a patch provided by Gisle Aas.

OS groups
$(and $) now return groups in the order where the OS returns them, thanks to Gisle Aas. This wasn’t
previously the case.

Recursive sort subs
You can now use recursive subroutines with sort(), thanks to Robin Houston.

Exceptions in constant folding
The constant folding routine is now wrapped in an exception handler, and if folding throws an
exception (such as attempting to evaluate 0/0), perl now retains the current optree, rather than aborting
the whole program. Without this change, programs would not compile if they had expressions that
happened to generate exceptions, even though those expressions were in code that could never be
reached at runtime. (Nicholas Clark, Dave Mitchell)

Source filters in @INC
It’s possible to enhance the mechanism of subroutine hooks in @INC by adding a source filter on top of
the filehandle opened and returned by the hook. This feature was planned a long time ago, but wasn’t
quite working until now. See ‘‘require’’ in perlfunc for details. (Nicholas Clark)

New internal variables
${ˆRE_DEBUG_FLAGS}

This variable controls what debug flags are in effect for the regular expression engine when
running under use re "debug". See re for details.

${ˆCHILD_ERROR_NATIVE}
This variable gives the native status returned by the last pipe close, backtick command, successful
call to wait() or waitpid(), or from the system() operator. See perlvar for details. (Contributed by
Gisle Aas.)

${ˆRE_TRIE_MAXBUF}
See ‘‘Trie optimisation of literal string alternations’’.

${ˆWIN32_SLOPPY_STAT}
See ‘‘Sloppy stat on Windows’’.

Miscellaneous
unpack() now defaults to unpacking the $_ variable.

mkdir() without arguments now defaults to $_.

The internal dump output has been improved, so that non-printable characters such as newline and
backspace are output in \x notation, rather than octal.

The -C option can no longer be used on the #! line. It wasn’t working there anyway, since the
standard streams are already set up at this point in the execution of the perl interpreter. You can use
binmode() instead to get the desired behaviour.

perl v5.36.0 2020-12-28 35

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

UCD 5.0.0
The copy of the Unicode Character Database included in Perl 5 has been updated to version 5.0.0.

MAD
MAD, which stands for Miscellaneous Attribute Decoration, is a still-in-development work leading to a
Perl 5 to Perl 6 converter. To enable it, it’s necessary to pass the argument -Dmad to Configure. The
obtained perl isn’t binary compatible with a regular perl 5.10, and has space and speed penalties;
moreover not all regression tests still pass with it. (Larry Wall, Nicholas Clark)

kill() on Windows
On Windows platforms, kill(-9, $pid) now kills a process tree. (On Unix, this delivers the
signal to all processes in the same process group.)

Incompatible Changes
Packing and UTF-8 strings

The semantics of pack() and unpack() regarding UTF-8-encoded data has been changed. Processing
is now by default character per character instead of byte per byte on the underlying encoding. Notably,
code that used things like pack("a*", $string) to see through the encoding of string will now
simply get back the original $string. Packed strings can also get upgraded during processing when
you store upgraded characters. You can get the old behaviour by using use bytes.

To be consistent with pack(), the C0 in unpack() templates indicates that the data is to be processed in
character mode, i.e. character by character; on the contrary, U0 in unpack() indicates UTF-8 mode,
where the packed string is processed in its UTF-8-encoded Unicode form on a byte by byte basis. This
is reversed with regard to perl 5.8.X, but now consistent between pack() and unpack().

Moreover, C0 and U0 can also be used in pack() templates to specify respectively character and byte
modes.

C0 and U0 in the middle of a pack or unpack format now switch to the specified encoding mode,
honoring parens grouping. Previously, parens were ignored.

Also, there is a new pack() character format, W, which is intended to replace the old C. C is kept for
unsigned chars coded as bytes in the strings internal representation. W represents unsigned (logical)
character values, which can be greater than 255. It is therefore more robust when dealing with
potentially UTF-8-encoded data (as C will wrap values outside the range 0..255, and not respect the
string encoding).

In practice, that means that pack formats are now encoding-neutral, except C.

For consistency, A in unpack() format now trims all Unicode whitespace from the end of the string.
Before perl 5.9.2, it used to strip only the classical ASCII space characters.

Byte/character count feature in unpack()
A new unpack() template character, ".", returns the number of bytes or characters (depending on the
selected encoding mode, see above) read so far.

The $* and $# variables have been removed
$*, which was deprecated in favor of the /s and /m regexp modifiers, has been removed.

The deprecated $# variable (output format for numbers) has been removed.

Two new severe warnings, $#/$* is no longer supported, have been added.

substr() lvalues are no longer fixed-length
The lvalues returned by the three argument form of substr() used to be a ‘‘fixed length window’’ on the
original string. In some cases this could cause surprising action at distance or other undefined
behaviour. Now the length of the window adjusts itself to the length of the string assigned to it.

Parsing of -f _
The identifier _ is now forced to be a bareword after a filetest operator. This solves a number of
misparsing issues when a global _ subroutine is defined.

:unique
The :unique attribute has been made a no-op, since its current implementation was fundamentally
flawed and not threadsafe.

perl v5.36.0 2020-12-28 36

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

Effect of pragmas in eval
The compile-time value of the %ˆH hint variable can now propagate into eval("")uated code. This
makes it more useful to implement lexical pragmas.

As a side-effect of this, the overloaded-ness of constants now propagates into eval("").

chdir FOO
A bareword argument to chdir() is now recognized as a file handle. Earlier releases interpreted the
bareword as a directory name. (Gisle Aas)

Handling of .pmc files
An old feature of perl was that before require or use look for a file with a .pm extension, they will
first look for a similar filename with a .pmc extension. If this file is found, it will be loaded in place of
any potentially existing file ending in a .pm extension.

Previously, .pmc files were loaded only if more recent than the matching .pm file. Starting with 5.9.4,
they’ll be always loaded if they exist.

$ˆV is now a version object instead of a v-string
$ˆV can still be used with the %vd format in printf, but any character-level operations will now access
the string representation of the version object and not the ordinals of a v-string. Expressions like
substr($ˆV, 0, 2) or split //, $ˆV no longer work and must be rewritten.

@- and @+ in patterns
The special arrays @- and @+ are no longer interpolated in regular expressions. (Sadahiro Tomoyuki)

$AUTOLOAD can now be tainted
If you call a subroutine by a tainted name, and if it defers to an AUTOLOAD function, then
$AUTOLOAD will be (correctly) tainted. (Rick Delaney)

Tainting and printf
When perl is run under taint mode, printf() and sprintf() will now reject any tainted format
argument. (Rafael Garcia-Suarez)

undef and signal handlers
Undefining or deleting a signal handler via undef $SIG{FOO} is now equivalent to setting it to
'DEFAULT' . (Rafael Garcia-Suarez)

strictures and dereferencing in defined()
use strict 'refs' was ignoring taking a hard reference in an argument to defined(), as in :

use strict 'refs';
my $x = 'foo';
if (defined $$x) {...}

This now correctly produces the run-time error Can't use string as a SCALAR ref
while "strict refs" in use.

defined @$foo and defined %$bar are now also subject to strict 'refs' (that is, $foo
and $bar shall be proper references there.) (defined(@foo) and defined(%bar) are
discouraged constructs anyway.) (Nicholas Clark)

(?p{}) has been removed
The regular expression construct (?p{}), which was deprecated in perl 5.8, has been removed. Use
(??{}) instead. (Rafael Garcia-Suarez)

Pseudo-hashes have been removed
Support for pseudo-hashes has been removed from Perl 5.9. (The fields pragma remains here, but
uses an alternate implementation.)

Removal of the bytecode compiler and of perlcc
perlcc, the byteloader and the supporting modules (B::C, B::CC, B::Bytecode, etc.) are no longer
distributed with the perl sources. Those experimental tools have never worked reliably, and, due to the
lack of volunteers to keep them in line with the perl interpreter developments, it was decided to remove
them instead of shipping a broken version of those. The last version of those modules can be found
with perl 5.9.4.

However the B compiler framework stays supported in the perl core, as with the more useful modules it
has permitted (among others, B::Deparse and B::Concise).

perl v5.36.0 2020-12-28 37

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

Removal of the JPL
The JPL (Java-Perl Lingo) has been removed from the perl sources tarball.

Recursive inheritance detected earlier
Perl will now immediately throw an exception if you modify any package’s @ISA in such a way that it
would cause recursive inheritance.

Previously, the exception would not occur until Perl attempted to make use of the recursive inheritance
while resolving a method or doing a $foo->isa($bar) lookup.

warnings::enabled and warnings::warnif changed to favor users of modules
The behaviour in 5.10.x favors the person using the module; The behaviour in 5.8.x favors the module
writer;

Assume the following code:

main calls Foo::Bar::baz()
Foo::Bar inherits from Foo::Base
Foo::Bar::baz() calls Foo::Base::_bazbaz()
Foo::Base::_bazbaz() calls: warnings::warnif('substr', 'some warning

message');

On 5.8.x, the code warns when Foo::Bar contains use warnings; It does not matter if Foo::Base or
main have warnings enabled to disable the warning one has to modify Foo::Bar.

On 5.10.0 and newer, the code warns when main contains use warnings; It does not matter if
Foo::Base or Foo::Bar have warnings enabled to disable the warning one has to modify main.

Modules and Pragmata
Upgrading individual core modules

Even more core modules are now also available separately through the CPAN. If you wish to update
one of these modules, you don’t need to wait for a new perl release. From within the cpan shell,
running the ’r’ command will report on modules with upgrades available. See perldoc CPAN for
more information.

Pragmata Changes
feature

The new pragma feature is used to enable new features that might break old code. See "The
feature pragma" above.

mro
This new pragma enables to change the algorithm used to resolve inherited methods. See "New
Pragma, mro" above.

Scoping of the sort pragma
The sort pragma is now lexically scoped. Its effect used to be global.

Scoping of bignum, bigint, bigrat
The three numeric pragmas bignum, bigint and bigrat are now lexically scoped. (Tels)

base
The base pragma now warns if a class tries to inherit from itself. (Curtis ‘‘Ovid’’ Poe)

strict and warnings
strict and warnings will now complain loudly if they are loaded via incorrect casing (as in
use Strict;). (Johan Vromans)

version
The version module provides support for version objects.

warnings
The warnings pragma doesn’t load Carp anymore. That means that code that used Carp
routines without having loaded it at compile time might need to be adjusted; typically, the
following (faulty) code won’t work anymore, and will require parentheses to be added after the
function name:

perl v5.36.0 2020-12-28 38

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

use warnings;
require Carp;
Carp::confess 'argh';

less
less now does something useful (or at least it tries to). In fact, it has been turned into a lexical
pragma. So, in your modules, you can now test whether your users have requested to use less CPU,
or less memory, less magic, or maybe even less fat. See less for more. (Joshua ben Jore)

New modules
• encoding::warnings, by Audrey Tang, is a module to emit warnings whenever an ASCII

character string containing high-bit bytes is implicitly converted into UTF-8. It’s a lexical pragma
since Perl 5.9.4; on older perls, its effect is global.

• Module::CoreList, by Richard Clamp, is a small handy module that tells you what versions
of core modules ship with any versions of Perl 5. It comes with a command-line frontend,
corelist.

• Math::BigInt::FastCalc is an XS-enabled, and thus faster, version of
Math::BigInt::Calc.

• Compress::Zlib is an interface to the zlib compression library. It comes with a bundled
version of zlib, so having a working zlib is not a prerequisite to install it. It’s used by
Archive::Tar (see below).

• IO::Zlib is an IO::-style interface to Compress::Zlib.

• Archive::Tar is a module to manipulate tar archives.

• Digest::SHA is a module used to calculate many types of SHA digests, has been included for
SHA support in the CPAN module.

• ExtUtils::CBuilder and ExtUtils::ParseXS have been added.

• Hash::Util::FieldHash, by Anno Siegel, has been added. This module provides support
for field hashes: hashes that maintain an association of a reference with a value, in a thread-safe
garbage-collected way. Such hashes are useful to implement inside-out objects.

• Module::Build, by Ken Williams, has been added. It’s an alternative to
ExtUtils::MakeMaker to build and install perl modules.

• Module::Load, by Jos Boumans, has been added. It provides a single interface to load Perl
modules and .pl files.

• Module::Loaded, by Jos Boumans, has been added. It’s used to mark modules as loaded or
unloaded.

• Package::Constants, by Jos Boumans, has been added. It’s a simple helper to list all
constants declared in a given package.

• Win32API::File, by Tye McQueen, has been added (for Windows builds). This module
provides low-level access to Win32 system API calls for files/dirs.

• Locale::Maketext::Simple, needed by CPANPLUS, is a simple wrapper around
Locale::Maketext::Lexicon. Note that Locale::Maketext::Lexicon isn’t
included in the perl core; the behaviour of Locale::Maketext::Simple gracefully degrades
when the later isn’t present.

• Params::Check implements a generic input parsing/checking mechanism. It is used by
CPANPLUS.

• Term::UI simplifies the task to ask questions at a terminal prompt.

• Object::Accessor provides an interface to create per-object accessors.

• Module::Pluggable is a simple framework to create modules that accept pluggable sub-
modules.

• Module::Load::Conditional provides simple ways to query and possibly load installed
modules.

perl v5.36.0 2020-12-28 39

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

• Time::Piece provides an object oriented interface to time functions, overriding the built-ins
localtime() and gmtime().

• IPC::Cmd helps to find and run external commands, possibly interactively.

• File::Fetch provide a simple generic file fetching mechanism.

• Log::Message and Log::Message::Simple are used by the log facility of CPANPLUS.

• Archive::Extract is a generic archive extraction mechanism for .tar (plain, gzipped or
bzipped) or .zip files.

• CPANPLUS provides an API and a command-line tool to access the CPAN mirrors.

• Pod::Escapes provides utilities that are useful in decoding Pod E<...> sequences.

• Pod::Simple is now the backend for several of the Pod-related modules included with Perl.

Selected Changes to Core Modules
Attribute::Handlers

Attribute::Handlers can now report the caller’s file and line number. (David Feldman)

All interpreted attributes are now passed as array references. (Damian Conway)

B::Lint
B::Lint is now based on Module::Pluggable, and so can be extended with plugins.
(Joshua ben Jore)

B It’s now possible to access the lexical pragma hints (%ˆH) by using the method
B::COP::hints_hash(). It returns a B::RHE object, which in turn can be used to get a hash
reference via the method B::RHE::HASH(). (Joshua ben Jore)

Thread
As the old 5005thread threading model has been removed, in favor of the ithreads scheme, the
Thread module is now a compatibility wrapper, to be used in old code only. It has been removed
from the default list of dynamic extensions.

Utility Changes
perl -d

The Perl debugger can now save all debugger commands for sourcing later; notably, it can now
emulate stepping backwards, by restarting and rerunning all bar the last command from a saved
command history.

It can also display the parent inheritance tree of a given class, with the i command.

ptar
ptar is a pure perl implementation of tar that comes with Archive::Tar.

ptardiff
ptardiff is a small utility used to generate a diff between the contents of a tar archive and a
directory tree. Like ptar, it comes with Archive::Tar.

shasum
shasum is a command-line utility, used to print or to check SHA digests. It comes with the new
Digest::SHA module.

corelist
The corelist utility is now installed with perl (see ‘‘New modules’’ above).

h2ph and h2xs
h2ph and h2xs have been made more robust with regard to ‘‘modern’’ C code.

h2xs implements a new option --use-xsloader to force use of XSLoader even in
backwards compatible modules.

The handling of authors’ names that had apostrophes has been fixed.

Any enums with negative values are now skipped.

perlivp
perlivp no longer checks for *.ph files by default. Use the new -a option to run all tests.

perl v5.36.0 2020-12-28 40

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

find2perl
find2perl now assumes -print as a default action. Previously, it needed to be specified
explicitly.

Several bugs have been fixed in find2perl, regarding -exec and -eval. Also the options
-path, -ipath and -iname have been added.

config_data
config_data is a new utility that comes with Module::Build. It provides a command-line
interface to the configuration of Perl modules that use Module::Build’s framework of
configurability (that is, *::ConfigData modules that contain local configuration information
for their parent modules.)

cpanp
cpanp, the CPANPLUS shell, has been added. (cpanp-run-perl, a helper for CPANPLUS
operation, has been added too, but isn’t intended for direct use).

cpan2dist
cpan2dist is a new utility that comes with CPANPLUS. It’s a tool to create distributions (or
packages) from CPAN modules.

pod2html
The output of pod2html has been enhanced to be more customizable via CSS. Some formatting
problems were also corrected. (Jari Aalto)

New Documentation
The perlpragma manpage documents how to write one’s own lexical pragmas in pure Perl (something
that is possible starting with 5.9.4).

The new perlglossary manpage is a glossary of terms used in the Perl documentation, technical and
otherwise, kindly provided by O’Reilly Media, Inc.

The perlreguts manpage, courtesy of Yves Orton, describes internals of the Perl regular expression
engine.

The perlreapi manpage describes the interface to the perl interpreter used to write pluggable regular
expression engines (by AEvar Arnfjo

..
r∂- Bjarmason).

The perlunitut manpage is a tutorial for programming with Unicode and string encodings in Perl,
courtesy of Juerd Waalboer.

A new manual page, perlunifaq (the Perl Unicode FAQ), has been added (Juerd Waalboer).

The perlcommunity manpage gives a description of the Perl community on the Internet and in real life.
(Edgar ‘‘Trizor’’ Bering)

The CORE manual page documents the CORE:: namespace. (Tels)

The long-existing feature of /(?{...})/ regexps setting $_ and pos() is now documented.

Performance Enhancements
In-place sorting

Sorting arrays in place (@a = sort @a) is now optimized to avoid making a temporary copy of the
array.

Likewise, reverse sort ... is now optimized to sort in reverse, avoiding the generation of a
temporary intermediate list.

Lexical array access
Access to elements of lexical arrays via a numeric constant between 0 and 255 is now faster. (This used
to be only the case for global arrays.)

XS-assisted SWASHGET
Some pure-perl code that perl was using to retrieve Unicode properties and transliteration mappings has
been reimplemented in XS.

Constant subroutines
The interpreter internals now support a far more memory efficient form of inlineable constants. Storing
a reference to a constant value in a symbol table is equivalent to a full typeglob referencing a constant
subroutine, but using about 400 bytes less memory. This proxy constant subroutine is automatically

perl v5.36.0 2020-12-28 41

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

upgraded to a real typeglob with subroutine if necessary. The approach taken is analogous to the
existing space optimisation for subroutine stub declarations, which are stored as plain scalars in place
of the full typeglob.

Several of the core modules have been converted to use this feature for their system dependent
constants - as a result use POSIX; now takes about 200K less memory.

PERL_DONT_CREATE_GVSV
The new compilation flag PERL_DONT_CREATE_GVSV, introduced as an option in perl 5.8.8, is
turned on by default in perl 5.9.3. It prevents perl from creating an empty scalar with every new
typeglob. See perl589delta for details.

Weak references are cheaper
Weak reference creation is now O(1) rather than O(n), courtesy of Nicholas Clark. Weak reference
deletion remains O(n), but if deletion only happens at program exit, it may be skipped completely.

sort() enhancements
Salvador Fandiño provided improvements to reduce the memory usage of sort and to speed up some
cases.

Memory optimisations
Several internal data structures (typeglobs, GVs, CVs, formats) have been restructured to use less
memory. (Nicholas Clark)

UTF-8 cache optimisation
The UTF-8 caching code is now more efficient, and used more often. (Nicholas Clark)

Sloppy stat on Windows
On Windows, perl’s stat() function normally opens the file to determine the link count and update
attributes that may have been changed through hard links. Setting ${ˆWIN32_SLOPPY_STAT} to a
true value speeds up stat() by not performing this operation. (Jan Dubois)

Regular expressions optimisations
Engine de-recursivised

The regular expression engine is no longer recursive, meaning that patterns that used to overflow
the stack will either die with useful explanations, or run to completion, which, since they were
able to blow the stack before, will likely take a very long time to happen. If you were experiencing
the occasional stack overflow (or segfault) and upgrade to discover that now perl apparently hangs
instead, look for a degenerate regex. (Dave Mitchell)

Single char char-classes treated as literals
Classes of a single character are now treated the same as if the character had been used as a literal,
meaning that code that uses char-classes as an escaping mechanism will see a speedup. (Yves
Orton)

Trie optimisation of literal string alternations
Alternations, where possible, are optimised into more efficient matching structures. String literal
alternations are merged into a trie and are matched simultaneously. This means that instead of
O(N) time for matching N alternations at a given point, the new code performs in O(1) time. A
new special variable, ${ˆRE_TRIE_MAXBUF}, has been added to fine-tune this optimization.
(Yves Orton)

Note: Much code exists that works around perl’s historic poor performance on alternations. Often
the tricks used to do so will disable the new optimisations. Hopefully the utility modules used for
this purpose will be educated about these new optimisations.

Aho-Corasick start-point optimisation
When a pattern starts with a trie-able alternation and there aren’t better optimisations available, the
regex engine will use Aho-Corasick matching to find the start point. (Yves Orton)

Installation and Configuration Improvements
Configuration improvements

-Dusesitecustomize
Run-time customization of @INC can be enabled by passing the -Dusesitecustomize flag to
Configure. When enabled, this will make perl run $sitelibexp/sitecustomize.pl before
anything else. This script can then be set up to add additional entries to @INC.

perl v5.36.0 2020-12-28 42

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

Relocatable installations
There is now Configure support for creating a relocatable perl tree. If you Configure with
-Duserelocatableinc, then the paths in @INC (and everything else in %Config) can be
optionally located via the path of the perl executable.

That means that, if the string ".../" is found at the start of any path, it’s substituted with the
directory of $ˆX. So, the relocation can be configured on a per-directory basis, although the default
with -Duserelocatableinc is that everything is relocated. The initial install is done to the
original configured prefix.

strlcat() and strlcpy()
The configuration process now detects whether strlcat() and strlcpy() are available. When they
are not available, perl’s own version is used (from Russ Allbery’s public domain implementation).
Various places in the perl interpreter now use them. (Steve Peters)

d_pseudofork and d_printf_format_null
A new configuration variable, available as $Config{d_pseudofork} in the Config module,
has been added, to distinguish real fork() support from fake pseudofork used on Windows
platforms.

A new configuration variable, d_printf_format_null, has been added, to see if printf-like
formats are allowed to be NULL.

Configure help
Configure -h has been extended with the most commonly used options.

Compilation improvements
Parallel build

Parallel makes should work properly now, although there may still be problems if make test is
instructed to run in parallel.

Borland’s compilers support
Building with Borland’s compilers on Win32 should work more smoothly. In particular Steve Hay
has worked to side step many warnings emitted by their compilers and at least one C compiler
internal error.

Static build on Windows
Perl extensions on Windows now can be statically built into the Perl DLL.

Also, it’s now possible to build a perl-static.exe that doesn’t depend on the Perl DLL on
Win32. See the Win32 makefiles for details. (Vadim Konovalov)

ppport.h files
All ppport.h files in the XS modules bundled with perl are now autogenerated at build time.
(Marcus Holland-Moritz)

C++ compatibility
Efforts have been made to make perl and the core XS modules compilable with various C++

compilers (although the situation is not perfect with some of the compilers on some of the
platforms tested.)

Support for Microsoft 64-bit compiler
Support for building perl with Microsoft’s 64-bit compiler has been improved. (ActiveState)

Visual C++

Perl can now be compiled with Microsoft Visual C++ 2005 (and 2008 Beta 2).

Win32 builds
All win32 builds (MS-Win, WinCE) have been merged and cleaned up.

Installation improvements
Module auxiliary files

README files and changelogs for CPAN modules bundled with perl are no longer installed.

New Or Improved Platforms
Perl has been reported to work on Symbian OS. See perlsymbian for more information.

Many improvements have been made towards making Perl work correctly on z/OS.

perl v5.36.0 2020-12-28 43

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

Perl has been reported to work on DragonFlyBSD and MidnightBSD.

Perl has also been reported to work on NexentaOS (http://www.gnusolaris.org/).

The VMS port has been improved. See perlvms.

Support for Cray XT4 Catamount/Qk has been added. See hints/catamount.sh in the source code
distribution for more information.

Vendor patches have been merged for RedHat and Gentoo.

DynaLoader::dl_unload_file() now works on Windows.

Selected Bug Fixes
strictures in regexp-eval blocks

strict wasn’t in effect in regexp-eval blocks (/(?{...})/).

Calling CORE::require()
CORE::require() and CORE::do() were always parsed as require() and do() when they were
overridden. This is now fixed.

Subscripts of slices
You can now use a non-arrowed form for chained subscripts after a list slice, like in:

({foo => "bar"})[0]{foo}

This used to be a syntax error; a -> was required.

no warnings 'category' works correctly with -w
Previously when running with warnings enabled globally via -w, selective disabling of specific
warning categories would actually turn off all warnings. This is now fixed; now no warnings
'io'; will only turn off warnings in the io class. Previously it would erroneously turn off all
warnings.

threads improvements
Several memory leaks in ithreads were closed. Also, ithreads were made less memory-intensive.

threads is now a dual-life module, also available on CPAN. It has been expanded in many ways.
A kill() method is available for thread signalling. One can get thread status, or the list of running
or joinable threads.

A new threads->exit() method is used to exit from the application (this is the default for
the main thread) or from the current thread only (this is the default for all other threads). On the
other hand, the exit() built-in now always causes the whole application to terminate. (Jerry D.
Hedden)

chr() and negative values
chr() on a negative value now gives \x{FFFD}, the Unicode replacement character, unless when
the bytes pragma is in effect, where the low eight bits of the value are used.

PERL5SHELL and tainting
On Windows, the PERL5SHELL environment variable is now checked for taintedness. (Rafael
Garcia-Suarez)

Using *FILE{IO}
stat() and -X filetests now treat *FILE{IO} filehandles like *FILE filehandles. (Steve Peters)

Overloading and reblessing
Overloading now works when references are reblessed into another class. Internally, this has been
implemented by moving the flag for ‘‘overloading’’ from the reference to the referent, which
logically is where it should always have been. (Nicholas Clark)

Overloading and UTF-8
A few bugs related to UTF-8 handling with objects that have stringification overloaded have been
fixed. (Nicholas Clark)

eval memory leaks fixed
Traditionally, eval 'syntax error' has leaked badly. Many (but not all) of these leaks have
now been eliminated or reduced. (Dave Mitchell)

perl v5.36.0 2020-12-28 44

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

Random device on Windows
In previous versions, perl would read the file /dev/urandom if it existed when seeding its random
number generator. That file is unlikely to exist on Windows, and if it did would probably not
contain appropriate data, so perl no longer tries to read it on Windows. (Alex Davies)

PERLIO_DEBUG
The PERLIO_DEBUG environment variable no longer has any effect for setuid scripts and for
scripts run with -T.

Moreover, with a thread-enabled perl, using PERLIO_DEBUG could lead to an internal buffer
overflow. This has been fixed.

PerlIO::scalar and read-only scalars
PerlIO::scalar will now prevent writing to read-only scalars. Moreover, seek() is now supported
with PerlIO::scalar-based filehandles, the underlying string being zero-filled as needed. (Rafael,
Jarkko Hietaniemi)

study() and UTF-8
study() never worked for UTF-8 strings, but could lead to false results. It’s now a no-op on UTF-8
data. (Yves Orton)

Critical signals
The signals SIGILL, SIGBUS and SIGSEGV are now always delivered in an ‘‘unsafe’’ manner
(contrary to other signals, that are deferred until the perl interpreter reaches a reasonably stable
state; see ‘‘Deferred Signals (Safe Signals)’’ in perlipc). (Rafael)

@INC-hook fix
When a module or a file is loaded through an @INC-hook, and when this hook has set a filename
entry in %INC, _ _FILE_ _ is now set for this module accordingly to the contents of that %INC
entry. (Rafael)

-t switch fix
The -w and -t switches can now be used together without messing up which categories of
warnings are activated. (Rafael)

Duping UTF-8 filehandles
Duping a filehandle which has the :utf8 PerlIO layer set will now properly carry that layer on
the duped filehandle. (Rafael)

Localisation of hash elements
Localizing a hash element whose key was given as a variable didn’t work correctly if the variable
was changed while the local() was in effect (as in local $h{$x}; ++$x). (Bo Lindbergh)

New or Changed Diagnostics
Use of uninitialized value

Perl will now try to tell you the name of the variable (if any) that was undefined.

Deprecated use of my() in false conditional
A new deprecation warning, Deprecated use of my() in false conditional, has been added, to warn
against the use of the dubious and deprecated construct

my $x if 0;

See perldiag. Use state variables instead.

!=˜ should be !˜
A new warning, !=˜ should be !˜, is emitted to prevent this misspelling of the non-
matching operator.

Newline in left-justified string
The warning Newline in left-justified string has been removed.

Too late for ‘‘-T’’ option
The error Too late for ‘‘-T’’ option has been reformulated to be more descriptive.

‘‘%s’’ variable %s masks earlier declaration
This warning is now emitted in more consistent cases; in short, when one of the declarations
involved is a my variable:

perl v5.36.0 2020-12-28 45

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

my $x; my $x; # warns
my $x; our $x; # warns
our $x; my $x; # warns

On the other hand, the following:

our $x; our $x;

now gives a "our" variable %s redeclared warning.

readdir()/closedir()/etc. attempted on invalid dirhandle
These new warnings are now emitted when a dirhandle is used but is either closed or not really a
dirhandle.

Opening dirhandle/filehandle %s also as a file/directory
Two deprecation warnings have been added: (Rafael)

Opening dirhandle %s also as a file
Opening filehandle %s also as a directory

Use of -P is deprecated
Perl’s command-line switch -P is now deprecated.

v-string in use/require is non-portable
Perl will warn you against potential backwards compatibility problems with the use VERSION
syntax.

perl -V
perl -V has several improvements, making it more useable from shell scripts to get the value of
configuration variables. See perlrun for details.

Changed Internals
In general, the source code of perl has been refactored, tidied up, and optimized in many places. Also,
memory management and allocation has been improved in several points.

When compiling the perl core with gcc, as many gcc warning flags are turned on as is possible on the
platform. (This quest for cleanliness doesn’t extend to XS code because we cannot guarantee the
tidiness of code we didn’t write.) Similar strictness flags have been added or tightened for various
other C compilers.

Reordering of SVt_* constants
The relative ordering of constants that define the various types of SV have changed; in particular,
SVt_PVGV has been moved before SVt_PVLV, SVt_PVAV, SVt_PVHV and SVt_PVCV. This is
unlikely to make any difference unless you have code that explicitly makes assumptions about that
ordering. (The inheritance hierarchy of B::* objects has been changed to reflect this.)

Elimination of SVt_PVBM
Related to this, the internal type SVt_PVBM has been removed. This dedicated type of SV was used by
the index operator and parts of the regexp engine to facilitate fast Boyer-Moore matches. Its use
internally has been replaced by SVs of type SVt_PVGV.

New type SVt_BIND
A new type SVt_BIND has been added, in readiness for the project to implement Perl 6 on 5. There
deliberately is no implementation yet, and they cannot yet be created or destroyed.

Removal of CPP symbols
The C preprocessor symbols PERL_PM_APIVERSION and PERL_XS_APIVERSION, which were
supposed to give the version number of the oldest perl binary-compatible (resp. source-compatible)
with the present one, were not used, and sometimes had misleading values. They have been removed.

Less space is used by ops
The BASEOP structure now uses less space. The op_seq field has been removed and replaced by a
single bit bit-field op_opt. op_type is now 9 bits long. (Consequently, the B::OP class doesn’t
provide an seq method anymore.)

New parser
perl’s parser is now generated by bison (it used to be generated by byacc.) As a result, it seems to be a
bit more robust.

perl v5.36.0 2020-12-28 46

PERL5100DELTA(1) Perl Programmers Reference Guide PERL5100DELTA(1)

Also, Dave Mitchell improved the lexer debugging output under -DT.

Use of const
Andy Lester supplied many improvements to determine which function parameters and local variables
could actually be declared const to the C compiler. Steve Peters provided new *_set macros and
reworked the core to use these rather than assigning to macros in LVALUE context.

Mathoms
A new file, mathoms.c, has been added. It contains functions that are no longer used in the perl core,
but that remain available for binary or source compatibility reasons. However, those functions will not
be compiled in if you add -DNO_MATHOMS in the compiler flags.

AvFLAGS has been removed
The AvFLAGS macro has been removed.

av_* changes
The av_*() functions, used to manipulate arrays, no longer accept null AV* parameters.

$ˆH and %ˆH
The implementation of the special variables $ˆH and %ˆH has changed, to allow implementing lexical
pragmas in pure Perl.

B:: modules inheritance changed
The inheritance hierarchy of B:: modules has changed; B::NV now inherits from B::SV (it used to
inherit from B::IV).

Anonymous hash and array constructors
The anonymous hash and array constructors now take 1 op in the optree instead of 3, now that
pp_anonhash and pp_anonlist return a reference to a hash/array when the op is flagged with
OPf_SPECIAL. (Nicholas Clark)

Known Problems
There’s still a remaining problem in the implementation of the lexical $_: it doesn’t work inside
/(?{...})/ blocks. (See the TODO test in t/op/mydef.t.)

Stacked filetest operators won’t work when the filetest pragma is in effect, because they rely on
the stat() buffer _ being populated, and filetest bypasses stat().

UTF-8 problems
The handling of Unicode still is unclean in several places, where it’s dependent on whether a string is
internally flagged as UTF-8. This will be made more consistent in perl 5.12, but that won’t be possible
without a certain amount of backwards incompatibility.

Platform Specific Problems
When compiled with g++ and thread support on Linux, it’s reported that the $! stops working
correctly. This is related to the fact that the glibc provides two strerror_r (3) implementation, and perl
selects the wrong one.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/rt3/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

SEE ALSO
The Changes file and the perl590delta to perl595delta man pages for exhaustive details on what
changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2020-12-28 47

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

NAME
perl5101delta - what is new for perl v5.10.1

DESCRIPTION
This document describes differences between the 5.10.0 release and the 5.10.1 release.

If you are upgrading from an earlier release such as 5.8.8, first read the perl5100delta, which describes
differences between 5.8.8 and 5.10.0

Incompatible Changes
Switch statement changes

The handling of complex expressions by the given/when switch statement has been enhanced. There
are two new cases where when now interprets its argument as a boolean, instead of an expression to be
used in a smart match:

flip-flop operators
The .. and ... flip-flop operators are now evaluated in boolean context, following their usual
semantics; see ‘‘Range Operators’’ in perlop.

Note that, as in perl 5.10.0, when (1..10) will not work to test whether a given value is an
integer between 1 and 10; you should use when ([1..10]) instead (note the array reference).

However, contrary to 5.10.0, evaluating the flip-flop operators in boolean context ensures it can
now be useful in a when(), notably for implementing bistable conditions, like in:

when (/ˆ=begin/ .. /ˆ=end/) {
do something

}

defined-or operator
A compound expression involving the defined-or operator, as in when (expr1 // expr2),
will be treated as boolean if the first expression is boolean. (This just extends the existing rule that
applies to the regular or operator, as in when (expr1 || expr2).)

The next section details more changes brought to the semantics to the smart match operator, that
naturally also modify the behaviour of the switch statements where smart matching is implicitly used.

Smart match changes
Changes to type-based dispatch

The smart match operator ˜˜ is no longer commutative. The behaviour of a smart match now depends
primarily on the type of its right hand argument. Moreover, its semantics have been adjusted for greater
consistency or usefulness in several cases. While the general backwards compatibility is maintained,
several changes must be noted:

• Code references with an empty prototype are no longer treated specially. They are passed an
argument like the other code references (even if they choose to ignore it).

• %hash ˜˜ sub {} and @array ˜˜ sub {} now test that the subroutine returns a true
value for each key of the hash (or element of the array), instead of passing the whole hash or array
as a reference to the subroutine.

• Due to the commutativity breakage, code references are no longer treated specially when
appearing on the left of the ˜˜ operator, but like any vulgar scalar.

• undef ˜˜ %hash is always false (since undef can’t be a key in a hash). No implicit
conversion to "" is done (as was the case in perl 5.10.0).

• $scalar ˜˜ @array now always distributes the smart match across the elements of the array.
It’s true if one element in @array verifies $scalar ˜˜ $element. This is a generalization
of the old behaviour that tested whether the array contained the scalar.

The full dispatch table for the smart match operator is given in ‘‘Smart matching in detail’’ in perlsyn.

Smart match and overloading

According to the rule of dispatch based on the rightmost argument type, when an object overloading ˜˜
appears on the right side of the operator, the overload routine will always be called (with a 3rd
argument set to a true value, see overload.) However, when the object will appear on the left, the
overload routine will be called only when the rightmost argument is a simple scalar. This way

perl v5.36.0 2019-02-18 48

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

distributivity of smart match across arrays is not broken, as well as the other behaviours with complex
types (coderefs, hashes, regexes). Thus, writers of overloading routines for smart match mostly need to
worry only with comparing against a scalar, and possibly with stringification overloading; the other
common cases will be automatically handled consistently.

˜˜ will now refuse to work on objects that do not overload it (in order to avoid relying on the object’s
underlying structure). (However, if the object overloads the stringification or the numification
operators, and if overload fallback is active, it will be used instead, as usual.)

Other incompatible changes
• The semantics of use feature :5.10* have changed slightly. See ‘‘Modules and

Pragmata’’ for more information.

• It is now a run-time error to use the smart match operator ˜˜ with an object that has no overload
defined for it. (This way ˜˜ will not break encapsulation by matching against the object’s internal
representation as a reference.)

• The version control system used for the development of the perl interpreter has been switched
from Perforce to git. This is mainly an internal issue that only affects people actively working on
the perl core; but it may have minor external visibility, for example in some of details of the output
of perl -V. See perlrepository for more information.

• The internal structure of the ext/ directory in the perl source has been reorganised. In general, a
module Foo::Bar whose source was stored under ext/Foo/Bar/ is now located under
ext/Foo-Bar/. Also, some modules have been moved from lib/ to ext/. This is purely a source
tarball change, and should make no difference to the compilation or installation of perl, unless you
have a very customised build process that explicitly relies on this structure, or which hard-codes
the nonxs_ext Configure parameter. Specifically, this change does not by default alter the
location of any files in the final installation.

• As part of the Test::Harness 2.x to 3.x upgrade, the experimental
Test::Harness::Straps module has been removed. See ‘‘Updated Modules’’ for more
details.

• As part of the ExtUtils::MakeMaker upgrade, the ExtUtils::MakeMaker::bytes
and ExtUtils::MakeMaker::vmsish modules have been removed from this distribution.

• Module::CoreList no longer contains the %:patchlevel hash.

• This one is actually a change introduced in 5.10.0, but it was missed from that release’s perldelta,
so it is mentioned here instead.

A bugfix related to the handling of the /m modifier and qr resulted in a change of behaviour
between 5.8.x and 5.10.0:

matches in 5.8.x, doesn't match in 5.10.0
$re = qr/ˆbar/; "foo\nbar" =˜ /$re/m;

Core Enhancements
Unicode Character Database 5.1.0

The copy of the Unicode Character Database included in Perl 5.10.1 has been updated to 5.1.0 from
5.0.0. See <http://www.unicode.org/versions/Unicode5.1.0/#Notable_Changes> for the notable
changes.

A proper interface for pluggable Method Resolution Orders
As of Perl 5.10.1 there is a new interface for plugging and using method resolution orders other than
the default (linear depth first search). The C3 method resolution order added in 5.10.0 has been re-
implemented as a plugin, without changing its Perl-space interface. See perlmroapi for more
information.

The overloading pragma
This pragma allows you to lexically disable or enable overloading for some or all operations. (Yuval
Kogman)

Parallel tests
The core distribution can now run its regression tests in parallel on Unix-like platforms. Instead of
running make test, set TEST_JOBS in your environment to the number of tests to run in parallel,

perl v5.36.0 2019-02-18 49

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

and run make test_harness. On a Bourne-like shell, this can be done as

TEST_JOBS=3 make test_harness # Run 3 tests in parallel

An environment variable is used, rather than parallel make itself, because TAP::Harness needs to be
able to schedule individual non-conflicting test scripts itself, and there is no standard interface to make
utilities to interact with their job schedulers.

Note that currently some test scripts may fail when run in parallel (most notably
ext/IO/t/io_dir.t). If necessary run just the failing scripts again sequentially and see if the
failures go away.

DTrace support
Some support for DTrace has been added. See ‘‘DTrace support’’ in INSTALL.

Support for configure_requires in CPAN module metadata
Both CPAN and CPANPLUS now support the configure_requires keyword in the META.yml
metadata file included in most recent CPAN distributions. This allows distribution authors to specify
configuration prerequisites that must be installed before running Makefile.PL or Build.PL.

See the documentation for ExtUtils::MakeMaker or Module::Build for more on how to
specify configure_requires when creating a distribution for CPAN.

Modules and Pragmata
New Modules and Pragmata

autodie
This is a new lexically-scoped alternative for the Fatal module. The bundled version is 2.06_01.
Note that in this release, using a string eval when autodie is in effect can cause the autodie
behaviour to leak into the surrounding scope. See ‘‘BUGS’’ in autodie for more details.

Compress::Raw::Bzip2
This has been added to the core (version 2.020).

parent
This pragma establishes an ISA relationship with base classes at compile time. It provides the key
feature of base without the feature creep.

Parse::CPAN::Meta
This has been added to the core (version 1.39).

Pragmata Changes
attributes

Upgraded from version 0.08 to 0.09.

attrs
Upgraded from version 1.02 to 1.03.

base
Upgraded from version 2.13 to 2.14. See parent for a replacement.

bigint
Upgraded from version 0.22 to 0.23.

bignum
Upgraded from version 0.22 to 0.23.

bigrat
Upgraded from version 0.22 to 0.23.

charnames
Upgraded from version 1.06 to 1.07.

The Unicode NameAliases.txt database file has been added. This has the effect of adding some
extra \N character names that formerly wouldn’t have been recognised; for example, "\N{LATIN
CAPITAL LETTER GHA}".

constant
Upgraded from version 1.13 to 1.17.

perl v5.36.0 2019-02-18 50

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

feature
The meaning of the :5.10 and :5.10.X feature bundles has changed slightly. The last
component, if any (i.e. X) is simply ignored. This is predicated on the assumption that new
features will not, in general, be added to maintenance releases. So :5.10 and :5.10.X have
identical effect. This is a change to the behaviour documented for 5.10.0.

fields
Upgraded from version 2.13 to 2.14 (this was just a version bump; there were no functional
changes).

lib
Upgraded from version 0.5565 to 0.62.

open
Upgraded from version 1.06 to 1.07.

overload
Upgraded from version 1.06 to 1.07.

overloading
See "The overloading pragma" above.

version
Upgraded from version 0.74 to 0.77.

Updated Modules
Archive::Extract

Upgraded from version 0.24 to 0.34.

Archive::Tar
Upgraded from version 1.38 to 1.52.

Attribute::Handlers
Upgraded from version 0.79 to 0.85.

AutoLoader
Upgraded from version 5.63 to 5.68.

AutoSplit
Upgraded from version 1.05 to 1.06.

B Upgraded from version 1.17 to 1.22.

B::Debug
Upgraded from version 1.05 to 1.11.

B::Deparse
Upgraded from version 0.83 to 0.89.

B::Lint
Upgraded from version 1.09 to 1.11.

B::Xref
Upgraded from version 1.01 to 1.02.

Benchmark
Upgraded from version 1.10 to 1.11.

Carp
Upgraded from version 1.08 to 1.11.

CGI
Upgraded from version 3.29 to 3.43. (also includes the ‘‘default_value for popup_menu()’’ fix
from 3.45).

Compress::Zlib
Upgraded from version 2.008 to 2.020.

CPAN
Upgraded from version 1.9205 to 1.9402. CPAN::FTP has a local fix to stop it being too verbose
on download failure.

perl v5.36.0 2019-02-18 51

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

CPANPLUS
Upgraded from version 0.84 to 0.88.

CPANPLUS::Dist::Build
Upgraded from version 0.06_02 to 0.36.

Cwd
Upgraded from version 3.25_01 to 3.30.

Data::Dumper
Upgraded from version 2.121_14 to 2.124.

DB Upgraded from version 1.01 to 1.02.

DB_File
Upgraded from version 1.816_1 to 1.820.

Devel::PPPort
Upgraded from version 3.13 to 3.19.

Digest::MD5
Upgraded from version 2.36_01 to 2.39.

Digest::SHA
Upgraded from version 5.45 to 5.47.

DirHandle
Upgraded from version 1.01 to 1.03.

Dumpvalue
Upgraded from version 1.12 to 1.13.

DynaLoader
Upgraded from version 1.08 to 1.10.

Encode
Upgraded from version 2.23 to 2.35.

Errno
Upgraded from version 1.10 to 1.11.

Exporter
Upgraded from version 5.62 to 5.63.

ExtUtils::CBuilder
Upgraded from version 0.21 to 0.2602.

ExtUtils::Command
Upgraded from version 1.13 to 1.16.

ExtUtils::Constant
Upgraded from 0.20 to 0.22. (Note that neither of these versions are available on CPAN.)

ExtUtils::Embed
Upgraded from version 1.27 to 1.28.

ExtUtils::Install
Upgraded from version 1.44 to 1.54.

ExtUtils::MakeMaker
Upgraded from version 6.42 to 6.55_02.

Note that ExtUtils::MakeMaker::bytes and ExtUtils::MakeMaker::vmsish
have been removed from this distribution.

ExtUtils::Manifest
Upgraded from version 1.51_01 to 1.56.

ExtUtils::ParseXS
Upgraded from version 2.18_02 to 2.2002.

perl v5.36.0 2019-02-18 52

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

Fatal
Upgraded from version 1.05 to 2.06_01. See also the new pragma autodie.

File::Basename
Upgraded from version 2.76 to 2.77.

File::Compare
Upgraded from version 1.1005 to 1.1006.

File::Copy
Upgraded from version 2.11 to 2.14.

File::Fetch
Upgraded from version 0.14 to 0.20.

File::Find
Upgraded from version 1.12 to 1.14.

File::Path
Upgraded from version 2.04 to 2.07_03.

File::Spec
Upgraded from version 3.2501 to 3.30.

File::stat
Upgraded from version 1.00 to 1.01.

File::Temp
Upgraded from version 0.18 to 0.22.

FileCache
Upgraded from version 1.07 to 1.08.

FileHandle
Upgraded from version 2.01 to 2.02.

Filter::Simple
Upgraded from version 0.82 to 0.84.

Filter::Util::Call
Upgraded from version 1.07 to 1.08.

FindBin
Upgraded from version 1.49 to 1.50.

GDBM_File
Upgraded from version 1.08 to 1.09.

Getopt::Long
Upgraded from version 2.37 to 2.38.

Hash::Util::FieldHash
Upgraded from version 1.03 to 1.04. This fixes a memory leak.

I18N::Collate
Upgraded from version 1.00 to 1.01.

IO Upgraded from version 1.23_01 to 1.25.

This makes non-blocking mode work on Windows in IO::Socket::INET [CPAN #43573].

IO::Compress::*
Upgraded from version 2.008 to 2.020.

IO::Dir
Upgraded from version 1.06 to 1.07.

IO::Handle
Upgraded from version 1.27 to 1.28.

IO::Socket
Upgraded from version 1.30_01 to 1.31.

perl v5.36.0 2019-02-18 53

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

IO::Zlib
Upgraded from version 1.07 to 1.09.

IPC::Cmd
Upgraded from version 0.40_1 to 0.46.

IPC::Open3
Upgraded from version 1.02 to 1.04.

IPC::SysV
Upgraded from version 1.05 to 2.01.

lib
Upgraded from version 0.5565 to 0.62.

List::Util
Upgraded from version 1.19 to 1.21.

Locale::MakeText
Upgraded from version 1.12 to 1.13.

Log::Message
Upgraded from version 0.01 to 0.02.

Math::BigFloat
Upgraded from version 1.59 to 1.60.

Math::BigInt
Upgraded from version 1.88 to 1.89.

Math::BigInt::FastCalc
Upgraded from version 0.16 to 0.19.

Math::BigRat
Upgraded from version 0.21 to 0.22.

Math::Complex
Upgraded from version 1.37 to 1.56.

Math::Trig
Upgraded from version 1.04 to 1.20.

Memoize
Upgraded from version 1.01_02 to 1.01_03 (just a minor documentation change).

Module::Build
Upgraded from version 0.2808_01 to 0.34_02.

Module::CoreList
Upgraded from version 2.13 to 2.18. This release no longer contains the
%Module::CoreList::patchlevel hash.

Module::Load
Upgraded from version 0.12 to 0.16.

Module::Load::Conditional
Upgraded from version 0.22 to 0.30.

Module::Loaded
Upgraded from version 0.01 to 0.02.

Module::Pluggable
Upgraded from version 3.6 to 3.9.

NDBM_File
Upgraded from version 1.07 to 1.08.

Net::Ping
Upgraded from version 2.33 to 2.36.

perl v5.36.0 2019-02-18 54

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

NEXT
Upgraded from version 0.60_01 to 0.64.

Object::Accessor
Upgraded from version 0.32 to 0.34.

OS2::REXX
Upgraded from version 1.03 to 1.04.

Package::Constants
Upgraded from version 0.01 to 0.02.

PerlIO
Upgraded from version 1.04 to 1.06.

PerlIO::via
Upgraded from version 0.04 to 0.07.

Pod::Man
Upgraded from version 2.16 to 2.22.

Pod::Parser
Upgraded from version 1.35 to 1.37.

Pod::Simple
Upgraded from version 3.05 to 3.07.

Pod::Text
Upgraded from version 3.08 to 3.13.

POSIX
Upgraded from version 1.13 to 1.17.

Safe
Upgraded from 2.12 to 2.18.

Scalar::Util
Upgraded from version 1.19 to 1.21.

SelectSaver
Upgraded from 1.01 to 1.02.

SelfLoader
Upgraded from 1.11 to 1.17.

Socket
Upgraded from 1.80 to 1.82.

Storable
Upgraded from 2.18 to 2.20.

Switch
Upgraded from version 2.13 to 2.14. Please see ‘‘Deprecations’’.

Symbol
Upgraded from version 1.06 to 1.07.

Sys::Syslog
Upgraded from version 0.22 to 0.27.

Term::ANSIColor
Upgraded from version 1.12 to 2.00.

Term::ReadLine
Upgraded from version 1.03 to 1.04.

Term::UI
Upgraded from version 0.18 to 0.20.

Test::Harness
Upgraded from version 2.64 to 3.17.

Note that one side-effect of the 2.x to 3.x upgrade is that the experimental

perl v5.36.0 2019-02-18 55

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

Test::Harness::Straps module (and its supporting Assert, Iterator, Point and
Results modules) have been removed. If you still need this, then they are available in the
(unmaintained) Test-Harness-Straps distribution on CPAN.

Test::Simple
Upgraded from version 0.72 to 0.92.

Text::ParseWords
Upgraded from version 3.26 to 3.27.

Text::Tabs
Upgraded from version 2007.1117 to 2009.0305.

Text::Wrap
Upgraded from version 2006.1117 to 2009.0305.

Thread::Queue
Upgraded from version 2.00 to 2.11.

Thread::Semaphore
Upgraded from version 2.01 to 2.09.

threads
Upgraded from version 1.67 to 1.72.

threads::shared
Upgraded from version 1.14 to 1.29.

Tie::RefHash
Upgraded from version 1.37 to 1.38.

Tie::StdHandle
This has documentation changes, and has been assigned a version for the first time: version 4.2.

Time::HiRes
Upgraded from version 1.9711 to 1.9719.

Time::Local
Upgraded from version 1.18 to 1.1901.

Time::Piece
Upgraded from version 1.12 to 1.15.

Unicode::Normalize
Upgraded from version 1.02 to 1.03.

Unicode::UCD
Upgraded from version 0.25 to 0.27.

charinfo() now works on Unified CJK code points added to later versions of Unicode.

casefold() has new fields returned to provide both a simpler interface and previously missing
information. The old fields are retained for backwards compatibility. Information about Turkic-
specific code points is now returned.

The documentation has been corrected and expanded.

UNIVERSAL
Upgraded from version 1.04 to 1.05.

Win32
Upgraded from version 0.34 to 0.39.

Win32API::File
Upgraded from version 0.1001_01 to 0.1101.

XSLoader
Upgraded from version 0.08 to 0.10.

Utility Changes

perl v5.36.0 2019-02-18 56

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

h2ph
Now looks in include-fixed too, which is a recent addition to gcc’s search path.

h2xs
No longer incorrectly treats enum values like macros (Daniel Burr).

Now handles C++ style constants (//) properly in enums. (A patch from Rainer Weikusat was
used; Daniel Burr also proposed a similar fix).

perl5db.pl
LVALUE subroutines now work under the debugger.

The debugger now correctly handles proxy constant subroutines, and subroutine stubs.

perlthanks
Perl 5.10.1 adds a new utility perlthanks, which is a variant of perlbug, but for sending non-bug-
reports to the authors and maintainers of Perl. Getting nothing but bug reports can become a bit
demoralising: we’ll see if this changes things.

New Documentation
perlhaiku

This contains instructions on how to build perl for the Haiku platform.

perlmroapi
This describes the new interface for pluggable Method Resolution Orders.

perlperf
This document, by Richard Foley, provides an introduction to the use of performance and
optimization techniques which can be used with particular reference to perl programs.

perlrepository
This describes how to access the perl source using the git version control system.

perlthanks
This describes the new perlthanks utility.

Changes to Existing Documentation
The various large Changes* files (which listed every change made to perl over the last 18 years) have
been removed, and replaced by a small file, also called Changes, which just explains how that same
information may be extracted from the git version control system.

The file Porting/patching.pod has been deleted, as it mainly described interacting with the old Perforce-
based repository, which is now obsolete. Information still relevant has been moved to perlrepository.

perlapi, perlintern, perlmodlib and perltoc are now all generated at build time, rather than being shipped
as part of the release.

Performance Enhancements
• A new internal cache means that isa() will often be faster.

• Under use locale, the locale-relevant information is now cached on read-only values, such as
the list returned by keys %hash. This makes operations such as sort keys %hash in the
scope of use locale much faster.

• Empty DESTROY methods are no longer called.

Installation and Configuration Improvements
ext/ reorganisation

The layout of directories in ext has been revised. Specifically, all extensions are now flat, and at the top
level, with / in pathnames replaced by - , so that ext/Data/Dumper/ is now ext/Data-Dumper/, etc.
The names of the extensions as specified to Configure, and as reported by %Config::Config under
the keys dynamic_ext, known_extensions, nonxs_ext and static_ext have not
changed, and still use /. Hence this change will not have any affect once perl is installed. However,
Attribute::Handlers, Safe and mro have now become extensions in their own right, so if you
run Configure with options to specify an exact list of extensions to build, you will need to change it to
account for this.

For 5.10.2, it is planned that many dual-life modules will have been moved from lib to ext; again this
will have no effect on an installed perl, but will matter if you invoke Configure with a pre-canned list of

perl v5.36.0 2019-02-18 57

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

extensions to build.

Configuration improvements
If vendorlib and vendorarch are the same, then they are only added to @INC once.

$Config{usedevel} and the C-level PERL_USE_DEVEL are now defined if perl is built with
-Dusedevel.

Configure will enable use of -fstack-protector, to provide protection against stack-smashing
attacks, if the compiler supports it.

Configure will now determine the correct prototypes for re-entrant functions, and for gconvert, if
you are using a C++ compiler rather than a C compiler.

On Unix, if you build from a tree containing a git repository, the configuration process will note the
commit hash you have checked out, for display in the output of perl -v and perl -V. Unpushed
local commits are automatically added to the list of local patches displayed by perl -V.

Compilation improvements
As part of the flattening of ext, all extensions on all platforms are built by make_ext.pl. This replaces
the Unix-specific ext/util/make_ext, VMS-specific make_ext.com and Win32-specific
win32/buildext.pl.

Platform Specific Changes
AIX

Removed libbsd for AIX 5L and 6.1. Only flock() was used from libbsd.

Removed libgdbm for AIX 5L and 6.1. The libgdbm is delivered as an optional package with the
AIX Toolbox. Unfortunately the 64 bit version is broken.

Hints changes mean that AIX 4.2 should work again.

Cygwin
On Cygwin we now strip the last number from the DLL. This has been the behaviour in the
cygwin.com build for years. The hints files have been updated.

FreeBSD
The hints files now identify the correct threading libraries on FreeBSD 7 and later.

Irix We now work around a bizarre preprocessor bug in the Irix 6.5 compiler: cc -E - unfortunately
goes into K&R mode, but cc -E file.c doesn’t.

Haiku
Patches from the Haiku maintainers have been merged in. Perl should now build on Haiku.

MirOS BSD
Perl should now build on MirOS BSD.

NetBSD
Hints now supports versions 5.*.

Stratus VOS
Various changes from Stratus have been merged in.

Symbian
There is now support for Symbian S60 3.2 SDK and S60 5.0 SDK.

Win32
Improved message window handling means that alarm and kill messages will no longer be
dropped under race conditions.

VMS
Reads from the in-memory temporary files of PerlIO::scalar used to fail if $/ was set to a
numeric reference (to indicate record-style reads). This is now fixed.

VMS now supports getgrgid.

Many improvements and cleanups have been made to the VMS file name handling and conversion
code.

Enabling the PERL_VMS_POSIX_EXIT logical name now encodes a POSIX exit status in a VMS

perl v5.36.0 2019-02-18 58

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

condition value for better interaction with GNV’s bash shell and other utilities that depend on
POSIX exit values. See ‘‘$?’’ in perlvms for details.

Selected Bug Fixes
• 5.10.0 inadvertently disabled an optimisation, which caused a measurable performance drop in list

assignment, such as is often used to assign function parameters from @_. The optimisation has
been re-instated, and the performance regression fixed.

• Fixed memory leak on while (1) { map 1, 1 } [RT #53038].

• Some potential coredumps in PerlIO fixed [RT #57322,54828].

• The debugger now works with lvalue subroutines.

• The debugger’s m command was broken on modules that defined constants [RT #61222].

• crypt() and string complement could return tainted values for untainted arguments [RT
#59998].

• The -i.suffix command-line switch now recreates the file using restricted permissions, before
changing its mode to match the original file. This eliminates a potential race condition [RT
#60904].

• On some Unix systems, the value in $? would not have the top bit set ($? & 128) even if the
child core dumped.

• Under some circumstances, $ˆR could incorrectly become undefined [RT #57042].

• (XS) In various hash functions, passing a pre-computed hash to when the key is UTF-8 might
result in an incorrect lookup.

• (XS) Including XSUB.h before perl.h gave a compile-time error [RT #57176].

• $object->isa('Foo') would report false if the package Foo didn’t exist, even if the
object’s @ISA contained Foo.

• Various bugs in the new-to 5.10.0 mro code, triggered by manipulating @ISA, have been found
and fixed.

• Bitwise operations on references could crash the interpreter, e.g. $x=\$y; $x |= "foo" [RT
#54956].

• Patterns including alternation might be sensitive to the internal UTF-8 representation, e.g.

my $byte = chr(192);
my $utf8 = chr(192); utf8::upgrade($utf8);
$utf8 =˜ /$byte|X}/i; # failed in 5.10.0

• Within UTF8-encoded Perl source files (i.e. where use utf8 is in effect), double-quoted literal
strings could be corrupted where a \xNN, \0NNN or \N{} is followed by a literal character with
ordinal value greater than 255 [RT #59908].

• B::Deparse failed to correctly deparse various constructs: readpipe STRING [RT #62428],
CORE::require(STRING) [RT #62488], sub foo(_) [RT #62484].

• Using setpgrp() with no arguments could corrupt the perl stack.

• The block form of eval is now specifically trappable by Safe and ops. Previously it was
erroneously treated like string eval.

• In 5.10.0, the two characters [˜ were sometimes parsed as the smart match operator (˜˜) [RT
#63854].

• In 5.10.0, the * quantifier in patterns was sometimes treated as {0,32767} [RT #60034,
#60464]. For example, this match would fail:

("ab" x 32768) =˜ /ˆ(ab)*$/

• shmget was limited to a 32 bit segment size on a 64 bit OS [RT #63924].

• Using next or last to exit a given block no longer produces a spurious warning like the
following:

perl v5.36.0 2019-02-18 59

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

Exiting given via last at foo.pl line 123

• On Windows, '.\foo' and '..\foo' were treated differently than './foo' and
'../foo' by do and require [RT #63492].

• Assigning a format to a glob could corrupt the format; e.g.:

*bar=*foo{FORMAT}; # foo format now bad

• Attempting to coerce a typeglob to a string or number could cause an assertion failure. The correct
error message is now generated, Can't coerce GLOB to $type.

• Under use filetest 'access', -x was using the wrong access mode. This has been fixed
[RT #49003].

• length on a tied scalar that returned a Unicode value would not be correct the first time. This
has been fixed.

• Using an array tie inside in array tie could SEGV. This has been fixed. [RT #51636]

• A race condition inside PerlIOStdio_close() has been identified and fixed. This used to
cause various threading issues, including SEGVs.

• In unpack, the use of () groups in scalar context was internally placing a list on the interpreter’s
stack, which manifested in various ways, including SEGVs. This is now fixed [RT #50256].

• Magic was called twice in substr, \&$x, tie $x, $m and chop. These have all been fixed.

• A 5.10.0 optimisation to clear the temporary stack within the implicit loop of s///ge has been
reverted, as it turned out to be the cause of obscure bugs in seemingly unrelated parts of the
interpreter [commit ef0d4e17921ee3de].

• The line numbers for warnings inside elsif are now correct.

• The .. operator now works correctly with ranges whose ends are at or close to the values of the
smallest and largest integers.

• binmode STDIN, ':raw' could lead to segmentation faults on some platforms. This has
been fixed [RT #54828].

• An off-by-one error meant that index $str, ... was effectively being executed as index
"$str\0", This has been fixed [RT #53746].

• Various leaks associated with named captures in regexes have been fixed [RT #57024].

• A weak reference to a hash would leak. This was affecting DBI [RT #56908].

• Using (?|) in a regex could cause a segfault [RT #59734].

• Use of a UTF-8 tr// within a closure could cause a segfault [RT #61520].

• Calling sv_chop() or otherwise upgrading an SV could result in an unaligned 64-bit access on
the SPARC architecture [RT #60574].

• In the 5.10.0 release, inc_version_list would incorrectly list 5.10.* after 5.8.*; this
affected the @INC search order [RT #67628].

• In 5.10.0, pack "a*", $tainted_value returned a non-tainted value [RT #52552].

• In 5.10.0, printf and sprintf could produce the fatal error panic:
utf8_mg_pos_cache_update when printing UTF-8 strings [RT #62666].

• In the 5.10.0 release, a dynamically created AUTOLOAD method might be missed (method cache
issue) [RT #60220,60232].

• In the 5.10.0 release, a combination of use feature and //ee could cause a memory leak [RT
#63110].

• -C on the shebang (#!) line is once more permitted if it is also specified on the command line. -C
on the shebang line used to be a silent no-op if it was not also on the command line, so perl 5.10.0
disallowed it, which broke some scripts. Now perl checks whether it is also on the command line
and only dies if it is not [RT #67880].

perl v5.36.0 2019-02-18 60

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

• In 5.10.0, certain types of re-entrant regular expression could crash, or cause the following
assertion failure [RT #60508]:

Assertion rx->sublen >= (s - rx->subbeg) + i failed

New or Changed Diagnostics
panic: sv_chop %s

This new fatal error occurs when the C routine Perl_sv_chop() was passed a position that is
not within the scalar’s string buffer. This could be caused by buggy XS code, and at this point
recovery is not possible.

Can't locate package %s for the parents of %s
This warning has been removed. In general, it only got produced in conjunction with other
warnings, and removing it allowed an ISA lookup optimisation to be added.

v-string in use/require is non-portable
This warning has been removed.

Deep recursion on subroutine ‘‘%s’’
It is now possible to change the depth threshold for this warning from the default of 100, by
recompiling the perl binary, setting the C pre-processor macro PERL_SUB_DEPTH_WARN to the
desired value.

Changed Internals
• The J.R.R. Tolkien quotes at the head of C source file have been checked and proper citations

added, thanks to a patch from Tom Christiansen.

• vcroak() now accepts a null first argument. In addition, a full audit was made of the ‘‘not
NULL’’ compiler annotations, and those for several other internal functions were corrected.

• New macros dSAVEDERRNO, dSAVE_ERRNO, SAVE_ERRNO, RESTORE_ERRNO have been
added to formalise the temporary saving of the errno variable.

• The function Perl_sv_insert_flags has been added to augment Perl_sv_insert.

• The function Perl_newSV_type(type) has been added, equivalent to Perl_newSV()
followed by Perl_sv_upgrade(type).

• The function Perl_newSVpvn_flags() has been added, equivalent to Perl_newSVpvn()
and then performing the action relevant to the flag.

Two flag bits are currently supported.

SVf_UTF8
This will call SvUTF8_on() for you. (Note that this does not convert an sequence of ISO
8859-1 characters to UTF-8). A wrapper, newSVpvn_utf8() is available for this.

SVs_TEMP
Call sv_2mortal() on the new SV.

There is also a wrapper that takes constant strings, newSVpvs_flags().

• The function Perl_croak_xs_usage has been added as a wrapper to Perl_croak.

• The functions PerlIO_find_layer and PerlIO_list_alloc are now exported.

• PL_na has been exterminated from the core code, replaced by local STRLEN temporaries, or
*_nolen() calls. Either approach is faster than PL_na, which is a pointer deference into the
interpreter structure under ithreads, and a global variable otherwise.

• Perl_mg_free() used to leave freed memory accessible via SvMAGIC() on the scalar. It now
updates the linked list to remove each piece of magic as it is freed.

• Under ithreads, the regex in PL_reg_curpm is now reference counted. This eliminates a lot of
hackish workarounds to cope with it not being reference counted.

• Perl_mg_magical() would sometimes incorrectly turn on SvRMAGICAL(). This has been
fixed.

• The public IV and NV flags are now not set if the string value has trailing ‘‘garbage’’. This
behaviour is consistent with not setting the public IV or NV flags if the value is out of range for the
type.

perl v5.36.0 2019-02-18 61

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

• SV allocation tracing has been added to the diagnostics enabled by -Dm. The tracing can
alternatively output via the PERL_MEM_LOG mechanism, if that was enabled when the perl
binary was compiled.

• Uses of Nullav, Nullcv, Nullhv, Nullop, Nullsv etc have been replaced by NULL in the
core code, and non-dual-life modules, as NULL is clearer to those unfamiliar with the core code.

• A macro MUTABLE_PTR(p) has been added, which on (non-pedantic) gcc will not cast away
const, returning a void *. Macros MUTABLE_SV(av), MUTABLE_SV(cv) etc build on
this, casting to AV * etc without casting away const. This allows proper compile-time auditing
of const correctness in the core, and helped picked up some errors (now fixed).

• Macros mPUSHs() and mXPUSHs() have been added, for pushing SVs on the stack and
mortalizing them.

• Use of the private structure mro_meta has changed slightly. Nothing outside the core should be
accessing this directly anyway.

• A new tool, Porting/expand-macro.pl has been added, that allows you to view how a C
preprocessor macro would be expanded when compiled. This is handy when trying to decode the
macro hell that is the perl guts.

New Tests
Many modules updated from CPAN incorporate new tests.

Several tests that have the potential to hang forever if they fail now incorporate a ‘‘watchdog’’
functionality that will kill them after a timeout, which helps ensure that make test and make
test_harness run to completion automatically. (Jerry Hedden).

Some core-specific tests have been added:

t/comp/retainedlines.t
Check that the debugger can retain source lines from eval.

t/io/perlio_fail.t
Check that bad layers fail.

t/io/perlio_leaks.t
Check that PerlIO layers are not leaking.

t/io/perlio_open.t
Check that certain special forms of open work.

t/io/perlio.t
General PerlIO tests.

t/io/pvbm.t
Check that there is no unexpected interaction between the internal types PVBM and PVGV.

t/mro/package_aliases.t
Check that mro works properly in the presence of aliased packages.

t/op/dbm.t
Tests for dbmopen and dbmclose.

t/op/index_thr.t
Tests for the interaction of index and threads.

t/op/pat_thr.t
Tests for the interaction of esoteric patterns and threads.

t/op/qr_gc.t
Test that qr doesn’t leak.

t/op/reg_email_thr.t
Tests for the interaction of regex recursion and threads.

t/op/regexp_qr_embed_thr.t
Tests for the interaction of patterns with embedded qr// and threads.

perl v5.36.0 2019-02-18 62

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

t/op/regexp_unicode_prop.t
Tests for Unicode properties in regular expressions.

t/op/regexp_unicode_prop_thr.t
Tests for the interaction of Unicode properties and threads.

t/op/reg_nc_tie.t
Test the tied methods of Tie::Hash::NamedCapture.

t/op/reg_posixcc.t
Check that POSIX character classes behave consistently.

t/op/re.t
Check that exportable re functions in universal.c work.

t/op/setpgrpstack.t
Check that setpgrp works.

t/op/substr_thr.t
Tests for the interaction of substr and threads.

t/op/upgrade.t
Check that upgrading and assigning scalars works.

t/uni/lex_utf8.t
Check that Unicode in the lexer works.

t/uni/tie.t
Check that Unicode and tie work.

Known Problems
This is a list of some significant unfixed bugs, which are regressions from either 5.10.0 or 5.8.x.

• List::Util::first misbehaves in the presence of a lexical $_ (typically introduced by my
$_ or implicitly by given). The variable which gets set for each iteration is the package variable
$_, not the lexical $_ [RT #67694].

A similar issue may occur in other modules that provide functions which take a block as their first
argument, like

foo { ... $_ ...} list

• The charnames pragma may generate a run-time error when a regex is interpolated [RT
#56444]:

use charnames ':full';
my $r1 = qr/\N{THAI CHARACTER SARA I}/;
"foo" =˜ $r1; # okay
"foo" =˜ /$r1+/; # runtime error

A workaround is to generate the character outside of the regex:

my $a = "\N{THAI CHARACTER SARA I}";
my $r1 = qr/$a/;

• Some regexes may run much more slowly when run in a child thread compared with the thread the
pattern was compiled into [RT #55600].

Deprecations
The following items are now deprecated.

• Switch is buggy and should be avoided. From perl 5.11.0 onwards, it is intended that any use of
the core version of this module will emit a warning, and that the module will eventually be
removed from the core (probably in perl 5.14.0). See ‘‘Switch statements’’ in perlsyn for its
replacement.

• suidperl will be removed in 5.12.0. This provides a mechanism to emulate setuid permission
bits on systems that don’t support it properly.

perl v5.36.0 2019-02-18 63

PERL5101DELTA(1) Perl Programmers Reference Guide PERL5101DELTA(1)

Acknowledgements
Some of the work in this release was funded by a TPF grant.

Nicholas Clark officially retired from maintenance pumpking duty at the end of 2008; however in
reality he has put much effort in since then to help get 5.10.1 into a fit state to be released, including
writing a considerable chunk of this perldelta.

Steffen Mueller and David Golden in particular helped getting CPAN modules polished and
synchronised with their in-core equivalents.

Craig Berry was tireless in getting maint to run under VMS, no matter how many times we broke it for
him.

The other core committers contributed most of the changes, and applied most of the patches sent in by
the hundreds of contributors listed in AUTHORS.

(Sorry to all the people I haven’t mentioned by name).

Finally, thanks to Larry Wall, without whom none of this would be necessary.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this address
for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 64

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

NAME
perl5120delta - what is new for perl v5.12.0

DESCRIPTION
This document describes differences between the 5.10.0 release and the 5.12.0 release.

Many of the bug fixes in 5.12.0 are already included in the 5.10.1 maintenance release.

You can see the list of those changes in the 5.10.1 release notes (perl5101delta).

Core Enhancements
New package NAME VERSION syntax

This new syntax allows a module author to set the $VERSION of a namespace when the namespace is
declared with ’package’. It eliminates the need for our $VERSION = ... and similar constructs.
E.g.

package Foo::Bar 1.23;
$Foo::Bar::VERSION == 1.23

There are several advantages to this:

• $VERSION is parsed in exactly the same way as use NAME VERSION

• $VERSION is set at compile time

• $VERSION is a version object that provides proper overloading of comparison operators so
comparing $VERSION to decimal (1.23) or dotted-decimal (v1.2.3) version numbers works
correctly.

• Eliminates $VERSION = ... and eval $VERSION clutter

• As it requires VERSION to be a numeric literal or v-string literal, it can be statically parsed by
toolchain modules without eval the way MM->parse_version does for $VERSION = ...

It does not break old code with only package NAME, but code that uses package NAME
VERSION will need to be restricted to perl 5.12.0 or newer This is analogous to the change to open
from two-args to three-args. Users requiring the latest Perl will benefit, and perhaps after several years,
it will become a standard practice.

However, package NAME VERSION requires a new, ’strict’ version number format. See ‘‘Version
number formats’’ for details.

The ... operator
A new operator, ..., nicknamed the Yada Yada operator, has been added. It is intended to mark
placeholder code that is not yet implemented. See ‘‘Yada Yada Operator’’ in perlop.

Implicit strictures
Using the use VERSION syntax with a version number greater or equal to 5.11.0 will lexically enable
strictures just like use strict would do (in addition to enabling features.) The following:

use 5.12.0;

means:

use strict;
use feature ':5.12';

Unicode improvements
Perl 5.12 comes with Unicode 5.2, the latest version available to us at the time of release. This version
of Unicode was released in October 2009. See <http://www.unicode.org/versions/Unicode5.2.0> for
further details about what’s changed in this version of the standard. See perlunicode for instructions on
installing and using other versions of Unicode.

Additionally, Perl’s developers have significantly improved Perl’s Unicode implementation. For full
details, see ‘‘Unicode overhaul’’ below.

Y2038 compliance
Perl’s core time-related functions are now Y2038 compliant. (It may not mean much to you, but your
kids will love it!)

perl v5.36.0 2020-12-28 65

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

qr overloading
It is now possible to overload the qr// operator, that is, conversion to regexp, like it was already
possible to overload conversion to boolean, string or number of objects. It is invoked when an object
appears on the right hand side of the =˜ operator or when it is interpolated into a regexp. See overload.

Pluggable keywords
Extension modules can now cleanly hook into the Perl parser to define new kinds of keyword-headed
expression and compound statement. The syntax following the keyword is defined entirely by the
extension. This allows a completely non-Perl sublanguage to be parsed inline, with the correct ops
cleanly generated.

See ‘‘PL_keyword_plugin’’ in perlapi for the mechanism. The Perl core source distribution also
includes a new module XS::APItest::KeywordRPN, which implements reverse Polish notation
arithmetic via pluggable keywords. This module is mainly used for test purposes, and is not normally
installed, but also serves as an example of how to use the new mechanism.

Perl’s developers consider this feature to be experimental. We may remove it or change it in a
backwards-incompatible way in Perl 5.14.

APIs for more internals
The lowest layers of the lexer and parts of the pad system now have C APIs available to XS extensions.
These are necessary to support proper use of pluggable keywords, but have other uses too. The new
APIs are experimental, and only cover a small proportion of what would be necessary to take full
advantage of the core’s facilities in these areas. It is intended that the Perl 5.13 development cycle will
see the addition of a full range of clean, supported interfaces.

Perl’s developers consider this feature to be experimental. We may remove it or change it in a
backwards-incompatible way in Perl 5.14.

Overridable function lookup
Where an extension module hooks the creation of rv2cv ops to modify the subroutine lookup process,
this now works correctly for bareword subroutine calls. This means that prototypes on subroutines
referenced this way will be processed correctly. (Previously bareword subroutine names were initially
looked up, for parsing purposes, by an unhookable mechanism, so extensions could only properly
influence subroutine names that appeared with an & sigil.)

A proper interface for pluggable Method Resolution Orders
As of Perl 5.12.0 there is a new interface for plugging and using method resolution orders other than
the default linear depth first search. The C3 method resolution order added in 5.10.0 has been re-
implemented as a plugin, without changing its Perl-space interface. See perlmroapi for more
information.

\N experimental regex escape
Perl now supports \N, a new regex escape which you can think of as the inverse of \n. It will match
any character that is not a newline, independently from the presence or absence of the single line match
modifier /s. It is not usable within a character class. \N{3} means to match 3 non-newlines;
\N{5,} means to match at least 5. \N{NAME} still means the character or sequence named NAME,
but NAME no longer can be things like 3, or 5,.

This will break a custom charnames translator which allows numbers for character names, as \N{3}
will now mean to match 3 non-newline characters, and not the character whose name is 3. (No name
defined by the Unicode standard is a number, so only custom translators might be affected.)

Perl’s developers are somewhat concerned about possible user confusion with the existing \N{...}
construct which matches characters by their Unicode name. Consequently, this feature is experimental.
We may remove it or change it in a backwards-incompatible way in Perl 5.14.

DTrace support
Perl now has some support for DTrace. See ‘‘DTrace support’’ in INSTALL.

Support for configure_requires in CPAN module metadata
Both CPAN and CPANPLUS now support the configure_requires keyword in the META.yml
metadata file included in most recent CPAN distributions. This allows distribution authors to specify
configuration prerequisites that must be installed before running Makefile.PL or Build.PL.

See the documentation for ExtUtils::MakeMaker or Module::Build for more on how to

perl v5.36.0 2020-12-28 66

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

specify configure_requires when creating a distribution for CPAN.

each, keys, values are now more flexible
The each, keys, values function can now operate on arrays.

when as a statement modifier
when is now allowed to be used as a statement modifier.

$, flexibility
The variable $, may now be tied.

// in when clauses
// now behaves like || in when clauses

Enabling warnings from your shell environment
You can now set -W from the PERL5OPT environment variable

delete local
delete local now allows you to locally delete a hash entry.

New support for Abstract namespace sockets
Abstract namespace sockets are Linux-specific socket type that live in AF_UNIX family, slightly
abusing it to be able to use arbitrary character arrays as addresses: They start with nul byte and are not
terminated by nul byte, but with the length passed to the socket() system call.

32-bit limit on substr arguments removed
The 32-bit limit on substr arguments has now been removed. The full range of the system’s signed
and unsigned integers is now available for the pos and len arguments.

Potentially Incompatible Changes
Deprecations warn by default

Over the years, Perl’s developers have deprecated a number of language features for a variety of
reasons. Perl now defaults to issuing a warning if a deprecated language feature is used. Many of the
deprecations Perl now warns you about have been deprecated for many years. You can find a list of
what was deprecated in a given release of Perl in the perl5xxdelta.pod file for that release.

To disable this feature in a given lexical scope, you should use no warnings 'deprecated';
For information about which language features are deprecated and explanations of various deprecation
warnings, please see perldiag. See ‘‘Deprecations’’ below for the list of features and modules Perl’s
developers have deprecated as part of this release.

Version number formats
Acceptable version number formats have been formalized into ‘‘strict’’ and ‘‘lax’’ rules. package
NAME VERSION takes a strict version number. UNIVERSAL::VERSION and the version object
constructors take lax version numbers. Providing an invalid version will result in a fatal error. The
version argument in use NAME VERSION is first parsed as a numeric literal or v-string and then
passed to UNIVERSAL::VERSION (and must then pass the ‘‘lax’’ format test).

These formats are documented fully in the version module. To a first approximation, a ‘‘strict’’ version
number is a positive decimal number (integer or decimal-fraction) without exponentiation or else a
dotted-decimal v-string with a leading ’v’ character and at least three components. A ‘‘lax’’ version
number allows v-strings with fewer than three components or without a leading ’v’. Under ‘‘lax’’ rules,
both decimal and dotted-decimal versions may have a trailing ‘‘alpha’’ component separated by an
underscore character after a fractional or dotted-decimal component.

The version module adds version::is_strict and version::is_lax functions to check a
scalar against these rules.

@INC reorganization
In @INC, ARCHLIB and PRIVLIB now occur after the current version’s site_perl and
vendor_perl. Modules installed into site_perl and vendor_perl will now be loaded in
preference to those installed in ARCHLIB and PRIVLIB.

REGEXPs are now first class
Internally, Perl now treats compiled regular expressions (such as those created with qr//) as first class
entities. Perl modules which serialize, deserialize or otherwise have deep interaction with Perl’s
internal data structures need to be updated for this change. Most affected CPAN modules have already
been updated as of this writing.

perl v5.36.0 2020-12-28 67

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

Switch statement changes
The given/when switch statement handles complex statements better than Perl 5.10.0 did (These
enhancements are also available in 5.10.1 and subsequent 5.10 releases.) There are two new cases
where when now interprets its argument as a boolean, instead of an expression to be used in a smart
match:

flip-flop operators
The .. and ... flip-flop operators are now evaluated in boolean context, following their usual
semantics; see ‘‘Range Operators’’ in perlop.

Note that, as in perl 5.10.0, when (1..10) will not work to test whether a given value is an
integer between 1 and 10; you should use when ([1..10]) instead (note the array reference).

However, contrary to 5.10.0, evaluating the flip-flop operators in boolean context ensures it can
now be useful in a when(), notably for implementing bistable conditions, like in:

when (/ˆ=begin/ .. /ˆ=end/) {
do something

}

defined-or operator
A compound expression involving the defined-or operator, as in when (expr1 // expr2),
will be treated as boolean if the first expression is boolean. (This just extends the existing rule that
applies to the regular or operator, as in when (expr1 || expr2).)

Smart match changes
Since Perl 5.10.0, Perl’s developers have made a number of changes to the smart match operator.
These, of course, also alter the behaviour of the switch statements where smart matching is implicitly
used. These changes were also made for the 5.10.1 release, and will remain in subsequent 5.10
releases.

Changes to type-based dispatch

The smart match operator ˜˜ is no longer commutative. The behaviour of a smart match now depends
primarily on the type of its right hand argument. Moreover, its semantics have been adjusted for greater
consistency or usefulness in several cases. While the general backwards compatibility is maintained,
several changes must be noted:

• Code references with an empty prototype are no longer treated specially. They are passed an
argument like the other code references (even if they choose to ignore it).

• %hash ˜˜ sub {} and @array ˜˜ sub {} now test that the subroutine returns a true
value for each key of the hash (or element of the array), instead of passing the whole hash or array
as a reference to the subroutine.

• Due to the commutativity breakage, code references are no longer treated specially when
appearing on the left of the ˜˜ operator, but like any vulgar scalar.

• undef ˜˜ %hash is always false (since undef can’t be a key in a hash). No implicit
conversion to "" is done (as was the case in perl 5.10.0).

• $scalar ˜˜ @array now always distributes the smart match across the elements of the array.
It’s true if one element in @array verifies $scalar ˜˜ $element. This is a generalization
of the old behaviour that tested whether the array contained the scalar.

The full dispatch table for the smart match operator is given in ‘‘Smart matching in detail’’ in perlsyn.

Smart match and overloading

According to the rule of dispatch based on the rightmost argument type, when an object overloading ˜˜
appears on the right side of the operator, the overload routine will always be called (with a 3rd
argument set to a true value, see overload.) However, when the object will appear on the left, the
overload routine will be called only when the rightmost argument is a simple scalar. This way,
distributivity of smart match across arrays is not broken, as well as the other behaviours with complex
types (coderefs, hashes, regexes). Thus, writers of overloading routines for smart match mostly need to
worry only with comparing against a scalar, and possibly with stringification overloading; the other
common cases will be automatically handled consistently.

˜˜ will now refuse to work on objects that do not overload it (in order to avoid relying on the object’s

perl v5.36.0 2020-12-28 68

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

underlying structure). (However, if the object overloads the stringification or the numification
operators, and if overload fallback is active, it will be used instead, as usual.)

Other potentially incompatible changes
• The definitions of a number of Unicode properties have changed to match those of the current

Unicode standard. These are listed above under ‘‘Unicode overhaul’’. This change may break code
that expects the old definitions.

• The boolkeys op has moved to the group of hash ops. This breaks binary compatibility.

• Filehandles are now always blessed into IO::File.

The previous behaviour was to bless Filehandles into FileHandle (an empty proxy class) if it was
loaded into memory and otherwise to bless them into IO::Handle.

• The semantics of use feature :5.10* have changed slightly. See ‘‘Modules and
Pragmata’’ for more information.

• Perl’s developers now use git, rather than Perforce. This should be a purely internal change only
relevant to people actively working on the core. However, you may see minor difference in perl as
a consequence of the change. For example in some of details of the output of perl -V. See
perlrepository for more information.

• As part of the Test::Harness 2.x to 3.x upgrade, the experimental
Test::Harness::Straps module has been removed. See ‘‘Modules and Pragmata’’ for
more details.

• As part of the ExtUtils::MakeMaker upgrade, the ExtUtils::MakeMaker::bytes
and ExtUtils::MakeMaker::vmsish modules have been removed from this distribution.

• Module::CoreList no longer contains the %:patchlevel hash.

• length undef now returns undef.

• Unsupported private C API functions are now declared ‘‘static’’ to prevent leakage to Perl’s public
API.

• To support the bootstrapping process, miniperl no longer builds with UTF-8 support in the regexp
engine.

This allows a build to complete with PERL_UNICODE set and a UTF-8 locale. Without this there’s
a bootstrapping problem, as miniperl can’t load the UTF-8 components of the regexp engine,
because they’re not yet built.

• miniperl’s @INC is now restricted to just -I..., the split of $ENV{PERL5LIB}, and "."

• A space or a newline is now required after a "#line XXX" directive.

• Tied filehandles now have an additional method EOF which provides the EOF type.

• To better match all other flow control statements, foreach may no longer be used as an attribute.

• Perl’s command-line switch ‘‘-P’’, which was deprecated in version 5.10.0, has now been
removed. The CPAN module Filter::cpp can be used as an alternative.

Deprecations
From time to time, Perl’s developers find it necessary to deprecate features or modules we’ve
previously shipped as part of the core distribution. We are well aware of the pain and frustration that a
backwards-incompatible change to Perl can cause for developers building or maintaining software in
Perl. You can be sure that when we deprecate a functionality or syntax, it isn’t a choice we make
lightly. Sometimes, we choose to deprecate functionality or syntax because it was found to be poorly
designed or implemented. Sometimes, this is because they’re holding back other features or causing
performance problems. Sometimes, the reasons are more complex. Wherever possible, we try to keep
deprecated functionality available to developers in its previous form for at least one major release. So
long as a deprecated feature isn’t actively disrupting our ability to maintain and extend Perl, we’ll try to
leave it in place as long as possible.

The following items are now deprecated:

perl v5.36.0 2020-12-28 69

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

suidperl
suidperl is no longer part of Perl. It used to provide a mechanism to emulate setuid permission
bits on systems that don’t support it properly.

Use of := to mean an empty attribute list
An accident of Perl’s parser meant that these constructions were all equivalent:

my $pi := 4;
my $pi : = 4;
my $pi : = 4;

with the : being treated as the start of an attribute list, which ends before the =. As whitespace is
not significant here, all are parsed as an empty attribute list, hence all the above are equivalent to,
and better written as

my $pi = 4;

because no attribute processing is done for an empty list.

As is, this meant that := cannot be used as a new token, without silently changing the meaning of
existing code. Hence that particular form is now deprecated, and will become a syntax error. If it is
absolutely necessary to have empty attribute lists (for example, because of a code generator) then
avoid the warning by adding a space before the =.

UNIVERSAL->import()
The method UNIVERSAL->import() is now deprecated. Attempting to pass import arguments
to a use UNIVERSAL statement will result in a deprecation warning.

Use of ‘‘goto’’ to jump into a construct
Using goto to jump from an outer scope into an inner scope is now deprecated. This rare use case
was causing problems in the implementation of scopes.

Custom character names in \N{name} that don’t look like names
In \N{name}, name can be just about anything. The standard Unicode names have a very limited
domain, but a custom name translator could create names that are, for example, made up entirely
of punctuation symbols. It is now deprecated to make names that don’t begin with an alphabetic
character, and aren’t alphanumeric or contain other than a very few other characters, namely
spaces, dashes, parentheses and colons. Because of the added meaning of \N (See "\N"
experimental regex escape), names that look like curly brace -enclosed quantifiers
won’t work. For example, \N{3,4} now means to match 3 to 4 non-newlines; before a custom
name 3,4 could have been created.

Deprecated Modules
The following modules will be removed from the core distribution in a future release, and should
be installed from CPAN instead. Distributions on CPAN which require these should add them to
their prerequisites. The core versions of these modules warnings will issue a deprecation warning.

If you ship a packaged version of Perl, either alone or as part of a larger system, then you should
carefully consider the repercussions of core module deprecations. You may want to consider
shipping your default build of Perl with packages for some or all deprecated modules which install
into vendor or site perl library directories. This will inhibit the deprecation warnings.

Alternatively, you may want to consider patching lib/deprecate.pm to provide deprecation
warnings specific to your packaging system or distribution of Perl, consistent with how your
packaging system or distribution manages a staged transition from a release where the installation
of a single package provides the given functionality, to a later release where the system
administrator needs to know to install multiple packages to get that same functionality.

You can silence these deprecation warnings by installing the modules in question from CPAN. To
install the latest version of all of them, just install Task::Deprecations::5_12.

Class::ISA
Pod::Plainer
Shell

perl v5.36.0 2020-12-28 70

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

Switch
Switch is buggy and should be avoided. You may find Perl’s new given/when feature a
suitable replacement. See ‘‘Switch statements’’ in perlsyn for more information.

Assignment to $[
Use of the attribute :locked on subroutines
Use of ‘‘locked’’ with the attributes pragma
Use of ‘‘unique’’ with the attributes pragma
Perl_pmflag

Perl_pmflag is no longer part of Perl’s public API. Calling it now generates a deprecation
warning, and it will be removed in a future release. Although listed as part of the API, it was never
documented, and only ever used in toke.c, and prior to 5.10, regcomp.c. In core, it has been
replaced by a static function.

Numerous Perl 4-era libraries
termcap.pl, tainted.pl, stat.pl, shellwords.pl, pwd.pl, open3.pl, open2.pl, newgetopt.pl, look.pl,
find.pl, finddepth.pl, importenv.pl, hostname.pl, getopts.pl, getopt.pl, getcwd.pl, flush.pl,
fastcwd.pl, exceptions.pl, ctime.pl, complete.pl, cacheout.pl, bigrat.pl, bigint.pl, bigfloat.pl,
assert.pl, abbrev.pl, dotsh.pl, and timelocal.pl are all now deprecated. Earlier, Perl’s developers
intended to remove these libraries from Perl’s core for the 5.14.0 release.

During final testing before the release of 5.12.0, several developers discovered current production
code using these ancient libraries, some inside the Perl core itself. Accordingly, the pumpking
granted them a stay of execution. They will begin to warn about their deprecation in the 5.14.0
release and will be removed in the 5.16.0 release.

Unicode overhaul
Perl’s developers have made a concerted effort to update Perl to be in sync with the latest Unicode
standard. Changes for this include:

Perl can now handle every Unicode character property. New documentation, perluniprops, lists all
available non-Unihan character properties. By default, perl does not expose Unihan, deprecated or
Unicode-internal properties. See below for more details on these; there is also a section in the pod
listing them, and explaining why they are not exposed.

Perl now fully supports the Unicode compound-style of using = and : in writing regular expressions:
\p{property=value} and \p{property:value} (both of which mean the same thing).

Perl now fully supports the Unicode loose matching rules for text between the braces in \p{...}
constructs. In addition, Perl allows underscores between digits of numbers.

Perl now accepts all the Unicode-defined synonyms for properties and property values.

qr/\X/, which matches a Unicode logical character, has been expanded to work better with various
Asian languages. It now is defined as an extended grapheme cluster. (See
<http://www.unicode.org/reports/tr29/>). Anything matched previously and that made sense will
continue to be accepted. Additionally:

• \X will not break apart a CR LF sequence.

• \X will now match a sequence which includes the ZWJ and ZWNJ characters.

• \X will now always match at least one character, including an initial mark. Marks generally come
after a base character, but it is possible in Unicode to have them in isolation, and \X will now
handle that case, for example at the beginning of a line, or after a ZWSP. And this is the part where
\X doesn’t match the things that it used to that don’t make sense. Formerly, for example, you
could have the nonsensical case of an accented LF.

• \X will now match a (Korean) Hangul syllable sequence, and the Thai and Lao exception cases.

Otherwise, this change should be transparent for the non-affected languages.

\p{...} matches using the Canonical_Combining_Class property were completely broken in
previous releases of Perl. They should now work correctly.

Before Perl 5.12, the Unicode Decomposition_Type=Compat property and a Perl extension had
the same name, which led to neither matching all the correct values (with more than 100 mistakes in
one, and several thousand in the other). The Perl extension has now been renamed to be

perl v5.36.0 2020-12-28 71

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

Decomposition_Type=Noncanonical (short: dt=noncanon). It has the same meaning as
was previously intended, namely the union of all the non-canonical Decomposition types, with Unicode
Compat being just one of those.

\p{Decomposition_Type=Canonical} now includes the Hangul syllables.

\p{Uppercase} and \p{Lowercase} now work as the Unicode standard says they should. This
means they each match a few more characters than they used to.

\p{Cntrl} now matches the same characters as \p{Control}. This means it no longer will match
Private Use (gc=co), Surrogates (gc=cs), nor Format (gc=cf) code points. The Format code points
represent the biggest possible problem. All but 36 of them are either officially deprecated or strongly
discouraged from being used. Of those 36, likely the most widely used are the soft hyphen (U+00AD),
and BOM, ZWSP, ZWNJ, WJ, and similar characters, plus bidirectional controls.

\p{Alpha} now matches the same characters as \p{Alphabetic}. Before 5.12, Perl’s definition
included a number of things that aren’t really alpha (all marks) while omitting many that were. The
definitions of \p{Alnum} and \p{Word} depend on Alpha’s definition and have changed
accordingly.

\p{Word} no longer incorrectly matches non-word characters such as fractions.

\p{Print} no longer matches the line control characters: Tab, LF, CR, FF, VT, and NEL. This brings it
in line with standards and the documentation.

\p{XDigit} now matches the same characters as \p{Hex_Digit}. This means that in addition to
the characters it currently matches, [A-Fa-f0-9], it will also match the 22 fullwidth equivalents, for
example U+FF10: FULLWIDTH DIGIT ZERO.

The Numeric type property has been extended to include the Unihan characters.

There is a new Perl extension, the ’Present_In’, or simply ’In’, property. This is an extension of the
Unicode Age property, but \p{In=5.0} matches any code point whose usage has been determined as
of Unicode version 5.0. The \p{Age=5.0} only matches code points added in precisely version 5.0.

A number of properties now have the correct values for unassigned code points. The affected properties
are Bidi_Class, East_Asian_Width, Joining_Type, Decomposition_Type, Hangul_Syllable_Type,
Numeric_Type, and Line_Break.

The Default_Ignorable_Code_Point, ID_Continue, and ID_Start properties are now up to date with
current Unicode definitions.

Earlier versions of Perl erroneously exposed certain properties that are supposed to be Unicode
internal-only. Use of these in regular expressions will now generate, if enabled, a deprecation warning
message. The properties are: Other_Alphabetic, Other_Default_Ignorable_Code_Point,
Other_Grapheme_Extend, Other_ID_Continue, Other_ID_Start, Other_Lowercase, Other_Math, and
Other_Uppercase.

It is now possible to change which Unicode properties Perl understands on a per-installation basis. As
mentioned above, certain properties are turned off by default. These include all the Unihan properties
(which should be accessible via the CPAN module Unicode::Unihan) and any deprecated or Unicode
internal-only property that Perl has never exposed.

The generated files in the lib/unicore/To directory are now more clearly marked as being stable,
directly usable by applications. New hash entries in them give the format of the normal entries, which
allows for easier machine parsing. Perl can generate files in this directory for any property, though most
are suppressed. You can find instructions for changing which are written in perluniprops.

Modules and Pragmata
New Modules and Pragmata

autodie
autodie is a new lexically-scoped alternative for the Fatal module. The bundled version is
2.06_01. Note that in this release, using a string eval when autodie is in effect can cause the
autodie behaviour to leak into the surrounding scope. See ‘‘BUGS’’ in autodie for more details.

Version 2.06_01 has been added to the Perl core.

perl v5.36.0 2020-12-28 72

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

Compress::Raw::Bzip2
Version 2.024 has been added to the Perl core.

overloading
overloading allows you to lexically disable or enable overloading for some or all operations.

Version 0.001 has been added to the Perl core.

parent
parent establishes an ISA relationship with base classes at compile time. It provides the key
feature of base without further unwanted behaviors.

Version 0.223 has been added to the Perl core.

Parse::CPAN::Meta
Version 1.40 has been added to the Perl core.

VMS::DCLsym
Version 1.03 has been added to the Perl core.

VMS::Stdio
Version 2.4 has been added to the Perl core.

XS::APItest::KeywordRPN
Version 0.003 has been added to the Perl core.

Updated Pragmata
base

Upgraded from version 2.13 to 2.15.

bignum
Upgraded from version 0.22 to 0.23.

charnames
charnames now contains the Unicode NameAliases.txt database file. This has the effect of
adding some extra \N character names that formerly wouldn’t have been recognised; for example,
"\N{LATIN CAPITAL LETTER GHA}".

Upgraded from version 1.06 to 1.07.

constant
Upgraded from version 1.13 to 1.20.

diagnostics
diagnostics now supports %.0f formatting internally.

diagnostics no longer suppresses Use of uninitialized value in range (or
flip) warnings. [perl #71204]

Upgraded from version 1.17 to 1.19.

feature
In feature, the meaning of the :5.10 and :5.10.X feature bundles has changed slightly. The
last component, if any (i.e. X) is simply ignored. This is predicated on the assumption that new
features will not, in general, be added to maintenance releases. So :5.10 and :5.10.X have
identical effect. This is a change to the behaviour documented for 5.10.0.

feature now includes the unicode_strings feature:

use feature "unicode_strings";

This pragma turns on Unicode semantics for the case-changing operations (uc, lc, ucfirst,
lcfirst) on strings that don’t have the internal UTF-8 flag set, but that contain single-byte
characters between 128 and 255.

Upgraded from version 1.11 to 1.16.

less
less now includes the stash_name method to allow subclasses of less to pick where in %ˆH
to store their stash.

perl v5.36.0 2020-12-28 73

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

Upgraded from version 0.02 to 0.03.

lib
Upgraded from version 0.5565 to 0.62.

mro
mro is now implemented as an XS extension. The documented interface has not changed. Code
relying on the implementation detail that some mro:: methods happened to be available at all
times gets to ‘‘keep both pieces’’.

Upgraded from version 1.00 to 1.02.

overload
overload now allow overloading of ’qr’.

Upgraded from version 1.06 to 1.10.

threads
Upgraded from version 1.67 to 1.75.

threads::shared
Upgraded from version 1.14 to 1.32.

version
version now has support for ‘‘Version number formats’’ as described earlier in this document
and in its own documentation.

Upgraded from version 0.74 to 0.82.

warnings
warnings has a new warnings::fatal_enabled() function. It also includes a new
illegalproto warning category. See also ‘‘New or Changed Diagnostics’’ for this change.

Upgraded from version 1.06 to 1.09.

Updated Modules
Archive::Extract

Upgraded from version 0.24 to 0.38.

Archive::Tar
Upgraded from version 1.38 to 1.54.

Attribute::Handlers
Upgraded from version 0.79 to 0.87.

AutoLoader
Upgraded from version 5.63 to 5.70.

B::Concise
Upgraded from version 0.74 to 0.78.

B::Debug
Upgraded from version 1.05 to 1.12.

B::Deparse
Upgraded from version 0.83 to 0.96.

B::Lint
Upgraded from version 1.09 to 1.11_01.

CGI
Upgraded from version 3.29 to 3.48.

Class::ISA
Upgraded from version 0.33 to 0.36.

NOTE: Class::ISA is deprecated and may be removed from a future version of Perl.

Compress::Raw::Zlib
Upgraded from version 2.008 to 2.024.

perl v5.36.0 2020-12-28 74

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

CPAN
Upgraded from version 1.9205 to 1.94_56.

CPANPLUS
Upgraded from version 0.84 to 0.90.

CPANPLUS::Dist::Build
Upgraded from version 0.06_02 to 0.46.

Data::Dumper
Upgraded from version 2.121_14 to 2.125.

DB_File
Upgraded from version 1.816_1 to 1.820.

Devel::PPPort
Upgraded from version 3.13 to 3.19.

Digest
Upgraded from version 1.15 to 1.16.

Digest::MD5
Upgraded from version 2.36_01 to 2.39.

Digest::SHA
Upgraded from version 5.45 to 5.47.

Encode
Upgraded from version 2.23 to 2.39.

Exporter
Upgraded from version 5.62 to 5.64_01.

ExtUtils::CBuilder
Upgraded from version 0.21 to 0.27.

ExtUtils::Command
Upgraded from version 1.13 to 1.16.

ExtUtils::Constant
Upgraded from version 0.2 to 0.22.

ExtUtils::Install
Upgraded from version 1.44 to 1.55.

ExtUtils::MakeMaker
Upgraded from version 6.42 to 6.56.

ExtUtils::Manifest
Upgraded from version 1.51_01 to 1.57.

ExtUtils::ParseXS
Upgraded from version 2.18_02 to 2.21.

File::Fetch
Upgraded from version 0.14 to 0.24.

File::Path
Upgraded from version 2.04 to 2.08_01.

File::Temp
Upgraded from version 0.18 to 0.22.

Filter::Simple
Upgraded from version 0.82 to 0.84.

Filter::Util::Call
Upgraded from version 1.07 to 1.08.

Getopt::Long
Upgraded from version 2.37 to 2.38.

perl v5.36.0 2020-12-28 75

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

IO Upgraded from version 1.23_01 to 1.25_02.

IO::Zlib
Upgraded from version 1.07 to 1.10.

IPC::Cmd
Upgraded from version 0.40_1 to 0.54.

IPC::SysV
Upgraded from version 1.05 to 2.01.

Locale::Maketext
Upgraded from version 1.12 to 1.14.

Locale::Maketext::Simple
Upgraded from version 0.18 to 0.21.

Log::Message
Upgraded from version 0.01 to 0.02.

Log::Message::Simple
Upgraded from version 0.04 to 0.06.

Math::BigInt
Upgraded from version 1.88 to 1.89_01.

Math::BigInt::FastCalc
Upgraded from version 0.16 to 0.19.

Math::BigRat
Upgraded from version 0.21 to 0.24.

Math::Complex
Upgraded from version 1.37 to 1.56.

Memoize
Upgraded from version 1.01_02 to 1.01_03.

MIME::Base64
Upgraded from version 3.07_01 to 3.08.

Module::Build
Upgraded from version 0.2808_01 to 0.3603.

Module::CoreList
Upgraded from version 2.12 to 2.29.

Module::Load
Upgraded from version 0.12 to 0.16.

Module::Load::Conditional
Upgraded from version 0.22 to 0.34.

Module::Loaded
Upgraded from version 0.01 to 0.06.

Module::Pluggable
Upgraded from version 3.6 to 3.9.

Net::Ping
Upgraded from version 2.33 to 2.36.

NEXT
Upgraded from version 0.60_01 to 0.64.

Object::Accessor
Upgraded from version 0.32 to 0.36.

Package::Constants
Upgraded from version 0.01 to 0.02.

perl v5.36.0 2020-12-28 76

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

PerlIO
Upgraded from version 1.04 to 1.06.

Pod::Parser
Upgraded from version 1.35 to 1.37.

Pod::Perldoc
Upgraded from version 3.14_02 to 3.15_02.

Pod::Plainer
Upgraded from version 0.01 to 1.02.

NOTE: Pod::Plainer is deprecated and may be removed from a future version of Perl.

Pod::Simple
Upgraded from version 3.05 to 3.13.

Safe
Upgraded from version 2.12 to 2.22.

SelfLoader
Upgraded from version 1.11 to 1.17.

Storable
Upgraded from version 2.18 to 2.22.

Switch
Upgraded from version 2.13 to 2.16.

NOTE: Switch is deprecated and may be removed from a future version of Perl.

Sys::Syslog
Upgraded from version 0.22 to 0.27.

Term::ANSIColor
Upgraded from version 1.12 to 2.02.

Term::UI
Upgraded from version 0.18 to 0.20.

Test
Upgraded from version 1.25 to 1.25_02.

Test::Harness
Upgraded from version 2.64 to 3.17.

Test::Simple
Upgraded from version 0.72 to 0.94.

Text::Balanced
Upgraded from version 2.0.0 to 2.02.

Text::ParseWords
Upgraded from version 3.26 to 3.27.

Text::Soundex
Upgraded from version 3.03 to 3.03_01.

Thread::Queue
Upgraded from version 2.00 to 2.11.

Thread::Semaphore
Upgraded from version 2.01 to 2.09.

Tie::RefHash
Upgraded from version 1.37 to 1.38.

Time::HiRes
Upgraded from version 1.9711 to 1.9719.

Time::Local
Upgraded from version 1.18 to 1.1901_01.

perl v5.36.0 2020-12-28 77

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

Time::Piece
Upgraded from version 1.12 to 1.15.

Unicode::Collate
Upgraded from version 0.52 to 0.52_01.

Unicode::Normalize
Upgraded from version 1.02 to 1.03.

Win32
Upgraded from version 0.34 to 0.39.

Win32API::File
Upgraded from version 0.1001_01 to 0.1101.

XSLoader
Upgraded from version 0.08 to 0.10.

Removed Modules and Pragmata
attrs

Removed from the Perl core. Prior version was 1.02.

CPAN::API::HOWTO
Removed from the Perl core. Prior version was ’undef’.

CPAN::DeferedCode
Removed from the Perl core. Prior version was 5.50.

CPANPLUS::inc
Removed from the Perl core. Prior version was ’undef’.

DCLsym
Removed from the Perl core. Prior version was 1.03.

ExtUtils::MakeMaker::bytes
Removed from the Perl core. Prior version was 6.42.

ExtUtils::MakeMaker::vmsish
Removed from the Perl core. Prior version was 6.42.

Stdio
Removed from the Perl core. Prior version was 2.3.

Test::Harness::Assert
Removed from the Perl core. Prior version was 0.02.

Test::Harness::Iterator
Removed from the Perl core. Prior version was 0.02.

Test::Harness::Point
Removed from the Perl core. Prior version was 0.01.

Test::Harness::Results
Removed from the Perl core. Prior version was 0.01.

Test::Harness::Straps
Removed from the Perl core. Prior version was 0.26_01.

Test::Harness::Util
Removed from the Perl core. Prior version was 0.01.

XSSymSet
Removed from the Perl core. Prior version was 1.1.

Deprecated Modules and Pragmata
See ‘‘Deprecated Modules’’ above.

Documentation
New Documentation

• perlhaiku contains instructions on how to build perl for the Haiku platform.

perl v5.36.0 2020-12-28 78

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

• perlmroapi describes the new interface for pluggable Method Resolution Orders.

• perlperf, by Richard Foley, provides an introduction to the use of performance and optimization
techniques which can be used with particular reference to perl programs.

• perlrepository describes how to access the perl source using the git version control system.

• perlpolicy extends the ‘‘Social contract about contributed modules’’ into the beginnings of a
document on Perl porting policies.

Changes to Existing Documentation
• The various large Changes* files (which listed every change made to perl over the last 18 years)

have been removed, and replaced by a small file, also called Changes, which just explains how
that same information may be extracted from the git version control system.

• Porting/patching.pod has been deleted, as it mainly described interacting with the old Perforce-
based repository, which is now obsolete. Information still relevant has been moved to
perlrepository.

• The syntax unless (EXPR) BLOCK else BLOCK is now documented as valid, as is the
syntax unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK, although
actually using the latter may not be the best idea for the readability of your source code.

• Documented -X overloading.

• Documented that when() treats specially most of the filetest operators

• Documented when as a syntax modifier.

• Eliminated ‘‘Old Perl threads tutorial’’, which described 5005 threads.

pod/perlthrtut.pod is the same material reworked for ithreads.

• Correct previous documentation: v-strings are not deprecated

With version objects, we need them to use MODULE VERSION syntax. This patch removes the
deprecation notice.

• Security contact information is now part of perlsec.

• A significant fraction of the core documentation has been updated to clarify the behavior of Perl’s
Unicode handling.

Much of the remaining core documentation has been reviewed and edited for clarity, consistent
use of language, and to fix the spelling of Tom Christiansen’s name.

• The Pod specification (perlpodspec) has been updated to bring the specification in line with
modern usage already supported by most Pod systems. A parameter string may now follow the
format name in a ‘‘begin/end’’ region. Links to URIs with a text description are now allowed. The
usage of L<"section"> has been marked as deprecated.

• if.pm has been documented in ‘‘use’’ in perlfunc as a means to get conditional loading of modules
despite the implicit BEGIN block around use.

• The documentation for $1 in perlvar.pod has been clarified.

• \N{U+code point} is now documented.

Selected Performance Enhancements
• A new internal cache means that isa() will often be faster.

• The implementation of C3 Method Resolution Order has been optimised - linearisation for classes
with single inheritance is 40% faster. Performance for multiple inheritance is unchanged.

• Under use locale, the locale-relevant information is now cached on read-only values, such as
the list returned by keys %hash. This makes operations such as sort keys %hash in the
scope of use locale much faster.

• Empty DESTROY methods are no longer called.

• Perl_sv_utf8_upgrade() is now faster.

perl v5.36.0 2020-12-28 79

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

• keys on empty hash is now faster.

• if (%foo) has been optimized to be faster than if (keys %foo).

• The string repetition operator ($str x $num) is now several times faster when $str has length
one or $num is large.

• Reversing an array to itself (as in @a = reverse @a) in void context now happens in-place
and is several orders of magnitude faster than it used to be. It will also preserve non-existent
elements whenever possible, i.e. for non magical arrays or tied arrays with EXISTS and DELETE
methods.

Installation and Configuration Improvements
• perlapi, perlintern, perlmodlib and perltoc are now all generated at build time, rather than being

shipped as part of the release.

• If vendorlib and vendorarch are the same, then they are only added to @INC once.

• $Config{usedevel} and the C-level PERL_USE_DEVEL are now defined if perl is built
with -Dusedevel.

• Configure will enable use of -fstack-protector, to provide protection against stack-
smashing attacks, if the compiler supports it.

• Configure will now determine the correct prototypes for re-entrant functions and for gconvert if
you are using a C++ compiler rather than a C compiler.

• On Unix, if you build from a tree containing a git repository, the configuration process will note
the commit hash you have checked out, for display in the output of perl -v and perl -V.
Unpushed local commits are automatically added to the list of local patches displayed by perl
-V.

• Perl now supports SystemTap’s dtrace compatibility layer and an issue with linking miniperl
has been fixed in the process.

• perldoc now uses less -R instead of less for improved behaviour in the face of groff’s new
usage of ANSI escape codes.

• perl -V now reports use of the compile-time options USE_PERL_ATOF and
USE_ATTRIBUTES_FOR_PERLIO.

• As part of the flattening of ext, all extensions on all platforms are built by make_ext.pl. This
replaces the Unix-specific ext/util/make_ext, VMS-specific make_ext.com and Win32-specific
win32/buildext.pl.

Internal Changes
Each release of Perl sees numerous internal changes which shouldn’t affect day to day usage but may
still be notable for developers working with Perl’s source code.

• The J.R.R. Tolkien quotes at the head of C source file have been checked and proper citations
added, thanks to a patch from Tom Christiansen.

• The internal structure of the dual-life modules traditionally found in the lib/ and ext/ directories in
the perl source has changed significantly. Where possible, dual-lifed modules have been extracted
from lib/ and ext/.

Dual-lifed modules maintained by Perl’s developers as part of the Perl core now live in dist/.
Dual-lifed modules maintained primarily on CPAN now live in cpan/. When reporting a bug in a
module located under cpan/, please send your bug report directly to the module’s bug tracker or
author, rather than Perl’s bug tracker.

• \N{...} now compiles better, always forces UTF-8 internal representation

Perl’s developers have fixed several problems with the recognition of \N{...} constructs. As
part of this, perl will store any scalar or regex containing \N{name} or \N{U+code point}
in its definition in UTF-8 format. (This was true previously for all occurrences of \N{name} that
did not use a custom translator, but now it’s always true.)

perl v5.36.0 2020-12-28 80

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

• Perl_magic_setmglob now knows about globs, fixing RT #71254.

• SVt_RV no longer exists. RVs are now stored in IVs.

• Perl_vcroak() now accepts a null first argument. In addition, a full audit was made of the
‘‘not NULL’’ compiler annotations, and those for several other internal functions were corrected.

• New macros dSAVEDERRNO, dSAVE_ERRNO, SAVE_ERRNO, RESTORE_ERRNO have been
added to formalise the temporary saving of the errno variable.

• The function Perl_sv_insert_flags has been added to augment Perl_sv_insert.

• The function Perl_newSV_type(type) has been added, equivalent to Perl_newSV()
followed by Perl_sv_upgrade(type).

• The function Perl_newSVpvn_flags() has been added, equivalent to Perl_newSVpvn()
and then performing the action relevant to the flag.

Two flag bits are currently supported.

• SVf_UTF8 will call SvUTF8_on() for you. (Note that this does not convert a sequence of
ISO 8859-1 characters to UTF-8). A wrapper, newSVpvn_utf8() is available for this.

• SVs_TEMP now calls Perl_sv_2mortal() on the new SV.

There is also a wrapper that takes constant strings, newSVpvs_flags().

• The function Perl_croak_xs_usage has been added as a wrapper to Perl_croak.

• Perl now exports the functions PerlIO_find_layer and PerlIO_list_alloc.

• PL_na has been exterminated from the core code, replaced by local STRLEN temporaries, or
*_nolen() calls. Either approach is faster than PL_na, which is a pointer dereference into the
interpreter structure under ithreads, and a global variable otherwise.

• Perl_mg_free() used to leave freed memory accessible via SvMAGIC() on the scalar. It now
updates the linked list to remove each piece of magic as it is freed.

• Under ithreads, the regex in PL_reg_curpm is now reference counted. This eliminates a lot of
hackish workarounds to cope with it not being reference counted.

• Perl_mg_magical() would sometimes incorrectly turn on SvRMAGICAL(). This has been
fixed.

• The public IV and NV flags are now not set if the string value has trailing ‘‘garbage’’. This
behaviour is consistent with not setting the public IV or NV flags if the value is out of range for the
type.

• Uses of Nullav, Nullcv, Nullhv, Nullop, Nullsv etc have been replaced by NULL in the
core code, and non-dual-life modules, as NULL is clearer to those unfamiliar with the core code.

• A macro MUTABLE_PTR(p) has been added, which on (non-pedantic) gcc will not cast away
const, returning a void *. Macros MUTABLE_SV(av), MUTABLE_SV(cv) etc build on
this, casting to AV * etc without casting away const. This allows proper compile-time auditing
of const correctness in the core, and helped picked up some errors (now fixed).

• Macros mPUSHs() and mXPUSHs() have been added, for pushing SVs on the stack and
mortalizing them.

• Use of the private structure mro_meta has changed slightly. Nothing outside the core should be
accessing this directly anyway.

• A new tool, Porting/expand-macro.pl has been added, that allows you to view how a C
preprocessor macro would be expanded when compiled. This is handy when trying to decode the
macro hell that is the perl guts.

Testing
Testing improvements

Parallel tests
The core distribution can now run its regression tests in parallel on Unix-like platforms. Instead of
running make test, set TEST_JOBS in your environment to the number of tests to run in
parallel, and run make test_harness. On a Bourne-like shell, this can be done as

perl v5.36.0 2020-12-28 81

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

TEST_JOBS=3 make test_harness # Run 3 tests in parallel

An environment variable is used, rather than parallel make itself, because TAP::Harness needs to
be able to schedule individual non-conflicting test scripts itself, and there is no standard interface
to make utilities to interact with their job schedulers.

Note that currently some test scripts may fail when run in parallel (most notably
ext/IO/t/io_dir.t). If necessary run just the failing scripts again sequentially and see if the
failures go away.

Test harness flexibility
It’s now possible to override PERL5OPT and friends in t/TEST

Test watchdog
Several tests that have the potential to hang forever if they fail now incorporate a ‘‘watchdog’’
functionality that will kill them after a timeout, which helps ensure that make test and make
test_harness run to completion automatically.

New Tests
Perl’s developers have added a number of new tests to the core. In addition to the items listed below,
many modules updated from CPAN incorporate new tests.

• Significant cleanups to core tests to ensure that language and interpreter features are not used
before they’re tested.

• make test_porting now runs a number of important pre-commit checks which might be of
use to anyone working on the Perl core.

• t/porting/podcheck.t automatically checks the well-formedness of POD found in all .pl, .pm and
.pod files in the MANIFEST, other than in dual-lifed modules which are primarily maintained
outside the Perl core.

• t/porting/manifest.t now tests that all files listed in MANIFEST are present.

• t/op/while_readdir.t tests that a bare readdir in while loop sets $_.

• t/comp/retainedlines.t checks that the debugger can retain source lines from eval.

• t/io/perlio_fail.t checks that bad layers fail.

• t/io/perlio_leaks.t checks that PerlIO layers are not leaking.

• t/io/perlio_open.t checks that certain special forms of open work.

• t/io/perlio.t includes general PerlIO tests.

• t/io/pvbm.t checks that there is no unexpected interaction between the internal types PVBM and
PVGV.

• t/mro/package_aliases.t checks that mro works properly in the presence of aliased packages.

• t/op/dbm.t tests dbmopen and dbmclose.

• t/op/index_thr.t tests the interaction of index and threads.

• t/op/pat_thr.t tests the interaction of esoteric patterns and threads.

• t/op/qr_gc.t tests that qr doesn’t leak.

• t/op/reg_email_thr.t tests the interaction of regex recursion and threads.

• t/op/regexp_qr_embed_thr.t tests the interaction of patterns with embedded qr// and threads.

• t/op/regexp_unicode_prop.t tests Unicode properties in regular expressions.

• t/op/regexp_unicode_prop_thr.t tests the interaction of Unicode properties and threads.

• t/op/reg_nc_tie.t tests the tied methods of Tie::Hash::NamedCapture.

• t/op/reg_posixcc.t checks that POSIX character classes behave consistently.

• t/op/re.t checks that exportable re functions in universal.c work.

• t/op/setpgrpstack.t checks that setpgrp works.

perl v5.36.0 2020-12-28 82

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

• t/op/substr_thr.t tests the interaction of substr and threads.

• t/op/upgrade.t checks that upgrading and assigning scalars works.

• t/uni/lex_utf8.t checks that Unicode in the lexer works.

• t/uni/tie.t checks that Unicode and tie work.

• t/comp/final_line_num.t tests whether line numbers are correct at EOF

• t/comp/form_scope.t tests format scoping.

• t/comp/line_debug.t tests whether @{"_<$file"} works.

• t/op/filetest_t.t tests if -t file test works.

• t/op/qr.t tests qr.

• t/op/utf8cache.t tests malfunctions of the utf8 cache.

• t/re/uniprops.t test unicodes \p{} regex constructs.

• t/op/filehandle.t tests some suitably portable filetest operators to check that they work as expected,
particularly in the light of some internal changes made in how filehandles are blessed.

• t/op/time_loop.t tests that unix times greater than 2**63, which can now be handed to gmtime
and localtime, do not cause an internal overflow or an excessively long loop.

New or Changed Diagnostics
New Diagnostics

• SV allocation tracing has been added to the diagnostics enabled by -Dm. The tracing can
alternatively output via the PERL_MEM_LOG mechanism, if that was enabled when the perl
binary was compiled.

• Smartmatch resolution tracing has been added as a new diagnostic. Use -DM to enable it.

• A new debugging flag -DB now dumps subroutine definitions, leaving -Dx for its original
purpose of dumping syntax trees.

• Perl 5.12 provides a number of new diagnostic messages to help you write better code. See
perldiag for details of these new messages.

• Bad plugin affecting keyword '%s'

• gmtime(%.0f) too large

• Lexing code attempted to stuff non-Latin-1 character into
Latin-1 input

• Lexing code internal error (%s)

• localtime(%.0f) too large

• Overloaded dereference did not return a reference

• Overloaded qr did not return a REGEXP

• Perl_pmflag() is deprecated, and will be removed from the XS
API

• lvalue attribute ignored after the subroutine has been defined

This new warning is issued when one attempts to mark a subroutine as lvalue after it has been
defined.

• Perl now warns you if ++ or -- are unable to change the value because it’s beyond the limit
of representation.

This uses a new warnings category: ‘‘imprecision’’.

• lc, uc, lcfirst, and ucfirst warn when passed undef.

• Show constant in "Useless use of a constant in void context"

• Prototype after '%s'

perl v5.36.0 2020-12-28 83

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

• panic: sv_chop %s

This new fatal error occurs when the C routine Perl_sv_chop() was passed a position
that is not within the scalar’s string buffer. This could be caused by buggy XS code, and at
this point recovery is not possible.

• The fatal error Malformed UTF-8 returned by \N is now produced if the
charnames handler returns malformed UTF-8.

• If an unresolved named character or sequence was encountered when compiling a regex
pattern then the fatal error \N{NAME} must be resolved by the lexer is now
produced. This can happen, for example, when using a single-quotish context like $re =
'\N{SPACE}'; /$re/;. See perldiag for more examples of how the lexer can get
bypassed.

• Invalid hexadecimal number in \N{U+...} is a new fatal error triggered when
the character constant represented by ... is not a valid hexadecimal number.

• The new meaning of \N as [ˆ\n] is not valid in a bracketed character class, just like . in a
character class loses its special meaning, and will cause the fatal error \N in a
character class must be a named character: \N{...}.

• The rules on what is legal for the ... in \N{...} have been tightened up so that unless the
... begins with an alphabetic character and continues with a combination of alphanumerics,
dashes, spaces, parentheses or colons then the warning Deprecated character(s)
in \N{...} starting at '%s' is now issued.

• The warning Using just the first characters returned by \N{} will be
issued if the charnames handler returns a sequence of characters which exceeds the limit
of the number of characters that can be used. The message will indicate which characters
were used and which were discarded.

Changed Diagnostics
A number of existing diagnostic messages have been improved or corrected:

• A new warning category illegalproto allows finer-grained control of warnings around
function prototypes.

The two warnings:

Illegal character in prototype for %s : %s
Prototype after '%c' for %s : %s

have been moved from the syntax top-level warnings category into a new first-level category,
illegalproto. These two warnings are currently the only ones emitted during parsing of an
invalid/illegal prototype, so one can now use

no warnings 'illegalproto';

to suppress only those, but not other syntax-related warnings. Warnings where prototypes are
changed, ignored, or not met are still in the prototype category as before.

• Deep recursion on subroutine "%s"

It is now possible to change the depth threshold for this warning from the default of 100, by
recompiling the perl binary, setting the C pre-processor macro PERL_SUB_DEPTH_WARN to the
desired value.

• Illegal character in prototype warning is now more precise when reporting illegal
characters after _

• mro merging error messages are now very similar to those produced by Algorithm::C3.

• Amelioration of the error message ‘‘Unrecognized character %s in column %d’’

Changes the error message to ‘‘Unrecognized character %s; marked by <-- HERE after %s<--
HERE near column %d’’. This should make it a little simpler to spot and correct the suspicious
character.

perl v5.36.0 2020-12-28 84

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

• Perl now explicitly points to $. when it causes an uninitialized warning for ranges in scalar
context.

• split now warns when called in void context.

• printf-style functions called with too few arguments will now issue the warning "Missing
argument in %s" [perl #71000]

• Perl now properly returns a syntax error instead of segfaulting if each, keys, or values is used
without an argument.

• tell() now fails properly if called without an argument and when no previous file was read.

tell() now returns -1, and sets errno to EBADF, thus restoring the 5.8.x behaviour.

• overload no longer implicitly unsets fallback on repeated ’use overload’ lines.

• POSIX::strftime() can now handle Unicode characters in the format string.

• The syntax category was removed from 5 warnings that should only be in deprecated.

• Three fatal pack/unpack error messages have been normalized to panic: %s

• Unicode character is illegal has been rephrased to be more accurate

It now reads Unicode non-character is illegal in interchange and the
perldiag documentation has been expanded a bit.

• Currently, all but the first of the several characters that the charnames handler may return are
discarded when used in a regular expression pattern bracketed character class. If this happens then
the warning Using just the first character returned by \N{} in
character class will be issued.

• The warning Missing right brace on \N{} or unescaped left brace after
\N. Assuming the latter will be issued if Perl encounters a \N{ but doesn’t find a
matching }. In this case Perl doesn’t know if it was mistakenly omitted, or if ‘‘match non-
newline’’ followed by "match a {" was desired. It assumes the latter because that is actually a
valid interpretation as written, unlike the other case. If you meant the former, you need to add the
matching right brace. If you did mean the latter, you can silence this warning by writing instead
\N\{.

• gmtime and localtime called with numbers smaller than they can reliably handle will now
issue the warnings gmtime(%.0f) too small and localtime(%.0f) too small.

The following diagnostic messages have been removed:

• Runaway format

• Can't locate package %s for the parents of %s

In general this warning it only got produced in conjunction with other warnings, and removing it
allowed an ISA lookup optimisation to be added.

• v-string in use/require is non-portable

Utility Changes
• h2ph now looks in include-fixed too, which is a recent addition to gcc’s search path.

• h2xs no longer incorrectly treats enum values like macros. It also now handles C++ style comments
(//) properly in enums.

• perl5db.pl now supports LVALUE subroutines. Additionally, the debugger now correctly handles
proxy constant subroutines, and subroutine stubs.

• perlbug now uses %Module::CoreList::bug_tracker to print out upstream bug tracker
URLs. If a user identifies a particular module as the topic of their bug report and we’re able to
divine the URL for its upstream bug tracker, perlbug now provide a message to the user explaining
that the core copies the CPAN version directly, and provide the URL for reporting the bug directly
to the upstream author.

perlbug no longer reports ‘‘Message sent’’ when it hasn’t actually sent the message

perl v5.36.0 2020-12-28 85

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

• perlthanks is a new utility for sending non-bug-reports to the authors and maintainers of Perl.
Getting nothing but bug reports can become a bit demoralising. If Perl 5.12 works well for you,
please try out perlthanks. It will make the developers smile.

• Perl’s developers have fixed bugs in a2p having to do with the match() operator in list context.
Additionally, a2p no longer generates code that uses the $[variable.

Selected Bug Fixes
• U+0FFFF is now a legal character in regular expressions.

• pp_qr now always returns a new regexp SV. Resolves RT #69852.

Instead of returning a(nother) reference to the (pre-compiled) regexp in the optree, use
reg_temp_copy() to create a copy of it, and return a reference to that. This resolves issues about
Regexp::DESTROY not being called in a timely fashion (the original bug tracked by RT #69852),
as well as bugs related to blessing regexps, and of assigning to regexps, as described in
correspondence added to the ticket.

It transpires that we also need to undo the SvPVX() sharing when ithreads cloning a Regexp SV,
because mother_re is set to NULL, instead of a cloned copy of the mother_re. This change might
fix bugs with regexps and threads in certain other situations, but as yet neither tests nor bug reports
have indicated any problems, so it might not actually be an edge case that it’s possible to reach.

• Several compilation errors and segfaults when perl was built with -Dmad were fixed.

• Fixes for lexer API changes in 5.11.2 which broke NYTProf’s savesrc option.

• -t should only return TRUE for file handles connected to a TTY

The Microsoft C version of isatty() returns TRUE for all character mode devices, including
the /dev/null-style ‘‘nul’’ device and printers like ‘‘lpt1’’.

• Fixed a regression caused by commit fafafbaf which caused a panic during parameter passing [perl
#70171]

• On systems which in-place edits without backup files, -i’*’ now works as the documentation says
it does [perl #70802]

• Saving and restoring magic flags no longer loses readonly flag.

• The malformed syntax grep EXPR LIST (note the missing comma) no longer causes abrupt
and total failure.

• Regular expressions compiled with qr{} literals properly set $' when matching again.

• Using named subroutines with sort should no longer lead to bus errors [perl #71076]

• Numerous bugfixes catch small issues caused by the recently-added Lexer API.

• Smart match against @_ sometimes gave false negatives. [perl #71078]

• $@ may now be assigned a read-only value (without error or busting the stack).

• sort called recursively from within an active comparison subroutine no longer causes a bus error
if run multiple times. [perl #71076]

• Tie::Hash::NamedCapture::* will not abort if passed bad input (RT #71828)

• @_ and $_ no longer leak under threads (RT #34342 and #41138, also #70602, #70974)

• -I on shebang line now adds directories in front of @INC as documented, and as does -I when
specified on the command-line.

• kill is now fatal when called on non-numeric process identifiers. Previously, an undef process
identifier would be interpreted as a request to kill process 0, which would terminate the current
process group on POSIX systems. Since process identifiers are always integers, killing a non-
numeric process is now fatal.

• 5.10.0 inadvertently disabled an optimisation, which caused a measurable performance drop in list
assignment, such as is often used to assign function parameters from @_. The optimisation has
been re-instated, and the performance regression fixed. (This fix is also present in 5.10.1)

perl v5.36.0 2020-12-28 86

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

• Fixed memory leak on while (1) { map 1, 1 } [RT #53038].

• Some potential coredumps in PerlIO fixed [RT #57322,54828].

• The debugger now works with lvalue subroutines.

• The debugger’s m command was broken on modules that defined constants [RT #61222].

• crypt and string complement could return tainted values for untainted arguments [RT #59998].

• The -i.suffix command-line switch now recreates the file using restricted permissions, before
changing its mode to match the original file. This eliminates a potential race condition [RT
#60904].

• On some Unix systems, the value in $? would not have the top bit set ($? & 128) even if the
child core dumped.

• Under some circumstances, $ˆR could incorrectly become undefined [RT #57042].

• In the XS API, various hash functions, when passed a pre-computed hash where the key is UTF-8,
might result in an incorrect lookup.

• XS code including XSUB.h before perl.h gave a compile-time error [RT #57176].

• $object->isa('Foo') would report false if the package Foo didn’t exist, even if the
object’s @ISA contained Foo.

• Various bugs in the new-to 5.10.0 mro code, triggered by manipulating @ISA, have been found
and fixed.

• Bitwise operations on references could crash the interpreter, e.g. $x=\$y; $x |= "foo" [RT
#54956].

• Patterns including alternation might be sensitive to the internal UTF-8 representation, e.g.

my $byte = chr(192);
my $utf8 = chr(192); utf8::upgrade($utf8);
$utf8 =˜ /$byte|X}/i; # failed in 5.10.0

• Within UTF8-encoded Perl source files (i.e. where use utf8 is in effect), double-quoted literal
strings could be corrupted where a \xNN, \0NNN or \N{} is followed by a literal character with
ordinal value greater than 255 [RT #59908].

• B::Deparse failed to correctly deparse various constructs: readpipe STRING [RT #62428],
CORE::require(STRING) [RT #62488], sub foo(_) [RT #62484].

• Using setpgrp with no arguments could corrupt the perl stack.

• The block form of eval is now specifically trappable by Safe and ops. Previously it was
erroneously treated like string eval.

• In 5.10.0, the two characters [˜ were sometimes parsed as the smart match operator (˜˜) [RT
#63854].

• In 5.10.0, the * quantifier in patterns was sometimes treated as {0,32767} [RT #60034,
#60464]. For example, this match would fail:

("ab" x 32768) =˜ /ˆ(ab)*$/

• shmget was limited to a 32 bit segment size on a 64 bit OS [RT #63924].

• Using next or last to exit a given block no longer produces a spurious warning like the
following:

Exiting given via last at foo.pl line 123

• Assigning a format to a glob could corrupt the format; e.g.:

*bar=*foo{FORMAT}; # foo format now bad

• Attempting to coerce a typeglob to a string or number could cause an assertion failure. The correct
error message is now generated, Can't coerce GLOB to $type.

perl v5.36.0 2020-12-28 87

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

• Under use filetest 'access', -x was using the wrong access mode. This has been fixed
[RT #49003].

• length on a tied scalar that returned a Unicode value would not be correct the first time. This
has been fixed.

• Using an array tie inside in array tie could SEGV. This has been fixed. [RT #51636]

• A race condition inside PerlIOStdio_close() has been identified and fixed. This used to
cause various threading issues, including SEGVs.

• In unpack, the use of () groups in scalar context was internally placing a list on the interpreter’s
stack, which manifested in various ways, including SEGVs. This is now fixed [RT #50256].

• Magic was called twice in substr, \&$x, tie $x, $m and chop. These have all been fixed.

• A 5.10.0 optimisation to clear the temporary stack within the implicit loop of s///ge has been
reverted, as it turned out to be the cause of obscure bugs in seemingly unrelated parts of the
interpreter [commit ef0d4e17921ee3de].

• The line numbers for warnings inside elsif are now correct.

• The .. operator now works correctly with ranges whose ends are at or close to the values of the
smallest and largest integers.

• binmode STDIN, ':raw' could lead to segmentation faults on some platforms. This has
been fixed [RT #54828].

• An off-by-one error meant that index $str, ... was effectively being executed as index
"$str\0", This has been fixed [RT #53746].

• Various leaks associated with named captures in regexes have been fixed [RT #57024].

• A weak reference to a hash would leak. This was affecting DBI [RT #56908].

• Using (?|) in a regex could cause a segfault [RT #59734].

• Use of a UTF-8 tr// within a closure could cause a segfault [RT #61520].

• Calling Perl_sv_chop() or otherwise upgrading an SV could result in an unaligned 64-bit
access on the SPARC architecture [RT #60574].

• In the 5.10.0 release, inc_version_list would incorrectly list 5.10.* after 5.8.*; this
affected the @INC search order [RT #67628].

• In 5.10.0, pack "a*", $tainted_value returned a non-tainted value [RT #52552].

• In 5.10.0, printf and sprintf could produce the fatal error panic:
utf8_mg_pos_cache_update when printing UTF-8 strings [RT #62666].

• In the 5.10.0 release, a dynamically created AUTOLOAD method might be missed (method cache
issue) [RT #60220,60232].

• In the 5.10.0 release, a combination of use feature and //ee could cause a memory leak [RT
#63110].

• -C on the shebang (#!) line is once more permitted if it is also specified on the command line. -C
on the shebang line used to be a silent no-op if it was not also on the command line, so perl 5.10.0
disallowed it, which broke some scripts. Now perl checks whether it is also on the command line
and only dies if it is not [RT #67880].

• In 5.10.0, certain types of re-entrant regular expression could crash, or cause the following
assertion failure [RT #60508]:

Assertion rx->sublen >= (s - rx->subbeg) + i failed

• Perl now includes previously missing files from the Unicode Character Database.

• Perl now honors TMPDIR when opening an anonymous temporary file.

Platform Specific Changes
Perl is incredibly portable. In general, if a platform has a C compiler, someone has ported Perl to it (or
will soon). We’re happy to announce that Perl 5.12 includes support for several new platforms. At the
same time, it’s time to bid farewell to some (very) old friends.

perl v5.36.0 2020-12-28 88

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

New Platforms
Haiku

Perl’s developers have merged patches from Haiku’s maintainers. Perl should now build on Haiku.

MirOS BSD
Perl should now build on MirOS BSD.

Discontinued Platforms
Domain/OS
MiNT
Tenon MachTen

Updated Platforms
AIX

• Removed libbsd for AIX 5L and 6.1. Only flock() was used from libbsd.

• Removed libgdbm for AIX 5L and 6.1 if libgdbm < 1.8.3-5 is installed. The libgdbm is
delivered as an optional package with the AIX Toolbox. Unfortunately the versions below
1.8.3-5 are broken.

• Hints changes mean that AIX 4.2 should work again.

Cygwin
• Perl now supports IPv6 on Cygwin 1.7 and newer.

• On Cygwin we now strip the last number from the DLL. This has been the behaviour in the
cygwin.com build for years. The hints files have been updated.

Darwin (Mac OS X)
• Skip testing the be_BY.CP1131 locale on Darwin 10 (Mac OS X 10.6), as it’s still buggy.

• Correct infelicities in the regexp used to identify buggy locales on Darwin 8 and 9 (Mac OS X
10.4 and 10.5, respectively).

DragonFly BSD
• Fix thread library selection [perl #69686]

FreeBSD
• The hints files now identify the correct threading libraries on FreeBSD 7 and later.

Irix
• We now work around a bizarre preprocessor bug in the Irix 6.5 compiler: cc -E -

unfortunately goes into K&R mode, but cc -E file.c doesn’t.

NetBSD
• Hints now supports versions 5.*.

OpenVMS
• -UDEBUGGING is now the default on VMS.

Like it has been everywhere else for ages and ages. Also make command-line selection of
-UDEBUGGING and -DDEBUGGING work in configure.com; before the only way to turn
it off was by saying no in answer to the interactive question.

• The default pipe buffer size on VMS has been updated to 8192 on 64-bit systems.

• Reads from the in-memory temporary files of PerlIO::scalar used to fail if $/ was set
to a numeric reference (to indicate record-style reads). This is now fixed.

• VMS now supports getgrgid.

• Many improvements and cleanups have been made to the VMS file name handling and
conversion code.

• Enabling the PERL_VMS_POSIX_EXIT logical name now encodes a POSIX exit status in a
VMS condition value for better interaction with GNV’s bash shell and other utilities that
depend on POSIX exit values. See ‘‘$?’’ in perlvms for details.

• File::Copy now detects Unix compatibility mode on VMS.

perl v5.36.0 2020-12-28 89

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

Stratus VOS
• Various changes from Stratus have been merged in.

Symbian
• There is now support for Symbian S60 3.2 SDK and S60 5.0 SDK.

Windows
• Perl 5.12 supports Windows 2000 and later. The supporting code for legacy versions of

Windows is still included, but will be removed during the next development cycle.

• Initial support for building Perl with MinGW-w64 is now available.

• perl.exe now includes a manifest resource to specify the trustInfo settings for Windows
Vista and later. Without this setting Windows would treat perl.exe as a legacy application and
apply various heuristics like redirecting access to protected file system areas (like the
‘‘Program Files’’ folder) to the users ‘‘VirtualStore’’ instead of generating a proper
‘‘permission denied’’ error.

The manifest resource also requests the Microsoft Common-Controls version 6.0 (themed
controls introduced in Windows XP). Check out the Win32::VisualStyles module on CPAN to
switch back to old style unthemed controls for legacy applications.

• The -t filetest operator now only returns true if the filehandle is connected to a console
window. In previous versions of Perl it would return true for all character mode devices,
including NUL and LPT1.

• The -p filetest operator now works correctly, and the Fcntl::S_IFIFO constant is defined
when Perl is compiled with Microsoft Visual C. In previous Perl versions -p always
returned a false value, and the Fcntl::S_IFIFO constant was not defined.

This bug is specific to Microsoft Visual C and never affected Perl binaries built with MinGW.

• The socket error codes are now more widely supported: The POSIX module will define the
symbolic names, like POSIX::EWOULDBLOCK, and stringification of socket error codes in $!
works as well now;

C:\>perl -MPOSIX -E "$!=POSIX::EWOULDBLOCK; say $!"
A non-blocking socket operation could not be completed immediately.

• flock() will now set sensible error codes in $!. Previous Perl versions copied the value of $ˆE
into $!, which caused much confusion.

• select() now supports all empty fd_sets more correctly.

• '.\foo' and '..\foo' were treated differently than './foo' and '../foo' by do
and require [RT #63492].

• Improved message window handling means that alarm and kill messages will no longer
be dropped under race conditions.

• Various bits of Perl’s build infrastructure are no longer converted to win32 line endings at
release time. If this hurts you, please report the problem with the perlbug program included
with perl.

Known Problems
This is a list of some significant unfixed bugs, which are regressions from either 5.10.x or 5.8.x.

• Some CPANPLUS tests may fail if there is a functioning file ../../cpanp-run-perl outside your
build directory. The failure shouldn’t imply there’s a problem with the actual functional software.
The bug is already fixed in [RT #74188] and is scheduled for inclusion in perl-v5.12.1.

• List::Util::first misbehaves in the presence of a lexical $_ (typically introduced by my
$_ or implicitly by given). The variable which gets set for each iteration is the package variable
$_, not the lexical $_ [RT #67694].

A similar issue may occur in other modules that provide functions which take a block as their first
argument, like

foo { ... $_ ...} list

perl v5.36.0 2020-12-28 90

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

• Some regexes may run much more slowly when run in a child thread compared with the thread the
pattern was compiled into [RT #55600].

• Things like "\N{LATIN SMALL LIGATURE FF}" =˜ /\N{LATIN SMALL LETTER
F}+/ will appear to hang as they get into a very long running loop [RT #72998].

• Several porters have reported mysterious crashes when Perl’s entire test suite is run after a build
on certain Windows 2000 systems. When run by hand, the individual tests reportedly work fine.

Errata
• This one is actually a change introduced in 5.10.0, but it was missed from that release’s perldelta,

so it is mentioned here instead.

A bugfix related to the handling of the /m modifier and qr resulted in a change of behaviour
between 5.8.x and 5.10.0:

matches in 5.8.x, doesn't match in 5.10.0
$re = qr/ˆbar/; "foo\nbar" =˜ /$re/m;

Acknowledgements
Perl 5.12.0 represents approximately two years of development since Perl 5.10.0 and contains over
750,000 lines of changes across over 3,000 files from over 200 authors and committers.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.12.0:

Aaron Crane, Abe Timmerman, Abhijit Menon-Sen, Abigail, Adam Russell, Adriano Ferreira, AEvar
Arnfjo

..
r∂- Bjarmason, Alan Grover, Alexandr Ciornii, Alex Davies, Alex Vandiver, Andreas Koenig,

Andrew Rodland, andrew@sundale.net, Andy Armstrong, Andy Dougherty, Jose AUGUSTE-
ETIENNE, Benjamin Smith, Ben Morrow, bharanee rathna, Bo Borgerson, Bo Lindbergh, Brad
Gilbert, Bram, Brendan O’Dea, brian d foy, Charles Bailey, Chip Salzenberg, Chris ’BinGOs’
Williams, Christoph Lamprecht, Chris Williams, chromatic, Claes Jakobsson, Craig A. Berry, Dan
Dascalescu, Daniel Frederick Crisman, Daniel M. Quinlan, Dan Jacobson, Dan Kogai, Dave Mitchell,
Dave Rolsky, David Cantrell, David Dick, David Golden, David Mitchell, David M. Syzdek, David
Nicol, David Wheeler, Dennis Kaarsemaker, Dintelmann, Peter, Dominic Dunlop, Dr.Ruud, Duke Leto,
Enrico Sorcinelli, Eric Brine, Father Chrysostomos, Florian Ragwitz, Frank Wiegand, Gabor Szabo,
Gene Sullivan, Geoffrey T. Dairiki, George Greer, Gerard Goossen, Gisle Aas, Goro Fuji, Graham Barr,
Green, Paul, Hans Dieter Pearcey, Harmen, H. Merijn Brand, Hugo van der Sanden, Ian Goodacre, Igor
Sutton, Ingo Weinhold, James Bence, James Mastros, Jan Dubois, Jari Aalto, Jarkko Hietaniemi, Jay
Hannah, Jerry Hedden, Jesse Vincent, Jim Cromie, Jody Belka, John E. Malmberg, John Malmberg,
John Peacock, John Peacock via RT, John P. Linderman, John Wright, Josh ben Jore, Jos I. Boumans,
Karl Williamson, Kenichi Ishigaki, Ken Williams, Kevin Brintnall, Kevin Ryde, Kurt Starsinic, Leon
Brocard, Lubomir Rintel, Luke Ross, Marcel Gru

..
nauer, Marcus Holland-Moritz, Mark Jason Dominus,

Marko Asplund, Martin Hasch, Mashrab Kuvatov, Matt Kraai, Matt S Trout, Max Maischein, Michael
Breen, Michael Cartmell, Michael G Schwern, Michael Witten, Mike Giroux, Milosz Tanski, Moritz
Lenz, Nicholas Clark, Nick Cleaton, Niko Tyni, Offer Kaye, Osvaldo Villalon, Paul Fenwick, Paul
Gaborit, Paul Green, Paul Johnson, Paul Marquess, Philip Hazel, Philippe Bruhat, Rafael Garcia-
Suarez, Rainer Tammer, Rajesh Mandalemula, Reini Urban, Renée Ba

..
cker, Ricardo Signes, Ricardo

SIGNES, Richard Foley, Rich Rauenzahn, Rick Delaney, Risto Kankkunen, Robert May, Roberto C.
Sanchez, Robin Barker, SADAHIRO Tomoyuki, Salvador Ortiz Garcia, Sam Vilain, Scott Lanning,
Sébastien Aperghis-Tramoni, Sérgio Durigan Júnior, Shlomi Fish, Simon ’corecode’ Schubert,
Sisyphus, Slaven Rezic, Smylers, Steffen Mu

..
ller, Steffen Ullrich, Stepan Kasal, Steve Hay, Steven

Schubiger, Steve Peters, Tels, The Doctor, Tim Bunce, Tim Jenness, Todd Rinaldo, Tom Christiansen,
Tom Hukins, Tom Wyant, Tony Cook, Torsten Schoenfeld, Tye McQueen, Vadim Konovalov, Vincent
Pit, Hio YAMASHINA, Yasuhiro Matsumoto, Yitzchak Scott-Thoennes, Yuval Kogman, Yves Orton,
Zefram, Zsban Ambrus

This is woefully incomplete as it’s automatically generated from version control history. In particular,
it doesn’t include the names of the (very much appreciated) contributors who reported issues in
previous versions of Perl that helped make Perl 5.12.0 better. For a more complete list of all of Perl’s
historical contributors, please see the AUTHORS file in the Perl 5.12.0 distribution.

Our ‘‘retired’’ pumpkings Nicholas Clark and Rafael Garcia-Suarez deserve special thanks for their
brilliant and substantive ongoing contributions. Nicholas personally authored over 30% of the patches

perl v5.36.0 2020-12-28 91

PERL5120DELTA(1) Perl Programmers Reference Guide PERL5120DELTA(1)

since 5.10.0. Rafael comes in second in patch authorship with 11%, but is first by a long shot in
committing patches authored by others, pushing 44% of the commits since 5.10.0 in this category, often
after providing considerable coaching to the patch authors. These statistics in no way comprise all of
their contributions, but express in shorthand that we couldn’t have done it without them.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at <http://rt.perl.org/perlbug/>. There may
also be information at <http://www.perl.org/>, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analyzed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this address
for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

<http://dev.perl.org/perl5/errata.html> for a list of issues found after this release, as well as a list of
CPAN modules known to be incompatible with this release.

perl v5.36.0 2020-12-28 92

PERL5121DELTA(1) Perl Programmers Reference Guide PERL5121DELTA(1)

NAME
perl5121delta - what is new for perl v5.12.1

DESCRIPTION
This document describes differences between the 5.12.0 release and the 5.12.1 release.

If you are upgrading from an earlier release such as 5.10.1, first read perl5120delta, which describes
differences between 5.10.0 and 5.12.0.

Incompatible Changes
There are no changes intentionally incompatible with 5.12.0. If any incompatibilities with 5.12.0 exist,
they are bugs. Please report them.

Core Enhancements
Other than the bug fixes listed below, there should be no user-visible changes to the core language in
this release.

Modules and Pragmata
Pragmata Changes

• We fixed exporting of is_strict and is_lax from version.

These were being exported with a wrapper that treated them as method calls, which caused them
to fail. They are just functions, are documented as such, and should never be subclassed, so this
patch just exports them directly as functions without the wrapper.

Updated Modules
• We upgraded CGI to version 3.49 to incorporate fixes for regressions introduced in the release we

shipped with Perl 5.12.0.

• We upgraded Pod::Simple to version 3.14 to get an improvement to \C\<\< \>\> parsing.

• We made a small fix to the CPANPLUS test suite to fix an occasional spurious test failure.

• We upgraded Safe to version 2.27 to wrap coderefs returned by reval() and rdo().

Changes to Existing Documentation
• We added the new maintenance release policy to perlpolicy

• We’ve clarified the multiple-angle-bracket construct in the spec for POD in perlpodspec

• We added a missing explanation for a warning about := to perldiag

• We removed a false claim in perlunitut that all text strings are Unicode strings in Perl.

• We updated the GitHub mirror link in perlrepository to mirrors/perl, not github/perl

• We fixed a minor error in perl5114delta.

• We replaced a mention of the now-obsolete Switch with given/when.

• We improved documentation about $sitelibexp/sitecustomize.pl in perlrun.

• We corrected perlmodlib which had unintentionally omitted a number of modules.

• We updated the documentation for ’require’ in perlfunc relating to putting Perl code in @INC.

• We reinstated some erroneously-removed documentation about quotemeta in perlfunc.

• We fixed an a2p example in perlutil.

• We filled in a blank in perlport with the release date of Perl 5.12.

• We fixed broken links in a number of perldelta files.

• The documentation for Carp incorrectly stated that the $Carp::Verbose variable makes cluck
generate stack backtraces.

• We fixed a number of typos in Pod::Functions

• We improved documentation of case-changing functions in perlfunc

• We corrected perlgpl to contain the correct version of the GNU General Public License.

Testing

perl v5.36.0 2021-04-29 93

PERL5121DELTA(1) Perl Programmers Reference Guide PERL5121DELTA(1)

Testing Improvements
• t/op/sselect.t is now less prone to clock jitter during timing checks on Windows.

sleep() time on Win32 may be rounded down to multiple of the clock tick interval.

• lib/blib.t and lib/locale.t: Fixes for test failures on Darwin/PPC

• perl5db.t: Fix for test failures when Term::ReadLine::Gnu is installed.

Installation and Configuration Improvements
Configuration improvements

• We updated INSTALL with notes about how to deal with broken dbm.h on OpenSUSE (and
possibly other platforms)

Bug Fixes
• A bug in how we process filetest operations could cause a segfault. Filetests don’t always expect

an op on the stack, so we now use TOPs only if we’re sure that we’re not stat’ing the _ filehandle.
This is indicated by OPf_KIDS (as checked in ck_ftst).

See also: <https://github.com/Perl/perl5/issues/10335>

• When deparsing a nextstate op that has both a change of package (relative to the previous
nextstate) and a label, the package declaration is now emitted first, because it is syntactically
impermissible for a label to prefix a package declaration.

• XSUB.h now correctly redefines fgets under PERL_IMPLICIT_SYS

See also: <http://rt.cpan.org/Public/Bug/Display.html?id=55049>

• utf8::is_utf8 now respects GMAGIC (e.g. $1)

• XS code using fputc() or fputs(): on Windows could cause an error due to their arguments
being swapped.

See also: <https://github.com/Perl/perl5/issues/10156>

• We fixed a small bug in lex_stuff_pvn() that caused spurious syntax errors in an obscure situation.
It happened when stuffing was performed on the last line of a file and the line ended with a
statement that lacked a terminating semicolon.

See also: <https://github.com/Perl/perl5/issues/10273>

• We fixed a bug that could cause \N{} constructs followed by a single . to be parsed incorrectly.

See also: <https://github.com/Perl/perl5/issues/10367>

• We fixed a bug that caused when(scalar) without an argument not to be treated as a syntax error.

See also: <https://github.com/Perl/perl5/issues/10287>

• We fixed a regression in the handling of labels immediately before string evals that was introduced
in Perl 5.12.0.

See also: <https://github.com/Perl/perl5/issues/10301>

• We fixed a regression in case-insensitive matching of folded characters in regular expressions
introduced in Perl 5.10.1.

See also: <https://github.com/Perl/perl5/issues/10193>

Platform Specific Notes
HP-UX

• Perl now allows -Duse64bitint without promoting to use64bitall on HP-UX

AIX
• Perl now builds on AIX 4.2

The changes required work around AIX 4.2s’ lack of support for IPv6, and limited support for
POSIX sigaction().

FreeBSD 7

perl v5.36.0 2021-04-29 94

PERL5121DELTA(1) Perl Programmers Reference Guide PERL5121DELTA(1)

• FreeBSD 7 no longer contains /usr/bin/objformat. At build time, Perl now skips the objformat
check for versions 7 and higher and assumes ELF.

VMS
• It’s now possible to build extensions on older (pre 7.3-2) VMS systems.

DCL symbol length was limited to 1K up until about seven years or so ago, but there was no
particularly deep reason to prevent those older systems from configuring and building Perl.

• We fixed the previously-broken -Uuseperlio build on VMS.

We were checking a variable that doesn’t exist in the non-default case of disabling perlio. Now
we only look at it when it exists.

• We fixed the -Uuseperlio command-line option in configure.com.

Formerly it only worked if you went through all the questions interactively and explicitly
answered no.

Known Problems
• List::Util::first misbehaves in the presence of a lexical $_ (typically introduced by my

$_ or implicitly by given). The variable which gets set for each iteration is the package variable
$_, not the lexical $_.

A similar issue may occur in other modules that provide functions which take a block as their first
argument, like

foo { ... $_ ...} list

See also: <https://github.com/Perl/perl5/issues/9798>

• Module::Load::Conditional and version have an unfortunate interaction which can
cause CPANPLUS to crash when it encounters an unparseable version string. Upgrading to
CPANPLUS 0.9004 or Module::Load::Conditional 0.38 from CPAN will resolve this
issue.

Acknowledgements
Perl 5.12.1 represents approximately four weeks of development since Perl 5.12.0 and contains
approximately 4,000 lines of changes across 142 files from 28 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.12.1:

AEvar Arnfjo
..
r∂- Bjarmason, Chris Williams, chromatic, Craig A. Berry, David Golden, Father

Chrysostomos, Florian Ragwitz, Frank Wiegand, Gene Sullivan, Goro Fuji, H.Merijn Brand, James E
Keenan, Jan Dubois, Jesse Vincent, Josh ben Jore, Karl Williamson, Leon Brocard, Michael Schwern,
Nga Tang Chan, Nicholas Clark, Niko Tyni, Philippe Bruhat, Rafael Garcia-Suarez, Ricardo Signes,
Steffen Mueller, Todd Rinaldo, Vincent Pit and Zefram.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this address
for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

perl v5.36.0 2021-04-29 95

PERL5121DELTA(1) Perl Programmers Reference Guide PERL5121DELTA(1)

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 96

PERL5122DELTA(1) Perl Programmers Reference Guide PERL5122DELTA(1)

NAME
perl5122delta - what is new for perl v5.12.2

DESCRIPTION
This document describes differences between the 5.12.1 release and the 5.12.2 release.

If you are upgrading from an earlier major version, such as 5.10.1, first read perl5120delta, which
describes differences between 5.10.0 and 5.12.0, as well as perl5121delta, which describes earlier
changes in the 5.12 stable release series.

Incompatible Changes
There are no changes intentionally incompatible with 5.12.1. If any exist, they are bugs and reports are
welcome.

Core Enhancements
Other than the bug fixes listed below, there should be no user-visible changes to the core language in
this release.

Modules and Pragmata
New Modules and Pragmata

This release does not introduce any new modules or pragmata.

Pragmata Changes
In the previous release, no VERSION; statements triggered a bug which could cause feature bundles
to be loaded and strict mode to be enabled unintentionally.

Updated Modules
Carp

Upgraded from version 1.16 to 1.17.

Carp now detects incomplete caller() overrides and avoids using bogus @DB::args. To provide
backtraces, Carp relies on particular behaviour of the caller built-in. Carp now detects if other
code has overridden this with an incomplete implementation, and modifies its backtrace
accordingly. Previously incomplete overrides would cause incorrect values in backtraces (best
case), or obscure fatal errors (worst case)

This fixes certain cases of Bizarre copy of ARRAY caused by modules overriding
caller() incorrectly.

CPANPLUS
A patch to cpanp-run-perl has been backported from CPANPLUS 0.9004. This resolves RT
#55964 <http://rt.cpan.org/Public/Bug/Display.html?id=55964> and RT #57106
<http://rt.cpan.org/Public/Bug/Display.html?id=57106>, both of which related to failures to install
distributions that use Module::Install::DSL.

File::Glob
A regression which caused a failure to find CORE::GLOBAL::glob after loading
File::Glob to crash has been fixed. Now, it correctly falls back to external globbing via
pp_glob.

File::Copy
File::Copy::copy(FILE, DIR) is now documented.

File::Spec
Upgraded from version 3.31 to 3.31_01.

Several portability fixes were made in File::Spec::VMS: a colon is now recognized as a
delimiter in native filespecs; caret-escaped delimiters are recognized for better handling of
extended filespecs; catpath() returns an empty directory rather than the current directory if the
input directory name is empty; abs2rel() properly handles Unix-style input.

Utility Changes
• perlbug now always gives the reporter a chance to change the email address it guesses for them.

• perlbug should no longer warn about uninitialized values when using the -d and -v options.

Changes to Existing Documentation

perl v5.36.0 2021-04-29 97

PERL5122DELTA(1) Perl Programmers Reference Guide PERL5122DELTA(1)

• The existing policy on backward-compatibility and deprecation has been added to perlpolicy,
along with definitions of terms like deprecation.

• ‘‘srand’’ in perlfunc’s usage has been clarified.

• The entry for ‘‘die’’ in perlfunc was reorganized to emphasize its role in the exception mechanism.

• Perl’s INSTALL file has been clarified to explicitly state that Perl requires a C89 compliant ANSI C
Compiler.

• IO::Socket’s getsockopt() and setsockopt() have been documented.

• alarm()’s inability to interrupt blocking IO on Windows has been documented.

• Math::TrulyRandom hasn’t been updated since 1996 and has been removed as a recommended
solution for random number generation.

• perlrun has been updated to clarify the behaviour of octal flags to perl.

• To ease user confusion, $# and $*, two special variables that were removed in earlier versions of
Perl have been documented.

• The version of perlfaq shipped with the Perl core has been updated from the official FAQ version,
which is now maintained in the briandfoy/perlfaq branch of the Perl repository at
<git://perl5.git.perl.org/perl.git>.

Installation and Configuration Improvements
Configuration improvements

• The d_u32align configuration probe on ARM has been fixed.

Compilation improvements
• An "incompatible operand types" error in ternary expressions when building with

clang has been fixed.

• Perl now skips setuid File::Copy tests on partitions it detects to be mounted as nosuid.

Selected Bug Fixes
• A possible segfault in the T_PRTOBJ default typemap has been fixed.

• A possible memory leak when using caller() to set @DB::args has been fixed.

• Several memory leaks when loading XS modules were fixed.

• unpack() now handles scalar context correctly for %32H and %32u, fixing a potential crash.
split() would crash because the third item on the stack wasn’t the regular expression it
expected. unpack("%2H", ...) would return both the unpacked result and the checksum on
the stack, as would unpack("%2u", ...). [GH #10257]
<https://github.com/Perl/perl5/issues/10257>

• Perl now avoids using memory after calling free() in pp_require when there are CODEREFs in
@INC.

• A bug that could cause "Unknown error‘‘ messages when ’’call_sv(code, G_EVAL)" is
called from an XS destructor has been fixed.

• The implementation of the open $fh, '>' \$buffer feature now supports get/set magic
and thus tied buffers correctly.

• The pp_getc, pp_tell, and pp_eof opcodes now make room on the stack for their return
values in cases where no argument was passed in.

• When matching unicode strings under some conditions inappropriate backtracking would result in
a Malformed UTF-8 character (fatal) error. This should no longer occur. See [GH
#10434] <https://github.com/Perl/perl5/issues/10434>

Platform Specific Notes
AIX

• README.aix has been updated with information about the XL C/C++ V11 compiler suite.

Windows

perl v5.36.0 2021-04-29 98

PERL5122DELTA(1) Perl Programmers Reference Guide PERL5122DELTA(1)

• When building Perl with the mingw64 x64 cross-compiler incpath, libpth, ldflags,
lddlflags and ldflags_nolargefiles values in Config.pm and Config_heavy.pl were
not previously being set correctly because, with that compiler, the include and lib directories are
not immediately below $(CCHOME).

VMS
• git_version.h is now installed on VMS. This was an oversight in v5.12.0 which caused some

extensions to fail to build.

• Several memory leaks in stat() have been fixed.

• A memory leak in Perl_rename() due to a double allocation has been fixed.

• A memory leak in vms_fid_to_name() (used by realpath() and realname()) has
been fixed.

Acknowledgements
Perl 5.12.2 represents approximately three months of development since Perl 5.12.1 and contains
approximately 2,000 lines of changes across 100 files from 36 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.12.2:

Abigail, AEvar Arnfjo
..
r∂- Bjarmason, Ben Morrow, brian d foy, Brian Phillips, Chas. Owens, Chris

’BinGOs’ Williams, Chris Williams, Craig A. Berry, Curtis Jewell, Dan Dascalescu, David Golden,
David Mitchell, Father Chrysostomos, Florian Ragwitz, George Greer, H.Merijn Brand, Jan Dubois,
Jesse Vincent, Jim Cromie, Karl Williamson, Lars DXXXXXX XXX, Leon Brocard, Maik Hentsche,
Matt S Trout, Nicholas Clark, Rafael Garcia-Suarez, Rainer Tammer, Ricardo Signes, Salvador Ortiz
Garcia, Sisyphus, Slaven Rezic, Steffen Mueller, Tony Cook, Vincent Pit and Yves Orton.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this address
for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 99

PERL5123DELTA(1) Perl Programmers Reference Guide PERL5123DELTA(1)

NAME
perl5123delta - what is new for perl v5.12.3

DESCRIPTION
This document describes differences between the 5.12.2 release and the 5.12.3 release.

If you are upgrading from an earlier release such as 5.12.1, first read perl5122delta, which describes
differences between 5.12.1 and 5.12.2. The major changes made in 5.12.0 are described in
perl5120delta.

Incompatible Changes
There are no changes intentionally incompatible with 5.12.2. If any
exist, they are bugs and reports are welcome.

Core Enhancements
keys, values work on arrays

You can now use the keys, values, each builtin functions on arrays (previously you could only use
them on hashes). See perlfunc for details. This is actually a change introduced in perl 5.12.0, but it
was missed from that release’s perldelta.

Bug Fixes
‘‘no VERSION’’ will now correctly deparse with B::Deparse, as will certain constant expressions.

Module::Build should be more reliably pass its tests under cygwin.

Lvalue subroutines are again able to return copy-on-write scalars. This had been broken since version
5.10.0.

Platform Specific Notes
Solaris

A separate DTrace is now build for miniperl, which means that perl can be compiled with
-Dusedtrace on Solaris again.

VMS
A number of regressions on VMS have been fixed. In addition to minor cleanup of questionable
expressions in vms.c, file permissions should no longer be garbled by the PerlIO layer, and
spurious record boundaries should no longer be introduced by the PerlIO layer during output.

For more details and discussion on the latter, see:

http://www.nntp.perl.org/group/perl.vmsperl/2010/11/msg15419.html

VOS
A few very small changes were made to the build process on VOS to better support the platform.
Longer-than-32-character filenames are now supported on OpenVOS, and build properly without
IPv6 support.

Acknowledgements
Perl 5.12.3 represents approximately four months of development since Perl 5.12.2 and contains
approximately 2500 lines of changes across 54 files from 16 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.12.3:

Craig A. Berry, David Golden, David Leadbeater, Father Chrysostomos, Florian Ragwitz, Jesse
Vincent, Karl Williamson, Nick Johnston, Nicolas Kaiser, Paul Green, Rafael Garcia-Suarez, Rainer
Tammer, Ricardo Signes, Steffen Mueller, Zsbán Ambrus, AEvar Arnfjo

..
r∂- Bjarmason

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed

perl v5.36.0 2019-02-18 100

PERL5123DELTA(1) Perl Programmers Reference Guide PERL5123DELTA(1)

subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this address
for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 101

PERL5124DELTA(1) Perl Programmers Reference Guide PERL5124DELTA(1)

NAME
perl5124delta - what is new for perl v5.12.4

DESCRIPTION
This document describes differences between the 5.12.3 release and the 5.12.4 release.

If you are upgrading from an earlier release such as 5.12.2, first read perl5123delta, which describes
differences between 5.12.2 and 5.12.3. The major changes made in 5.12.0 are described in
perl5120delta.

Incompatible Changes
There are no changes intentionally incompatible with 5.12.3. If any exist, they are bugs and reports are
welcome.

Selected Bug Fixes
When strict ‘‘refs’’ mode is off, %{...} in rvalue context returns undef if its argument is undefined.
An optimisation introduced in Perl 5.12.0 to make keys %{...} faster when used as a boolean did
not take this into account, causing keys %{+undef} (and keys %$foo when $foo is undefined)
to be an error, which it should be so in strict mode only [perl #81750].

lc, uc, lcfirst, and ucfirst no longer return untainted strings when the argument is tainted.
This has been broken since perl 5.8.9 [perl #87336].

Fixed a case where it was possible that a freed buffer may have been read from when parsing a here
document.

Modules and Pragmata
Module::CoreList has been upgraded from version 2.43 to 2.50.

Testing
The cpan/CGI/t/http.t test script has been fixed to work when the environment has HTTPS_*
environment variables, such as HTTPS_PROXY.

Documentation
Updated the documentation for rand() in perlfunc to note that it is not cryptographically secure.

Platform Specific Notes
Linux

Support Ubuntu 11.04’s new multi-arch library layout.

Acknowledgements
Perl 5.12.4 represents approximately 5 months of development since Perl 5.12.3 and contains
approximately 200 lines of changes across 11 files from 8 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.12.4:

Andy Dougherty, David Golden, David Leadbeater, Father Chrysostomos, Florian Ragwitz, Jesse
Vincent, Leon Brocard, Zsbán Ambrus.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who be able to help assess
the impact of issues, figure out a resolution, and help co-ordinate the release of patches to mitigate or
fix the problem across all platforms on which Perl is supported. Please only use this address for
security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

perl v5.36.0 2019-02-18 102

PERL5124DELTA(1) Perl Programmers Reference Guide PERL5124DELTA(1)

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 103

PERL5125DELTA(1) Perl Programmers Reference Guide PERL5125DELTA(1)

NAME
perl5125delta - what is new for perl v5.12.5

DESCRIPTION
This document describes differences between the 5.12.4 release and the 5.12.5 release.

If you are upgrading from an earlier release such as 5.12.3, first read perl5124delta, which describes
differences between 5.12.3 and 5.12.4.

Security
Encode decode_xs n-byte heap-overflow (CVE-2011-2939)

A bug in Encode could, on certain inputs, cause the heap to overflow. This problem has been
corrected. Bug reported by Robert Zacek.

File::Glob::bsd_glob() memory error with GLOB_ALTDIRFUNC (CVE-2011-2728).
Calling File::Glob::bsd_glob with the unsupported flag GLOB_ALTDIRFUNC would cause an
access violation / segfault. A Perl program that accepts a flags value from an external source could
expose itself to denial of service or arbitrary code execution attacks. There are no known exploits in
the wild. The problem has been corrected by explicitly disabling all unsupported flags and setting
unused function pointers to null. Bug reported by Clément Lecigne.

Heap buffer overrun in ’x’ string repeat operator (CVE-2012-5195)
Poorly written perl code that allows an attacker to specify the count to perl’s ’x’ string repeat operator
can already cause a memory exhaustion denial-of-service attack. A flaw in versions of perl before
5.15.5 can escalate that into a heap buffer overrun; coupled with versions of glibc before 2.16, it
possibly allows the execution of arbitrary code.

This problem has been fixed.

Incompatible Changes
There are no changes intentionally incompatible with 5.12.4. If any exist, they are bugs and reports are
welcome.

Modules and Pragmata
Updated Modules

B::Concise

B::Concise no longer produces mangled output with the -tree option [perl #80632].

charnames

A regression introduced in Perl 5.8.8 has been fixed, that caused charnames::viacode(0) to
return undef instead of the string ‘‘NULL’’ [perl #72624].

Encode has been upgraded from version 2.39 to version 2.39_01.

See ‘‘Security’’.

File::Glob has been upgraded from version 1.07 to version 1.07_01.

See ‘‘Security’’.

Unicode::UCD

The documentation for the upper function now actually says ‘‘upper’’, not ‘‘lower’’.

Module::CoreList

Module::CoreList has been updated to version 2.50_02 to add data for this release.

Changes to Existing Documentation
perlebcdic

The perlebcdic document contains a helpful table to use in tr/// to convert between EBCDIC and
Latin1/ASCII. Unfortunately, the table was the inverse of the one it describes. This has been
corrected.

perlunicode
The section on User-Defined Case Mappings had some bad markup and unclear sentences, making
parts of it unreadable. This has been rectified.

perl v5.36.0 2019-02-18 104

PERL5125DELTA(1) Perl Programmers Reference Guide PERL5125DELTA(1)

perluniprops
This document has been corrected to take non-ASCII platforms into account.

Installation and Configuration Improvements
Platform Specific Changes

Mac OS X
There have been configuration and test fixes to make Perl build cleanly on Lion and Mountain
Lion.

NetBSD
The NetBSD hints file was corrected to be compatible with NetBSD 6.*

Selected Bug Fixes
• chop now correctly handles characters above ‘‘\x{7fffffff}’’ [perl #73246].

• ($<,$>) = (...) stopped working properly in 5.12.0. It is supposed to make a single
setreuid() call, rather than calling setruid() and seteuid() separately. Consequently
it did not work properly. This has been fixed [perl #75212].

• Fixed a regression of kill() when a match variable is used for the process ID to kill [perl #75812].

• UNIVERSAL::VERSION no longer leaks memory. It started leaking in Perl 5.10.0.

• The C-level my_strftime functions no longer leaks memory. This fixes a memory leak in
POSIX::strftime [perl #73520].

• caller no longer leaks memory when called from the DB package if @DB::args was assigned
to after the first call to caller. Carp was triggering this bug [perl #97010].

• Passing to index an offset beyond the end of the string when the string is encoded internally in
UTF8 no longer causes panics [perl #75898].

• Syntax errors in (?{...}) blocks in regular expressions no longer cause panic messages [perl
#2353].

• Perl 5.10.0 introduced some faulty logic that made ‘‘U*’’ in the middle of a pack template
equivalent to ‘‘U0’’ if the input string was empty. This has been fixed [perl #90160].

Errata
split() and @_

split() no longer modifies @_ when called in scalar or void context. In void context it now produces a
‘‘Useless use of split’’ warning. This is actually a change introduced in perl 5.12.0, but it was missed
from that release’s perl5120delta.

Acknowledgements
Perl 5.12.5 represents approximately 17 months of development since Perl 5.12.4 and contains
approximately 1,900 lines of changes across 64 files from 18 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.12.5:

Andy Dougherty, Chris ’BinGOs’ Williams, Craig A. Berry, David Mitchell, Dominic Hargreaves,
Father Chrysostomos, Florian Ragwitz, George Greer, Goro Fuji, Jesse Vincent, Karl Williamson, Leon
Brocard, Nicholas Clark, Rafael Garcia-Suarez, Reini Urban, Ricardo Signes, Steve Hay, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.

perl v5.36.0 2019-02-18 105

PERL5125DELTA(1) Perl Programmers Reference Guide PERL5125DELTA(1)

Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who be able to help assess
the impact of issues, figure out a resolution, and help co-ordinate the release of patches to mitigate or
fix the problem across all platforms on which Perl is supported. Please only use this address for
security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 106

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

NAME
perl5140delta - what is new for perl v5.14.0

DESCRIPTION
This document describes differences between the 5.12.0 release and the 5.14.0 release.

If you are upgrading from an earlier release such as 5.10.0, first read perl5120delta, which describes
differences between 5.10.0 and 5.12.0.

Some of the bug fixes in this release have been backported to subsequent releases of 5.12.x. Those are
indicated with the 5.12.x version in parentheses.

Notice
As described in perlpolicy, the release of Perl 5.14.0 marks the official end of support for Perl 5.10.
Users of Perl 5.10 or earlier should consider upgrading to a more recent release of Perl.

Core Enhancements
Unicode

Unicode Version 6.0 is now supported (mostly)

Perl comes with the Unicode 6.0 data base updated with Corrigendum #8
<http://www.unicode.org/versions/corrigendum8.html>, with one exception noted below. See
<http://unicode.org/versions/Unicode6.0.0/> for details on the new release. Perl does not support any
Unicode provisional properties, including the new ones for this release.

Unicode 6.0 has chosen to use the name BELL for the character at U+1F514, which is a symbol that
looks like a bell, and is used in Japanese cell phones. This conflicts with the long-standing Perl usage
of having BELL mean the ASCII BEL character, U+0007. In Perl 5.14, \N{BELL} continues to mean
U+0007, but its use generates a deprecation warning message unless such warnings are turned off. The
new name for U+0007 in Perl is ALERT, which corresponds nicely with the existing shorthand
sequence for it, "\a". \N{BEL} means U+0007, with no warning given. The character at U+1F514
has no name in 5.14, but can be referred to by \N{U+1F514}. In Perl 5.16, \N{BELL} will refer to
U+1F514; all code that uses \N{BELL} should be converted to use \N{ALERT}, \N{BEL}, or "\a"
before upgrading.

Full functionality for use feature 'unicode_strings'

This release provides full functionality for use feature 'unicode_strings'. Under its
scope, all string operations executed and regular expressions compiled (even if executed outside its
scope) have Unicode semantics. See ‘‘the ’unicode_strings’ feature’’ in feature. However, see
‘‘Inverted bracketed character classes and multi-character folds’’, below.

This feature avoids most forms of the ‘‘Unicode Bug’’ (see ‘‘The ’’Unicode Bug"" in perlunicode for
details). If there is any possibility that your code will process Unicode strings, you are strongly
encouraged to use this subpragma to avoid nasty surprises.

\N{NAME} and charnames enhancements

• \N{NAME} and charnames::vianame now know about the abbreviated character names
listed by Unicode, such as NBSP, SHY, LRO, ZWJ, etc.; all customary abbreviations for the C0 and
C1 control characters (such as ACK, BEL, CAN, etc.); and a few new variants of some C1 full
names that are in common usage.

• Unicode has several named character sequences, in which particular sequences of code points are
given names. \N{NAME} now recognizes these.

• \N{NAME}, charnames::vianame, and charnames::viacode now know about every
character in Unicode. In earlier releases of Perl, they didn’t know about the Hangul syllables nor
several CJK (Chinese/Japanese/Korean) characters.

• It is now possible to override Perl’s abbreviations with your own custom aliases.

• You can now create a custom alias of the ordinal of a character, known by \N{NAME},
charnames::vianame(), and charnames::viacode(). Previously, aliases had to be to
official Unicode character names. This made it impossible to create an alias for unnamed code
points, such as those reserved for private use.

perl v5.36.0 2021-04-29 107

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• The new function charnames::string_vianame() is a run-time version of \N{NAME}}, returning
the string of characters whose Unicode name is its parameter. It can handle Unicode named
character sequences, whereas the pre-existing charnames::vianame() cannot, as the latter returns
a single code point.

See charnames for details on all these changes.

New warnings categories for problematic (non-)Unicode code points.

Three new warnings subcategories of ‘‘utf8’’ have been added. These allow you to turn off some
‘‘utf8’’ warnings, while allowing other warnings to remain on. The three categories are: surrogate
when UTF-16 surrogates are encountered; nonchar when Unicode non-character code points are
encountered; and non_unicode when code points above the legal Unicode maximum of 0x10FFFF
are encountered.

Any unsigned value can be encoded as a character

With this release, Perl is adopting a model that any unsigned value can be treated as a code point and
encoded internally (as utf8) without warnings, not just the code points that are legal in Unicode.
However, unless utf8 or the corresponding sub-category (see previous item) of lexical warnings have
been explicitly turned off, outputting or executing a Unicode-defined operation such as upper-casing on
such a code point generates a warning. Attempting to input these using strict rules (such as with the
:encoding(UTF-8) layer) will continue to fail. Prior to this release, handling was inconsistent and
in places, incorrect.

Unicode non-characters, some of which previously were erroneously considered illegal in places by
Perl, contrary to the Unicode Standard, are now always legal internally. Inputting or outputting them
works the same as with the non-legal Unicode code points, because the Unicode Standard says they are
(only) illegal for ‘‘open interchange’’.

Unicode database files not installed

The Unicode database files are no longer installed with Perl. This doesn’t affect any functionality in
Perl and saves significant disk space. If you need these files, you can download them from
<http://www.unicode.org/Public/zipped/6.0.0/>.

Regular Expressions
(?ˆ...) construct signifies default modifiers

An ASCII caret "ˆ" immediately following a "(?" in a regular expression now means that the
subexpression does not inherit surrounding modifiers such as /i, but reverts to the Perl defaults. Any
modifiers following the caret override the defaults.

Stringification of regular expressions now uses this notation. For example, qr/hlagh/i would
previously be stringified as (?i-xsm:hlagh), but now it’s stringified as (?ˆi:hlagh).

The main purpose of this change is to allow tests that rely on the stringification not to have to change
whenever new modifiers are added. See ‘‘Extended Patterns’’ in perlre.

This change is likely to break code that compares stringified regular expressions with fixed strings
containing ?-xism.

/d, /l, /u, and /a modifiers

Four new regular expression modifiers have been added. These are mutually exclusive: one only can be
turned on at a time.

• The /l modifier says to compile the regular expression as if it were in the scope of use
locale, even if it is not.

• The /u modifier says to compile the regular expression as if it were in the scope of a use
feature 'unicode_strings' pragma.

• The /d (default) modifier is used to override any use locale and use feature
'unicode_strings' pragmas in effect at the time of compiling the regular expression.

• The /a regular expression modifier restricts \s, \d and \w and the POSIX ([[:posix:]])
character classes to the ASCII range. Their complements and \b and \B are correspondingly
affected. Otherwise, /a behaves like the /u modifier, in that case-insensitive matching uses
Unicode semantics.

perl v5.36.0 2021-04-29 108

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

If the /a modifier is repeated, then additionally in case-insensitive matching, no ASCII character
can match a non-ASCII character. For example,

"k" =˜ /\N{KELVIN SIGN}/ai
"\xDF" =˜ /ss/ai

match but

"k" =˜ /\N{KELVIN SIGN}/aai
"\xDF" =˜ /ss/aai

do not match.

See ‘‘Modifiers’’ in perlre for more detail.

Non-destructive substitution

The substitution (s///) and transliteration (y///) operators now support an /r option that copies the
input variable, carries out the substitution on the copy, and returns the result. The original remains
unmodified.

my $old = "cat";
my $new = $old =˜ s/cat/dog/r;
$old is "cat" and $new is "dog"

This is particularly useful with map. See perlop for more examples.

Re-entrant regular expression engine

It is now safe to use regular expressions within (?{...}) and (??{...}) code blocks inside
regular expressions.

These blocks are still experimental, however, and still have problems with lexical (my) variables and
abnormal exiting.

use re '/flags'

The re pragma now has the ability to turn on regular expression flags till the end of the lexical scope:

use re "/x";
"foo" =˜ / (.+) /; # /x implied

See ‘‘’/flags’ mode’’ in re for details.

\o{...} for octals

There is a new octal escape sequence, "\o", in doublequote-like contexts. This construct allows large
octal ordinals beyond the current max of 0777 to be represented. It also allows you to specify a
character in octal which can safely be concatenated with other regex snippets and which won’t be
confused with being a backreference to a regex capture group. See ‘‘Capture groups’’ in perlre.

Add \p{Titlecase} as a synonym for \p{Title}

This synonym is added for symmetry with the Unicode property names \p{Uppercase} and
\p{Lowercase}.

Regular expression debugging output improvement

Regular expression debugging output (turned on by use re 'debug') now uses hexadecimal when
escaping non-ASCII characters, instead of octal.

Return value of delete $+{...}

Custom regular expression engines can now determine the return value of delete on an entry of %+
or %-.

Syntactical Enhancements
Array and hash container functions accept references

Warning: This feature is considered experimental, as the exact behaviour may change in a future
version of Perl.

All builtin functions that operate directly on array or hash containers now also accept unblessed hard
references to arrays or hashes:

perl v5.36.0 2021-04-29 109

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

|----------------------------+---------------------------|
| Traditional syntax | Terse syntax |
|----------------------------+---------------------------|
push @$arrayref, @stuff	push $arrayref, @stuff
unshift @$arrayref, @stuff	unshift $arrayref, @stuff
pop @$arrayref	pop $arrayref
shift @$arrayref	shift $arrayref
splice @$arrayref, 0, 2	splice $arrayref, 0, 2
keys %$hashref	keys $hashref
keys @$arrayref	keys $arrayref
values %$hashref	values $hashref
values @$arrayref	values $arrayref
($k,$v) = each %$hashref	($k,$v) = each $hashref
($k,$v) = each @$arrayref	($k,$v) = each $arrayref
----------------------------+---------------------------	

This allows these builtin functions to act on long dereferencing chains or on the return value of
subroutines without needing to wrap them in @{} or %{}:

push @{$obj->tags}, $new_tag; # old way
push $obj->tags, $new_tag; # new way

for (keys %{$hoh->{genres}{artists}}) {...} # old way
for (keys $hoh->{genres}{artists}) {...} # new way

Single term prototype

The + prototype is a special alternative to $ that acts like \[@%] when given a literal array or hash
variable, but will otherwise force scalar context on the argument. See ‘‘Prototypes’’ in perlsub.

package block syntax

A package declaration can now contain a code block, in which case the declaration is in scope inside
that block only. So package Foo { ... } is precisely equivalent to { package Foo; ...
}. It also works with a version number in the declaration, as in package Foo 1.2 { ... },
which is its most attractive feature. See perlfunc.

Statement labels can appear in more places

Statement labels can now occur before any type of statement or declaration, such as package.

Stacked labels

Multiple statement labels can now appear before a single statement.

Uppercase X/B allowed in hexadecimal/binary literals

Literals may now use either upper case 0X... or 0B... prefixes, in addition to the already supported
0x... and 0b... syntax [perl #76296].

C, Ruby, Python, and PHP already support this syntax, and it makes Perl more internally consistent: a
round-trip with eval sprintf "%#X", 0x10 now returns 16, just like eval sprintf
"%#x", 0x10.

Overridable tie functions

tie, tied and untie can now be overridden [perl #75902].

Exception Handling
To make them more reliable and consistent, several changes have been made to how die, warn, and
$@ behave.

• When an exception is thrown inside an eval, the exception is no longer at risk of being clobbered
by destructor code running during unwinding. Previously, the exception was written into $@ early
in the throwing process, and would be overwritten if eval was used internally in the destructor
for an object that had to be freed while exiting from the outer eval. Now the exception is written
into $@ last thing before exiting the outer eval, so the code running immediately thereafter can
rely on the value in $@ correctly corresponding to that eval. ($@ is still also set before exiting
the eval, for the sake of destructors that rely on this.)

perl v5.36.0 2021-04-29 110

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

Likewise, a local $@ inside an eval no longer clobbers any exception thrown in its scope.
Previously, the restoration of $@ upon unwinding would overwrite any exception being thrown.
Now the exception gets to the eval anyway. So local $@ is safe before a die.

Exceptions thrown from object destructors no longer modify the $@ of the surrounding context.
(If the surrounding context was exception unwinding, this used to be another way to clobber the
exception being thrown.) Previously such an exception was sometimes emitted as a warning, and
then either was string-appended to the surrounding $@ or completely replaced the surrounding $@,
depending on whether that exception and the surrounding $@ were strings or objects. Now, an
exception in this situation is always emitted as a warning, leaving the surrounding $@ untouched.
In addition to object destructors, this also affects any function call run by XS code using the
G_KEEPERR flag.

• Warnings for warn can now be objects in the same way as exceptions for die. If an object-based
warning gets the default handling of writing to standard error, it is stringified as before with the
filename and line number appended. But a $SIG{_ _WARN_ _} handler now receives an object-
based warning as an object, where previously it was passed the result of stringifying the object.

Other Enhancements
Assignment to $0 sets the legacy process name with prctl() on Linux

On Linux the legacy process name is now set with prctl (2), in addition to altering the POSIX name via
argv[0], as Perl has done since version 4.000. Now system utilities that read the legacy process
name such as ps, top, and killall recognize the name you set when assigning to $0. The string you
supply is truncated at 16 bytes; this limitation is imposed by Linux.

srand() now returns the seed

This allows programs that need to have repeatable results not to have to come up with their own seed-
generating mechanism. Instead, they can use srand() and stash the return value for future use. One
example is a test program with too many combinations to test comprehensively in the time available for
each run. It can test a random subset each time and, should there be a failure, log the seed used for that
run so this can later be used to produce the same results.

printf-like functions understand post-1980 size modifiers

Perl’s printf and sprintf operators, and Perl’s internal printf replacement function, now understand the
C90 size modifiers ‘‘hh’’ (char), ‘‘z’’ (size_t), and ‘‘t’’ (ptrdiff_t). Also, when compiled with
a C99 compiler, Perl now understands the size modifier ‘‘j’’ (intmax_t) (but this is not portable).

So, for example, on any modern machine, sprintf("%hhd", 257) returns ‘‘1’’.

New global variable ${ˆGLOBAL_PHASE}

A new global variable, ${ˆGLOBAL_PHASE}, has been added to allow introspection of the current
phase of the Perl interpreter. It’s explained in detail in ‘‘${ˆGLOBAL_PHASE}’’ in perlvar and in
‘‘BEGIN, UNITCHECK, CHECK, INIT and END’’ in perlmod.

-d:-foo calls Devel::foo::unimport

The syntax -d:foo was extended in 5.6.1 to make -d:foo=bar equivalent to -MDevel::foo=bar, which
expands internally to use Devel::foo 'bar' . Perl now allows prefixing the module name with
- , with the same semantics as -M; that is:

-d:-foo
Equivalent to -M-Devel::foo: expands to no Devel::foo and calls
Devel::foo->unimport() if that method exists.

-d:-foo=bar
Equivalent to -M-Devel::foo=bar: expands to no Devel::foo 'bar', and calls
Devel::foo->unimport("bar") if that method exists.

This is particularly useful for suppressing the default actions of a Devel::* module’s import
method whilst still loading it for debugging.

Filehandle method calls load IO::File on demand

When a method call on a filehandle would die because the method cannot be resolved and IO::File has
not been loaded, Perl now loads IO::File via require and attempts method resolution again:

perl v5.36.0 2021-04-29 111

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

open my $fh, ">", $file;
$fh->binmode(":raw"); # loads IO::File and succeeds

This also works for globs like STDOUT, STDERR, and STDIN:

STDOUT->autoflush(1);

Because this on-demand load happens only if method resolution fails, the legacy approach of manually
loading an IO::File parent class for partial method support still works as expected:

use IO::Handle;
open my $fh, ">", $file;
$fh->autoflush(1); # IO::File not loaded

Improved IPv6 support

The Socket module provides new affordances for IPv6, including implementations of the
Socket::getaddrinfo() and Socket::getnameinfo() functions, along with related
constants and a handful of new functions. See Socket.

DTrace probes now include package name

The DTrace probes now include an additional argument, arg3, which contains the package the
subroutine being entered or left was compiled in.

For example, using the following DTrace script:

perl$target:::sub-entry
{

printf("%s::%s\n", copyinstr(arg0), copyinstr(arg3));
}

and then running:

$ perl -e 'sub test { }; test'

DTrace will print:

main::test

New C APIs
See ‘‘Internal Changes’’.

Security
User-defined regular expression properties

‘‘User-Defined Character Properties’’ in perlunicode documented that you can create custom properties
by defining subroutines whose names begin with ‘‘In’’ or ‘‘Is’’. However, Perl did not actually enforce
that naming restriction, so \p{foo::bar} could call foo::bar() if it existed. The documented
convention is now enforced.

Also, Perl no longer allows tainted regular expressions to invoke a user-defined property. It simply dies
instead [perl #82616].

Incompatible Changes
Perl 5.14.0 is not binary-compatible with any previous stable release.

In addition to the sections that follow, see ‘‘C API Changes’’.

Regular Expressions and String Escapes
Inverted bracketed character classes and multi-character folds

Some characters match a sequence of two or three characters in /i regular expression matching under
Unicode rules. One example is LATIN SMALL LETTER SHARP S which matches the sequence
ss.

'ss' =˜ /\A[\N{LATIN SMALL LETTER SHARP S}]\z/i # Matches

This, however, can lead to very counter-intuitive results, especially when inverted. Because of this,
Perl 5.14 does not use multi-character /i matching in inverted character classes.

'ss' =˜ /\A[ˆ\N{LATIN SMALL LETTER SHARP S}]+\z/i # ???

This should match any sequences of characters that aren’t the SHARP S nor what SHARP S matches
under /i. "s" isn’t SHARP S, but Unicode says that "ss" is what SHARP S matches under /i. So

perl v5.36.0 2021-04-29 112

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

which one ‘‘wins’’? Do you fail the match because the string has ss or accept it because it has an s
followed by another s?

Earlier releases of Perl did allow this multi-character matching, but due to bugs, it mostly did not work.

\400-\777

In certain circumstances, \400-\777 in regexes have behaved differently than they behave in all other
doublequote-like contexts. Since 5.10.1, Perl has issued a deprecation warning when this happens.
Now, these literals behave the same in all doublequote-like contexts, namely to be equivalent to
\x{100}-\x{1FF}, with no deprecation warning.

Use of \400-\777 in the command-line option -0 retain their conventional meaning. They slurp
whole input files; previously, this was documented only for -0777.

Because of various ambiguities, you should use the new \o{...} construct to represent characters in
octal instead.

Most \p{} properties are now immune to case-insensitive matching

For most Unicode properties, it doesn’t make sense to have them match differently under /i case-
insensitive matching. Doing so can lead to unexpected results and potential security holes. For
example

m/\p{ASCII_Hex_Digit}+/i

could previously match non-ASCII characters because of the Unicode matching rules (although there
were several bugs with this). Now matching under /i gives the same results as non-/i matching
except for those few properties where people have come to expect differences, namely the ones where
casing is an integral part of their meaning, such as m/\p{Uppercase}/i and
m/\p{Lowercase}/i, both of which match the same code points as matched by
m/\p{Cased}/i. Details are in ‘‘Unicode Properties’’ in perlrecharclass.

User-defined property handlers that need to match differently under /i must be changed to read the
new boolean parameter passed to them, which is non-zero if case-insensitive matching is in effect and 0
otherwise. See ‘‘User-Defined Character Properties’’ in perlunicode.

\p{} implies Unicode semantics

Specifying a Unicode property in the pattern indicates that the pattern is meant for matching according
to Unicode rules, the way \N{NAME} does.

Regular expressions retain their localeness when interpolated

Regular expressions compiled under use locale now retain this when interpolated into a new
regular expression compiled outside a use locale, and vice-versa.

Previously, one regular expression interpolated into another inherited the localeness of the surrounding
regex, losing whatever state it originally had. This is considered a bug fix, but may trip up code that
has come to rely on the incorrect behaviour.

Stringification of regexes has changed

Default regular expression modifiers are now notated using (?ˆ...). Code relying on the old
stringification will fail. This is so that when new modifiers are added, such code won’t have to keep
changing each time this happens, because the stringification will automatically incorporate the new
modifiers.

Code that needs to work properly with both old- and new-style regexes can avoid the whole issue by
using (for perls since 5.9.5; see re):

use re qw(regexp_pattern);
my ($pat, $mods) = regexp_pattern($re_ref);

If the actual stringification is important or older Perls need to be supported, you can use something like
the following:

Accept both old and new-style stringification
my $modifiers = (qr/foobar/ =˜ /\Q(?ˆ/) ? "ˆ" : "-xism";

And then use $modifiers instead of -xism.

perl v5.36.0 2021-04-29 113

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

Run-time code blocks in regular expressions inherit pragmata

Code blocks in regular expressions ((?{...}) and (??{...})) previously did not inherit pragmata
(strict, warnings, etc.) if the regular expression was compiled at run time as happens in cases like these
two:

use re "eval";
$foo =˜ $bar; # when $bar contains (?{...})
$foo =˜ /$bar(?{ $finished = 1 })/;

This bug has now been fixed, but code that relied on the buggy behaviour may need to be fixed to
account for the correct behaviour.

Stashes and Package Variables
Localised tied hashes and arrays are no longed tied

In the following:

tie @a, ...;
{

local @a;
here, @a is a now a new, untied array

}
here, @a refers again to the old, tied array

Earlier versions of Perl incorrectly tied the new local array. This has now been fixed. This fix could
however potentially cause a change in behaviour of some code.

Stashes are now always defined

defined %Foo:: now always returns true, even when no symbols have yet been defined in that
package.

This is a side-effect of removing a special-case kludge in the tokeniser, added for 5.10.0, to hide side-
effects of changes to the internal storage of hashes. The fix drastically reduces hashes’ memory
overhead.

Calling defined on a stash has been deprecated since 5.6.0, warned on lexicals since 5.6.0, and warned
for stashes and other package variables since 5.12.0. defined %hash has always exposed an
implementation detail: emptying a hash by deleting all entries from it does not make defined
%hash false. Hence defined %hash is not valid code to determine whether an arbitrary hash is
empty. Instead, use the behaviour of an empty %hash always returning false in scalar context.

Clearing stashes

Stash list assignment %foo:: = () used to make the stash temporarily anonymous while it was
being emptied. Consequently, any of its subroutines referenced elsewhere would become anonymous,
showing up as ‘‘(unknown)’’ in caller. They now retain their package names such that caller
returns the original sub name if there is still a reference to its typeglob and ‘‘foo::_ _ANON_ _’’
otherwise [perl #79208].

Dereferencing typeglobs

If you assign a typeglob to a scalar variable:

$glob = *foo;

the glob that is copied to $glob is marked with a special flag indicating that the glob is just a copy.
This allows subsequent assignments to $glob to overwrite the glob. The original glob, however, is
immutable.

Some Perl operators did not distinguish between these two types of globs. This would result in strange
behaviour in edge cases: untie $scalar would not untie the scalar if the last thing assigned to it
was a glob (because it treated it as untie *$scalar, which unties a handle). Assignment to a glob
slot (such as *$glob = \@some_array) would simply assign \@some_array to $glob.

To fix this, the *{} operator (including its *foo and *$foo forms) has been modified to make a new
immutable glob if its operand is a glob copy. This allows operators that make a distinction between
globs and scalars to be modified to treat only immutable globs as globs. (tie, tied and untie have
been left as they are for compatibility’s sake, but will warn. See ‘‘Deprecations’’.)

perl v5.36.0 2021-04-29 114

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

This causes an incompatible change in code that assigns a glob to the return value of *{} when that
operator was passed a glob copy. Take the following code, for instance:

$glob = *foo;
*$glob = *bar;

The *$glob on the second line returns a new immutable glob. That new glob is made an alias to
*bar. Then it is discarded. So the second assignment has no effect.

See <https://github.com/Perl/perl5/issues/10625> for more detail.

Magic variables outside the main package

In previous versions of Perl, magic variables like $!, %SIG, etc. would ‘‘leak’’ into other packages. So
%foo::SIG could be used to access signals, ${"foo::!"} (with strict mode off) to access C’s
errno, etc.

This was a bug, or an ‘‘unintentional’’ feature, which caused various ill effects, such as signal handlers
being wiped when modules were loaded, etc.

This has been fixed (or the feature has been removed, depending on how you see it).

local($_) strips all magic from $_

local() on scalar variables gives them a new value but keeps all their magic intact. This has proven
problematic for the default scalar variable $_, where perlsub recommends that any subroutine that
assigns to $_ should first localize it. This would throw an exception if $_ is aliased to a read-only
variable, and could in general have various unintentional side-effects.

Therefore, as an exception to the general rule, local($_) will not only assign a new value to $_, but also
remove all existing magic from it as well.

Parsing of package and variable names

Parsing the names of packages and package variables has changed: multiple adjacent pairs of colons, as
in foo::::bar, are now all treated as package separators.

Regardless of this change, the exact parsing of package separators has never been guaranteed and is
subject to change in future Perl versions.

Changes to Syntax or to Perl Operators
given return values

given blocks now return the last evaluated expression, or an empty list if the block was exited by
break. Thus you can now write:

my $type = do {
given ($num) {

break when undef;
"integer" when /ˆ[+-]?[0-9]+$/;
"float" when /ˆ[+-]?[0-9]+(?:\.[0-9]+)?$/;
"unknown";

}
};

See ‘‘Return value’’ in perlsyn for details.

Change in parsing of certain prototypes

Functions declared with the following prototypes now behave correctly as unary functions:

*
\$ \% \@ * \&
\[...]
;$;*
;\$;\% etc.
;\[...]

Due to this bug fix [perl #75904], functions using the (*), (;$) and (;*) prototypes are parsed with
higher precedence than before. So in the following example:

perl v5.36.0 2021-04-29 115

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

sub foo(;$);
foo $a < $b;

the second line is now parsed correctly as foo($a) < $b, rather than foo($a < $b). This
happens when one of these operators is used in an unparenthesised argument:

< > <= >= lt gt le ge
== != <=> eq ne cmp ˜˜
&
| ˆ
&&
|| //
.. ...
?:
= += -= *= etc.
, =>

Smart-matching against array slices

Previously, the following code resulted in a successful match:

my @a = qw(a y0 z);
my @b = qw(a x0 z);
@a[0 .. $#b] ˜˜ @b;

This odd behaviour has now been fixed [perl #77468].

Negation treats strings differently from before

The unary negation operator, - , now treats strings that look like numbers as numbers [perl #57706].

Negative zero

Negative zero (-0.0), when converted to a string, now becomes ‘‘0’’ on all platforms. It used to
become ‘‘-0’’ on some, but ‘‘0’’ on others.

If you still need to determine whether a zero is negative, use sprintf("%g", $zero) =˜ /ˆ-/
or the Data::Float module on CPAN.

:= is now a syntax error

Previously my $pi := 4 was exactly equivalent to my $pi : = 4, with the : being treated as the
start of an attribute list, ending before the =. The use of := to mean : = was deprecated in 5.12.0, and
is now a syntax error. This allows future use of := as a new token.

Outside the core’s tests for it, we find no Perl 5 code on CPAN using this construction, so we believe
that this change will have little impact on real-world codebases.

If it is absolutely necessary to have empty attribute lists (for example, because of a code generator),
simply avoid the error by adding a space before the =.

Change in the parsing of identifiers

Characters outside the Unicode ‘‘XIDStart’’ set are no longer allowed at the beginning of an identifier.
This means that certain accents and marks that normally follow an alphabetic character may no longer
be the first character of an identifier.

Threads and Processes
Directory handles not copied to threads

On systems other than Windows that do not have a fchdir function, newly-created threads no longer
inherit directory handles from their parent threads. Such programs would usually have crashed anyway
[perl #75154].

close on shared pipes

To avoid deadlocks, the close function no longer waits for the child process to exit if the underlying
file descriptor is still in use by another thread. It returns true in such cases.

fork() emulation will not wait for signalled children

On Windows parent processes would not terminate until all forked children had terminated first.

perl v5.36.0 2021-04-29 116

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

However, kill("KILL", ...) is inherently unstable on pseudo-processes, and kill("TERM",
...) might not get delivered if the child is blocked in a system call.

To avoid the deadlock and still provide a safe mechanism to terminate the hosting process, Perl now no
longer waits for children that have been sent a SIGTERM signal. It is up to the parent process to
waitpid() for these children if child-cleanup processing must be allowed to finish. However, it is also
then the responsibility of the parent to avoid the deadlock by making sure the child process can’t be
blocked on I/O.

See perlfork for more information about the fork() emulation on Windows.

Configuration
Naming fixes in Policy_sh.SH may invalidate Policy.sh

Several long-standing typos and naming confusions in Policy_sh.SH have been fixed, standardizing on
the variable names used in config.sh.

This will change the behaviour of Policy.sh if you happen to have been accidentally relying on its
incorrect behaviour.

Perl source code is read in text mode on Windows

Perl scripts used to be read in binary mode on Windows for the benefit of the ByteLoader module
(which is no longer part of core Perl). This had the side-effect of breaking various operations on the
DATA filehandle, including seek()/tell(), and even simply reading from DATA after filehandles have
been flushed by a call to system(), backticks, fork() etc.

The default build options for Windows have been changed to read Perl source code on Windows in text
mode now. ByteLoader will (hopefully) be updated on CPAN to automatically handle this situation
[perl #28106].

Deprecations
See also ‘‘Deprecated C APIs’’.

Omitting a space between a regular expression and subsequent word
Omitting the space between a regular expression operator or its modifiers and the following word is
deprecated. For example, m/foo/sand $bar is for now still parsed as m/foo/s and $bar, but
will now issue a warning.

\cX
The backslash-c construct was designed as a way of specifying non-printable characters, but there were
no restrictions (on ASCII platforms) on what the character following the c could be. Now, a
deprecation warning is raised if that character isn’t an ASCII character. Also, a deprecation warning is
raised for "\c{" (which is the same as simply saying ";").

‘‘\b{’’ and ‘‘\B{’’
In regular expressions, a literal "{" immediately following a "\b" (not in a bracketed character class)
or a "\B{" is now deprecated to allow for its future use by Perl itself.

Perl 4-era .pl libraries
Perl bundles a handful of library files that predate Perl 5. This bundling is now deprecated for most of
these files, which are now available from CPAN. The affected files now warn when run, if they were
installed as part of the core.

This is a mandatory warning, not obeying -X or lexical warning bits. The warning is modelled on that
supplied by deprecate.pm for deprecated-in-core .pm libraries. It points to the specific CPAN
distribution that contains the .pl libraries. The CPAN versions, of course, do not generate the warning.

List assignment to $[
Assignment to $[was deprecated and started to give warnings in Perl version 5.12.0. This version of
Perl (5.14) now also emits a warning when assigning to $[in list context. This fixes an oversight in
5.12.0.

Use of qw(...) as parentheses
Historically the parser fooled itself into thinking that qw(...) literals were always enclosed in
parentheses, and as a result you could sometimes omit parentheses around them:

for $x qw(a b c) { ... }

perl v5.36.0 2021-04-29 117

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

The parser no longer lies to itself in this way. Wrap the list literal in parentheses like this:

for $x (qw(a b c)) { ... }

This is being deprecated because the parentheses in for $i (1,2,3) { ... } are not part of
expression syntax. They are part of the statement syntax, with the for statement wanting literal
parentheses. The synthetic parentheses that a qw expression acquired were only intended to be treated
as part of expression syntax.

Note that this does not change the behaviour of cases like:

use POSIX qw(setlocale localeconv);
our @EXPORT = qw(foo bar baz);

where parentheses were never required around the expression.

\N{BELL}
This is because Unicode is using that name for a different character. See ‘‘Unicode Version 6.0 is now
supported (mostly)’’ for more explanation.

?PATTERN?
?PATTERN? (without the initial m) has been deprecated and now produces a warning. This is to allow
future use of ? in new operators. The match-once functionality is still available as m?PATTERN?.

Tie functions on scalars holding typeglobs
Calling a tie function (tie, tied, untie) with a scalar argument acts on a filehandle if the scalar
happens to hold a typeglob.

This is a long-standing bug that will be removed in Perl 5.16, as there is currently no way to tie the
scalar itself when it holds a typeglob, and no way to untie a scalar that has had a typeglob assigned to
it.

Now there is a deprecation warning whenever a tie function is used on a handle without an explicit *.

User-defined case-mapping
This feature is being deprecated due to its many issues, as documented in ‘‘User-Defined Case
Mappings (for serious hackers only)’’ in perlunicode. This feature will be removed in Perl 5.16.
Instead use the CPAN module Unicode::Casing, which provides improved functionality.

Deprecated modules
The following module will be removed from the core distribution in a future release, and should be
installed from CPAN instead. Distributions on CPAN that require this should add it to their
prerequisites. The core version of these module now issues a deprecation warning.

If you ship a packaged version of Perl, either alone or as part of a larger system, then you should
carefully consider the repercussions of core module deprecations. You may want to consider shipping
your default build of Perl with a package for the deprecated module that installs into vendor or site
Perl library directories. This will inhibit the deprecation warnings.

Alternatively, you may want to consider patching lib/deprecate.pm to provide deprecation warnings
specific to your packaging system or distribution of Perl, consistent with how your packaging system or
distribution manages a staged transition from a release where the installation of a single package
provides the given functionality, to a later release where the system administrator needs to know to
install multiple packages to get that same functionality.

You can silence these deprecation warnings by installing the module in question from CPAN. To install
the latest version of it by role rather than by name, just install Task::Deprecations::5_14.

Devel::DProf
We strongly recommend that you install and use Devel::NYTProf instead of Devel::DProf, as
Devel::NYTProf offers significantly improved profiling and reporting.

Performance Enhancements
‘‘Safe signals’’ optimisation

Signal dispatch has been moved from the runloop into control ops. This should give a few percent
speed increase, and eliminates nearly all the speed penalty caused by the introduction of ‘‘safe signals’’
in 5.8.0. Signals should still be dispatched within the same statement as they were previously. If this
does not happen, or if you find it possible to create uninterruptible loops, this is a bug, and reports are
encouraged of how to recreate such issues.

perl v5.36.0 2021-04-29 118

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

Optimisation of shift() and pop() calls without arguments
Two fewer OPs are used for shift() and pop() calls with no argument (with implicit @_). This change
makes shift() 5% faster than shift @_ on non-threaded perls, and 25% faster on threaded ones.

Optimisation of regexp engine string comparison work
The foldEQ_utf8 API function for case-insensitive comparison of strings (which is used heavily by
the regexp engine) was substantially refactored and optimised — and its documentation much
improved as a free bonus.

Regular expression compilation speed-up
Compiling regular expressions has been made faster when upgrading the regex to utf8 is necessary but
this isn’t known when the compilation begins.

String appending is 100 times faster
When doing a lot of string appending, perls built to use the system’s malloc could end up allocating a
lot more memory than needed in a inefficient way.

sv_grow, the function used to allocate more memory if necessary when appending to a string, has
been taught to round up the memory it requests to a certain geometric progression, making it much
faster on certain platforms and configurations. On Win32, it’s now about 100 times faster.

Eliminate PL_* accessor functions under ithreads
When MULTIPLICITY was first developed, and interpreter state moved into an interpreter struct,
thread- and interpreter-local PL_* variables were defined as macros that called accessor functions
(returning the address of the value) outside the Perl core. The intent was to allow members within the
interpreter struct to change size without breaking binary compatibility, so that bug fixes could be
merged to a maintenance branch that necessitated such a size change. This mechanism was redundant
and penalised well-behaved code. It has been removed.

Freeing weak references
When there are many weak references to an object, freeing that object can under some circumstances
take O(N*N) time to free, where N is the number of references. The circumstances in which this can
happen have been reduced [perl #75254]

Lexical array and hash assignments
An earlier optimisation to speed up my @array = ... and my %hash = ... assignments
caused a bug and was disabled in Perl 5.12.0.

Now we have found another way to speed up these assignments [perl #82110].

@_ uses less memory
Previously, @_ was allocated for every subroutine at compile time with enough space for four entries.
Now this allocation is done on demand when the subroutine is called [perl #72416].

Size optimisations to SV and HV structures
xhv_fill has been eliminated from struct xpvhv, saving 1 IV per hash and on some systems
will cause struct xpvhv to become cache-aligned. To avoid this memory saving causing a
slowdown elsewhere, boolean use of HvFILL now calls HvTOTALKEYS instead (which is equivalent),
so while the fill data when actually required are now calculated on demand, cases when this needs to be
done should be rare.

The order of structure elements in SV bodies has changed. Effectively, the NV slot has swapped
location with STASH and MAGIC. As all access to SV members is via macros, this should be
completely transparent. This change allows the space saving for PVHVs documented above, and may
reduce the memory allocation needed for PVIVs on some architectures.

XPV, XPVIV, and XPVNV now allocate only the parts of the SV body they actually use, saving some
space.

Scalars containing regular expressions now allocate only the part of the SV body they actually use,
saving some space.

Memory consumption improvements to Exporter
The @EXPORT_FAIL AV is no longer created unless needed, hence neither is the typeglob backing it.
This saves about 200 bytes for every package that uses Exporter but doesn’t use this functionality.

perl v5.36.0 2021-04-29 119

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

Memory savings for weak references
For weak references, the common case of just a single weak reference per referent has been optimised
to reduce the storage required. In this case it saves the equivalent of one small Perl array per referent.

%+ and %- use less memory
The bulk of the Tie::Hash::NamedCapture module used to be in the Perl core. It has now been
moved to an XS module to reduce overhead for programs that do not use %+ or %-.

Multiple small improvements to threads
The internal structures of threading now make fewer API calls and fewer allocations, resulting in
noticeably smaller object code. Additionally, many thread context checks have been deferred so they’re
done only as needed (although this is only possible for non-debugging builds).

Adjacent pairs of nextstate opcodes are now optimized away
Previously, in code such as

use constant DEBUG => 0;

sub GAK {
warn if DEBUG;
print "stuff\n";

}

the ops for warn if DEBUG would be folded to a null op (ex-const), but the nextstate op
would remain, resulting in a runtime op dispatch of nextstate, nextstate, etc.

The execution of a sequence of nextstate ops is indistinguishable from just the last nextstate
op so the peephole optimizer now eliminates the first of a pair of nextstate ops except when the
first carries a label, since labels must not be eliminated by the optimizer, and label usage isn’t
conclusively known at compile time.

Modules and Pragmata
New Modules and Pragmata

• CPAN::Meta::YAML 0.003 has been added as a dual-life module. It supports a subset of YAML
sufficient for reading and writing META.yml and MYMETA.yml files included with CPAN
distributions or generated by the module installation toolchain. It should not be used for any other
general YAML parsing or generation task.

• CPAN::Meta version 2.110440 has been added as a dual-life module. It provides a standard
library to read, interpret and write CPAN distribution metadata files (like META.json and
META.yml) that describe a distribution, its contents, and the requirements for building it and
installing it. The latest CPAN distribution metadata specification is included as CPAN::Meta::Spec
and notes on changes in the specification over time are given in CPAN::Meta::History.

• HTTP::Tiny 0.012 has been added as a dual-life module. It is a very small, simple HTTP/1.1 client
designed for simple GET requests and file mirroring. It has been added so that CPAN.pm and
CPANPLUS can ‘‘bootstrap’’ HTTP access to CPAN using pure Perl without relying on external
binaries like curl (1) or wget (1).

• JSON::PP 2.27105 has been added as a dual-life module to allow CPAN clients to read META.json
files in CPAN distributions.

• Module::Metadata 1.000004 has been added as a dual-life module. It gathers package and POD
information from Perl module files. It is a standalone module based on
Module::Build::ModuleInfo for use by other module installation toolchain components.
Module::Build::ModuleInfo has been deprecated in favor of this module instead.

• Perl::OSType 1.002 has been added as a dual-life module. It maps Perl operating system names
(like ‘‘dragonfly’’ or ‘‘MSWin32’’) to more generic types with standardized names (like ‘‘Unix’’
or ‘‘Windows’’). It has been refactored out of Module::Build and ExtUtils::CBuilder and
consolidates such mappings into a single location for easier maintenance.

• The following modules were added by the Unicode::Collate upgrade. See below for details.

Unicode::Collate::CJK::Big5

Unicode::Collate::CJK::GB2312

perl v5.36.0 2021-04-29 120

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

Unicode::Collate::CJK::JISX0208

Unicode::Collate::CJK::Korean

Unicode::Collate::CJK::Pinyin

Unicode::Collate::CJK::Stroke

• Version::Requirements version 0.101020 has been added as a dual-life module. It provides a
standard library to model and manipulates module prerequisites and version constraints defined in
CPAN::Meta::Spec.

Updated Modules and Pragma
• attributes has been upgraded from version 0.12 to 0.14.

• Archive::Extract has been upgraded from version 0.38 to 0.48.

Updates since 0.38 include: a safe print method that guards Archive::Extract from changes to $\;
a fix to the tests when run in core Perl; support for TZ files; a modification for the lzma logic to
favour IO::Uncompress::Unlzma; and a fix for an issue with NetBSD-current and its new
unzip (1) executable.

• Archive::Tar has been upgraded from version 1.54 to 1.76.

Important changes since 1.54 include the following:

• Compatibility with busybox implementations of tar (1).

• A fix so that write() and create_archive() close only filehandles they themselves opened.

• A bug was fixed regarding the exit code of extract_archive.

• The ptar (1) utility has a new option to allow safe creation of tarballs without world-writable
files on Windows, allowing those archives to be uploaded to CPAN.

• A new ptargrep (1) utility for using regular expressions against the contents of files in a tar
archive.

• pax extended headers are now skipped.

• Attribute::Handlers has been upgraded from version 0.87 to 0.89.

• autodie has been upgraded from version 2.06_01 to 2.1001.

• AutoLoader has been upgraded from version 5.70 to 5.71.

• The B module has been upgraded from version 1.23 to 1.29.

It no longer crashes when taking apart a y/// containing characters outside the octet range or
compiled in a use utf8 scope.

The size of the shared object has been reduced by about 40%, with no reduction in functionality.

• B::Concise has been upgraded from version 0.78 to 0.83.

B::Concise marks rv2sv(), rv2av(), and rv2hv() ops with the new OPpDEREF flag as ‘‘DREFed’’.

It no longer produces mangled output with the -tree option [perl #80632].

• B::Debug has been upgraded from version 1.12 to 1.16.

• B::Deparse has been upgraded from version 0.96 to 1.03.

The deparsing of a nextstate op has changed when it has both a change of package relative to
the previous nextstate, or a change of %ˆH or other state and a label. The label was previously
emitted first, but is now emitted last (5.12.1).

The no 5.13.2 or similar form is now correctly handled by B::Deparse (5.12.3).

B::Deparse now properly handles the code that applies a conditional pattern match against implicit
$_ as it was fixed in [perl #20444].

Deparsing of our followed by a variable with funny characters (as permitted under the use
utf8 pragma) has also been fixed [perl #33752].

perl v5.36.0 2021-04-29 121

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• B::Lint has been upgraded from version 1.11_01 to 1.13.

• base has been upgraded from version 2.15 to 2.16.

• Benchmark has been upgraded from version 1.11 to 1.12.

• bignum has been upgraded from version 0.23 to 0.27.

• Carp has been upgraded from version 1.15 to 1.20.

Carp now detects incomplete caller() overrides and avoids using bogus @DB::args. To provide
backtraces, Carp relies on particular behaviour of the caller() builtin. Carp now detects if other
code has overridden this with an incomplete implementation, and modifies its backtrace
accordingly. Previously incomplete overrides would cause incorrect values in backtraces (best
case), or obscure fatal errors (worst case).

This fixes certain cases of ‘‘Bizarre copy of ARRAY’’ caused by modules overriding caller()
incorrectly (5.12.2).

It now also avoids using regular expressions that cause Perl to load its Unicode tables, so as to
avoid the ‘‘BEGIN not safe after errors’’ error that ensue if there has been a syntax error [perl
#82854].

• CGI has been upgraded from version 3.48 to 3.52.

This provides the following security fixes: the MIME boundary in multipart_init() is now random
and the handling of newlines embedded in header values has been improved.

• Compress::Raw::Bzip2 has been upgraded from version 2.024 to 2.033.

It has been updated to use bzip2 (1) 1.0.6.

• Compress::Raw::Zlib has been upgraded from version 2.024 to 2.033.

• constant has been upgraded from version 1.20 to 1.21.

Unicode constants work once more. They have been broken since Perl 5.10.0 [CPAN RT #67525].

• CPAN has been upgraded from version 1.94_56 to 1.9600.

Major highlights:

• much less configuration dialog hassle

• support for META/MYMETA.json

• support for local::lib

• support for HTTP::Tiny to reduce the dependency on FTP sites

• automatic mirror selection

• iron out all known bugs in configure_requires

• support for distributions compressed with bzip2 (1)

• allow Foo/Bar.pm on the command line to mean Foo::Bar

• CPANPLUS has been upgraded from version 0.90 to 0.9103.

A change to cpanp-run-perl resolves RT #55964
<http://rt.cpan.org/Public/Bug/Display.html?id=55964> and RT #57106
<http://rt.cpan.org/Public/Bug/Display.html?id=57106>, both of which related to failures to install
distributions that use Module::Install::DSL (5.12.2).

A dependency on Config was not recognised as a core module dependency. This has been fixed.

CPANPLUS now includes support for META.json and MYMETA.json.

• CPANPLUS::Dist::Build has been upgraded from version 0.46 to 0.54.

• Data::Dumper has been upgraded from version 2.125 to 2.130_02.

The indentation used to be off when $Data::Dumper::Terse was set. This has been fixed
[perl #73604].

This upgrade also fixes a crash when using custom sort functions that might cause the stack to

perl v5.36.0 2021-04-29 122

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

change [perl #74170].

Dumpxs no longer crashes with globs returned by *$io_ref [perl #72332].

• DB_File has been upgraded from version 1.820 to 1.821.

• DBM_Filter has been upgraded from version 0.03 to 0.04.

• Devel::DProf has been upgraded from version 20080331.00 to 20110228.00.

Merely loading Devel::DProf now no longer triggers profiling to start. Both use
Devel::DProf and perl -d:DProf ... behave as before and start the profiler.

NOTE: Devel::DProf is deprecated and will be removed from a future version of Perl. We
strongly recommend that you install and use Devel::NYTProf instead, as it offers significantly
improved profiling and reporting.

• Devel::Peek has been upgraded from version 1.04 to 1.07.

• Devel::SelfStubber has been upgraded from version 1.03 to 1.05.

• diagnostics has been upgraded from version 1.19 to 1.22.

It now renders pod links slightly better, and has been taught to find descriptions for messages that
share their descriptions with other messages.

• Digest::MD5 has been upgraded from version 2.39 to 2.51.

It is now safe to use this module in combination with threads.

• Digest::SHA has been upgraded from version 5.47 to 5.61.

shasum now more closely mimics sha1sum (1)/md5sum (1).

addfile accepts all POSIX filenames.

New SHA-512/224 and SHA-512/256 transforms (ref. NIST Draft FIPS 180-4 [February 2011])

• DirHandle has been upgraded from version 1.03 to 1.04.

• Dumpvalue has been upgraded from version 1.13 to 1.16.

• DynaLoader has been upgraded from version 1.10 to 1.13.

It fixes a buffer overflow when passed a very long file name.

It no longer inherits from AutoLoader; hence it no longer produces weird error messages for
unsuccessful method calls on classes that inherit from DynaLoader [perl #84358].

• Encode has been upgraded from version 2.39 to 2.42.

Now, all 66 Unicode non-characters are treated the same way U+FFFF has always been treated: in
cases when it was disallowed, all 66 are disallowed, and in cases where it warned, all 66 warn.

• Env has been upgraded from version 1.01 to 1.02.

• Errno has been upgraded from version 1.11 to 1.13.

The implementation of Errno has been refactored to use about 55% less memory.

On some platforms with unusual header files, like Win32 gcc (1) using mingw64 headers, some
constants that weren’t actually error numbers have been exposed by Errno. This has been fixed
[perl #77416].

• Exporter has been upgraded from version 5.64_01 to 5.64_03.

Exporter no longer overrides $SIG{_ _WARN_ _} [perl #74472]

• ExtUtils::CBuilder has been upgraded from version 0.27 to 0.280203.

• ExtUtils::Command has been upgraded from version 1.16 to 1.17.

• ExtUtils::Constant has been upgraded from 0.22 to 0.23.

The AUTOLOAD helper code generated by ExtUtils::Constant::ProxySubs can now
croak() for missing constants, or generate a complete AUTOLOAD subroutine in XS, allowing
simplification of many modules that use it (Fcntl, File::Glob, GDBM_File, I18N::Langinfo,

perl v5.36.0 2021-04-29 123

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

POSIX, Socket).

ExtUtils::Constant::ProxySubs can now optionally push the names of all constants onto the
package’s @EXPORT_OK.

• ExtUtils::Install has been upgraded from version 1.55 to 1.56.

• ExtUtils::MakeMaker has been upgraded from version 6.56 to 6.57_05.

• ExtUtils::Manifest has been upgraded from version 1.57 to 1.58.

• ExtUtils::ParseXS has been upgraded from version 2.21 to 2.2210.

• Fcntl has been upgraded from version 1.06 to 1.11.

• File::Basename has been upgraded from version 2.78 to 2.82.

• File::CheckTree has been upgraded from version 4.4 to 4.41.

• File::Copy has been upgraded from version 2.17 to 2.21.

• File::DosGlob has been upgraded from version 1.01 to 1.04.

It allows patterns containing literal parentheses: they no longer need to be escaped. On Windows,
it no longer adds an extra ./ to file names returned when the pattern is a relative glob with a drive
specification, like C:*.pl [perl #71712].

• File::Fetch has been upgraded from version 0.24 to 0.32.

HTTP::Lite is now supported for the ‘‘http’’ scheme.

The fetch (1) utility is supported on FreeBSD, NetBSD, and Dragonfly BSD for the http and
ftp schemes.

• File::Find has been upgraded from version 1.15 to 1.19.

It improves handling of backslashes on Windows, so that paths like C:\dir\/file are no longer
generated [perl #71710].

• File::Glob has been upgraded from version 1.07 to 1.12.

• File::Spec has been upgraded from version 3.31 to 3.33.

Several portability fixes were made in File::Spec::VMS: a colon is now recognized as a delimiter
in native filespecs; caret-escaped delimiters are recognized for better handling of extended
filespecs; catpath() returns an empty directory rather than the current directory if the input
directory name is empty; and abs2rel() properly handles Unix-style input (5.12.2).

• File::stat has been upgraded from 1.02 to 1.05.

The -x and -X file test operators now work correctly when run by the superuser.

• Filter::Simple has been upgraded from version 0.84 to 0.86.

• GDBM_File has been upgraded from 1.10 to 1.14.

This fixes a memory leak when DBM filters are used.

• Hash::Util has been upgraded from 0.07 to 0.11.

Hash::Util no longer emits spurious ‘‘uninitialized’’ warnings when recursively locking hashes
that have undefined values [perl #74280].

• Hash::Util::FieldHash has been upgraded from version 1.04 to 1.09.

• I18N::Collate has been upgraded from version 1.01 to 1.02.

• I18N::Langinfo has been upgraded from version 0.03 to 0.08.

langinfo() now defaults to using $_ if there is no argument given, just as the documentation has
always claimed.

• I18N::LangTags has been upgraded from version 0.35 to 0.35_01.

• if has been upgraded from version 0.05 to 0.0601.

perl v5.36.0 2021-04-29 124

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• IO has been upgraded from version 1.25_02 to 1.25_04.

This version of IO includes a new IO::Select, which now allows IO::Handle objects (and objects in
derived classes) to be removed from an IO::Select set even if the underlying file descriptor is
closed or invalid.

• IPC::Cmd has been upgraded from version 0.54 to 0.70.

Resolves an issue with splitting Win32 command lines. An argument consisting of the single
character ‘‘0’’ used to be omitted (CPAN RT #62961).

• IPC::Open3 has been upgraded from 1.05 to 1.09.

open3() now produces an error if the exec call fails, allowing this condition to be distinguished
from a child process that exited with a non-zero status [perl #72016].

The internal xclose() routine now knows how to handle file descriptors as documented, so
duplicating STDIN in a child process using its file descriptor now works [perl #76474].

• IPC::SysV has been upgraded from version 2.01 to 2.03.

• lib has been upgraded from version 0.62 to 0.63.

• Locale::Maketext has been upgraded from version 1.14 to 1.19.

Locale::Maketext now supports external caches.

This upgrade also fixes an infinite loop in Locale::Maketext::Guts::_compile()
when working with tainted values (CPAN RT #40727).

->maketext calls now back up and restore $@ so error messages are not suppressed (CPAN RT
#34182).

• Log::Message has been upgraded from version 0.02 to 0.04.

• Log::Message::Simple has been upgraded from version 0.06 to 0.08.

• Math::BigInt has been upgraded from version 1.89_01 to 1.994.

This fixes, among other things, incorrect results when computing binomial coefficients [perl
#77640].

It also prevents sqrt($int) from crashing under use bigrat. [perl #73534].

• Math::BigInt::FastCalc has been upgraded from version 0.19 to 0.28.

• Math::BigRat has been upgraded from version 0.24 to 0.26_02.

• Memoize has been upgraded from version 1.01_03 to 1.02.

• MIME::Base64 has been upgraded from 3.08 to 3.13.

Includes new functions to calculate the length of encoded and decoded base64 strings.

Now provides encode_base64url() and decode_base64url() functions to process the base64
scheme for ‘‘URL applications’’.

• Module::Build has been upgraded from version 0.3603 to 0.3800.

A notable change is the deprecation of several modules. Module::Build::Version has been
deprecated and Module::Build now relies on the version pragma directly.
Module::Build::ModuleInfo has been deprecated in favor of a standalone copy called
Module::Metadata. Module::Build::YAML has been deprecated in favor of CPAN::Meta::YAML.

Module::Build now also generates META.json and MYMETA.json files in accordance with version 2
of the CPAN distribution metadata specification, CPAN::Meta::Spec. The older format META.yml
and MYMETA.yml files are still generated.

• Module::CoreList has been upgraded from version 2.29 to 2.47.

Besides listing the updated core modules of this release, it also stops listing the Filespec
module. That module never existed in core. The scripts generating Module::CoreList confused it
with VMS::Filespec, which actually is a core module as of Perl 5.8.7.

perl v5.36.0 2021-04-29 125

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• Module::Load has been upgraded from version 0.16 to 0.18.

• Module::Load::Conditional has been upgraded from version 0.34 to 0.44.

• The mro pragma has been upgraded from version 1.02 to 1.07.

• NDBM_File has been upgraded from version 1.08 to 1.12.

This fixes a memory leak when DBM filters are used.

• Net::Ping has been upgraded from version 2.36 to 2.38.

• NEXT has been upgraded from version 0.64 to 0.65.

• Object::Accessor has been upgraded from version 0.36 to 0.38.

• ODBM_File has been upgraded from version 1.07 to 1.10.

This fixes a memory leak when DBM filters are used.

• Opcode has been upgraded from version 1.15 to 1.18.

• The overload pragma has been upgraded from 1.10 to 1.13.

overload::Method can now handle subroutines that are themselves blessed into overloaded
classes [perl #71998].

The documentation has greatly improved. See ‘‘Documentation’’ below.

• Params::Check has been upgraded from version 0.26 to 0.28.

• The parent pragma has been upgraded from version 0.223 to 0.225.

• Parse::CPAN::Meta has been upgraded from version 1.40 to 1.4401.

The latest Parse::CPAN::Meta can now read YAML and JSON files using CPAN::Meta::YAML and
JSON::PP, which are now part of the Perl core.

• PerlIO::encoding has been upgraded from version 0.12 to 0.14.

• PerlIO::scalar has been upgraded from 0.07 to 0.11.

A read() after a seek() beyond the end of the string no longer thinks it has data to read [perl
#78716].

• PerlIO::via has been upgraded from version 0.09 to 0.11.

• Pod::Html has been upgraded from version 1.09 to 1.11.

• Pod::LaTeX has been upgraded from version 0.58 to 0.59.

• Pod::Perldoc has been upgraded from version 3.15_02 to 3.15_03.

• Pod::Simple has been upgraded from version 3.13 to 3.16.

• POSIX has been upgraded from 1.19 to 1.24.

It now includes constants for POSIX signal constants.

• The re pragma has been upgraded from version 0.11 to 0.18.

The use re '/flags' subpragma is new.

The regmust() function used to crash when called on a regular expression belonging to a
pluggable engine. Now it croaks instead.

regmust() no longer leaks memory.

• Safe has been upgraded from version 2.25 to 2.29.

Coderefs returned by reval() and rdo() are now wrapped via wrap_code_refs() (5.12.1).

This fixes a possible infinite loop when looking for coderefs.

It adds several version::vxs::* routines to the default share.

• SDBM_File has been upgraded from version 1.06 to 1.09.

perl v5.36.0 2021-04-29 126

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• SelfLoader has been upgraded from 1.17 to 1.18.

It now works in taint mode [perl #72062].

• The sigtrap pragma has been upgraded from version 1.04 to 1.05.

It no longer tries to modify read-only arguments when generating a backtrace [perl #72340].

• Socket has been upgraded from version 1.87 to 1.94.

See ‘‘Improved IPv6 support’’ above.

• Storable has been upgraded from version 2.22 to 2.27.

Includes performance improvement for overloaded classes.

This adds support for serialising code references that contain UTF-8 strings correctly. The
Storable minor version number changed as a result, meaning that Storable users who set
$Storable::accept_future_minor to a FALSE value will see errors (see ‘‘FORWARD
COMPATIBILITY’’ in Storable for more details).

Freezing no longer gets confused if the Perl stack gets reallocated during freezing [perl #80074].

• Sys::Hostname has been upgraded from version 1.11 to 1.16.

• Term::ANSIColor has been upgraded from version 2.02 to 3.00.

• Term::UI has been upgraded from version 0.20 to 0.26.

• Test::Harness has been upgraded from version 3.17 to 3.23.

• Test::Simple has been upgraded from version 0.94 to 0.98.

Among many other things, subtests without a plan or no_plan now have an implicit
done_testing() added to them.

• Thread::Semaphore has been upgraded from version 2.09 to 2.12.

It provides two new methods that give more control over the decrementing of semaphores:
down_nb and down_force.

• Thread::Queue has been upgraded from version 2.11 to 2.12.

• The threads pragma has been upgraded from version 1.75 to 1.83.

• The threads::shared pragma has been upgraded from version 1.32 to 1.37.

• Tie::Hash has been upgraded from version 1.03 to 1.04.

Calling Tie::Hash->TIEHASH() used to loop forever. Now it croaks.

• Tie::Hash::NamedCapture has been upgraded from version 0.06 to 0.08.

• Tie::RefHash has been upgraded from version 1.38 to 1.39.

• Time::HiRes has been upgraded from version 1.9719 to 1.9721_01.

• Time::Local has been upgraded from version 1.1901_01 to 1.2000.

• Time::Piece has been upgraded from version 1.15_01 to 1.20_01.

• Unicode::Collate has been upgraded from version 0.52_01 to 0.73.

Unicode::Collate has been updated to use Unicode 6.0.0.

Unicode::Collate::Locale now supports a plethora of new locales: ar, be, bg, de_ _phonebook, hu,
hy, kk, mk, nso, om, tn, vi, hr, ig, ja, ko, ru, sq, se, sr, to, uk, zh, zh_ _big5han, zh_ _gb2312han,
zh_ _pinyin, and zh_ _stroke.

The following modules have been added:

Unicode::Collate::CJK::Big5 for zh_ _big5han which makes tailoring of CJK Unified
Ideographs in the order of CLDR’s big5han ordering.

Unicode::Collate::CJK::GB2312 for zh_ _gb2312han which makes tailoring of CJK Unified
Ideographs in the order of CLDR’s gb2312han ordering.

Unicode::Collate::CJK::JISX0208 which makes tailoring of 6355 kanji (CJK Unified Ideographs)

perl v5.36.0 2021-04-29 127

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

in the JIS X 0208 order.

Unicode::Collate::CJK::Korean which makes tailoring of CJK Unified Ideographs in the order of
CLDR’s Korean ordering.

Unicode::Collate::CJK::Pinyin for zh_ _pinyin which makes tailoring of CJK Unified
Ideographs in the order of CLDR’s pinyin ordering.

Unicode::Collate::CJK::Stroke for zh_ _stroke which makes tailoring of CJK Unified
Ideographs in the order of CLDR’s stroke ordering.

This also sees the switch from using the pure-Perl version of this module to the XS version.

• Unicode::Normalize has been upgraded from version 1.03 to 1.10.

• Unicode::UCD has been upgraded from version 0.27 to 0.32.

A new function, Unicode::UCD::num(), has been added. This function returns the numeric value
of the string passed it or undef if the string in its entirety has no ‘‘safe’’ numeric value. (For
more detail, and for the definition of ‘‘safe’’, see ‘‘num()’’ in Unicode::UCD.)

This upgrade also includes several bug fixes:

charinfo()
• It is now updated to Unicode Version 6.0.0 with Corrigendum #8, excepting that, just as

with Perl 5.14, the code point at U+1F514 has no name.

• Hangul syllable code points have the correct names, and their decompositions are
always output without requiring Lingua::KO::Hangul::Util to be installed.

• CJK (Chinese-Japanese-Korean) code points U+2A700 to U+2B734 and U+2B740 to
U+2B81D are now properly handled.

• Numeric values are now output for those CJK code points that have them.

• Names output for code points with multiple aliases are now the corrected ones.

charscript()
This now correctly returns ‘‘Unknown’’ instead of undef for the script of a code point that
hasn’t been assigned another one.

charblock()
This now correctly returns ‘‘No_Block’’ instead of undef for the block of a code point that
hasn’t been assigned to another one.

• The version pragma has been upgraded from 0.82 to 0.88.

Because of a bug, now fixed, the is_strict() and is_lax() functions did not work when exported
(5.12.1).

• The warnings pragma has been upgraded from version 1.09 to 1.12.

Calling use warnings without arguments is now significantly more efficient.

• The warnings::register pragma has been upgraded from version 1.01 to 1.02.

It is now possible to register warning categories other than the names of packages using
warnings::register. See perllexwarn (1) for more information.

• XSLoader has been upgraded from version 0.10 to 0.13.

• VMS::DCLsym has been upgraded from version 1.03 to 1.05.

Two bugs have been fixed [perl #84086]:

The symbol table name was lost when tying a hash, due to a thinko in TIEHASH. The result was
that all tied hashes interacted with the local symbol table.

Unless a symbol table name had been explicitly specified in the call to the constructor, querying
the special key :LOCAL failed to identify objects connected to the local symbol table.

• The Win32 module has been upgraded from version 0.39 to 0.44.

This release has several new functions: Win32::GetSystemMetrics(), Win32::GetProductInfo(),

perl v5.36.0 2021-04-29 128

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

Win32::GetOSDisplayName().

The names returned by Win32::GetOSName() and Win32::GetOSDisplayName() have been
corrected.

• XS::Typemap has been upgraded from version 0.03 to 0.05.

Removed Modules and Pragmata
As promised in Perl 5.12.0’s release notes, the following modules have been removed from the core
distribution, and if needed should be installed from CPAN instead.

• Class::ISA has been removed from the Perl core. Prior version was 0.36.

• Pod::Plainer has been removed from the Perl core. Prior version was 1.02.

• Switch has been removed from the Perl core. Prior version was 2.16.

The removal of Shell has been deferred until after 5.14, as the implementation of Shell shipped with
5.12.0 did not correctly issue the warning that it was to be removed from core.

Documentation
New Documentation

perlgpl

perlgpl has been updated to contain GPL version 1, as is included in the README distributed with Perl
(5.12.1).

Perl 5.12.x delta files

The perldelta files for Perl 5.12.1 to 5.12.3 have been added from the maintenance branch:
perl5121delta, perl5122delta, perl5123delta.

perlpodstyle

New style guide for POD documentation, split mostly from the NOTES section of the pod2man (1)
manpage.

perlsource, perlinterp, perlhacktut, and perlhacktips

See ‘‘perlhack and perlrepository revamp’’, below.

Changes to Existing Documentation
perlmodlib is now complete

The perlmodlib manpage that came with Perl 5.12.0 was missing several modules due to a bug in the
script that generates the list. This has been fixed [perl #74332] (5.12.1).

Replace incorrect tr/// table in perlebcdic

perlebcdic contains a helpful table to use in tr/// to convert between EBCDIC and Latin1/ASCII.
The table was the inverse of the one it describes, though the code that used the table worked correctly
for the specific example given.

The table has been corrected and the sample code changed to correspond.

The table has also been changed to hex from octal, and the recipes in the pod have been altered to print
out leading zeros to make all values the same length.

Tricks for user-defined casing

perlunicode now contains an explanation of how to override, mangle and otherwise tweak the way Perl
handles upper-, lower- and other-case conversions on Unicode data, and how to provide scoped
changes to alter one’s own code’s behaviour without stomping on anybody else’s.

INSTALL explicitly states that Perl requires a C89 compiler

This was already true, but it’s now Officially Stated For The Record (5.12.2).

Explanation of \xHH and \oOOO escapes

perlop has been updated with more detailed explanation of these two character escapes.

-0NNN switch

In perlrun, the behaviour of the -0NNN switch for -0400 or higher has been clarified (5.12.2).

Maintenance policy

perl v5.36.0 2021-04-29 129

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

perlpolicy now contains the policy on what patches are acceptable for maintenance branches (5.12.1).

Deprecation policy

perlpolicy now contains the policy on compatibility and deprecation along with definitions of terms like
‘‘deprecation’’ (5.12.2).

New descriptions in perldiag

The following existing diagnostics are now documented:

• Ambiguous use of %c resolved as operator %c

• Ambiguous use of %c{%s} resolved to %c%s

• Ambiguous use of %c{%s[...]} resolved to %c%s[...]

• Ambiguous use of %c{%s{...}} resolved to %c%s{...}

• Ambiguous use of -%s resolved as -&%s()

• Invalid strict version format (%s)

• Invalid version format (%s)

• Invalid version object

perlbook

perlbook has been expanded to cover many more popular books.

SvTRUE macro

The documentation for the SvTRUE macro in perlapi was simply wrong in stating that get-magic is not
processed. It has been corrected.

op manipulation functions

Several API functions that process optrees have been newly documented.

perlvar revamp

perlvar reorders the variables and groups them by topic. Each variable introduced after Perl 5.000
notes the first version in which it is available. perlvar also has a new section for deprecated variables to
note when they were removed.

Array and hash slices in scalar context

These are now documented in perldata.

use locale and formats

perlform and perllocale have been corrected to state that use locale affects formats.

overload

overload’s documentation has practically undergone a rewrite. It is now much more straightforward
and clear.

perlhack and perlrepository revamp

The perlhack document is now much shorter, and focuses on the Perl 5 development process and
submitting patches to Perl. The technical content has been moved to several new documents,
perlsource, perlinterp, perlhacktut, and perlhacktips. This technical content has been only lightly
edited.

The perlrepository document has been renamed to perlgit. This new document is just a how-to on
using git with the Perl source code. Any other content that used to be in perlrepository has been moved
to perlhack.

Time::Piece examples

Examples in perlfaq4 have been updated to show the use of Time::Piece.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

perl v5.36.0 2021-04-29 130

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

New Diagnostics
New Errors

Closure prototype called
This error occurs when a subroutine reference passed to an attribute handler is called, if the
subroutine is a closure [perl #68560].

Insecure user-defined property %s
Perl detected tainted data when trying to compile a regular expression that contains a call to a
user-defined character property function, meaning \p{IsFoo} or \p{InFoo}. See ‘‘User-
Defined Character Properties’’ in perlunicode and perlsec.

panic: gp_free failed to free glob pointer - something is repeatedly re-creating entries
This new error is triggered if a destructor called on an object in a typeglob that is being freed
creates a new typeglob entry containing an object with a destructor that creates a new entry
containing an object etc.

Parsing code internal error (%s)
This new fatal error is produced when parsing code supplied by an extension violates the parser’s
API in a detectable way.

refcnt: fd %d%s
This new error only occurs if an internal consistency check fails when a pipe is about to be closed.

Regexp modifier ‘‘/%c’’ may not appear twice
The regular expression pattern has one of the mutually exclusive modifiers repeated.

Regexp modifiers ‘‘/%c’’ and ‘‘/%c’’ are mutually exclusive
The regular expression pattern has more than one of the mutually exclusive modifiers.

Using !˜ with %s doesn’t make sense
This error occurs when !˜ is used with s///r or y///r.

New Warnings

‘‘\b{’’ is deprecated; use ‘‘\b\{’’ instead
‘‘\B{’’ is deprecated; use ‘‘\B\{’’ instead

Use of an unescaped ‘‘{’’ immediately following a \b or \B is now deprecated in order to reserve
its use for Perl itself in a future release.

Operation ‘‘%s’’ returns its argument for ...
Performing an operation requiring Unicode semantics (such as case-folding) on a Unicode
surrogate or a non-Unicode character now triggers this warning.

Use of qw(...) as parentheses is deprecated
See ‘‘Use of qw(...) as parentheses’’, above, for details.

Changes to Existing Diagnostics
• The ‘‘Variable $foo is not imported’’ warning that precedes a strict 'vars' error has now

been assigned the ‘‘misc’’ category, so that no warnings will suppress it [perl #73712].

• warn() and die() now produce ‘‘Wide character’’ warnings when fed a character outside the byte
range if STDERR is a byte-sized handle.

• The ‘‘Layer does not match this perl’’ error message has been replaced with these more helpful
messages [perl #73754]:

• PerlIO layer function table size (%d) does not match size expected by this perl (%d)

• PerlIO layer instance size (%d) does not match size expected by this perl (%d)

• The ‘‘Found = in conditional’’ warning that is emitted when a constant is assigned to a variable in
a condition is now withheld if the constant is actually a subroutine or one generated by use
constant, since the value of the constant may not be known at the time the program is written
[perl #77762].

• Previously, if none of the gethostbyaddr(), gethostbyname() and gethostent() functions were
implemented on a given platform, they would all die with the message ‘‘Unsupported socket
function ’gethostent’ called’’, with analogous messages for getnet*() and getserv*(). This has
been corrected.

perl v5.36.0 2021-04-29 131

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• The warning message about unrecognized regular expression escapes passed through has been
changed to include any literal ‘‘{’’ following the two-character escape. For example, ‘‘\q{’’ is now
emitted instead of ‘‘\q’’.

Utility Changes
perlbug (1)

• perlbug now looks in the EMAIL environment variable for a return address if the REPLY-TO and
REPLYTO variables are empty.

• perlbug did not previously generate a ‘‘From:’’ header, potentially resulting in dropped mail; it
now includes that header.

• The user’s address is now used as the Return-Path.

Many systems these days don’t have a valid Internet domain name, and perlbug@perl.org does not
accept email with a return-path that does not resolve. So the user’s address is now passed to
sendmail so it’s less likely to get stuck in a mail queue somewhere [perl #82996].

• perlbug now always gives the reporter a chance to change the email address it guesses for them
(5.12.2).

• perlbug should no longer warn about uninitialized values when using the -d and -v options
(5.12.2).

perl5db.pl

• The remote terminal works after forking and spawns new sessions, one per forked process.

ptargrep

• ptargrep is a new utility to apply pattern matching to the contents of files in a tar archive. It
comes with Archive::Tar.

Configuration and Compilation
See also ‘‘Naming fixes in Policy_sh.SH may invalidate Policy.sh’’, above.

• CCINCDIR and CCLIBDIR for the mingw64 cross-compiler are now correctly under
$(CCHOME)\mingw\include and \lib rather than immediately below $(CCHOME).

This means the ‘‘incpath’’, ‘‘libpth’’, ‘‘ldflags’’, ‘‘lddlflags’’ and ‘‘ldflags_nolargefiles’’ values in
Config.pm and Config_heavy.pl are now set correctly.

• make test.valgrind has been adjusted to account for cpan/dist/ext separation.

• On compilers that support it, -Wwrite-strings is now added to cflags by default.

• The Encode module can now (once again) be included in a static Perl build. The special-case
handling for this situation got broken in Perl 5.11.0, and has now been repaired.

• The previous default size of a PerlIO buffer (4096 bytes) has been increased to the larger of 8192
bytes and your local BUFSIZ. Benchmarks show that doubling this decade-old default increases
read and write performance by around 25% to 50% when using the default layers of perlio on top
of unix. To choose a non-default size, such as to get back the old value or to obtain an even larger
value, configure with:

./Configure -Accflags=-DPERLIOBUF_DEFAULT_BUFSIZ=N

where N is the desired size in bytes; it should probably be a multiple of your page size.

• An ‘‘incompatible operand types’’ error in ternary expressions when building with clang has
been fixed (5.12.2).

• Perl now skips setuid File::Copy tests on partitions it detects mounted as nosuid (5.12.2).

Platform Support
New Platforms

AIX
Perl now builds on AIX 4.2 (5.12.1).

Discontinued Platforms

perl v5.36.0 2021-04-29 132

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

Apollo DomainOS
The last vestiges of support for this platform have been excised from the Perl distribution. It was
officially discontinued in version 5.12.0. It had not worked for years before that.

MacOS Classic
The last vestiges of support for this platform have been excised from the Perl distribution. It was
officially discontinued in an earlier version.

Platform-Specific Notes
AIX

• README.aix has been updated with information about the XL C/C++ V11 compiler suite (5.12.2).

ARM

• The d_u32align configuration probe on ARM has been fixed (5.12.2).

Cygwin

• MakeMaker has been updated to build manpages on cygwin.

• Improved rebase behaviour

If a DLL is updated on cygwin the old imagebase address is reused. This solves most rebase
errors, especially when updating on core DLL’s. See
<http://www.tishler.net/jason/software/rebase/rebase-2.4.2.README> for more information.

• Support for the standard cygwin dll prefix (needed for FFIs)

• Updated build hints file

FreeBSD 7

• FreeBSD 7 no longer contains /usr/bin/objformat. At build time, Perl now skips the objformat
check for versions 7 and higher and assumes ELF (5.12.1).

HP-UX

• Perl now allows -Duse64bitint without promoting to use64bitall on HP-UX (5.12.1).

IRIX

• Conversion of strings to floating-point numbers is now more accurate on IRIX systems [perl
#32380].

Mac OS X

• Early versions of Mac OS X (Darwin) had buggy implementations of the setregid(), setreuid(),
setrgid(,) and setruid() functions, so Perl would pretend they did not exist.

These functions are now recognised on Mac OS 10.5 (Leopard; Darwin 9) and higher, as they have
been fixed [perl #72990].

MirBSD

• Previously if you built Perl with a shared libperl.so on MirBSD (the default config), it would work
up to the installation; however, once installed, it would be unable to find libperl. Path handling is
now treated as in the other BSD dialects.

NetBSD

• The NetBSD hints file has been changed to make the system malloc the default.

OpenBSD

• OpenBSD > 3.7 has a new malloc implementation which is mmap-based, and as such can release
memory back to the OS; however, Perl’s use of this malloc causes a substantial slowdown, so we
now default to using Perl’s malloc instead [perl #75742].

OpenVOS

• Perl now builds again with OpenVOS (formerly known as Stratus VOS) [perl #78132] (5.12.3).

Solaris

perl v5.36.0 2021-04-29 133

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• DTrace is now supported on Solaris. There used to be build failures, but these have been fixed
[perl #73630] (5.12.3).

VMS

• Extension building on older (pre 7.3-2) VMS systems was broken because configure.com hit the
DCL symbol length limit of 1K. We now work within this limit when assembling the list of
extensions in the core build (5.12.1).

• We fixed configuring and building Perl with -Uuseperlio (5.12.1).

• PerlIOUnix_open now honours the default permissions on VMS.

When perlio became the default and unix became the default bottom layer, the most common
path for creating files from Perl became PerlIOUnix_open, which has always explicitly used
0666 as the permission mask. This prevents inheriting permissions from RMS defaults and
ACLs, so to avoid that problem, we now pass 0777 to open(). In the VMS CRTL, 0777 has a
special meaning over and above intersecting with the current umask; specifically, it allows Unix
syscalls to preserve native default permissions (5.12.3).

• The shortening of symbols longer than 31 characters in the core C sources and in extensions is
now by default done by the C compiler rather than by xsubpp (which could only do so for
generated symbols in XS code). You can reenable xsubpp’s symbol shortening by configuring
with -Uuseshortenedsymbols, but you’ll have some work to do to get the core sources to compile.

• Record-oriented files (record format variable or variable with fixed control) opened for write by
the perlio layer will now be line-buffered to prevent the introduction of spurious line breaks
whenever the perlio buffer fills up.

• git_version.h is now installed on VMS. This was an oversight in v5.12.0 which caused some
extensions to fail to build (5.12.2).

• Several memory leaks in stat() have been fixed (5.12.2).

• A memory leak in Perl_rename() due to a double allocation has been fixed (5.12.2).

• A memory leak in vms_fid_to_name() (used by realpath() and realname()> has been fixed
(5.12.2).

Windows

See also ‘‘fork() emulation will not wait for signalled children’’ and ‘‘Perl source code is read in text
mode on Windows’’, above.

• Fixed build process for SDK2003SP1 compilers.

• Compilation with Visual Studio 2010 is now supported.

• When using old 32-bit compilers, the define _USE_32BIT_TIME_T is now set in
$Config{ccflags}. This improves portability when compiling XS extensions using new
compilers, but for a Perl compiled with old 32-bit compilers.

• $Config{gccversion} is now set correctly when Perl is built using the mingw64 compiler
from <http://mingw64.org> [perl #73754].

• When building Perl with the mingw64 x64 cross-compiler incpath, libpth, ldflags,
lddlflags and ldflags_nolargefiles values in Config.pm and Config_heavy.pl were
not previously being set correctly because, with that compiler, the include and lib directories are
not immediately below $(CCHOME) (5.12.2).

• The build process proceeds more smoothly with mingw and dmake when C:\MSYS\bin is in the
PATH, due to a Cwd fix.

• Support for building with Visual C++ 2010 is now underway, but is not yet complete. See
README.win32 or perlwin32 for more details.

• The option to use an externally-supplied crypt(), or to build with no crypt() at all, has been
removed. Perl supplies its own crypt() implementation for Windows, and the political situation
that required this part of the distribution to sometimes be omitted is long gone.

perl v5.36.0 2021-04-29 134

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

Internal Changes
New APIs

CLONE_PARAMS structure added to ease correct thread creation

Modules that create threads should now create CLONE_PARAMS structures by calling the new function
Perl_clone_params_new(), and free them with Perl_clone_params_del(). This will ensure
compatibility with any future changes to the internals of the CLONE_PARAMS structure layout, and
that it is correctly allocated and initialised.

New parsing functions

Several functions have been added for parsing Perl statements and expressions. These functions are
meant to be used by XS code invoked during Perl parsing, in a recursive-descent manner, to allow
modules to augment the standard Perl syntax.

• parse_stmtseq() parses a sequence of statements, up to closing brace or EOF.

• parse_fullstmt() parses a complete Perl statement, including optional label.

• parse_barestmt() parses a statement without a label.

• parse_block() parses a code block.

• parse_label() parses a statement label, separate from statements.

• parse_fullexpr(), parse_listexpr(), parse_termexpr(), and
parse_arithexpr() parse expressions at various precedence levels.

Hints hash API

A new C API for introspecting the hinthash %ˆH at runtime has been added. See cop_hints_2hv,
cop_hints_fetchpvn, cop_hints_fetchpvs, cop_hints_fetchsv, and
hv_copy_hints_hv in perlapi for details.

A new, experimental API has been added for accessing the internal structure that Perl uses for %ˆH.
See the functions beginning with cophh_ in perlapi.

C interface to caller()

The caller_cx function has been added as an XSUB-writer’s equivalent of caller(). See perlapi for
details.

Custom per-subroutine check hooks

XS code in an extension module can now annotate a subroutine (whether implemented in XS or in Perl)
so that nominated XS code will be called at compile time (specifically as part of op checking) to change
the op tree of that subroutine. The compile-time check function (supplied by the extension module)
can implement argument processing that can’t be expressed as a prototype, generate customised
compile-time warnings, perform constant folding for a pure function, inline a subroutine consisting of
sufficiently simple ops, replace the whole call with a custom op, and so on. This was previously all
possible by hooking the entersub op checker, but the new mechanism makes it easy to tie the hook
to a specific subroutine. See ‘‘cv_set_call_checker’’ in perlapi.

To help in writing custom check hooks, several subtasks within standard entersub op checking have
been separated out and exposed in the API.

Improved support for custom OPs

Custom ops can now be registered with the new custom_op_register C function and the XOP
structure. This will make it easier to add new properties of custom ops in the future. Two new
properties have been added already, xop_class and xop_peep.

xop_class is one of the OA_*OP constants. It allows B and other introspection mechanisms to
work with custom ops that aren’t BASEOPs. xop_peep is a pointer to a function that will be called
for ops of this type from Perl_rpeep.

See ‘‘Custom Operators’’ in perlguts and ‘‘Custom Operators’’ in perlapi for more detail.

The old PL_custom_op_names/PL_custom_op_descs interface is still supported but
discouraged.

Scope hooks

perl v5.36.0 2021-04-29 135

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

It is now possible for XS code to hook into Perl’s lexical scope mechanism at compile time, using the
new Perl_blockhook_register function. See ‘‘Compile-time scope hooks’’ in perlguts.

The recursive part of the peephole optimizer is now hookable

In addition to PL_peepp, for hooking into the toplevel peephole optimizer, a PL_rpeepp is now
available to hook into the optimizer recursing into side-chains of the optree.

New non-magical variants of existing functions

The following functions/macros have been added to the API. The *_nomg macros are equivalent to
their non-_nomg variants, except that they ignore get-magic. Those ending in _flags allow one to
specify whether get-magic is processed.

sv_2bool_flags
SvTRUE_nomg
sv_2nv_flags
SvNV_nomg
sv_cmp_flags
sv_cmp_locale_flags
sv_eq_flags
sv_collxfrm_flags

In some of these cases, the non-_flags functions have been replaced with wrappers around the new
functions.

pv/pvs/sv versions of existing functions

Many functions ending with pvn now have equivalent pv/pvs/sv versions.

List op-building functions

List op-building functions have been added to the API. See op_append_elem, op_append_list, and
op_prepend_elem in perlapi.

LINKLIST

The LINKLIST macro, part of op building that constructs the execution-order op chain, has been added
to the API.

Localisation functions

The save_freeop, save_op, save_pushi32ptr and save_pushptrptr functions have
been added to the API.

Stash names

A stash can now have a list of effective names in addition to its usual name. The first effective name
can be accessed via the HvENAME macro, which is now the recommended name to use in MRO
linearisations (HvNAME being a fallback if there is no HvENAME).

These names are added and deleted via hv_ename_add and hv_ename_delete. These two
functions are not part of the API.

New functions for finding and removing magic

The mg_findext() and sv_unmagicext() functions have been added to the API. They allow
extension authors to find and remove magic attached to scalars based on both the magic type and the
magic virtual table, similar to how sv_magicext() attaches magic of a certain type and with a given
virtual table to a scalar. This eliminates the need for extensions to walk the list of MAGIC pointers of
an SV to find the magic that belongs to them.

find_rundefsv

This function returns the SV representing $_, whether it’s lexical or dynamic.

Perl_croak_no_modify

Perl_croak_no_modify() is short-hand for Perl_croak("%s", PL_no_modify).

PERL_STATIC_INLINE define

The PERL_STATIC_INLINE define has been added to provide the best-guess incantation to use for
static inline functions, if the C compiler supports C99-style static inline. If it doesn’t, it’ll give a plain

perl v5.36.0 2021-04-29 136

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

static.

HAS_STATIC_INLINE can be used to check if the compiler actually supports inline functions.

New pv_escape option for hexadecimal escapes

A new option, PERL_PV_ESCAPE_NONASCII, has been added to pv_escape to dump all
characters above ASCII in hexadecimal. Before, one could get all characters as hexadecimal or the
Latin1 non-ASCII as octal.

lex_start

lex_start has been added to the API, but is considered experimental.

op_scope() and op_lvalue()

The op_scope() and op_lvalue() functions have been added to the API, but are considered
experimental.

C API Changes
PERL_POLLUTE has been removed

The option to define PERL_POLLUTE to expose older 5.005 symbols for backwards compatibility has
been removed. Its use was always discouraged, and MakeMaker contains a more specific escape hatch:

perl Makefile.PL POLLUTE=1

This can be used for modules that have not been upgraded to 5.6 naming conventions (and really should
be completely obsolete by now).

Check API compatibility when loading XS modules

When Perl’s API changes in incompatible ways (which usually happens between major releases), XS
modules compiled for previous versions of Perl will no longer work. They need to be recompiled
against the new Perl.

The XS_APIVERSION_BOOTCHECK macro has been added to ensure that modules are recompiled
and to prevent users from accidentally loading modules compiled for old perls into newer perls. That
macro, which is called when loading every newly compiled extension, compares the API version of the
running perl with the version a module has been compiled for and raises an exception if they don’t
match.

Perl_fetch_cop_label

The first argument of the C API function Perl_fetch_cop_label has changed from struct
refcounted_he * to COP *, to insulate the user from implementation details.

This API function was marked as ‘‘may change’’, and likely isn’t in use outside the core. (Neither an
unpacked CPAN nor Google’s codesearch finds any other references to it.)

GvCV() and GvGP() are no longer lvalues

The new GvCV_set() and GvGP_set() macros are now provided to replace assignment to those two
macros.

This allows a future commit to eliminate some backref magic between GV and CVs, which will require
complete control over assignment to the gp_cv slot.

CvGV() is no longer an lvalue

Under some circumstances, the CvGV() field of a CV is now reference-counted. To ensure consistent
behaviour, direct assignment to it, for example CvGV(cv) = gv is now a compile-time error. A new
macro, CvGV_set(cv,gv) has been introduced to run this operation safely. Note that modification
of this field is not part of the public API, regardless of this new macro (and despite its being listed in
this section).

CvSTASH() is no longer an lvalue

The CvSTASH() macro can now only be used as an rvalue. CvSTASH_set() has been added to
replace assignment to CvSTASH(). This is to ensure that backreferences are handled properly. These
macros are not part of the API.

Calling conventions for newFOROP and newWHILEOP

perl v5.36.0 2021-04-29 137

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

The way the parser handles labels has been cleaned up and refactored. As a result, the newFOROP()
constructor function no longer takes a parameter stating what label is to go in the state op.

The newWHILEOP() and newFOROP() functions no longer accept a line number as a parameter.

Flags passed to uvuni_to_utf8_flags and utf8n_to_uvuni

Some of the flags parameters to uvuni_to_utf8_flags() and utf8n_to_uvuni() have changed. This is a
result of Perl’s now allowing internal storage and manipulation of code points that are problematic in
some situations. Hence, the default actions for these functions has been complemented to allow these
code points. The new flags are documented in perlapi. Code that requires the problematic code points
to be rejected needs to change to use the new flags. Some flag names are retained for backward source
compatibility, though they do nothing, as they are now the default. However the flags
UNICODE_ALLOW_FDD0, UNICODE_ALLOW_FFFF, UNICODE_ILLEGAL, and
UNICODE_IS_ILLEGAL have been removed, as they stem from a fundamentally broken model of
how the Unicode non-character code points should be handled, which is now described in ‘‘Non-
character code points’’ in perlunicode. See also the Unicode section under ‘‘Selected Bug Fixes’’.

Deprecated C APIs
Perl_ptr_table_clear

Perl_ptr_table_clear is no longer part of Perl’s public API. Calling it now generates a
deprecation warning, and it will be removed in a future release.

sv_compile_2op
The sv_compile_2op() API function is now deprecated. Searches suggest that nothing on CPAN is
using it, so this should have zero impact.

It attempted to provide an API to compile code down to an optree, but failed to bind correctly to
lexicals in the enclosing scope. It’s not possible to fix this problem within the constraints of its
parameters and return value.

find_rundefsvoffset
The find_rundefsvoffset function has been deprecated. It appeared that its design was
insufficient for reliably getting the lexical $_ at run-time.

Use the new find_rundefsv function or the UNDERBAR macro instead. They directly return
the right SV representing $_, whether it’s lexical or dynamic.

CALL_FPTR and CPERLscope
Those are left from an old implementation of MULTIPLICITY using C++ objects, which was
removed in Perl 5.8. Nowadays these macros do exactly nothing, so they shouldn’t be used
anymore.

For compatibility, they are still defined for external XS code. Only extensions defining
PERL_CORE must be updated now.

Other Internal Changes
Stack unwinding

The protocol for unwinding the C stack at the last stage of a die has changed how it identifies the
target stack frame. This now uses a separate variable PL_restartjmpenv, where previously it
relied on the blk_eval.cur_top_env pointer in the eval context frame that has nominally just
been discarded. This change means that code running during various stages of Perl-level unwinding no
longer needs to take care to avoid destroying the ghost frame.

Scope stack entries

The format of entries on the scope stack has been changed, resulting in a reduction of memory usage of
about 10%. In particular, the memory used by the scope stack to record each active lexical variable has
been halved.

Memory allocation for pointer tables

Memory allocation for pointer tables has been changed. Previously Perl_ptr_table_store
allocated memory from the same arena system as SV bodies and HEs, with freed memory remaining
bound to those arenas until interpreter exit. Now it allocates memory from arenas private to the specific
pointer table, and that memory is returned to the system when Perl_ptr_table_free is called.
Additionally, allocation and release are both less CPU intensive.

perl v5.36.0 2021-04-29 138

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

UNDERBAR

The UNDERBAR macro now calls find_rundefsv. dUNDERBAR is now a noop but should still be
used to ensure past and future compatibility.

String comparison routines renamed

The ibcmp_* functions have been renamed and are now called foldEQ, foldEQ_locale, and
foldEQ_utf8. The old names are still available as macros.

chop and chomp implementations merged

The opcode bodies for chop and chomp and for schop and schomp have been merged. The
implementation functions Perl_do_chop() and Perl_do_chomp(), never part of the public API, have
been merged and moved to a static function in pp.c. This shrinks the Perl binary slightly, and should
not affect any code outside the core (unless it is relying on the order of side-effects when chomp is
passed a list of values).

Selected Bug Fixes
I/O

• Perl no longer produces this warning:

$ perl -we 'open(my $f, ">", \my $x); binmode($f, "scalar")'
Use of uninitialized value in binmode at -e line 1.

• Opening a glob reference via open($fh, ">", *glob) no longer causes the glob to be
corrupted when the filehandle is printed to. This would cause Perl to crash whenever the glob’s
contents were accessed [perl #77492].

• PerlIO no longer crashes when called recursively, such as from a signal handler. Now it just leaks
memory [perl #75556].

• Most I/O functions were not warning for unopened handles unless the ‘‘closed’’ and ‘‘unopened’’
warnings categories were both enabled. Now only use warnings 'unopened' is necessary
to trigger these warnings, as had always been the intention.

• There have been several fixes to PerlIO layers:

When binmode(FH, ":crlf") pushes the :crlf layer on top of the stack, it no longer
enables crlf layers lower in the stack so as to avoid unexpected results [perl #38456].

Opening a file in :raw mode now does what it advertises to do (first open the file, then binmode
it), instead of simply leaving off the top layer [perl #80764].

The three layers :pop, :utf8, and :bytes didn’t allow stacking when opening a file. For
example this:

open(FH, ">:pop:perlio", "some.file") or die $!;

would throw an ‘‘Invalid argument’’ error. This has been fixed in this release [perl #82484].

Regular Expression Bug Fixes
• The regular expression engine no longer loops when matching "\N{LATIN SMALL

LIGATURE FF}" =˜ /f+/i and similar expressions [perl #72998] (5.12.1).

• The trie runtime code should no longer allocate massive amounts of memory, fixing #74484.

• Syntax errors in (?{...}) blocks no longer cause panic messages [perl #2353].

• A pattern like (?:(o){2})? no longer causes a ‘‘panic’’ error [perl #39233].

• A fatal error in regular expressions containing (.*?) when processing UTF-8 data has been fixed
[perl #75680] (5.12.2).

• An erroneous regular expression engine optimisation that caused regex verbs like *COMMIT
sometimes to be ignored has been removed.

• The regular expression bracketed character class [\8\9] was effectively the same as
[89\000], incorrectly matching a NULL character. It also gave incorrect warnings that the 8
and 9 were ignored. Now [\8\9] is the same as [89] and gives legitimate warnings that \8
and \9 are unrecognized escape sequences, passed-through.

perl v5.36.0 2021-04-29 139

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• A regular expression match in the right-hand side of a global substitution (s///g) that is in the
same scope will no longer cause match variables to have the wrong values on subsequent
iterations. This can happen when an array or hash subscript is interpolated in the right-hand side,
as in s|(.)|@a{ print($1), /./ }|g [perl #19078].

• Several cases in which characters in the Latin-1 non-ASCII range (0x80 to 0xFF) used not to
match themselves, or used to match both a character class and its complement, have been fixed.
For instance, U+00E2 could match both \w and \W [perl #78464] [perl #18281] [perl #60156].

• Matching a Unicode character against an alternation containing characters that happened to match
continuation bytes in the former’s UTF8 representation (like qq{\x{30ab}} =˜
/\xab|\xa9/) would cause erroneous warnings [perl #70998].

• The trie optimisation was not taking empty groups into account, preventing ‘‘foo’’ from matching
/\A(?:(?:)foo|bar|zot)\z/ [perl #78356].

• A pattern containing a + inside a lookahead would sometimes cause an incorrect match failure in a
global match (for example, /(?=(\S+))/g) [perl #68564].

• A regular expression optimisation would sometimes cause a match with a {n,m} quantifier to fail
when it should have matched [perl #79152].

• Case-insensitive matching in regular expressions compiled under use locale now works much
more sanely when the pattern or target string is internally encoded in UTF8. Previously, under
these conditions the localeness was completely lost. Now, code points above 255 are treated as
Unicode, but code points between 0 and 255 are treated using the current locale rules, regardless
of whether the pattern or the string is encoded in UTF8. The few case-insensitive matches that
cross the 255/256 boundary are not allowed. For example, 0xFF does not caselessly match the
character at 0x178, LATIN CAPITAL LETTER Y WITH DIAERESIS, because 0xFF may not be
LATIN SMALL LETTER Y in the current locale, and Perl has no way of knowing if that character
even exists in the locale, much less what code point it is.

• The (?|...) regular expression construct no longer crashes if the final branch has more sets of
capturing parentheses than any other branch. This was fixed in Perl 5.10.1 for the case of a single
branch, but that fix did not take multiple branches into account [perl #84746].

• A bug has been fixed in the implementation of {...} quantifiers in regular expressions that
prevented the code block in /((\w+)(?{ print $2 })){2}/ from seeing the $2
sometimes [perl #84294].

Syntax/Parsing Bugs
• when (scalar) {...} no longer crashes, but produces a syntax error [perl #74114] (5.12.1).

• A label right before a string eval (foo: eval $string) no longer causes the label to be
associated also with the first statement inside the eval [perl #74290] (5.12.1).

• The no 5.13.2 form of no no longer tries to turn on features or pragmata (like strict) [perl
#70075] (5.12.2).

• BEGIN {require 5.12.0} now behaves as documented, rather than behaving identically to
use 5.12.0. Previously, require in a BEGIN block was erroneously executing the use
feature ':5.12.0' and use strict behaviour, which only use was documented to
provide [perl #69050].

• A regression introduced in Perl 5.12.0, making my $x = 3; $x = length(undef) result
in $x set to 3 has been fixed. $x will now be undef [perl #85508] (5.12.2).

• When strict ‘‘refs’’ mode is off, %{...} in rvalue context returns undef if its argument is
undefined. An optimisation introduced in Perl 5.12.0 to make keys %{...} faster when used
as a boolean did not take this into account, causing keys %{+undef} (and keys %$foo
when $foo is undefined) to be an error, which it should be so in strict mode only [perl #81750].

• Constant-folding used to cause

$text =˜ (1 ? /phoo/ : /bear/)

to turn into

perl v5.36.0 2021-04-29 140

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

$text =˜ /phoo/

at compile time. Now it correctly matches against $_ [perl #20444].

• Parsing Perl code (either with string eval or by loading modules) from within a UNITCHECK
block no longer causes the interpreter to crash [perl #70614].

• String evals no longer fail after 2 billion scopes have been compiled [perl #83364].

• The parser no longer hangs when encountering certain Unicode characters, such as U+387 [perl
#74022].

• Defining a constant with the same name as one of Perl’s special blocks (like INIT) stopped
working in 5.12.0, but has now been fixed [perl #78634].

• A reference to a literal value used as a hash key ($hash{\"foo"}) used to be stringified, even
if the hash was tied [perl #79178].

• A closure containing an if statement followed by a constant or variable is no longer treated as a
constant [perl #63540].

• state can now be used with attributes. It used to mean the same thing as my if any attributes
were present [perl #68658].

• Expressions like @$a > 3 no longer cause $a to be mentioned in the ‘‘Use of uninitialized value
in numeric gt’’ warning when $a is undefined (since it is not part of the > expression, but the
operand of the @) [perl #72090].

• Accessing an element of a package array with a hard-coded number (as opposed to an arbitrary
expression) would crash if the array did not exist. Usually the array would be autovivified during
compilation, but typeglob manipulation could remove it, as in these two cases which used to crash:

*d = *a; print $d[0];
undef *d; print $d[0];

• The -C command-line option, when used on the shebang line, can now be followed by other
options [perl #72434].

• The B module was returning B::OPs instead of B::LOGOPs for entertry [perl #80622]. This
was due to a bug in the Perl core, not in B itself.

Stashes, Globs and Method Lookup
Perl 5.10.0 introduced a new internal mechanism for caching MROs (method resolution orders, or lists
of parent classes; aka ‘‘isa’’ caches) to make method lookup faster (so @ISA arrays would not have to
be searched repeatedly). Unfortunately, this brought with it quite a few bugs. Almost all of these have
been fixed now, along with a few MRO-related bugs that existed before 5.10.0:

• The following used to have erratic effects on method resolution, because the ‘‘isa’’ caches were
not reset or otherwise ended up listing the wrong classes. These have been fixed.

Aliasing packages by assigning to globs [perl #77358]
Deleting packages by deleting their containing stash elements
Undefining the glob containing a package (undef *Foo::)
Undefining an ISA glob (undef *Foo::ISA)
Deleting an ISA stash element (delete $Foo::{ISA})
Sharing @ISA arrays between classes (via *Foo::ISA = \@Bar::ISA or *Foo::ISA =
*Bar::ISA) [perl #77238]

undef *Foo::ISA would even stop a new @Foo::ISA array from updating caches.

• Typeglob assignments would crash if the glob’s stash no longer existed, so long as the glob
assigned to were named ISA or the glob on either side of the assignment contained a subroutine.

• PL_isarev, which is accessible to Perl via mro::get_isarev is now updated properly when
packages are deleted or removed from the @ISA of other classes. This allows many packages to
be created and deleted without causing a memory leak [perl #75176].

In addition, various other bugs related to typeglobs and stashes have been fixed:

perl v5.36.0 2021-04-29 141

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• Some work has been done on the internal pointers that link between symbol tables (stashes),
typeglobs, and subroutines. This has the effect that various edge cases related to deleting stashes
or stash entries (for example, <%FOO:: = ()>), and complex typeglob or code-reference aliasing,
will no longer crash the interpreter.

• Assigning a reference to a glob copy now assigns to a glob slot instead of overwriting the glob
with a scalar [perl #1804] [perl #77508].

• A bug when replacing the glob of a loop variable within the loop has been fixed [perl #21469].
This means the following code will no longer crash:

for $x (...) {
*x = *y;

}

• Assigning a glob to a PVLV used to convert it to a plain string. Now it works correctly, and a
PVLV can hold a glob. This would happen when a nonexistent hash or array element was passed
to a subroutine:

sub { $_[0] = *foo }->($hash{key});
$_[0] would have been the string "*main::foo"

It also happened when a glob was assigned to, or returned from, an element of a tied array or hash
[perl #36051].

• When trying to report Use of uninitialized value $Foo::BAR, crashes could occur
if the glob holding the global variable in question had been detached from its original stash by, for
example, delete $::{"Foo::"}. This has been fixed by disabling the reporting of variable
names in those cases.

• During the restoration of a localised typeglob on scope exit, any destructors called as a result
would be able to see the typeglob in an inconsistent state, containing freed entries, which could
result in a crash. This would affect code like this:

local *@;
eval { die bless [] }; # puts an object in $@
sub DESTROY {

local $@; # boom
}

Now the glob entries are cleared before any destructors are called. This also means that
destructors can vivify entries in the glob. So Perl tries again and, if the entries are re-created too
many times, dies with a ‘‘panic: gp_free ...’’ error message.

• If a typeglob is freed while a subroutine attached to it is still referenced elsewhere, the subroutine
is renamed to _ _ANON_ _ in the same package, unless the package has been undefined, in which
case the _ _ANON_ _ package is used. This could cause packages to be sometimes autovivified,
such as if the package had been deleted. Now this no longer occurs. The _ _ANON_ _ package is
also now used when the original package is no longer attached to the symbol table. This avoids
memory leaks in some cases [perl #87664].

• Subroutines and package variables inside a package whose name ends with :: can now be
accessed with a fully qualified name.

Unicode
• What has become known as ‘‘the Unicode Bug’’ is almost completely resolved in this release.

Under use feature 'unicode_strings' (which is automatically selected by use
5.012 and above), the internal storage format of a string no longer affects the external semantics.
[perl #58182].

There are two known exceptions:

1. The now-deprecated, user-defined case-changing functions require utf8-encoded strings to
operate. The CPAN module Unicode::Casing has been written to replace this feature without
its drawbacks, and the feature is scheduled to be removed in 5.16.

perl v5.36.0 2021-04-29 142

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

2. quotemeta() (and its in-line equivalent \Q) can also give different results depending on
whether a string is encoded in UTF-8. See ‘‘The ’’Unicode Bug"" in perlunicode.

• Handling of Unicode non-character code points has changed. Previously they were mostly
considered illegal, except that in some place only one of the 66 of them was known. The Unicode
Standard considers them all legal, but forbids their ‘‘open interchange’’. This is part of the change
to allow internal use of any code point (see ‘‘Core Enhancements’’). Together, these changes
resolve [perl #38722], [perl #51918], [perl #51936], and [perl #63446].

• Case-insensitive "/i" regular expression matching of Unicode characters that match multiple
characters now works much more as intended. For example

"\N{LATIN SMALL LIGATURE FFI}" =˜ /ffi/ui

and

"ffi" =˜ /\N{LATIN SMALL LIGATURE FFI}/ui

are both true. Previously, there were many bugs with this feature. What hasn’t been fixed are the
places where the pattern contains the multiple characters, but the characters are split up by other
things, such as in

"\N{LATIN SMALL LIGATURE FFI}" =˜ /(f)(f)i/ui

or

"\N{LATIN SMALL LIGATURE FFI}" =˜ /ffi*/ui

or

"\N{LATIN SMALL LIGATURE FFI}" =˜ /[a-f][f-m][g-z]/ui

None of these match.

Also, this matching doesn’t fully conform to the current Unicode Standard, which asks that the
matching be made upon the NFD (Normalization Form Decomposed) of the text. However, as of
this writing (April 2010), the Unicode Standard is currently in flux about what they will
recommend doing with regard in such scenarios. It may be that they will throw out the whole
concept of multi-character matches. [perl #71736].

• Naming a deprecated character in \N{NAME} no longer leaks memory.

• We fixed a bug that could cause \N{NAME} constructs followed by a single "." to be parsed
incorrectly [perl #74978] (5.12.1).

• chop now correctly handles characters above "\x{7fffffff}" [perl #73246].

• Passing to index an offset beyond the end of the string when the string is encoded internally in
UTF8 no longer causes panics [perl #75898].

• warn() and die() now respect utf8-encoded scalars [perl #45549].

• Sometimes the UTF8 length cache would not be reset on a value returned by substr, causing
length(substr($uni_string, ...)) to give wrong answers. With ${ˆUTF8CACHE}
set to -1, it would also produce a ‘‘panic’’ error message [perl #77692].

Ties, Overloading and Other Magic
• Overloading now works properly in conjunction with tied variables. What formerly happened was

that most ops checked their arguments for overloading before checking for magic, so for example
an overloaded object returned by a tied array access would usually be treated as not overloaded
[RT #57012].

• Various instances of magic (like tie methods) being called on tied variables too many or too few
times have been fixed:

• $tied->() did not always call FETCH [perl #8438].

• Filetest operators and y/// and tr/// were calling FETCH too many times.

• The = operator used to ignore magic on its right-hand side if the scalar happened to hold a
typeglob (if a typeglob was the last thing returned from or assigned to a tied scalar) [perl
#77498].

perl v5.36.0 2021-04-29 143

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• Dereference operators used to ignore magic if the argument was a reference already (such as
from a previous FETCH) [perl #72144].

• splice now calls set-magic (so changes made by splice @ISA are respected by method
calls) [perl #78400].

• In-memory files created by open($fh, ">", \$buffer) were not calling
FETCH/STORE at all [perl #43789] (5.12.2).

• utf8::is_utf8() now respects get-magic (like $1) (5.12.1).

• Non-commutative binary operators used to swap their operands if the same tied scalar was used
for both operands and returned a different value for each FETCH. For instance, if $t returned 2
the first time and 3 the second, then $t/$t would evaluate to 1.5. This has been fixed [perl
#87708].

• String eval now detects taintedness of overloaded or tied arguments [perl #75716].

• String eval and regular expression matches against objects with string overloading no longer
cause memory corruption or crashes [perl #77084].

• readline now honors <> overloading on tied arguments.

• <expr> always respects overloading now if the expression is overloaded.

Because ‘‘<> as glob’’ was parsed differently from ‘‘<> as filehandle’’ from 5.6 onwards,
something like <$foo[0]> did not handle overloading, even if $foo[0] was an overloaded
object. This was contrary to the documentation for overload, and meant that <> could not be used
as a general overloaded iterator operator.

• The fallback behaviour of overloading on binary operators was asymmetric [perl #71286].

• Magic applied to variables in the main package no longer affects other packages. See ‘‘Magic
variables outside the main package’’ above [perl #76138].

• Sometimes magic (ties, taintedness, etc.) attached to variables could cause an object to last longer
than it should, or cause a crash if a tied variable were freed from within a tie method. These have
been fixed [perl #81230].

• DESTROY methods of objects implementing ties are no longer able to crash by accessing the tied
variable through a weak reference [perl #86328].

• Fixed a regression of kill() when a match variable is used for the process ID to kill [perl #75812].

• $AUTOLOAD used to remain tainted forever if it ever became tainted. Now it is correctly
untainted if an autoloaded method is called and the method name was not tainted.

• sprintf now dies when passed a tainted scalar for the format. It did already die for arbitrary
expressions, but not for simple scalars [perl #82250].

• lc, uc, lcfirst, and ucfirst no longer return untainted strings when the argument is
tainted. This has been broken since perl 5.8.9 [perl #87336].

The Debugger
• The Perl debugger now also works in taint mode [perl #76872].

• Subroutine redefinition works once more in the debugger [perl #48332].

• When -d is used on the shebang (#!) line, the debugger now has access to the lines of the main
program. In the past, this sometimes worked and sometimes did not, depending on the order in
which things happened to be arranged in memory [perl #71806].

• A possible memory leak when using caller() to set @DB::args has been fixed (5.12.2).

• Perl no longer stomps on $DB::single, $DB::trace, and $DB::signal if these variables
already have values when $ˆP is assigned to [perl #72422].

• #line directives in string evals were not properly updating the arrays of lines of code (@{"_<
..."}) that the debugger (or any debugging or profiling module) uses. In threaded builds, they
were not being updated at all. In non-threaded builds, the line number was ignored, so any change
to the existing line number would cause the lines to be misnumbered [perl #79442].

perl v5.36.0 2021-04-29 144

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

Threads
• Perl no longer accidentally clones lexicals in scope within active stack frames in the parent when

creating a child thread [perl #73086].

• Several memory leaks in cloning and freeing threaded Perl interpreters have been fixed [perl
#77352].

• Creating a new thread when directory handles were open used to cause a crash, because the
handles were not cloned, but simply passed to the new thread, resulting in a double free.

Now directory handles are cloned properly on Windows and on systems that have a fchdir
function. On other systems, new threads simply do not inherit directory handles from their parent
threads [perl #75154].

• The typeglob *,, which holds the scalar variable $, (output field separator), had the wrong
reference count in child threads.

• [perl #78494] When pipes are shared between threads, the close function (and any implicit
close, such as on thread exit) no longer blocks.

• Perl now does a timely cleanup of SVs that are cloned into a new thread but then discovered to be
orphaned (that is, their owners are not cloned). This eliminates several ‘‘scalars leaked’’ warnings
when joining threads.

Scoping and Subroutines
• Lvalue subroutines are again able to return copy-on-write scalars. This had been broken since

version 5.10.0 [perl #75656] (5.12.3).

• require no longer causes caller to return the wrong file name for the scope that called
require and other scopes higher up that had the same file name [perl #68712].

• sort with a ($$)-prototyped comparison routine used to cause the value of @_ to leak out of
the sort. Taking a reference to @_ within the sorting routine could cause a crash [perl #72334].

• Match variables (like $1) no longer persist between calls to a sort subroutine [perl #76026].

• Iterating with foreach over an array returned by an lvalue sub now works [perl #23790].

• $@ is now localised during calls to binmode to prevent action at a distance [perl #78844].

• Calling a closure prototype (what is passed to an attribute handler for a closure) now results in a
‘‘Closure prototype called’’ error message instead of a crash [perl #68560].

• Mentioning a read-only lexical variable from the enclosing scope in a string eval no longer
causes the variable to become writable [perl #19135].

Signals
• Within signal handlers, $! is now implicitly localized.

• CHLD signals are no longer unblocked after a signal handler is called if they were blocked before
by POSIX::sigprocmask [perl #82040].

• A signal handler called within a signal handler could cause leaks or double-frees. Now fixed [perl
#76248].

Miscellaneous Memory Leaks
• Several memory leaks when loading XS modules were fixed (5.12.2).

• substr(), pos(), keys(), and vec() could, when used in combination with lvalues, result in leaking
the scalar value they operate on, and cause its destruction to happen too late. This has now been
fixed.

• The postincrement and postdecrement operators, ++ and -- , used to cause leaks when used on
references. This has now been fixed.

• Nested map and grep blocks no longer leak memory when processing large lists [perl #48004].

• use VERSION and no VERSION no longer leak memory [perl #78436] [perl #69050].

• .= followed by <> or readline would leak memory if $/ contained characters beyond the
octet range and the scalar assigned to happened to be encoded as UTF8 internally [perl #72246].

perl v5.36.0 2021-04-29 145

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• eval 'BEGIN{die}' no longer leaks memory on non-threaded builds.

Memory Corruption and Crashes
• glob() no longer crashes when %File::Glob:: is empty and CORE::GLOBAL::glob isn’t

present [perl #75464] (5.12.2).

• readline() has been fixed when interrupted by signals so it no longer returns the ‘‘same thing’’ as
before or random memory.

• When assigning a list with duplicated keys to a hash, the assignment used to return garbage and/or
freed values:

@a = %h = (list with some duplicate keys);

This has now been fixed [perl #31865].

• The mechanism for freeing objects in globs used to leave dangling pointers to freed SVs, meaning
Perl users could see corrupted state during destruction.

Perl now frees only the affected slots of the GV, rather than freeing the GV itself. This makes sure
that there are no dangling refs or corrupted state during destruction.

• The interpreter no longer crashes when freeing deeply-nested arrays of arrays. Hashes have not
been fixed yet [perl #44225].

• Concatenating long strings under use encoding no longer causes Perl to crash [perl #78674].

• Calling ->import on a class lacking an import method could corrupt the stack, resulting in
strange behaviour. For instance,

push @a, "foo", $b = bar->import;

would assign ‘‘foo’’ to $b [perl #63790].

• The recv function could crash when called with the MSG_TRUNC flag [perl #75082].

• formline no longer crashes when passed a tainted format picture. It also taints $ˆA now if its
arguments are tainted [perl #79138].

• A bug in how we process filetest operations could cause a segfault. Filetests don’t always expect
an op on the stack, so we now use TOPs only if we’re sure that we’re not stating the _
filehandle. This is indicated by OPf_KIDS (as checked in ck_ftst) [perl #74542] (5.12.1).

• unpack() now handles scalar context correctly for %32H and %32u, fixing a potential crash.
split() would crash because the third item on the stack wasn’t the regular expression it expected.
unpack("%2H", ...) would return both the unpacked result and the checksum on the stack,
as would unpack("%2u", ...) [perl #73814] (5.12.2).

Fixes to Various Perl Operators
• The &, |, and ˆ bitwise operators no longer coerce read-only arguments [perl #20661].

• Stringifying a scalar containing ‘‘-0.0’’ no longer has the effect of turning false into true [perl
#45133].

• Some numeric operators were converting integers to floating point, resulting in loss of precision
on 64-bit platforms [perl #77456].

• sprintf() was ignoring locales when called with constant arguments [perl #78632].

• Combining the vector (%v) flag and dynamic precision would cause sprintf to confuse the
order of its arguments, making it treat the string as the precision and vice-versa [perl #83194].

Bugs Relating to the C API
• The C-level lex_stuff_pvn function would sometimes cause a spurious syntax error on the

last line of the file if it lacked a final semicolon [perl #74006] (5.12.1).

• The eval_sv and eval_pv C functions now set $@ correctly when there is a syntax error and
no G_KEEPERR flag, and never set it if the G_KEEPERR flag is present [perl #3719].

• The XS multicall API no longer causes subroutines to lose reference counts if called via the
multicall interface from within those very subroutines. This affects modules like List::Util.
Calling one of its functions with an active subroutine as the first argument could cause a crash
[perl #78070].

perl v5.36.0 2021-04-29 146

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

• The SvPVbyte function available to XS modules now calls magic before downgrading the SV, to
avoid warnings about wide characters [perl #72398].

• The ref types in the typemap for XS bindings now support magical variables [perl #72684].

• sv_catsv_flags no longer calls mg_get on its second argument (the source string) if the
flags passed to it do not include SV_GMAGIC. So it now matches the documentation.

• my_strftime no longer leaks memory. This fixes a memory leak in POSIX::strftime
[perl #73520].

• XSUB.h now correctly redefines fgets under PERL_IMPLICIT_SYS [perl #55049] (5.12.1).

• XS code using fputc() or fputs() on Windows could cause an error due to their arguments being
swapped [perl #72704] (5.12.1).

• A possible segfault in the T_PTROBJ default typemap has been fixed (5.12.2).

• A bug that could cause ‘‘Unknown error’’ messages when call_sv(code, G_EVAL) is
called from an XS destructor has been fixed (5.12.2).

Known Problems
This is a list of significant unresolved issues which are regressions from earlier versions of Perl or
which affect widely-used CPAN modules.

• List::Util::first misbehaves in the presence of a lexical $_ (typically introduced by my
$_ or implicitly by given). The variable that gets set for each iteration is the package variable
$_, not the lexical $_.

A similar issue may occur in other modules that provide functions which take a block as their first
argument, like

foo { ... $_ ...} list

See also: <https://github.com/Perl/perl5/issues/9798>

• readline() returns an empty string instead of a cached previous value when it is interrupted by a
signal

• The changes in prototype handling break Switch. A patch has been sent upstream and will
hopefully appear on CPAN soon.

• The upgrade to ExtUtils-MakeMaker-6.57_05 has caused some tests in the Module-Install
distribution on CPAN to fail. (Specifically, 02_mymeta.t tests 5 and 21; 18_all_from.t tests 6 and
15; 19_authors.t tests 5, 13, 21, and 29; and 20_authors_with_special_characters.t tests 6, 15, and
23 in version 1.00 of that distribution now fail.)

• On VMS, Time::HiRes tests will fail due to a bug in the CRTL’s implementation of
setitimer: previous timer values would be cleared if a timer expired but not if the timer was
reset before expiring. HP OpenVMS Engineering have corrected the problem and will release a
patch in due course (Quix case # QXCM1001115136).

• On VMS, there were a handful of Module::Build test failures we didn’t get to before the
release; please watch CPAN for updates.

Errata
keys(), values(), and each() work on arrays

You can now use the keys(), values(), and each() builtins on arrays; previously you could use them
only on hashes. See perlfunc for details. This is actually a change introduced in perl 5.12.0, but it was
missed from that release’s perl5120delta.

split() and @_
split() no longer modifies @_ when called in scalar or void context. In void context it now produces a
‘‘Useless use of split’’ warning. This was also a perl 5.12.0 change that missed the perldelta.

Obituary
Randy Kobes, creator of http://kobesearch.cpan.org/ and contributor/maintainer to several core Perl
toolchain modules, passed away on September 18, 2010 after a battle with lung cancer. The
community was richer for his involvement. He will be missed.

perl v5.36.0 2021-04-29 147

PERL5140DELTA(1) Perl Programmers Reference Guide PERL5140DELTA(1)

Acknowledgements
Perl 5.14.0 represents one year of development since Perl 5.12.0 and contains nearly 550,000 lines of
changes across nearly 3,000 files from 150 authors and committers.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.14.0:

Aaron Crane, Abhijit Menon-Sen, Abigail, AEvar Arnfjo
..
r∂- Bjarmason, Alastair Douglas, Alexander

Alekseev, Alexander Hartmaier, Alexandr Ciornii, Alex Davies, Alex Vandiver, Ali Polatel, Allen
Smith, Andreas Ko

..
nig, Andrew Rodland, Andy Armstrong, Andy Dougherty, Aristotle Pagaltzis,

Arkturuz, Arvan, A. Sinan Unur, Ben Morrow, Bo Lindbergh, Boris Ratner, Brad Gilbert, Bram, brian
d foy, Brian Phillips, Casey West, Charles Bailey, Chas. Owens, Chip Salzenberg, Chris ’BinGOs’
Williams, chromatic, Craig A. Berry, Curtis Jewell, Dagfinn Ilmari Mannsa°ker, Dan Dascalescu, Dave
Rolsky, David Caldwell, David Cantrell, David Golden, David Leadbeater, David Mitchell, David
Wheeler, Eric Brine, Father Chrysostomos, Fingle Nark, Florian Ragwitz, Frank Wiegand, Franz
Fasching, Gene Sullivan, George Greer, Gerard Goossen, Gisle Aas, Goro Fuji, Grant McLean, gregor
herrmann, H.Merijn Brand, Hongwen Qiu, Hugo van der Sanden, Ian Goodacre, James E Keenan,
James Mastros, Jan Dubois, Jay Hannah, Jerry D. Hedden, Jesse Vincent, Jim Cromie, Jirka HruXka,
John Peacock, Joshua ben Jore, Joshua Pritikin, Karl Williamson, Kevin Ryde, kmx, Lars DXXXXXX
XXX, Larwan Berke, Leon Brocard, Leon Timmermans, Lubomir Rintel, Lukas Mai, Maik Hentsche,
Marty Pauley, Marvin Humphrey, Matt Johnson, Matt S Trout, Max Maischein, Michael Breen,
Michael Fig, Michael G Schwern, Michael Parker, Michael Stevens, Michael Witten, Mike Kelly,
Moritz Lenz, Nicholas Clark, Nick Cleaton, Nick Johnston, Nicolas Kaiser, Niko Tyni, Noirin Shirley,
Nuno Carvalho, Paul Evans, Paul Green, Paul Johnson, Paul Marquess, Peter J. Holzer, Peter John
Acklam, Peter Martini, Philippe Bruhat (BooK), Piotr Fusik, Rafael Garcia-Suarez, Rainer Tammer,
Reini Urban, Renee Baecker, Ricardo Signes, Richard Mo

..
hn, Richard Soderberg, Rob Hoelz, Robin

Barker, Ruslan Zakirov, Salvador Fandiño, Salvador Ortiz Garcia, Shlomi Fish, Sinan Unur, Sisyphus,
Slaven Rezic, Steffen Mu

..
ller, Steve Hay, Steven Schubiger, Steve Peters, Sullivan Beck, Tatsuhiko

Miyagawa, Tim Bunce, Todd Rinaldo, Tom Christiansen, Tom Hukins, Tony Cook, Tye McQueen,
Vadim Konovalov, Vernon Lyon, Vincent Pit, Walt Mankowski, Wolfram Humann, Yves Orton,
Zefram, and Zsbán Ambrus.

This is woefully incomplete as it’s automatically generated from version control history. In particular,
it doesn’t include the names of the (very much appreciated) contributors who reported issues in
previous versions of Perl that helped make Perl 5.14.0 better. For a more complete list of all of Perl’s
historical contributors, please see the AUTHORS file in the Perl 5.14.0 distribution.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the Perl bug database at http://rt.perl.org/perlbug/ . There may
also be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who are able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please use this address for
security issues in the Perl core only, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 148

PERL5141DELTA(1) Perl Programmers Reference Guide PERL5141DELTA(1)

NAME
perl5141delta - what is new for perl v5.14.1

DESCRIPTION
This document describes differences between the 5.14.0 release and the 5.14.1 release.

If you are upgrading from an earlier release such as 5.12.0, first read perl5140delta, which describes
differences between 5.12.0 and 5.14.0.

Core Enhancements
No changes since 5.14.0.

Security
No changes since 5.14.0.

Incompatible Changes
There are no changes intentionally incompatible with 5.14.0. If any exist, they are bugs and reports are
welcome.

Deprecations
There have been no deprecations since 5.14.0.

Modules and Pragmata
New Modules and Pragmata

None

Updated Modules and Pragmata
• B::Deparse has been upgraded from version 1.03 to 1.04, to address two regressions in Perl 5.14.0:

Deparsing of the glob operator and its diamond (<>) form now works again. [perl #90898]

The presence of subroutines named :::: or :::::: no longer causes B::Deparse to hang.

• Pod::Perldoc has been upgraded from version 3.15_03 to 3.15_04.

It corrects the search paths on VMS. [perl #90640]

Removed Modules and Pragmata
None

Documentation
New Documentation

None

Changes to Existing Documentation
perlfunc

• given, when and default are now listed in perlfunc.

• Documentation for use now includes a pointer to if.pm.

perllol

• perllol has been expanded with examples using the new push $scalar syntax introduced in
Perl 5.14.0.

perlop

• The explanation of bitwise operators has been expanded to explain how they work on Unicode
strings.

• The section on the triple-dot or yada-yada operator has been moved up, as it used to separate two
closely related sections about the comma operator.

• More examples for m//g have been added.

• The <<\FOO here-doc syntax has been documented.

perlrun

• perlrun has undergone a significant clean-up. Most notably, the -0x... form of the -0 flag has
been clarified, and the final section on environment variables has been corrected and expanded.

POSIX

perl v5.36.0 2019-02-18 149

PERL5141DELTA(1) Perl Programmers Reference Guide PERL5141DELTA(1)

• The invocation documentation for WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, and WSTOPSIG was corrected.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
None

Changes to Existing Diagnostics
None

Utility Changes
None

Configuration and Compilation
• regexp.h has been modified for compatibility with GCC’s -Werror option, as used by some

projects that include perl’s header files.

Testing
• Some test failures in dist/Locale-Maketext/t/09_compile.t that could occur depending on the

environment have been fixed. [perl #89896]

• A watchdog timer for t/re/re.t was lengthened to accommodate SH-4 systems which were unable
to complete the tests before the previous timer ran out.

Platform Support
New Platforms

None

Discontinued Platforms
None

Platform-Specific Notes
Solaris

• Documentation listing the Solaris packages required to build Perl on Solaris 9 and Solaris 10 has
been corrected.

Mac OS X

• The lib/locale.t test script has been updated to work on the upcoming Lion release.

• Mac OS X specific compilation instructions have been clarified.

Ubuntu Linux

• The ODBM_File installation process has been updated with the new library paths on Ubuntu natty.

Internal Changes
• The compiled representation of formats is now stored via the mg_ptr of their PERL_MAGIC_fm.

Previously it was stored in the string buffer, beyond SvLEN(), the regular end of the string.
SvCOMPILED() and SvCOMPILED_{on,off}() now exist solely for compatibility for XS code.
The first is always 0, the other two now no-ops.

Bug Fixes
• A bug has been fixed that would cause a ‘‘Use of freed value in iteration’’ error if the next two

hash elements that would be iterated over are deleted. [perl #85026]

• Passing the same constant subroutine to both index and formline no longer causes one or the
other to fail. [perl #89218]

• 5.14.0 introduced some memory leaks in regular expression character classes such as [\w\s],
which have now been fixed.

• An edge case in regular expression matching could potentially loop. This happened only under
/i in bracketed character classes that have characters with multi-character folds, and the target
string to match against includes the first portion of the fold, followed by another character that has
a multi-character fold that begins with the remaining portion of the fold, plus some more.

perl v5.36.0 2019-02-18 150

PERL5141DELTA(1) Perl Programmers Reference Guide PERL5141DELTA(1)

"s\N{U+DF}" =˜ /[\x{DF}foo]/i

is one such case. \xDF folds to "ss".

• Several Unicode case-folding bugs have been fixed.

• The new (in 5.14.0) regular expression modifier /a when repeated like /aa forbids the characters
outside the ASCII range that match characters inside that range from matching under /i. This did
not work under some circumstances, all involving alternation, such as:

"\N{KELVIN SIGN}" =˜ /k|foo/iaa;

succeeded inappropriately. This is now fixed.

• Fixed a case where it was possible that a freed buffer may have been read from when parsing a
here document.

Acknowledgements
Perl 5.14.1 represents approximately four weeks of development since Perl 5.14.0 and contains
approximately 3500 lines of changes across 38 files from 17 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.14.1:

Bo Lindbergh, Claudio Ramirez, Craig A. Berry, David Leadbeater, Father Chrysostomos, Jesse
Vincent, Jim Cromie, Justin Case, Karl Williamson, Leo Lapworth, Nicholas Clark, Nobuhiro
Iwamatsu, smash, Tom Christiansen, Ton Hospel, Vladimir Timofeev, and Zsbán Ambrus.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who be able to help assess
the impact of issues, figure out a resolution, and help co-ordinate the release of patches to mitigate or
fix the problem across all platforms on which Perl is supported. Please only use this address for
security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 151

PERL5142DELTA(1) Perl Programmers Reference Guide PERL5142DELTA(1)

NAME
perl5142delta - what is new for perl v5.14.2

DESCRIPTION
This document describes differences between the 5.14.1 release and the 5.14.2 release.

If you are upgrading from an earlier release such as 5.14.0, first read perl5141delta, which describes
differences between 5.14.0 and 5.14.1.

Core Enhancements
No changes since 5.14.0.

Security
File::Glob::bsd_glob() memory error with GLOB_ALTDIRFUNC (CVE-2011-2728).

Calling File::Glob::bsd_glob with the unsupported flag GLOB_ALTDIRFUNC would cause an
access violation / segfault. A Perl program that accepts a flags value from an external source could
expose itself to denial of service or arbitrary code execution attacks. There are no known exploits in
the wild. The problem has been corrected by explicitly disabling all unsupported flags and setting
unused function pointers to null. Bug reported by Clément Lecigne.

Encode decode_xs n-byte heap-overflow (CVE-2011-2939)
A bug in Encode could, on certain inputs, cause the heap to overflow. This problem has been
corrected. Bug reported by Robert Zacek.

Incompatible Changes
There are no changes intentionally incompatible with 5.14.0. If any exist, they are bugs and reports are
welcome.

Deprecations
There have been no deprecations since 5.14.0.

Modules and Pragmata
New Modules and Pragmata

None

Updated Modules and Pragmata
• CPAN has been upgraded from version 1.9600 to version 1.9600_01.

CPAN::Distribution has been upgraded from version 1.9602 to 1.9602_01.

Backported bugfixes from CPAN version 1.9800. Ensures proper detection of
configure_requires prerequisites from CPAN Meta files in the case where
dynamic_config is true. [rt.cpan.org #68835]

Also ensures that configure_requires is only checked in META files, not MYMETA files, so
protect against MYMETA generation that drops configure_requires.

• Encode has been upgraded from version 2.42 to 2.42_01.

See ‘‘Security’’.

• File::Glob has been upgraded from version 1.12 to version 1.13.

See ‘‘Security’’.

• PerlIO::scalar has been upgraded from version 0.11 to 0.11_01.

It fixes a problem with open my $fh, ">", \$scalar not working if $scalar is a copy-
on-write scalar.

Removed Modules and Pragmata
None

Platform Support
New Platforms

None

Discontinued Platforms
None

perl v5.36.0 2019-02-18 152

PERL5142DELTA(1) Perl Programmers Reference Guide PERL5142DELTA(1)

Platform-Specific Notes
HP-UX PA-RISC/64 now supports gcc-4.x

A fix to correct the socketsize now makes the test suite pass on HP-UX PA-RISC for 64bitall
builds.

Building on OS X 10.7 Lion and Xcode 4 works again
The build system has been updated to work with the build tools under Mac OS X 10.7.

Bug Fixes
• In @INC filters (subroutines returned by subroutines in @INC), $_ used to misbehave: If returned

from a subroutine, it would not be copied, but the variable itself would be returned; and freeing $_
(e.g., with undef *_) would cause perl to crash. This has been fixed [perl #91880].

• Perl 5.10.0 introduced some faulty logic that made ‘‘U*’’ in the middle of a pack template
equivalent to ‘‘U0’’ if the input string was empty. This has been fixed [perl #90160].

• caller no longer leaks memory when called from the DB package if @DB::args was assigned
to after the first call to caller. Carp was triggering this bug [perl #97010].

• utf8::decode had a nasty bug that would modify copy-on-write scalars’ string buffers in place
(i.e., skipping the copy). This could result in hashes having two elements with the same key [perl
#91834].

• Localising a tied variable used to make it read-only if it contained a copy-on-write string.

• Elements of restricted hashes (see the fields pragma) containing copy-on-write values couldn’t be
deleted, nor could such hashes be cleared (%hash = ()).

• Locking a hash element that is a glob copy no longer causes subsequent assignment to it to corrupt
the glob.

• A panic involving the combination of the regular expression modifiers /aa introduced in 5.14.0
and the \b escape sequence has been fixed [perl #95964].

Known Problems
This is a list of some significant unfixed bugs, which are regressions from 5.12.0.

• PERL_GLOBAL_STRUCT is broken.

Since perl 5.14.0, building with -DPERL_GLOBAL_STRUCT hasn’t been possible. This means
that perl currently doesn’t work on any platforms that require it to be built this way, including
Symbian.

While PERL_GLOBAL_STRUCT now works again on recent development versions of perl, it
actually working on Symbian again hasn’t been verified.

We’d be very interested in hearing from anyone working with Perl on Symbian.

Acknowledgements
Perl 5.14.2 represents approximately three months of development since Perl 5.14.1 and contains
approximately 1200 lines of changes across 61 files from 9 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.14.2:

Craig A. Berry, David Golden, Father Chrysostomos, Florian Ragwitz, H.Merijn Brand, Karl
Williamson, Nicholas Clark, Pau Amma and Ricardo Signes.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who be able to help assess

perl v5.36.0 2019-02-18 153

PERL5142DELTA(1) Perl Programmers Reference Guide PERL5142DELTA(1)

the impact of issues, figure out a resolution, and help co-ordinate the release of patches to mitigate or
fix the problem across all platforms on which Perl is supported. Please only use this address for
security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 154

PERL5143DELTA(1) Perl Programmers Reference Guide PERL5143DELTA(1)

NAME
perl5143delta - what is new for perl v5.14.3

DESCRIPTION
This document describes differences between the 5.14.2 release and the 5.14.3 release.

If you are upgrading from an earlier release such as 5.12.0, first read perl5140delta, which describes
differences between 5.12.0 and 5.14.0.

Core Enhancements
No changes since 5.14.0.

Security
Digest unsafe use of eval (CVE-2011-3597)

The Digest->new() function did not properly sanitize input before using it in an eval() call, which
could lead to the injection of arbitrary Perl code.

In order to exploit this flaw, the attacker would need to be able to set the algorithm name used, or be
able to execute arbitrary Perl code already.

This problem has been fixed.

Heap buffer overrun in ’x’ string repeat operator (CVE-2012-5195)
Poorly written perl code that allows an attacker to specify the count to perl’s ’x’ string repeat operator
can already cause a memory exhaustion denial-of-service attack. A flaw in versions of perl before
5.15.5 can escalate that into a heap buffer overrun; coupled with versions of glibc before 2.16, it
possibly allows the execution of arbitrary code.

This problem has been fixed.

Incompatible Changes
There are no changes intentionally incompatible with 5.14.0. If any exist, they are bugs and reports are
welcome.

Deprecations
There have been no deprecations since 5.14.0.

Modules and Pragmata
New Modules and Pragmata

None

Updated Modules and Pragmata
• PerlIO::scalar was updated to fix a bug in which opening a filehandle to a glob copy caused

assertion failures (under debugging) or hangs or other erratic behaviour without debugging.

• ODBM_File and NDBM_File were updated to allow building on GNU/Hurd.

• IPC::Open3 has been updated to fix a regression introduced in perl 5.12, which broke
IPC::Open3::open3($in, $out, $err, '-'). [perl #95748]

• Digest has been upgraded from version 1.16 to 1.16_01.

See ‘‘Security’’.

• Module::CoreList has been updated to version 2.49_04 to add data for this release.

Removed Modules and Pragmata
None

Documentation
New Documentation

None

Changes to Existing Documentation
perlcheat

• perlcheat was updated to 5.14.

Configuration and Compilation
• h2ph was updated to search correctly gcc include directories on platforms such as Debian with

multi-architecture support.

perl v5.36.0 2019-02-18 155

PERL5143DELTA(1) Perl Programmers Reference Guide PERL5143DELTA(1)

• In Configure, the test for procselfexe was refactored into a loop.

Platform Support
New Platforms

None

Discontinued Platforms
None

Platform-Specific Notes
FreeBSD

The FreeBSD hints file was corrected to be compatible with FreeBSD 10.0.

Solaris and NetBSD
Configure was updated for ‘‘procselfexe’’ support on Solaris and NetBSD.

HP-UX
README.hpux was updated to note the existence of a broken header in HP-UX 11.00.

Linux
libutil is no longer used when compiling on Linux platforms, which avoids warnings being
emitted.

The system gcc (rather than any other gcc which might be in the compiling user’s path) is now
used when searching for libraries such as -lm.

Mac OS X
The locale tests were updated to reflect the behaviour of locales in Mountain Lion.

GNU/Hurd
Various build and test fixes were included for GNU/Hurd.

LFS support was enabled in GNU/Hurd.

NetBSD
The NetBSD hints file was corrected to be compatible with NetBSD 6.*

Bug Fixes
• A regression has been fixed that was introduced in 5.14, in /i regular expression matching, in

which a match improperly fails if the pattern is in UTF-8, the target string is not, and a Latin-1
character precedes a character in the string that should match the pattern. [perl #101710]

• In case-insensitive regular expression pattern matching, no longer on UTF-8 encoded strings does
the scan for the start of match only look at the first possible position. This caused matches such as
"f\x{FB00}" =˜ /ff/i to fail.

• The sitecustomize support was made relocatableinc aware, so that -Dusesitecustomize and
-Duserelocatableinc may be used together.

• The smartmatch operator (˜˜) was changed so that the right-hand side takes precedence during
Any ˜˜ Object operations.

• A bug has been fixed in the tainting support, in which an index() operation on a tainted
constant would cause all other constants to become tainted. [perl #64804]

• A regression has been fixed that was introduced in perl 5.12, whereby tainting errors were not
correctly propagated through die(). [perl #111654]

• A regression has been fixed that was introduced in perl 5.14, in which /[[:lower:]]/i and
/[[:upper:]]/i no longer matched the opposite case. [perl #101970]

Acknowledgements
Perl 5.14.3 represents approximately 12 months of development since Perl 5.14.2 and contains
approximately 2,300 lines of changes across 64 files from 22 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.14.3:

Abigail, Andy Dougherty, Carl Hayter, Chris ’BinGOs’ Williams, Dave Rolsky, David Mitchell,
Dominic Hargreaves, Father Chrysostomos, Florian Ragwitz, H.Merijn Brand, Jilles Tjoelker, Karl
Williamson, Leon Timmermans, Michael G Schwern, Nicholas Clark, Niko Tyni, Pino Toscano,

perl v5.36.0 2019-02-18 156

PERL5143DELTA(1) Perl Programmers Reference Guide PERL5143DELTA(1)

Ricardo Signes, Salvador Fandiño, Samuel Thibault, Steve Hay, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who be able to help assess
the impact of issues, figure out a resolution, and help co-ordinate the release of patches to mitigate or
fix the problem across all platforms on which Perl is supported. Please only use this address for
security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 157

PERL5144DELTA(1) Perl Programmers Reference Guide PERL5144DELTA(1)

NAME
perl5144delta - what is new for perl v5.14.4

DESCRIPTION
This document describes differences between the 5.14.3 release and the 5.14.4 release.

If you are upgrading from an earlier release such as 5.12.0, first read perl5140delta, which describes
differences between 5.12.0 and 5.14.0.

Core Enhancements
No changes since 5.14.0.

Security
This release contains one major, and medium, and a number of minor security fixes. The latter are
included mainly to allow the test suite to pass cleanly with the clang compiler’s address sanitizer
facility.

CVE-2013-1667: memory exhaustion with arbitrary hash keys
With a carefully crafted set of hash keys (for example arguments on a URL), it is possible to cause a
hash to consume a large amount of memory and CPU, and thus possibly to achieve a Denial-of-Service.

This problem has been fixed.

memory leak in Encode
The UTF-8 encoding implementation in Encode.xs had a memory leak which has been fixed.

[perl #111594] Socket::unpack_sockaddr_un heap-buffer-overflow
A read buffer overflow could occur when copying sockaddr buffers. Fairly harmless.

This problem has been fixed.

[perl #111586] SDBM_File: fix off-by-one access to global ‘‘.dir’’
An extra byte was being copied for some string literals. Fairly harmless.

This problem has been fixed.

off-by-two error in List::Util
A string literal was being used that included two bytes beyond the end of the string. Fairly harmless.

This problem has been fixed.

[perl #115994] fix segv in regcomp.c:S_join_exact()
Under debugging builds, while marking optimised-out regex nodes as type OPTIMIZED, it could treat
blocks of exact text as if they were nodes, and thus SEGV. Fairly harmless.

This problem has been fixed.

[perl #115992] PL_eval_start use-after-free
The statement local $[;, when preceded by an eval, and when not part of an assignment, could
crash. Fairly harmless.

This problem has been fixed.

wrap-around with IO on long strings
Reading or writing strings greater than 2**31 bytes in size could segfault due to integer wraparound.

This problem has been fixed.

Incompatible Changes
There are no changes intentionally incompatible with 5.14.0. If any exist, they are bugs and reports are
welcome.

Deprecations
There have been no deprecations since 5.14.0.

Modules and Pragmata
New Modules and Pragmata

None

Updated Modules and Pragmata
The following modules have just the minor code fixes as listed above in ‘‘Security’’ (version numbers
have not changed):

perl v5.36.0 2019-02-18 158

PERL5144DELTA(1) Perl Programmers Reference Guide PERL5144DELTA(1)

Socket
SDBM_File
List::Util

Encode has been upgraded from version 2.42_01 to version 2.42_02.

Module::CoreList has been updated to version 2.49_06 to add data for this release.

Removed Modules and Pragmata
None.

Documentation
New Documentation

None.

Changes to Existing Documentation
None.

Diagnostics
No new or changed diagnostics.

Utility Changes
None

Configuration and Compilation
No changes.

Platform Support
New Platforms

None.

Discontinued Platforms
None.

Platform-Specific Notes
VMS

5.14.3 failed to compile on VMS due to incomplete application of a patch series that allowed
userelocatableinc and usesitecustomize to be used simultaneously. Other platforms
were not affected and the problem has now been corrected.

Selected Bug Fixes
• In Perl 5.14.0, $tainted ˜˜ @array stopped working properly. Sometimes it would

erroneously fail (when $tainted contained a string that occurs in the array after the first
element) or erroneously succeed (when undef occurred after the first element) [perl #93590].

Known Problems
None.

Acknowledgements
Perl 5.14.4 represents approximately 5 months of development since Perl 5.14.3 and contains
approximately 1,700 lines of changes across 49 files from 12 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.14.4:

Andy Dougherty, Chris ’BinGOs’ Williams, Christian Hansen, Craig A. Berry, Dave Rolsky, David
Mitchell, Dominic Hargreaves, Father Chrysostomos, Florian Ragwitz, Reini Urban, Ricardo Signes,
Yves Orton.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

perl v5.36.0 2019-02-18 159

PERL5144DELTA(1) Perl Programmers Reference Guide PERL5144DELTA(1)

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who be able to help assess
the impact of issues, figure out a resolution, and help co-ordinate the release of patches to mitigate or
fix the problem across all platforms on which Perl is supported. Please only use this address for
security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 160

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

NAME
perl5160delta - what is new for perl v5.16.0

DESCRIPTION
This document describes differences between the 5.14.0 release and the 5.16.0 release.

If you are upgrading from an earlier release such as 5.12.0, first read perl5140delta, which describes
differences between 5.12.0 and 5.14.0.

Some bug fixes in this release have been backported to later releases of 5.14.x. Those are indicated
with the 5.14.x version in parentheses.

Notice
With the release of Perl 5.16.0, the 5.12.x series of releases is now out of its support period. There may
be future 5.12.x releases, but only in the event of a critical security issue. Users of Perl 5.12 or earlier
should consider upgrading to a more recent release of Perl.

This policy is described in greater detail in perlpolicy.

Core Enhancements
use VERSION

As of this release, version declarations like use v5.16 now disable all features before enabling the
new feature bundle. This means that the following holds true:

use 5.016;
only 5.16 features enabled here
use 5.014;
only 5.14 features enabled here (not 5.16)

use v5.12 and higher continue to enable strict, but explicit use strict and no strict now
override the version declaration, even when they come first:

no strict;
use 5.012;
no strict here

There is a new ‘‘:default’’ feature bundle that represents the set of features enabled before any version
declaration or use feature has been seen. Version declarations below 5.10 now enable the
‘‘:default’’ feature set. This does not actually change the behavior of use v5.8, because features
added to the ‘‘:default’’ set are those that were traditionally enabled by default, before they could be
turned off.

no feature now resets to the default feature set. To disable all features (which is likely to be a
pretty special-purpose request, since it presumably won’t match any named set of semantics) you can
now write no feature ':all'.

$[is now disabled under use v5.16. It is part of the default feature set and can be turned on or off
explicitly with use feature 'array_base'.

_ _SUB_ _
The new _ _SUB_ _ token, available under the current_sub feature (see feature) or use v5.16,
returns a reference to the current subroutine, making it easier to write recursive closures.

New and Improved Built-ins
More consistent eval

The eval operator sometimes treats a string argument as a sequence of characters and sometimes as a
sequence of bytes, depending on the internal encoding. The internal encoding is not supposed to make
any difference, but there is code that relies on this inconsistency.

The new unicode_eval and evalbytes features (enabled under use 5.16.0) resolve this.
The unicode_eval feature causes eval $string to treat the string always as Unicode. The
evalbytes features provides a function, itself called evalbytes, which evaluates its argument
always as a string of bytes.

These features also fix oddities with source filters leaking to outer dynamic scopes.

See feature for more detail.

substr lvalue revamp

perl v5.36.0 2021-04-29 161

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

When substr is called in lvalue or potential lvalue context with two or three arguments, a special
lvalue scalar is returned that modifies the original string (the first argument) when assigned to.

Previously, the offsets (the second and third arguments) passed to substr would be converted
immediately to match the string, negative offsets being translated to positive and offsets beyond the end
of the string being truncated.

Now, the offsets are recorded without modification in the special lvalue scalar that is returned, and the
original string is not even looked at by substr itself, but only when the returned lvalue is read or
modified.

These changes result in an incompatible change:

If the original string changes length after the call to substr but before assignment to its return value,
negative offsets will remember their position from the end of the string, affecting code like this:

my $string = "string";
my $lvalue = \substr $string, -4, 2;
print $$lvalue, "\n"; # prints "ri"
$string = "bailing twine";
print $$lvalue, "\n"; # prints "wi"; used to print "il"

The same thing happens with an omitted third argument. The returned lvalue will always extend to the
end of the string, even if the string becomes longer.

Since this change also allowed many bugs to be fixed (see "The substr operator"), and since the
behavior of negative offsets has never been specified, the change was deemed acceptable.

Return value of tied

The value returned by tied on a tied variable is now the actual scalar that holds the object to which
the variable is tied. This lets ties be weakened with Scalar::Util::weaken(tied
$tied_variable).

Unicode Support
Supports (almost) Unicode 6.1

Besides the addition of whole new scripts, and new characters in existing scripts, this new version of
Unicode, as always, makes some changes to existing characters. One change that may trip up some
applications is that the General Category of two characters in the Latin-1 range, PILCROW SIGN and
SECTION SIGN, has been changed from Other_Symbol to Other_Punctuation. The same change has
been made for a character in each of Tibetan, Ethiopic, and Aegean. The code points U+3248..U+324F
(CIRCLED NUMBER TEN ON BLACK SQUARE through CIRCLED NUMBER EIGHTY ON BLACK
SQUARE) have had their General Category changed from Other_Symbol to Other_Numeric. The Line
Break property has changes for Hebrew and Japanese; and because of other changes in 6.1, the Perl
regular expression construct \X now works differently for some characters in Thai and Lao.

New aliases (synonyms) have been defined for many property values; these, along with the previously
existing ones, are all cross-indexed in perluniprops.

The return value of charnames::viacode() is affected by other changes:

Code point Old Name New Name
U+000A LINE FEED (LF) LINE FEED
U+000C FORM FEED (FF) FORM FEED
U+000D CARRIAGE RETURN (CR) CARRIAGE RETURN
U+0085 NEXT LINE (NEL) NEXT LINE
U+008E SINGLE-SHIFT 2 SINGLE-SHIFT-2
U+008F SINGLE-SHIFT 3 SINGLE-SHIFT-3
U+0091 PRIVATE USE 1 PRIVATE USE-1
U+0092 PRIVATE USE 2 PRIVATE USE-2
U+2118 SCRIPT CAPITAL P WEIERSTRASS ELLIPTIC FUNCTION

Perl will accept any of these names as input, but charnames::viacode() now returns the new
name of each pair. The change for U+2118 is considered by Unicode to be a correction, that is the
original name was a mistake (but again, it will remain forever valid to use it to refer to U+2118). But
most of these changes are the fallout of the mistake Unicode 6.0 made in naming a character used in
Japanese cell phones to be ‘‘BELL’’, which conflicts with the longstanding industry use of (and

perl v5.36.0 2021-04-29 162

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

Unicode’s recommendation to use) that name to mean the ASCII control character at U+0007.
Therefore, that name has been deprecated in Perl since v5.14, and any use of it will raise a warning
message (unless turned off). The name ‘‘ALERT’’ is now the preferred name for this code point, with
‘‘BEL’’ an acceptable short form. The name for the new cell phone character, at code point U+1F514,
remains undefined in this version of Perl (hence we don’t implement quite all of Unicode 6.1), but
starting in v5.18, BELL will mean this character, and not U+0007.

Unicode has taken steps to make sure that this sort of mistake does not happen again. The Standard
now includes all generally accepted names and abbreviations for control characters, whereas previously
it didn’t (though there were recommended names for most of them, which Perl used). This means that
most of those recommended names are now officially in the Standard. Unicode did not recommend
names for the four code points listed above between U+008E and U+008F, and in standardizing them
Unicode subtly changed the names that Perl had previously given them, by replacing the final blank in
each name by a hyphen. Unicode also officially accepts names that Perl had deprecated, such as FILE
SEPARATOR. Now the only deprecated name is BELL. Finally, Perl now uses the new official names
instead of the old (now considered obsolete) names for the first four code points in the list above (the
ones which have the parentheses in them).

Now that the names have been placed in the Unicode standard, these kinds of changes should not
happen again, though corrections, such as to U+2118, are still possible.

Unicode also added some name abbreviations, which Perl now accepts: SP for SPACE; TAB for
CHARACTER TABULATION; NEW LINE, END OF LINE, NL, and EOL for LINE FEED; LOCKING-
SHIFT ONE for SHIFT OUT; LOCKING-SHIFT ZERO for SHIFT IN; and ZWNBSP for ZERO WIDTH
NO-BREAK SPACE.

More details on this version of Unicode are provided in
<http://www.unicode.org/versions/Unicode6.1.0/>.

use charnames is no longer needed for \N{name}

When \N{name} is encountered, the charnames module is now automatically loaded when needed
as if the :full and :short options had been specified. See charnames for more information.

\N{...} can now have Unicode loose name matching

This is described in the charnames item in ‘‘Updated Modules and Pragmata’’ below.

Unicode Symbol Names

Perl now has proper support for Unicode in symbol names. It used to be that *{$foo} would ignore
the internal UTF8 flag and use the bytes of the underlying representation to look up the symbol. That
meant that *{"\x{100}"} and *{"\xc4\x80"} would return the same thing. All these parts of
Perl have been fixed to account for Unicode:

• Method names (including those passed to use overload)

• Typeglob names (including names of variables, subroutines, and filehandles)

• Package names

• goto

• Symbolic dereferencing

• Second argument to bless() and tie()

• Return value of ref()

• Subroutine prototypes

• Attributes

• Various warnings and error messages that mention variable names or values, methods, etc.

In addition, a parsing bug has been fixed that prevented *{é} from implicitly quoting the name, but
instead interpreted it as *{+é}, which would cause a strict violation.

*{"*a::b"} automatically strips off the * if it is followed by an ASCII letter. That has been
extended to all Unicode identifier characters.

One-character non-ASCII non-punctuation variables (like $é) are now subject to ‘‘Used only once’’

perl v5.36.0 2021-04-29 163

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

warnings. They used to be exempt, as they were treated as punctuation variables.

Also, single-character Unicode punctuation variables (like $X) are now supported [perl #69032].

Improved ability to mix locales and Unicode, including UTF-8 locales

An optional parameter has been added to use locale

use locale ':not_characters';

which tells Perl to use all but the LC_CTYPE and LC_COLLATE portions of the current locale.
Instead, the character set is assumed to be Unicode. This lets locales and Unicode be seamlessly
mixed, including the increasingly frequent UTF-8 locales. When using this hybrid form of locales, the
:locale layer to the open pragma can be used to interface with the file system, and there are CPAN
modules available for ARGV and environment variable conversions.

Full details are in perllocale.

New function fc and corresponding escape sequence \F for Unicode foldcase

Unicode foldcase is an extension to lowercase that gives better results when comparing two strings
case-insensitively. It has long been used internally in regular expression /i matching. Now it is
available explicitly through the new fc function call (enabled by "use feature 'fc'", or use
v5.16, or explicitly callable via CORE::fc) or through the new \F sequence in double-quotish
strings.

Full details are in ‘‘fc’’ in perlfunc.

The Unicode Script_Extensions property is now supported.

New in Unicode 6.0, this is an improved Script property. Details are in ‘‘Scripts’’ in perlunicode.

XS Changes
Improved typemaps for Some Builtin Types

Most XS authors will know there is a longstanding bug in the OUTPUT typemap for T_AVREF (AV*),
T_HVREF (HV*), T_CVREF (CV*), and T_SVREF (SVREF or \$foo) that requires manually
decrementing the reference count of the return value instead of the typemap taking care of this. For
backwards-compatibility, this cannot be changed in the default typemaps. But we now provide
additional typemaps T_AVREF_REFCOUNT_FIXED, etc. that do not exhibit this bug. Using them in
your extension is as simple as having one line in your TYPEMAP section:

HV* T_HVREF_REFCOUNT_FIXED

is_utf8_char()

The XS-callable function is_utf8_char(), when presented with malformed UTF-8 input, can read
up to 12 bytes beyond the end of the string. This cannot be fixed without changing its API, and so its
use is now deprecated. Use is_utf8_char_buf() (described just below) instead.

Added is_utf8_char_buf()

This function is designed to replace the deprecated ‘‘is_utf8_char()’’ function. It includes an extra
parameter to make sure it doesn’t read past the end of the input buffer.

Other is_utf8_foo() functions, as well as utf8_to_foo(), etc.

Most other XS-callable functions that take UTF-8 encoded input implicitly assume that the UTF-8 is
valid (not malformed) with respect to buffer length. Do not do things such as change a character’s case
or see if it is alphanumeric without first being sure that it is valid UTF-8. This can be safely done for a
whole string by using one of the functions is_utf8_string(), is_utf8_string_loc(), and
is_utf8_string_loclen().

New Pad API

Many new functions have been added to the API for manipulating lexical pads. See ‘‘Pad Data
Structures’’ in perlapi for more information.

Changes to Special Variables
$$ can be assigned to

$$ was made read-only in Perl 5.8.0. But only sometimes: local $$ would make it writable again.
Some CPAN modules were using local $$ or XS code to bypass the read-only check, so there is no

perl v5.36.0 2021-04-29 164

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

reason to keep $$ read-only. (This change also allowed a bug to be fixed while maintaining backward
compatibility.)

$ˆX converted to an absolute path on FreeBSD, OS X and Solaris

$ˆX is now converted to an absolute path on OS X, FreeBSD (without needing /proc mounted) and
Solaris 10 and 11. This augments the previous approach of using /proc on Linux, FreeBSD, and
NetBSD (in all cases, where mounted).

This makes relocatable perl installations more useful on these platforms. (See ‘‘Relocatable @INC’’ in
INSTALL)

Debugger Changes
Features inside the debugger

The current Perl’s feature bundle is now enabled for commands entered in the interactive debugger.

New option for the debugger’s t command

The t command in the debugger, which toggles tracing mode, now accepts a numeric argument that
determines how many levels of subroutine calls to trace.

enable and disable

The debugger now has disable and enable commands for disabling existing breakpoints and re-
enabling them. See perldebug.

Breakpoints with file names

The debugger’s ‘‘b’’ command for setting breakpoints now lets a line number be prefixed with a file
name. See ‘‘b [file]:[line] [condition]’’ in perldebug.

The CORE Namespace
The CORE:: prefix

The CORE:: prefix can now be used on keywords enabled by feature.pm, even outside the scope of
use feature.

Subroutines in the CORE namespace

Many Perl keywords are now available as subroutines in the CORE namespace. This lets them be
aliased:

BEGIN { *entangle = \&CORE::tie }
entangle $variable, $package, @args;

And for prototypes to be bypassed:

sub mytie(\[%$*@]$@) {
my ($ref, $pack, @args) = @_;
... do something ...
goto &CORE::tie;

}

Some of these cannot be called through references or via &foo syntax, but must be called as
barewords.

See CORE for details.

Other Changes
Anonymous handles

Automatically generated file handles are now named _ _ANONIO_ _ when the variable name cannot be
determined, rather than $_ _ANONIO_ _.

Autoloaded sort Subroutines

Custom sort subroutines can now be autoloaded [perl #30661]:

sub AUTOLOAD { ... }
@sorted = sort foo @list; # uses AUTOLOAD

continue no longer requires the ‘‘switch’’ feature

The continue keyword has two meanings. It can introduce a continue block after a loop, or it

perl v5.36.0 2021-04-29 165

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

can exit the current when block. Up to now, the latter meaning was valid only with the ‘‘switch’’
feature enabled, and was a syntax error otherwise. Since the main purpose of feature.pm is to avoid
conflicts with user-defined subroutines, there is no reason for continue to depend on it.

DTrace probes for interpreter phase change

The phase-change probes will fire when the interpreter’s phase changes, which tracks the
${ˆGLOBAL_PHASE} variable. arg0 is the new phase name; arg1 is the old one. This is useful for
limiting your instrumentation to one or more of: compile time, run time, or destruct time.

_ _FILE_ _() Syntax

The _ _FILE_ _, _ _LINE_ _ and _ _PACKAGE_ _ tokens can now be written with an empty pair of
parentheses after them. This makes them parse the same way as time, fork and other built-in
functions.

The \$ prototype accepts any scalar lvalue

The \$ and \[$] subroutine prototypes now accept any scalar lvalue argument. Previously they
accepted only scalars beginning with $ and hash and array elements. This change makes them
consistent with the way the built-in read and recv functions (among others) parse their arguments.
This means that one can override the built-in functions with custom subroutines that parse their
arguments the same way.

_ in subroutine prototypes

The _ character in subroutine prototypes is now allowed before @ or %.

Security
Use is_utf8_char_buf() and not is_utf8_char()

The latter function is now deprecated because its API is insufficient to guarantee that it doesn’t read (up
to 12 bytes in the worst case) beyond the end of its input string. See is_utf8_char_buf().

Malformed UTF-8 input could cause attempts to read beyond the end of the buffer
Two new XS-accessible functions, utf8_to_uvchr_buf() and utf8_to_uvuni_buf() are
now available to prevent this, and the Perl core has been converted to use them. See ‘‘Internal
Changes’’.

File::Glob::bsd_glob() memory error with GLOB_ALTDIRFUNC (CVE-2011-2728).
Calling File::Glob::bsd_glob with the unsupported flag GLOB_ALTDIRFUNC would cause an
access violation / segfault. A Perl program that accepts a flags value from an external source could
expose itself to denial of service or arbitrary code execution attacks. There are no known exploits in
the wild. The problem has been corrected by explicitly disabling all unsupported flags and setting
unused function pointers to null. Bug reported by Clément Lecigne. (5.14.2)

Privileges are now set correctly when assigning to $(
A hypothetical bug (probably unexploitable in practice) because the incorrect setting of the effective
group ID while setting $(has been fixed. The bug would have affected only systems that have
setresgid() but not setregid(), but no such systems are known to exist.

Deprecations
Don’t read the Unicode data base files in lib/unicore

It is now deprecated to directly read the Unicode data base files. These are stored in the lib/unicore
directory. Instead, you should use the new functions in Unicode::UCD. These provide a stable API,
and give complete information.

Perl may at some point in the future change or remove these files. The file which applications were
most likely to have used is lib/unicore/ToDigit.pl. ‘‘prop_invmap()’’ in Unicode::UCD can be used to
get at its data instead.

XS functions is_utf8_char(), utf8_to_uvchr() and utf8_to_uvuni()
This function is deprecated because it could read beyond the end of the input string. Use the new
is_utf8_char_buf(), utf8_to_uvchr_buf() and utf8_to_uvuni_buf() instead.

Future Deprecations
This section serves as a notice of features that are likely to be removed or deprecated in the next release
of perl (5.18.0). If your code depends on these features, you should contact the Perl 5 Porters via the
mailing list <http://lists.perl.org/list/perl5-porters.html> or perlbug to explain your use case and inform

perl v5.36.0 2021-04-29 166

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

the deprecation process.

Core Modules
These modules may be marked as deprecated from the core. This only means that they will no longer
be installed by default with the core distribution, but will remain available on the CPAN.

• CPANPLUS

• Filter::Simple

• PerlIO::mmap

• Pod::LaTeX

• Pod::Parser

• SelfLoader

• Text::Soundex

• Thread.pm

Platforms with no supporting programmers
These platforms will probably have their special build support removed during the 5.17.0 development
series.

• BeOS

• djgpp

• dgux

• EPOC

• MPE/iX

• Rhapsody

• UTS

• VM/ESA

Other Future Deprecations
• Swapping of $< and $>

For more information about this future deprecation, see the relevant RT ticket
<https://github.com/Perl/perl5/issues/11547>.

• sfio, stdio

Perl supports being built without PerlIO proper, using a stdio or sfio wrapper instead. A perl build
like this will not support IO layers and thus Unicode IO, making it rather handicapped.

PerlIO supports a stdio layer if stdio use is desired, and similarly a sfio layer could be produced.

• Unescaped literal "{" in regular expressions.

Starting with v5.20, it is planned to require a literal "{" to be escaped, for example by preceding
it with a backslash. In v5.18, a deprecated warning message will be emitted for all such uses.
This affects only patterns that are to match a literal "{". Other uses of this character, such as part
of a quantifier or sequence as in those below, are completely unaffected:

/foo{3,5}/
/\p{Alphabetic}/
/\N{DIGIT ZERO}

Removing this will permit extensions to Perl’s pattern syntax and better error checking for existing
syntax. See ‘‘Quantifiers’’ in perlre for an example.

• Revamping "\Q" semantics in double-quotish strings when combined with other escapes.

There are several bugs and inconsistencies involving combinations of \Q and escapes like \x, \L,
etc., within a \Q...\E pair. These need to be fixed, and doing so will necessarily change current
behavior. The changes have not yet been settled.

perl v5.36.0 2021-04-29 167

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

Incompatible Changes
Special blocks called in void context

Special blocks (BEGIN, CHECK, INIT, UNITCHECK, END) are now called in void context. This
avoids wasteful copying of the result of the last statement [perl #108794].

The overloading pragma and regexp objects
With no overloading, regular expression objects returned by qr// are now stringified as
‘‘Regexp=REGEXP(0xbe600d)’’ instead of the regular expression itself [perl #108780].

Two XS typemap Entries removed
Two presumably unused XS typemap entries have been removed from the core typemap:
T_DATAUNIT and T_CALLBACK. If you are, against all odds, a user of these, please see the
instructions on how to restore them in perlxstypemap.

Unicode 6.1 has incompatibilities with Unicode 6.0
These are detailed in ‘‘Supports (almost) Unicode 6.1’’ above. You can compile this version of Perl to
use Unicode 6.0. See ‘‘Hacking Perl to work on earlier Unicode versions (for very serious hackers
only)’’ in perlunicode.

Borland compiler
All support for the Borland compiler has been dropped. The code had not worked for a long time
anyway.

Certain deprecated Unicode properties are no longer supported by default
Perl should never have exposed certain Unicode properties that are used by Unicode internally and not
meant to be publicly available. Use of these has generated deprecated warning messages since Perl
5.12. The removed properties are Other_Alphabetic, Other_Default_Ignorable_Code_Point,
Other_Grapheme_Extend, Other_ID_Continue, Other_ID_Start, Other_Lowercase, Other_Math, and
Other_Uppercase.

Perl may be recompiled to include any or all of them; instructions are given in ‘‘Unicode character
properties that are NOT accepted by Perl’’ in perluniprops.

Dereferencing IO thingies as typeglobs
The *{...} operator, when passed a reference to an IO thingy (as in *{*STDIN{IO}}), creates a
new typeglob containing just that IO object. Previously, it would stringify as an empty string, but some
operators would treat it as undefined, producing an ‘‘uninitialized’’ warning. Now it stringifies as
_ _ANONIO_ _ [perl #96326].

User-defined case-changing operations
This feature was deprecated in Perl 5.14, and has now been removed. The CPAN module
Unicode::Casing provides better functionality without the drawbacks that this feature had, as are
detailed in the 5.14 documentation:
<http://perldoc.perl.org/5.14.0/perlunicode.html#User-Defined-Case-Mappings-%28for-serious-hackers-only%29>

XSUBs are now ’static’
XSUB C functions are now ’static’, that is, they are not visible from outside the compilation unit. Users
can use the new XS_EXTERNAL(name) and XS_INTERNAL(name) macros to pick the desired
linking behavior. The ordinary XS(name) declaration for XSUBs will continue to declare
non-’static’ XSUBs for compatibility, but the XS compiler, ExtUtils::ParseXS (xsubpp) will emit
’static’ XSUBs by default. ExtUtils::ParseXS’s behavior can be reconfigured from XS using the
EXPORT_XSUB_SYMBOLS keyword. See perlxs for details.

Weakening read-only references
Weakening read-only references is no longer permitted. It should never have worked anyway, and
could sometimes result in crashes.

Tying scalars that hold typeglobs
Attempting to tie a scalar after a typeglob was assigned to it would instead tie the handle in the
typeglob’s IO slot. This meant that it was impossible to tie the scalar itself. Similar problems affected
tied and untie: tied $scalar would return false on a tied scalar if the last thing returned was a
typeglob, and untie $scalar on such a tied scalar would do nothing.

We fixed this problem before Perl 5.14.0, but it caused problems with some CPAN modules, so we put
in a deprecation cycle instead.

perl v5.36.0 2021-04-29 168

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

Now the deprecation has been removed and this bug has been fixed. So tie $scalar will always
tie the scalar, not the handle it holds. To tie the handle, use tie *$scalar (with an explicit
asterisk). The same applies to tied *$scalar and untie *$scalar.

IPC::Open3 no longer provides xfork(), xclose_on_exec() and xpipe_anon()
All three functions were private, undocumented, and unexported. They do not appear to be used by any
code on CPAN. Two have been inlined and one deleted entirely.

$$ no longer caches PID
Previously, if one called fork (3) from C, Perl’s notion of $$ could go out of sync with what getpid()
returns. By always fetching the value of $$ via getpid(), this potential bug is eliminated. Code that
depends on the caching behavior will break. As described in Core Enhancements, $$ is now writable,
but it will be reset during a fork.

$$ and getppid() no longer emulate POSIX semantics under LinuxThreads
The POSIX emulation of $$ and getppid() under the obsolete LinuxThreads implementation has
been removed. This only impacts users of Linux 2.4 and users of Debian GNU/kFreeBSD up to and
including 6.0, not the vast majority of Linux installations that use NPTL threads.

This means that getppid(), like $$, is now always guaranteed to return the OS’s idea of the current
state of the process, not perl’s cached version of it.

See the documentation for $$ for details.

$<, $>, $(and $) are no longer cached
Similarly to the changes to $$ and getppid(), the internal caching of $<, $>, $(and $) has been
removed.

When we cached these values our idea of what they were would drift out of sync with reality if
someone (e.g., someone embedding perl) called sete?[ug]id() without updating PL_e?[ug]id.
Having to deal with this complexity wasn’t worth it given how cheap the gete?[ug]id() system
call is.

This change will break a handful of CPAN modules that use the XS-level PL_uid, PL_gid,
PL_euid or PL_egid variables.

The fix for those breakages is to use PerlProc_gete?[ug]id() to retrieve them (e.g.,
PerlProc_getuid()), and not to assign to PL_e?[ug]id if you change the
UID/GID/EUID/EGID. There is no longer any need to do so since perl will always retrieve the up-to-
date version of those values from the OS.

Which Non-ASCII characters get quoted by quotemeta and \Q has changed
This is unlikely to result in a real problem, as Perl does not attach special meaning to any non-ASCII
character, so it is currently irrelevant which are quoted or not. This change fixes bug [perl #77654] and
brings Perl’s behavior more into line with Unicode’s recommendations. See ‘‘quotemeta’’ in perlfunc.

Performance Enhancements
• Improved performance for Unicode properties in regular expressions

Matching a code point against a Unicode property is now done via a binary search instead of
linear. This means for example that the worst case for a 1000 item property is 10 probes instead of
1000. This inefficiency has been compensated for in the past by permanently storing in a hash the
results of a given probe plus the results for the adjacent 64 code points, under the theory that near-
by code points are likely to be searched for. A separate hash was used for each mention of a
Unicode property in each regular expression. Thus, qr/\p{foo}abc\p{foo}/ would
generate two hashes. Any probes in one instance would be unknown to the other, and the hashes
could expand separately to be quite large if the regular expression were used on many different
widely-separated code points. Now, however, there is just one hash shared by all instances of a
given property. This means that if \p{foo} is matched against ‘‘A’’ in one regular expression in
a thread, the result will be known immediately to all regular expressions, and the relentless march
of using up memory is slowed considerably.

• Version declarations with the use keyword (e.g., use 5.012) are now faster, as they enable
features without loading feature.pm.

perl v5.36.0 2021-04-29 169

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• local $_ is faster now, as it no longer iterates through magic that it is not going to copy
anyway.

• Perl 5.12.0 sped up the destruction of objects whose classes define empty DESTROY methods (to
prevent autoloading), by simply not calling such empty methods. This release takes this
optimization a step further, by not calling any DESTROY method that begins with a return
statement. This can be useful for destructors that are only used for debugging:

use constant DEBUG => 1;
sub DESTROY { return unless DEBUG; ... }

Constant-folding will reduce the first statement to return; if DEBUG is set to 0, triggering this
optimization.

• Assigning to a variable that holds a typeglob or copy-on-write scalar is now much faster.
Previously the typeglob would be stringified or the copy-on-write scalar would be copied before
being clobbered.

• Assignment to substr in void context is now more than twice its previous speed. Instead of
creating and returning a special lvalue scalar that is then assigned to, substr modifies the
original string itself.

• substr no longer calculates a value to return when called in void context.

• Due to changes in File::Glob, Perl’s glob function and its <...> equivalent are now much
faster. The splitting of the pattern into words has been rewritten in C, resulting in speed-ups of
20% for some cases.

This does not affect glob on VMS, as it does not use File::Glob.

• The short-circuiting operators &&, ||, and //, when chained (such as $a || $b || $c), are
now considerably faster to short-circuit, due to reduced optree traversal.

• The implementation of s///r makes one fewer copy of the scalar’s value.

• Recursive calls to lvalue subroutines in lvalue scalar context use less memory.

Modules and Pragmata
Deprecated Modules

Version::Requirements
Version::Requirements is now DEPRECATED, use CPAN::Meta::Requirements, which is a drop-in
replacement. It will be deleted from perl.git blead in v5.17.0.

New Modules and Pragmata
• arybase — this new module implements the $[variable.

• PerlIO::mmap 0.010 has been added to the Perl core.

The mmap PerlIO layer is no longer implemented by perl itself, but has been moved out into the
new PerlIO::mmap module.

Updated Modules and Pragmata
This is only an overview of selected module updates. For a complete list of updates, run:

$ corelist --diff 5.14.0 5.16.0

You can substitute your favorite version in place of 5.14.0, too.

• Archive::Extract has been upgraded from version 0.48 to 0.58.

Includes a fix for FreeBSD to only use unzip if it is located in /usr/local/bin, as FreeBSD
9.0 will ship with a limited unzip in /usr/bin.

• Archive::Tar has been upgraded from version 1.76 to 1.82.

Adjustments to handle files >8gb (>0777777777777 octal) and a feature to return the MD5SUM of
files in the archive.

• base has been upgraded from version 2.16 to 2.18.

base no longer sets a module’s $VERSION to ‘‘-1’’ when a module it loads does not define a
$VERSION. This change has been made because ‘‘-1’’ is not a valid version number under the

perl v5.36.0 2021-04-29 170

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

new ‘‘lax’’ criteria used internally by UNIVERSAL::VERSION. (See version for more on ‘‘lax’’
version criteria.)

base no longer internally skips loading modules it has already loaded and instead relies on
require to inspect %INC. This fixes a bug when base is used with code that clear %INC to
force a module to be reloaded.

• Carp has been upgraded from version 1.20 to 1.26.

It now includes last read filehandle info and puts a dot after the file and line number, just like
errors from die [perl #106538].

• charnames has been updated from version 1.18 to 1.30.

charnames can now be invoked with a new option, :loose, which is like the existing :full
option, but enables Unicode loose name matching. Details are in ‘‘LOOSE MATCHES’’ in
charnames.

• B::Deparse has been upgraded from version 1.03 to 1.14. This fixes numerous deparsing bugs.

• CGI has been upgraded from version 3.52 to 3.59.

It uses the public and documented FCGI.pm API in CGI::Fast. CGI::Fast was using an FCGI API
that was deprecated and removed from documentation more than ten years ago. Usage of this
deprecated API with FCGI >= 0.70 or FCGI <= 0.73 introduces a security issue.
<https://rt.cpan.org/Public/Bug/Display.html?id=68380>
<http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-2766>

Things that may break your code:

url() was fixed to return PATH_INFO when it is explicitly requested with either the path=>1
or path_info=>1 flag.

If your code is running under mod_rewrite (or compatible) and you are calling self_url() or
you are calling url() and passing path_info=>1, these methods will actually be returning
PATH_INFO now, as you have explicitly requested or self_url() has requested on your
behalf.

The PATH_INFO has been omitted in such URLs since the issue was introduced in the 3.12
release in December, 2005.

This bug is so old your application may have come to depend on it or workaround it. Check for
application before upgrading to this release.

Examples of affected method calls:

$q->url(-absolute => 1, -query => 1, -path_info => 1);
$q->url(-path=>1);
$q->url(-full=>1,-path=>1);
$q->url(-rewrite=>1,-path=>1);
$q->self_url();

We no longer read from STDIN when the Content-Length is not set, preventing requests with no
Content-Length from sometimes freezing. This is consistent with the CGI RFC 3875, and is also
consistent with CGI::Simple. However, the old behavior may have been expected by some
command-line uses of CGI.pm.

In addition, the DELETE HTTP verb is now supported.

• Compress::Zlib has been upgraded from version 2.035 to 2.048.

IO::Compress::Zip and IO::Uncompress::Unzip now have support for LZMA (method 14). There
is a fix for a CRC issue in IO::Compress::Unzip and it supports Streamed Stored context now. And
fixed a Zip64 issue in IO::Compress::Zip when the content size was exactly 0xFFFFFFFF.

• Digest::SHA has been upgraded from version 5.61 to 5.71.

Added BITS mode to the addfile method and shasum. This makes partial-byte inputs possible via
files/STDIN and lets shasum check all 8074 NIST Msg vectors, where previously special
programming was required to do this.

perl v5.36.0 2021-04-29 171

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• Encode has been upgraded from version 2.42 to 2.44.

Missing aliases added, a deep recursion error fixed and various documentation updates.

Addressed ’decode_xs n-byte heap-overflow’ security bug in Unicode.xs (CVE-2011-2939).
(5.14.2)

• ExtUtils::CBuilder updated from version 0.280203 to 0.280206.

The new version appends CFLAGS and LDFLAGS to their Config.pm counterparts.

• ExtUtils::ParseXS has been upgraded from version 2.2210 to 3.16.

Much of ExtUtils::ParseXS, the module behind the XS compiler xsubpp, was rewritten and
cleaned up. It has been made somewhat more extensible and now finally uses strictures.

The typemap logic has been moved into a separate module, ExtUtils::Typemaps. See ‘‘New
Modules and Pragmata’’, above.

For a complete set of changes, please see the ExtUtils::ParseXS changelog, available on the CPAN.

• File::Glob has been upgraded from version 1.12 to 1.17.

On Windows, tilde (˜) expansion now checks the USERPROFILE environment variable, after
checking HOME.

It has a new :bsd_glob export tag, intended to replace :glob. Like :glob it overrides glob
with a function that does not split the glob pattern into words, but, unlike :glob, it iterates
properly in scalar context, instead of returning the last file.

There are other changes affecting Perl’s own glob operator (which uses File::Glob internally,
except on VMS). See ‘‘Performance Enhancements’’ and ‘‘Selected Bug Fixes’’.

• FindBin updated from version 1.50 to 1.51.

It no longer returns a wrong result if a script of the same name as the current one exists in the path
and is executable.

• HTTP::Tiny has been upgraded from version 0.012 to 0.017.

Added support for using $ENV{http_proxy} to set the default proxy host.

Adds additional shorthand methods for all common HTTP verbs, a post_form() method for
POST-ing x-www-form-urlencoded data and a www_form_urlencode() utility method.

• IO has been upgraded from version 1.25_04 to 1.25_06, and IO::Handle from version 1.31 to 1.33.

Together, these upgrades fix a problem with IO::Handle’s getline and getlines methods.
When these methods are called on the special ARGV handle, the next file is automatically opened,
as happens with the built-in <> and readline functions. But, unlike the built-ins, these
methods were not respecting the caller’s use of the open pragma and applying the appropriate I/O
layers to the newly-opened file [rt.cpan.org #66474].

• IPC::Cmd has been upgraded from version 0.70 to 0.76.

Capturing of command output (both STDOUT and STDERR) is now supported using IPC::Open3
on MSWin32 without requiring IPC::Run.

• IPC::Open3 has been upgraded from version 1.09 to 1.12.

Fixes a bug which prevented use of open3 on Windows when *STDIN, *STDOUT or *STDERR
had been localized.

Fixes a bug which prevented duplicating numeric file descriptors on Windows.

open3 with ‘‘-’’ for the program name works once more. This was broken in version 1.06 (and
hence in Perl 5.14.0) [perl #95748].

• Locale::Codes has been upgraded from version 3.16 to 3.21.

Added Language Extension codes (langext) and Language Variation codes (langvar) as defined in
the IANA language registry.

Added language codes from ISO 639-5

perl v5.36.0 2021-04-29 172

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

Added language/script codes from the IANA language subtag registry

Fixed an uninitialized value warning [rt.cpan.org #67438].

Fixed the return value for the all_XXX_codes and all_XXX_names functions [rt.cpan.org
#69100].

Reorganized modules to move Locale::MODULE to Locale::Codes::MODULE to allow for
cleaner future additions. The original four modules (Locale::Language, Locale::Currency,
Locale::Country, Locale::Script) will continue to work, but all new sets of codes will be added in
the Locale::Codes namespace.

The code2XXX, XXX2code, all_XXX_codes, and all_XXX_names functions now support retired
codes. All codesets may be specified by a constant or by their name now. Previously, they were
specified only by a constant.

The alias_code function exists for backward compatibility. It has been replaced by
rename_country_code. The alias_code function will be removed some time after September,
2013.

All work is now done in the central module (Locale::Codes). Previously, some was still done in
the wrapper modules (Locale::Codes::*). Added Language Family codes (langfam) as defined in
ISO 639-5.

• Math::BigFloat has been upgraded from version 1.993 to 1.997.

The numify method has been corrected to return a normalized Perl number (the result of 0 +
$thing), instead of a string [rt.cpan.org #66732].

• Math::BigInt has been upgraded from version 1.994 to 1.998.

It provides a new bsgn method that complements the babs method.

It fixes the internal objectify function’s handling of ‘‘foreign objects’’ so they are converted to
the appropriate class (Math::BigInt or Math::BigFloat).

• Math::BigRat has been upgraded from version 0.2602 to 0.2603.

int() on a Math::BigRat object containing -1/2 now creates a Math::BigInt containing 0, rather
than -0. Math::BigInt does not even support negative zero, so the resulting object was actually
malformed [perl #95530].

• Math::Complex has been upgraded from version 1.56 to 1.59 and Math::Trig from version 1.2 to
1.22.

Fixes include: correct copy constructor usage; fix polarwise formatting with numeric format
specifier; and more stable great_circle_direction algorithm.

• Module::CoreList has been upgraded from version 2.51 to 2.66.

The corelist utility now understands the -r option for displaying Perl release dates and the
--diff option to print the set of modlib changes between two perl distributions.

• Module::Metadata has been upgraded from version 1.000004 to 1.000009.

Adds provides method to generate a CPAN META provides data structure correctly; use of
package_versions_from_directory is discouraged.

• ODBM_File has been upgraded from version 1.10 to 1.12.

The XS code is now compiled with PERL_NO_GET_CONTEXT, which will aid performance
under ithreads.

• open has been upgraded from version 1.08 to 1.10.

It no longer turns off layers on standard handles when invoked without the ‘‘:std’’ directive.
Similarly, when invoked with the ‘‘:std’’ directive, it now clears layers on STDERR before applying
the new ones, and not just on STDIN and STDOUT [perl #92728].

• overload has been upgraded from version 1.13 to 1.18.

overload::Overloaded no longer calls can on the class, but uses another means to

perl v5.36.0 2021-04-29 173

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

determine whether the object has overloading. It was never correct for it to call can, as
overloading does not respect AUTOLOAD. So classes that autoload methods and implement can
no longer have to account for overloading [perl #40333].

A warning is now produced for invalid arguments. See ‘‘New Diagnostics’’.

• PerlIO::scalar has been upgraded from version 0.11 to 0.14.

(This is the module that implements open $fh, '>', \$scalar.)

It fixes a problem with open my $fh, ">", \$scalar not working if $scalar is a copy-
on-write scalar. (5.14.2)

It also fixes a hang that occurs with readline or <$fh> if a typeglob has been assigned to
$scalar [perl #92258].

It no longer assumes during seek that $scalar is a string internally. If it didn’t crash, it was
close to doing so [perl #92706]. Also, the internal print routine no longer assumes that the
position set by seek is valid, but extends the string to that position, filling the intervening bytes
(between the old length and the seek position) with nulls [perl #78980].

Printing to an in-memory handle now works if the $scalar holds a reference, stringifying the
reference before modifying it. References used to be treated as empty strings.

Printing to an in-memory handle no longer crashes if the $scalar happens to hold a number
internally, but no string buffer.

Printing to an in-memory handle no longer creates scalars that confuse the regular expression
engine [perl #108398].

• Pod::Functions has been upgraded from version 1.04 to 1.05.

Functions.pm is now generated at perl build time from annotations in perlfunc.pod. This will
ensure that Pod::Functions and perlfunc remain in synchronisation.

• Pod::Html has been upgraded from version 1.11 to 1.1502.

This is an extensive rewrite of Pod::Html to use Pod::Simple under the hood. The output has
changed significantly.

• Pod::Perldoc has been upgraded from version 3.15_03 to 3.17.

It corrects the search paths on VMS [perl #90640]. (5.14.1)

The -v option now fetches the right section for $0.

This upgrade has numerous significant fixes. Consult its changelog on the CPAN for more
information.

• POSIX has been upgraded from version 1.24 to 1.30.

POSIX no longer uses AutoLoader. Any code which was relying on this implementation detail
was buggy, and may fail because of this change. The module’s Perl code has been considerably
simplified, roughly halving the number of lines, with no change in functionality. The XS code has
been refactored to reduce the size of the shared object by about 12%, with no change in
functionality. More POSIX functions now have tests.

sigsuspend and pause now run signal handlers before returning, as the whole point of these
two functions is to wait until a signal has arrived, and then return after it has been triggered.
Delayed, or ‘‘safe’’, signals were preventing that from happening, possibly resulting in race
conditions [perl #107216].

POSIX::sleep is now a direct call into the underlying OS sleep function, instead of being a
Perl wrapper on CORE::sleep. POSIX::dup2 now returns the correct value on Win32 (i.e.,
the file descriptor). POSIX::SigSet sigsuspend and sigpending and POSIX::pause
now dispatch safe signals immediately before returning to their caller.

POSIX::Termios::setattr now defaults the third argument to TCSANOW, instead of 0. On
most platforms TCSANOW is defined to be 0, but on some 0 is not a valid parameter, which caused
a call with defaults to fail.

perl v5.36.0 2021-04-29 174

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• Socket has been upgraded from version 1.94 to 2.001.

It has new functions and constants for handling IPv6 sockets:

pack_ipv6_mreq
unpack_ipv6_mreq
IPV6_ADD_MEMBERSHIP
IPV6_DROP_MEMBERSHIP
IPV6_MTU
IPV6_MTU_DISCOVER
IPV6_MULTICAST_HOPS
IPV6_MULTICAST_IF
IPV6_MULTICAST_LOOP
IPV6_UNICAST_HOPS
IPV6_V6ONLY

• Storable has been upgraded from version 2.27 to 2.34.

It no longer turns copy-on-write scalars into read-only scalars when freezing and thawing.

• Sys::Syslog has been upgraded from version 0.27 to 0.29.

This upgrade closes many outstanding bugs.

• Term::ANSIColor has been upgraded from version 3.00 to 3.01.

Only interpret an initial array reference as a list of colors, not any initial reference, allowing the
colored function to work properly on objects with stringification defined.

• Term::ReadLine has been upgraded from version 1.07 to 1.09.

Term::ReadLine now supports any event loop, including unpublished ones and simple IO::Select,
loops without the need to rewrite existing code for any particular framework [perl #108470].

• threads::shared has been upgraded from version 1.37 to 1.40.

Destructors on shared objects used to be ignored sometimes if the objects were referenced only by
shared data structures. This has been mostly fixed, but destructors may still be ignored if the
objects still exist at global destruction time [perl #98204].

• Unicode::Collate has been upgraded from version 0.73 to 0.89.

Updated to CLDR 1.9.1

Locales updated to CLDR 2.0: mk, mt, nb, nn, ro, ru, sk, sr, sv, uk, zh_ _pinyin, zh_ _stroke

Newly supported locales: bn, fa, ml, mr, or, pa, sa, si, si_ _dictionary, sr_Latn, sv_ _reformed, ta,
te, th, ur, wae.

Tailored compatibility ideographs as well as unified ideographs for the locales: ja, ko,
zh_ _big5han, zh_ _gb2312han, zh_ _pinyin, zh_ _stroke.

Locale/*.pl files are now searched for in @INC.

• Unicode::Normalize has been upgraded from version 1.10 to 1.14.

Fixes for the removal of unicore/CompositionExclusions.txt from core.

• Unicode::UCD has been upgraded from version 0.32 to 0.43.

This adds four new functions: prop_aliases() and prop_value_aliases(), which are
used to find all Unicode-approved synonyms for property names, or to convert from one name to
another; prop_invlist which returns all code points matching a given Unicode binary
property; and prop_invmap which returns the complete specification of a given Unicode
property.

• Win32API::File has been upgraded from version 0.1101 to 0.1200.

Added SetStdHandle and GetStdHandle functions

perl v5.36.0 2021-04-29 175

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

Removed Modules and Pragmata
As promised in Perl 5.14.0’s release notes, the following modules have been removed from the core
distribution, and if needed should be installed from CPAN instead.

• Devel::DProf has been removed from the Perl core. Prior version was 20110228.00.

• Shell has been removed from the Perl core. Prior version was 0.72_01.

• Several old perl4-style libraries which have been deprecated with 5.14 are now removed:

abbrev.pl assert.pl bigfloat.pl bigint.pl bigrat.pl cacheout.pl
complete.pl ctime.pl dotsh.pl exceptions.pl fastcwd.pl flush.pl
getcwd.pl getopt.pl getopts.pl hostname.pl importenv.pl
lib/find{,depth}.pl look.pl newgetopt.pl open2.pl open3.pl
pwd.pl shellwords.pl stat.pl tainted.pl termcap.pl timelocal.pl

They can be found on CPAN as Perl4::CoreLibs.

Documentation
New Documentation

perldtrace

perldtrace describes Perl’s DTrace support, listing the provided probes and gives examples of their use.

perlexperiment

This document is intended to provide a list of experimental features in Perl. It is still a work in
progress.

perlootut

This a new OO tutorial. It focuses on basic OO concepts, and then recommends that readers choose an
OO framework from CPAN.

perlxstypemap

The new manual describes the XS typemapping mechanism in unprecedented detail and combines new
documentation with information extracted from perlxs and the previously unofficial list of all core
typemaps.

Changes to Existing Documentation
perlapi

• The HV API has long accepted negative lengths to show that the key is in UTF8. This is now
documented.

• The boolSV() macro is now documented.

perlfunc

• dbmopen treats a 0 mode as a special case, that prevents a nonexistent file from being created.
This has been the case since Perl 5.000, but was never documented anywhere. Now the perlfunc
entry mentions it [perl #90064].

• As an accident of history, open $fh, '<:', ... applies the default layers for the platform
(:raw on Unix, :crlf on Windows), ignoring whatever is declared by open.pm. This seems
such a useful feature it has been documented in perlfunc and open.

• The entry for split has been rewritten. It is now far clearer than before.

perlguts

• A new section, Autoloading with XSUBs, has been added, which explains the two APIs for
accessing the name of the autoloaded sub.

• Some function descriptions in perlguts were confusing, as it was not clear whether they referred to
the function above or below the description. This has been clarified [perl #91790].

perlobj

• This document has been rewritten from scratch, and its coverage of various OO concepts has been
expanded.

perlop

perl v5.36.0 2021-04-29 176

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• Documentation of the smartmatch operator has been reworked and moved from perlsyn to perlop
where it belongs.

It has also been corrected for the case of undef on the left-hand side. The list of different smart
match behaviors had an item in the wrong place.

• Documentation of the ellipsis statement (...) has been reworked and moved from perlop to
perlsyn.

• The explanation of bitwise operators has been expanded to explain how they work on Unicode
strings (5.14.1).

• More examples for m//g have been added (5.14.1).

• The <<\FOO here-doc syntax has been documented (5.14.1).

perlpragma

• There is now a standard convention for naming keys in the %ˆH, documented under Key naming.

‘‘Laundering and Detecting Tainted Data’’ in perlsec

• The example function for checking for taintedness contained a subtle error. $@ needs to be
localized to prevent its changing this global’s value outside the function. The preferred method to
check for this remains ‘‘tainted’’ in Scalar::Util.

perllol

• perllol has been expanded with examples using the new push $scalar syntax introduced in
Perl 5.14.0 (5.14.1).

perlmod

• perlmod now states explicitly that some types of explicit symbol table manipulation are not
supported. This codifies what was effectively already the case [perl #78074].

perlpodstyle

• The tips on which formatting codes to use have been corrected and greatly expanded.

• There are now a couple of example one-liners for previewing POD files after they have been
edited.

perlre

• The (*COMMIT) directive is now listed in the right section (Verbs without an argument).

perlrun

• perlrun has undergone a significant clean-up. Most notably, the -0x... form of the -0 flag has
been clarified, and the final section on environment variables has been corrected and expanded
(5.14.1).

perlsub

• The ($;) prototype syntax, which has existed for rather a long time, is now documented in perlsub.
It lets a unary function have the same precedence as a list operator.

perltie

• The required syntax for tying handles has been documented.

perlvar

• The documentation for $! has been corrected and clarified. It used to state that $! could be
undef, which is not the case. It was also unclear whether system calls set C’s errno or Perl’s
$! [perl #91614].

• Documentation for $$ has been amended with additional cautions regarding changing the process
ID.

Other Changes

• perlxs was extended with documentation on inline typemaps.

perl v5.36.0 2021-04-29 177

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• perlref has a new Circular References section explaining how circularities may not be freed and
how to solve that with weak references.

• Parts of perlapi were clarified, and Perl equivalents of some C functions have been added as an
additional mode of exposition.

• A few parts of perlre and perlrecharclass were clarified.

Removed Documentation
Old OO Documentation

The old OO tutorials, perltoot, perltooc, and perlboot, have been removed. The perlbot (bag of object
tricks) document has been removed as well.

Development Deltas

The perldelta files for development releases are no longer packaged with perl. These can still be found
in the perl source code repository.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• Cannot set tied @DB::args

This error occurs when caller tries to set @DB::args but finds it tied. Before this error was
added, it used to crash instead.

• Cannot tie unreifiable array

This error is part of a safety check that the tie operator does before tying a special array like @_.
You should never see this message.

• &CORE::%s cannot be called directly

This occurs when a subroutine in the CORE:: namespace is called with &foo syntax or through a
reference. Some subroutines in this package cannot yet be called that way, but must be called as
barewords. See "Subroutines in the CORE namespace", above.

• Source filters apply only to byte streams

This new error occurs when you try to activate a source filter (usually by loading a source filter
module) within a string passed to eval under the unicode_eval feature.

New Warnings

• defined(@array) is deprecated

The long-deprecated defined(@array) now also warns for package variables. Previously it
issued a warning for lexical variables only.

• length() used on %s

This new warning occurs when length is used on an array or hash, instead of
scalar(@array) or scalar(keys %hash).

• lvalue attribute %s already-defined subroutine

attributes.pm now emits this warning when the :lvalue attribute is applied to a Perl subroutine that
has already been defined, as doing so can have unexpected side-effects.

• overload arg ’%s’ is invalid

This warning, in the ‘‘overload’’ category, is produced when the overload pragma is given an
argument it doesn’t recognize, presumably a mistyped operator.

• $[used in %s (did you mean $] ?)

This new warning exists to catch the mistaken use of $[in version checks. $], not $[, contains
the version number.

perl v5.36.0 2021-04-29 178

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• Useless assignment to a temporary

Assigning to a temporary scalar returned from an lvalue subroutine now produces this warning
[perl #31946].

• Useless use of \E

\E does nothing unless preceded by \Q, \L or \U.

Removed Errors
• ‘‘sort is now a reserved word’’

This error used to occur when sort was called without arguments, followed by ; or). (E.g.,
sort; would die, but {sort} was OK.) This error message was added in Perl 3 to catch code
like close(sort) which would no longer work. More than two decades later, this message is
no longer appropriate. Now sort without arguments is always allowed, and returns an empty
list, as it did in those cases where it was already allowed [perl #90030].

Changes to Existing Diagnostics
• The ‘‘Applying pattern match...’’ or similar warning produced when an array or hash is on the left-

hand side of the =˜ operator now mentions the name of the variable.

• The ‘‘Attempt to free non-existent shared string’’ has had the spelling of ‘‘non-existent’’ corrected
to ‘‘nonexistent’’. It was already listed with the correct spelling in perldiag.

• The error messages for using default and when outside a topicalizer have been standardized to
match the messages for continue and loop controls. They now read ’Can’t ‘‘default’’ outside a
topicalizer’ and ’Can’t ‘‘when’’ outside a topicalizer’. They both used to be ’Can’t use when()
outside a topicalizer’ [perl #91514].

• The message, ‘‘Code point 0x%X is not Unicode, no properties match it; all inverse properties
do’’ has been changed to ‘‘Code point 0x%X is not Unicode, all \p{} matches fail; all \P{}
matches succeed’’.

• Redefinition warnings for constant subroutines used to be mandatory, even occurring under no
warnings. Now they respect the warnings pragma.

• The ‘‘glob failed’’ warning message is now suppressible via no warnings [perl #111656].

• The Invalid version format error message now says ‘‘negative version number’’ within the
parentheses, rather than ‘‘non-numeric data’’, for negative numbers.

• The two warnings Possible attempt to put comments in qw() list and Possible attempt to separate
words with commas are no longer mutually exclusive: the same qw construct may produce both.

• The uninitialized warning for y///r when $_ is implicit and undefined now mentions the
variable name, just like the non-/r variation of the operator.

• The ’Use of ‘‘foo’’ without parentheses is ambiguous’ warning has been extended to apply also to
user-defined subroutines with a (;$) prototype, and not just to built-in functions.

• Warnings that mention the names of lexical (my) variables with Unicode characters in them now
respect the presence or absence of the :utf8 layer on the output handle, instead of outputting
UTF8 regardless. Also, the correct names are included in the strings passed to
$SIG{_ _WARN_ _} handlers, rather than the raw UTF8 bytes.

Utility Changes
h2ph

• h2ph used to generate code of the form

unless(defined(&FOO)) {
sub FOO () {42;}

}

But the subroutine is a compile-time declaration, and is hence unaffected by the condition. It has
now been corrected to emit a string eval around the subroutine [perl #99368].

splain

perl v5.36.0 2021-04-29 179

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• splain no longer emits backtraces with the first line number repeated.

This:

Uncaught exception from user code:
Cannot fwiddle the fwuddle at -e line 1.

at -e line 1
main::baz() called at -e line 1
main::bar() called at -e line 1
main::foo() called at -e line 1

has become this:

Uncaught exception from user code:
Cannot fwiddle the fwuddle at -e line 1.
main::baz() called at -e line 1
main::bar() called at -e line 1
main::foo() called at -e line 1

• Some error messages consist of multiple lines that are listed as separate entries in perldiag. splain
has been taught to find the separate entries in these cases, instead of simply failing to find the
message.

zipdetails

• This is a new utility, included as part of an IO::Compress::Base upgrade.

zipdetails displays information about the internal record structure of the zip file. It is not
concerned with displaying any details of the compressed data stored in the zip file.

Configuration and Compilation
• regexp.h has been modified for compatibility with GCC’s -Werror option, as used by some

projects that include perl’s header files (5.14.1).

• USE_LOCALE{,_COLLATE,_CTYPE,_NUMERIC} have been added the output of perl -V as
they have affect the behavior of the interpreter binary (albeit in only a small area).

• The code and tests for IPC::Open2 have been moved from ext/IPC-Open2 into ext/IPC-Open3,
as IPC::Open2::open2() is implemented as a thin wrapper around
IPC::Open3::_open3(), and hence is very tightly coupled to it.

• The magic types and magic vtables are now generated from data in a new script
regen/mg_vtable.pl, instead of being maintained by hand. As different EBCDIC variants can’t
agree on the code point for ’˜’, the character to code point conversion is done at build time by
generate_uudmap to a new generated header mg_data.h. PL_vtbl_bm and PL_vtbl_fm are
now defined by the pre-processor as PL_vtbl_regexp, instead of being distinct C variables.
PL_vtbl_sig has been removed.

• Building with -DPERL_GLOBAL_STRUCT works again. This configuration is not generally
used.

• Perl configured with MAD now correctly frees MADPROP structures when OPs are freed.
MADPROPs are now allocated with PerlMemShared_malloc()

• makedef.pl has been refactored. This should have no noticeable affect on any of the platforms that
use it as part of their build (AIX, VMS, Win32).

• useperlio can no longer be disabled.

• The file global.sym is no longer needed, and has been removed. It contained a list of all exported
functions, one of the files generated by regen/embed.pl from data in embed.fnc and regen/opcodes.
The code has been refactored so that the only user of global.sym, makedef.pl, now reads embed.fnc
and regen/opcodes directly, removing the need to store the list of exported functions in an
intermediate file.

As global.sym was never installed, this change should not be visible outside the build process.

perl v5.36.0 2021-04-29 180

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• pod/buildtoc, used by the build process to build perltoc, has been refactored and simplified. It now
contains only code to build perltoc; the code to regenerate Makefiles has been moved to
Porting/pod_rules.pl. It’s a bug if this change has any material effect on the build process.

• pod/roffitall is now built by pod/buildtoc, instead of being shipped with the distribution. Its list of
manpages is now generated (and therefore current). See also RT #103202 for an unresolved
related issue.

• The man page for XS::Typemap is no longer installed. XS::Typemap is a test module which
is not installed, hence installing its documentation makes no sense.

• The -Dusesitecustomize and -Duserelocatableinc options now work together properly.

Platform Support
Platform-Specific Notes

Cygwin

• Since version 1.7, Cygwin supports native UTF-8 paths. If Perl is built under that environment,
directory and filenames will be UTF-8 encoded.

• Cygwin does not initialize all original Win32 environment variables. See README.cygwin for a
discussion of the newly-added Cygwin::sync_winenv() function [perl #110190] and for
further links.

HP-UX

• HP-UX PA-RISC/64 now supports gcc-4.x

A fix to correct the socketsize now makes the test suite pass on HP-UX PA-RISC for 64bitall
builds. (5.14.2)

VMS

• Remove unnecessary includes, fix miscellaneous compiler warnings and close some unclosed
comments on vms/vms.c.

• Remove sockadapt layer from the VMS build.

• Explicit support for VMS versions before v7.0 and DEC C versions before v6.0 has been removed.

• Since Perl 5.10.1, the home-grown stat wrapper has been unable to distinguish between a
directory name containing an underscore and an otherwise-identical filename containing a dot in
the same position (e.g., t/test_pl as a directory and t/test.pl as a file). This problem has been
corrected.

• The build on VMS now permits names of the resulting symbols in C code for Perl longer than 31
characters. Symbols like
Perl_ _it_was_the_best_of_times_it_was_the_worst_of_times can now be
created freely without causing the VMS linker to seize up.

GNU/Hurd

• Numerous build and test failures on GNU/Hurd have been resolved with hints for building DBM
modules, detection of the library search path, and enabling of large file support.

OpenVOS

• Perl is now built with dynamic linking on OpenVOS, the minimum supported version of which is
now Release 17.1.0.

SunOS

The CC workshop C++ compiler is now detected and used on systems that ship without cc.

Internal Changes
• The compiled representation of formats is now stored via the mg_ptr of their

PERL_MAGIC_fm. Previously it was stored in the string buffer, beyond SvLEN(), the regular
end of the string. SvCOMPILED() and SvCOMPILED_{on,off}() now exist solely for
compatibility for XS code. The first is always 0, the other two now no-ops. (5.14.1)

perl v5.36.0 2021-04-29 181

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• Some global variables have been marked const, members in the interpreter structure have been
re-ordered, and the opcodes have been re-ordered. The op OP_AELEMFAST has been split into
OP_AELEMFAST and OP_AELEMFAST_LEX.

• When empting a hash of its elements (e.g., via undef(%h), or %h=()), HvARRAY field is no longer
temporarily zeroed. Any destructors called on the freed elements see the remaining elements.
Thus, %h=() becomes more like delete $h{$_} for keys %h.

• Boyer-Moore compiled scalars are now PVMGs, and the Boyer-Moore tables are now stored via
the mg_ptr of their PERL_MAGIC_bm. Previously they were PVGVs, with the tables stored in
the string buffer, beyond SvLEN(). This eliminates the last place where the core stores data
beyond SvLEN().

• Simplified logic in Perl_sv_magic() introduces a small change of behavior for error cases
involving unknown magic types. Previously, if Perl_sv_magic() was passed a magic type
unknown to it, it would

1. Croak ‘‘Modification of a read-only value attempted’’ if read only

2. Return without error if the SV happened to already have this magic

3. otherwise croak ‘‘Don’t know how to handle magic of type \\%o’’

Now it will always croak ‘‘Don’t know how to handle magic of type \\%o’’, even on read-only
values, or SVs which already have the unknown magic type.

• The experimental fetch_cop_label function has been renamed to cop_fetch_label.

• The cop_store_label function has been added to the API, but is experimental.

• embedvar.h has been simplified, and one level of macro indirection for PL_* variables has been
removed for the default (non-multiplicity) configuration. PERLVAR*() macros now directly
expand their arguments to tokens such as PL_defgv, instead of expanding to PL_Idefgv, with
embedvar.h defining a macro to map PL_Idefgv to PL_defgv. XS code which has
unwarranted chumminess with the implementation may need updating.

• An API has been added to explicitly choose whether to export XSUB symbols. More detail can be
found in the comments for commit e64345f8.

• The is_gv_magical_sv function has been eliminated and merged with
gv_fetchpvn_flags. It used to be called to determine whether a GV should be autovivified
in rvalue context. Now it has been replaced with a new GV_ADDMG flag (not part of the API).

• The returned code point from the function utf8n_to_uvuni() when the input is malformed
UTF-8, malformations are allowed, and utf8 warnings are off is now the Unicode
REPLACEMENT CHARACTER whenever the malformation is such that no well-defined code point
can be computed. Previously the returned value was essentially garbage. The only malformations
that have well-defined values are a zero-length string (0 is the return), and overlong UTF-8
sequences.

• Padlists are now marked AvREAL; i.e., reference-counted. They have always been reference-
counted, but were not marked real, because pad.c did its own clean-up, instead of using the usual
clean-up code in sv.c. That caused problems in thread cloning, so now the AvREAL flag is on, but
is turned off in pad.c right before the padlist is freed (after pad.c has done its custom freeing of the
pads).

• All C files that make up the Perl core have been converted to UTF-8.

• These new functions have been added as part of the work on Unicode symbols:

perl v5.36.0 2021-04-29 182

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

HvNAMELEN
HvNAMEUTF8
HvENAMELEN
HvENAMEUTF8
gv_init_pv
gv_init_pvn
gv_init_pvsv
gv_fetchmeth_pv
gv_fetchmeth_pvn
gv_fetchmeth_sv
gv_fetchmeth_pv_autoload
gv_fetchmeth_pvn_autoload
gv_fetchmeth_sv_autoload
gv_fetchmethod_pv_flags
gv_fetchmethod_pvn_flags
gv_fetchmethod_sv_flags
gv_autoload_pv
gv_autoload_pvn
gv_autoload_sv
newGVgen_flags
sv_derived_from_pv
sv_derived_from_pvn
sv_derived_from_sv
sv_does_pv
sv_does_pvn
sv_does_sv
whichsig_pv
whichsig_pvn
whichsig_sv
newCONSTSUB_flags

The gv_fetchmethod_*_flags functions, like gv_fetchmethod_flags, are experimental and may
change in a future release.

• The following functions were added. These are not part of the API:

GvNAMEUTF8
GvENAMELEN
GvENAME_HEK
CopSTASH_flags
CopSTASH_flags_set
PmopSTASH_flags
PmopSTASH_flags_set
sv_sethek
HEKfARG

There is also a HEKf macro corresponding to SVf, for interpolating HEKs in formatted strings.

• sv_catpvn_flags takes a couple of new internal-only flags, SV_CATBYTES and
SV_CATUTF8, which tell it whether the char array to be concatenated is UTF8. This allows for
more efficient concatenation than creating temporary SVs to pass to sv_catsv.

• For XS AUTOLOAD subs, $AUTOLOAD is set once more, as it was in 5.6.0. This is in addition to
setting SvPVX(cv), for compatibility with 5.8 to 5.14. See ‘‘Autoloading with XSUBs’’ in
perlguts.

• Perl now checks whether the array (the linearized isa) returned by a MRO plugin begins with the
name of the class itself, for which the array was created, instead of assuming that it does. This
prevents the first element from being skipped during method lookup. It also means that
mro::get_linear_isa may return an array with one more element than the MRO plugin
provided [perl #94306].

perl v5.36.0 2021-04-29 183

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• PL_curstash is now reference-counted.

• There are now feature bundle hints in PL_hints ($ˆH) that version declarations use, to avoid
having to load feature.pm. One setting of the hint bits indicates a ‘‘custom’’ feature bundle, which
means that the entries in %ˆH still apply. feature.pm uses that.

The HINT_FEATURE_MASK macro is defined in perl.h along with other hints. Other macros for
setting and testing features and bundles are in the new feature.h. FEATURE_IS_ENABLED
(which has moved to feature.h) is no longer used throughout the codebase, but more specific
macros, e.g., FEATURE_SAY_IS_ENABLED, that are defined in feature.h.

• lib/feature.pm is now a generated file, created by the new regen/feature.pl script, which also
generates feature.h.

• Tied arrays are now always AvREAL. If @_ or DB::args is tied, it is reified first, to make sure
this is always the case.

• Two new functions utf8_to_uvchr_buf() and utf8_to_uvuni_buf() have been
added. These are the same as utf8_to_uvchr and utf8_to_uvuni (which are now
deprecated), but take an extra parameter that is used to guard against reading beyond the end of
the input string. See ‘‘utf8_to_uvchr_buf’’ in perlapi and ‘‘utf8_to_uvuni_buf’’ in perlapi.

• The regular expression engine now does TRIE case insensitive matches under Unicode. This may
change the output of use re 'debug';, and will speed up various things.

• There is a new wrap_op_checker() function, which provides a thread-safe alternative to
writing to PL_check directly.

Selected Bug Fixes
Array and hash

• A bug has been fixed that would cause a ‘‘Use of freed value in iteration’’ error if the next two
hash elements that would be iterated over are deleted [perl #85026]. (5.14.1)

• Deleting the current hash iterator (the hash element that would be returned by the next call to
each) in void context used not to free it [perl #85026].

• Deletion of methods via delete $Class::{method} syntax used to update method caches
if called in void context, but not scalar or list context.

• When hash elements are deleted in void context, the internal hash entry is now freed before the
value is freed, to prevent destructors called by that latter freeing from seeing the hash in an
inconsistent state. It was possible to cause double-frees if the destructor freed the hash itself [perl
#100340].

• A keys optimization in Perl 5.12.0 to make it faster on empty hashes caused each not to reset
the iterator if called after the last element was deleted.

• Freeing deeply nested hashes no longer crashes [perl #44225].

• It is possible from XS code to create hashes with elements that have no values. The hash element
and slice operators used to crash when handling these in lvalue context. They now produce a
‘‘Modification of non-creatable hash value attempted’’ error message.

• If list assignment to a hash or array triggered destructors that freed the hash or array itself, a crash
would ensue. This is no longer the case [perl #107440].

• It used to be possible to free the typeglob of a localized array or hash (e.g., local @{"x"};
delete $::{x}), resulting in a crash on scope exit.

• Some core bugs affecting Hash::Util have been fixed: locking a hash element that is a glob copy
no longer causes the next assignment to it to corrupt the glob (5.14.2), and unlocking a hash
element that holds a copy-on-write scalar no longer causes modifications to that scalar to modify
other scalars that were sharing the same string buffer.

C API fixes
• The newHVhv XS function now works on tied hashes, instead of crashing or returning an empty

hash.

perl v5.36.0 2021-04-29 184

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• The SvIsCOW C macro now returns false for read-only copies of typeglobs, such as those created
by:

$hash{elem} = *foo;
Hash::Util::lock_value %hash, 'elem';

It used to return true.

• The SvPVutf8 C function no longer tries to modify its argument, resulting in errors [perl
#108994].

• SvPVutf8 now works properly with magical variables.

• SvPVbyte now works properly non-PVs.

• When presented with malformed UTF-8 input, the XS-callable functions is_utf8_string(),
is_utf8_string_loc(), and is_utf8_string_loclen() could read beyond the end
of the input string by up to 12 bytes. This no longer happens. [perl #32080]. However, currently,
is_utf8_char() still has this defect, see ‘‘is_utf8_char()’’ above.

• The C-level pregcomp function could become confused about whether the pattern was in UTF8
if the pattern was an overloaded, tied, or otherwise magical scalar [perl #101940].

Compile-time hints
• Tying %ˆH no longer causes perl to crash or ignore the contents of %ˆH when entering a

compilation scope [perl #106282].

• eval $string and require used not to localize %ˆH during compilation if it was empty at
the time the eval call itself was compiled. This could lead to scary side effects, like use re
"/m" enabling other flags that the surrounding code was trying to enable for its caller [perl
#68750].

• eval $string and require no longer localize hints ($ˆH and %ˆH) at run time, but only
during compilation of the $string or required file. This makes BEGIN { $ˆH{foo}=7 }
equivalent to BEGIN { eval '$ˆH{foo}=7' } [perl #70151].

• Creating a BEGIN block from XS code (via newXS or newATTRSUB) would, on completion,
make the hints of the current compiling code the current hints. This could cause warnings to
occur in a non-warning scope.

Copy-on-write scalars
Copy-on-write or shared hash key scalars were introduced in 5.8.0, but most Perl code did not
encounter them (they were used mostly internally). Perl 5.10.0 extended them, such that assigning
_ _PACKAGE_ _ or a hash key to a scalar would make it copy-on-write. Several parts of Perl were not
updated to account for them, but have now been fixed.

• utf8::decode had a nasty bug that would modify copy-on-write scalars’ string buffers in place
(i.e., skipping the copy). This could result in hashes having two elements with the same key [perl
#91834]. (5.14.2)

• Lvalue subroutines were not allowing COW scalars to be returned. This was fixed for lvalue scalar
context in Perl 5.12.3 and 5.14.0, but list context was not fixed until this release.

• Elements of restricted hashes (see the fields pragma) containing copy-on-write values couldn’t be
deleted, nor could such hashes be cleared (%hash = ()). (5.14.2)

• Localizing a tied variable used to make it read-only if it contained a copy-on-write string. (5.14.2)

• Assigning a copy-on-write string to a stash element no longer causes a double free. Regardless of
this change, the results of such assignments are still undefined.

• Assigning a copy-on-write string to a tied variable no longer stops that variable from being tied if
it happens to be a PVMG or PVLV internally.

• Doing a substitution on a tied variable returning a copy-on-write scalar used to cause an assertion
failure or an ‘‘Attempt to free nonexistent shared string’’ warning.

• This one is a regression from 5.12: In 5.14.0, the bitwise assignment operators |=, ˆ= and &=
started leaving the left-hand side undefined if it happened to be a copy-on-write string [perl
#108480].

perl v5.36.0 2021-04-29 185

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• Storable, Devel::Peek and PerlIO::scalar had similar problems. See ‘‘Updated Modules and
Pragmata’’, above.

The debugger
• dumpvar.pl, and therefore the x command in the debugger, have been fixed to handle objects

blessed into classes whose names contain ‘‘=’’. The contents of such objects used not to be
dumped [perl #101814].

• The ‘‘R’’ command for restarting a debugger session has been fixed to work on Windows, or any
other system lacking a POSIX::_SC_OPEN_MAX constant [perl #87740].

• The #line 42 foo directive used not to update the arrays of lines used by the debugger if it
occurred in a string eval. This was partially fixed in 5.14, but it worked only for a single #line
42 foo in each eval. Now it works for multiple.

• When subroutine calls are intercepted by the debugger, the name of the subroutine or a reference
to it is stored in $DB::sub, for the debugger to access. Sometimes (such as $foo = *bar;
undef *bar; &$foo) $DB::sub would be set to a name that could not be used to find the
subroutine, and so the debugger’s attempt to call it would fail. Now the check to see whether a
reference is needed is more robust, so those problems should not happen anymore [rt.cpan.org
#69862].

• Every subroutine has a filename associated with it that the debugger uses. The one associated
with constant subroutines used to be misallocated when cloned under threads. Consequently,
debugging threaded applications could result in memory corruption [perl #96126].

Dereferencing operators
• defined(${"..."}), defined(*{"..."}), etc., used to return true for most, but not all

built-in variables, if they had not been used yet. This bug affected ${ˆGLOBAL_PHASE} and
${ˆUTF8CACHE}, among others. It also used to return false if the package name was given as
well (${"::!"}) [perl #97978, #97492].

• Perl 5.10.0 introduced a similar bug: defined(*{"foo"}) where ‘‘foo’’ represents the name
of a built-in global variable used to return false if the variable had never been used before, but only
on the first call. This, too, has been fixed.

• Since 5.6.0, *{ ... } has been inconsistent in how it treats undefined values. It would die in
strict mode or lvalue context for most undefined values, but would be treated as the empty string
(with a warning) for the specific scalar return by undef() (&PL_sv_undef internally). This
has been corrected. undef() is now treated like other undefined scalars, as in Perl 5.005.

Filehandle, last-accessed
Perl has an internal variable that stores the last filehandle to be accessed. It is used by $. and by tell
and eof without arguments.

• It used to be possible to set this internal variable to a glob copy and then modify that glob copy to
be something other than a glob, and still have the last-accessed filehandle associated with the
variable after assigning a glob to it again:

my $foo = *STDOUT; # $foo is a glob copy
<$foo>; # $foo is now the last-accessed handle
$foo = 3; # no longer a glob
$foo = *STDERR; # still the last-accessed handle

Now the $foo = 3 assignment unsets that internal variable, so there is no last-accessed
filehandle, just as if <$foo> had never happened.

This also prevents some unrelated handle from becoming the last-accessed handle if $foo falls
out of scope and the same internal SV gets used for another handle [perl #97988].

• A regression in 5.14 caused these statements not to set that internal variable:

perl v5.36.0 2021-04-29 186

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

my $fh = *STDOUT;
tell $fh;
eof $fh;
seek $fh, 0,0;
tell *$fh;
eof *$fh;
seek *$fh, 0,0;
readline *$fh;

This is now fixed, but tell *{ *$fh } still has the problem, and it is not clear how to fix it
[perl #106536].

Filetests and stat
The term ‘‘filetests’’ refers to the operators that consist of a hyphen followed by a single letter: -r, -x,
-M, etc. The term ‘‘stacked’’ when applied to filetests means followed by another filetest operator
sharing the same operand, as in -r -x -w $fooo.

• stat produces more consistent warnings. It no longer warns for ‘‘_’’ [perl #71002] and no
longer skips the warning at times for other unopened handles. It no longer warns about an
unopened handle when the operating system’s fstat function fails.

• stat would sometimes return negative numbers for large inode numbers, because it was using
the wrong internal C type. [perl #84590]

• lstat is documented to fall back to stat (with a warning) when given a filehandle. When
passed an IO reference, it was actually doing the equivalent of stat _ and ignoring the handle.

• -T _ with no preceding stat used to produce a confusing ‘‘uninitialized’’ warning, even though
there is no visible uninitialized value to speak of.

• -T, -B, -l and -t now work when stacked with other filetest operators [perl #77388].

• In 5.14.0, filetest ops (-r, -x, etc.) started calling FETCH on a tied argument belonging to the
previous argument to a list operator, if called with a bareword argument or no argument at all.
This has been fixed, so push @foo, $tied, -r no longer calls FETCH on $tied.

• In Perl 5.6, -l followed by anything other than a bareword would treat its argument as a file
name. That was changed in 5.8 for glob references (*foo), but not for globs themselves
(*foo). -l started returning undef for glob references without setting the last stat buffer that
the ‘‘_’’ handle uses, but only if warnings were turned on. With warnings off, it was the same as
5.6. In other words, it was simply buggy and inconsistent. Now the 5.6 behavior has been
restored.

• -l followed by a bareword no longer ‘‘eats’’ the previous argument to the list operator in whose
argument list it resides. Hence, print "bar", -l foo now actually prints ‘‘bar’’, because
-l on longer eats it.

• Perl keeps several internal variables to keep track of the last stat buffer, from which file(handle) it
originated, what type it was, and whether the last stat succeeded.

There were various cases where these could get out of synch, resulting in inconsistent or erratic
behavior in edge cases (every mention of -T applies to -B as well):

• -T HANDLE, even though it does a stat, was not resetting the last stat type, so an lstat
_ following it would merrily return the wrong results. Also, it was not setting the success
status.

• Freeing the handle last used by stat or a filetest could result in -T _ using an unrelated
handle.

• stat with an IO reference would not reset the stat type or record the filehandle for -T _ to
use.

• Fatal warnings could cause the stat buffer not to be reset for a filetest operator on an
unopened filehandle or -l on any handle. Fatal warnings also stopped -T from setting $!.

• When the last stat was on an unreadable file, -T _ is supposed to return undef, leaving the
last stat buffer unchanged. But it was setting the stat type, causing lstat _ to stop
working.

perl v5.36.0 2021-04-29 187

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• -T FILENAME was not resetting the internal stat buffers for unreadable files.

These have all been fixed.

Formats
• Several edge cases have been fixed with formats and formline; in particular, where the format

itself is potentially variable (such as with ties and overloading), and where the format and data
differ in their encoding. In both these cases, it used to possible for the output to be corrupted [perl
#91032].

• formline no longer converts its argument into a string in-place. So passing a reference to
formline no longer destroys the reference [perl #79532].

• Assignment to $ˆA (the format output accumulator) now recalculates the number of lines output.

given and when
• given was not scoping its implicit $_ properly, resulting in memory leaks or ‘‘Variable is not

available’’ warnings [perl #94682].

• given was not calling set-magic on the implicit lexical $_ that it uses. This meant, for example,
that pos would be remembered from one execution of the same given block to the next, even if
the input were a different variable [perl #84526].

• when blocks are now capable of returning variables declared inside the enclosing given block
[perl #93548].

The glob operator
• On OSes other than VMS, Perl’s glob operator (and the <...> form) use File::Glob underneath.

File::Glob splits the pattern into words, before feeding each word to its bsd_glob function.

There were several inconsistencies in the way the split was done. Now quotation marks (’ and ")
are always treated as shell-style word delimiters (that allow whitespace as part of a word) and
backslashes are always preserved, unless they exist to escape quotation marks. Before, those
would only sometimes be the case, depending on whether the pattern contained whitespace. Also,
escaped whitespace at the end of the pattern is no longer stripped [perl #40470].

• CORE::glob now works as a way to call the default globbing function. It used to respect
overrides, despite the CORE:: prefix.

• Under miniperl (used to configure modules when perl itself is built), glob now clears %ENV
before calling csh, since the latter croaks on some systems if it does not like the contents of the
LS_COLORS environment variable [perl #98662].

Lvalue subroutines
• Explicit return now returns the actual argument passed to return, instead of copying it [perl

#72724, #72706].

• Lvalue subroutines used to enforce lvalue syntax (i.e., whatever can go on the left-hand side of =)
for the last statement and the arguments to return. Since lvalue subroutines are not always called
in lvalue context, this restriction has been lifted.

• Lvalue subroutines are less restrictive about what values can be returned. It used to croak on
values returned by shift and delete and from other subroutines, but no longer does so [perl
#71172].

• Empty lvalue subroutines (sub :lvalue {}) used to return @_ in list context. All subroutines
used to do this, but regular subs were fixed in Perl 5.8.2. Now lvalue subroutines have been
likewise fixed.

• Autovivification now works on values returned from lvalue subroutines [perl #7946], as does
returning keys in lvalue context.

• Lvalue subroutines used to copy their return values in rvalue context. Not only was this a waste of
CPU cycles, but it also caused bugs. A ($) prototype would cause an lvalue sub to copy its return
value [perl #51408], and while(lvalue_sub() =˜ m/.../g) { ... } would loop
endlessly [perl #78680].

perl v5.36.0 2021-04-29 188

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• When called in potential lvalue context (e.g., subroutine arguments or a list passed to for), lvalue
subroutines used to copy any read-only value that was returned. E.g., sub :lvalue { $] }
would not return $], but a copy of it.

• When called in potential lvalue context, an lvalue subroutine returning arrays or hashes used to
bind the arrays or hashes to scalar variables, resulting in bugs. This was fixed in 5.14.0 if an array
were the first thing returned from the subroutine (but not for $scalar, @array or hashes
being returned). Now a more general fix has been applied [perl #23790].

• Method calls whose arguments were all surrounded with my() or our() (as in
$object->method(my($a,$b))) used to force lvalue context on the subroutine. This
would prevent lvalue methods from returning certain values.

• Lvalue sub calls that are not determined to be such at compile time (&$name or &{‘‘name’’}) are
no longer exempt from strict refs if they occur in the last statement of an lvalue subroutine [perl
#102486].

• Sub calls whose subs are not visible at compile time, if they occurred in the last statement of an
lvalue subroutine, would reject non-lvalue subroutines and die with ‘‘Can’t modify non-lvalue
subroutine call’’ [perl #102486].

Non-lvalue sub calls whose subs are visible at compile time exhibited the opposite bug. If the call
occurred in the last statement of an lvalue subroutine, there would be no error when the lvalue sub
was called in lvalue context. Perl would blindly assign to the temporary value returned by the
non-lvalue subroutine.

• AUTOLOAD routines used to take precedence over the actual sub being called (i.e., when
autoloading wasn’t needed), for sub calls in lvalue or potential lvalue context, if the subroutine
was not visible at compile time.

• Applying the :lvalue attribute to an XSUB or to an aliased subroutine stub with sub foo
:lvalue; syntax stopped working in Perl 5.12. This has been fixed.

• Applying the :lvalue attribute to subroutine that is already defined does not work properly, as the
attribute changes the way the sub is compiled. Hence, Perl 5.12 began warning when an attempt is
made to apply the attribute to an already defined sub. In such cases, the attribute is discarded.

But the change in 5.12 missed the case where custom attributes are also present: that case still
silently and ineffectively applied the attribute. That omission has now been corrected. sub foo
:lvalue :Whatever (when foo is already defined) now warns about the :lvalue attribute,
and does not apply it.

• A bug affecting lvalue context propagation through nested lvalue subroutine calls has been fixed.
Previously, returning a value in nested rvalue context would be treated as lvalue context by the
inner subroutine call, resulting in some values (such as read-only values) being rejected.

Overloading
• Arithmetic assignment ($left += $right) involving overloaded objects that rely on the

’nomethod’ override no longer segfault when the left operand is not overloaded.

• Errors that occur when methods cannot be found during overloading now mention the correct
package name, as they did in 5.8.x, instead of erroneously mentioning the ‘‘overload’’ package, as
they have since 5.10.0.

• Undefining %overload:: no longer causes a crash.

Prototypes of built-in keywords
• The prototype function no longer dies for the _ _FILE_ _, _ _LINE_ _ and _ _PACKAGE_ _

directives. It now returns an empty-string prototype for them, because they are syntactically
indistinguishable from nullary functions like time.

• prototype now returns undef for all overridable infix operators, such as eq, which are not
callable in any way resembling functions. It used to return incorrect prototypes for some and die
for others [perl #94984].

• The prototypes of several built-in functions — getprotobynumber, lock, not and
select--have been corrected, or at least are now closer to reality than before.

perl v5.36.0 2021-04-29 189

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

Regular expressions
• /[[:ascii:]]/ and /[[:blank:]]/ now use locale rules under use locale when the

platform supports that. Previously, they used the platform’s native character set.

• m/[[:ascii:]]/i and /\p{ASCII}/i now match identically (when not under a differing
locale). This fixes a regression introduced in 5.14 in which the first expression could match
characters outside of ASCII, such as the KELVIN SIGN.

• /.*/g would sometimes refuse to match at the end of a string that ends with ‘‘\n’’. This has been
fixed [perl #109206].

• Starting with 5.12.0, Perl used to get its internal bookkeeping muddled up after assigning ${
qr// } to a hash element and locking it with Hash::Util. This could result in double frees,
crashes, or erratic behavior.

• The new (in 5.14.0) regular expression modifier /a when repeated like /aa forbids the characters
outside the ASCII range that match characters inside that range from matching under /i. This did
not work under some circumstances, all involving alternation, such as:

"\N{KELVIN SIGN}" =˜ /k|foo/iaa;

succeeded inappropriately. This is now fixed.

• 5.14.0 introduced some memory leaks in regular expression character classes such as [\w\s],
which have now been fixed. (5.14.1)

• An edge case in regular expression matching could potentially loop. This happened only under
/i in bracketed character classes that have characters with multi-character folds, and the target
string to match against includes the first portion of the fold, followed by another character that has
a multi-character fold that begins with the remaining portion of the fold, plus some more.

"s\N{U+DF}" =˜ /[\x{DF}foo]/i

is one such case. \xDF folds to "ss". (5.14.1)

• A few characters in regular expression pattern matches did not match correctly in some
circumstances, all involving /i. The affected characters are: COMBINING GREEK
YPOGEGRAMMENI, GREEK CAPITAL LETTER IOTA, GREEK CAPITAL LETTER UPSILON,
GREEK PROSGEGRAMMENI, GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA,
GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS, GREEK SMALL LETTER UPSILON
WITH DIALYTIKA AND OXIA, GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND
TONOS, LATIN SMALL LETTER LONG S, LATIN SMALL LIGATURE LONG S T, and LATIN SMALL
LIGATURE ST.

• A memory leak regression in regular expression compilation under threading has been fixed.

• A regression introduced in 5.14.0 has been fixed. This involved an inverted bracketed character
class in a regular expression that consisted solely of a Unicode property. That property wasn’t
getting inverted outside the Latin1 range.

• Three problematic Unicode characters now work better in regex pattern matching under /i.

In the past, three Unicode characters: LATIN SMALL LETTER SHARP S, GREEK SMALL LETTER
IOTA WITH DIALYTIKA AND TONOS, and GREEK SMALL LETTER UPSILON WITH DIALYTIKA
AND TONOS, along with the sequences that they fold to (including ‘‘ss’’ for LATIN SMALL
LETTER SHARP S), did not properly match under /i. 5.14.0 fixed some of these cases, but
introduced others, including a panic when one of the characters or sequences was used in the
(?(DEFINE) regular expression predicate. The known bugs that were introduced in 5.14 have
now been fixed; as well as some other edge cases that have never worked until now. These all
involve using the characters and sequences outside bracketed character classes under /i. This
closes [perl #98546].

There remain known problems when using certain characters with multi-character folds inside
bracketed character classes, including such constructs as qr/[\N{LATIN SMALL LETTER
SHARP}a-z]/i. These remaining bugs are addressed in [perl #89774].

perl v5.36.0 2021-04-29 190

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• RT #78266: The regex engine has been leaking memory when accessing named captures that
weren’t matched as part of a regex ever since 5.10 when they were introduced; e.g., this would
consume over a hundred MB of memory:

for (1..10_000_000) {
if ("foo" =˜ /(foo|(?<capture>bar))?/) {

my $capture = $+{capture}
}

}
system "ps -o rss $$"'

• In 5.14, /[[:lower:]]/i and /[[:upper:]]/i no longer matched the opposite case. This
has been fixed [perl #101970].

• A regular expression match with an overloaded object on the right-hand side would sometimes
stringify the object too many times.

• A regression has been fixed that was introduced in 5.14, in /i regular expression matching, in
which a match improperly fails if the pattern is in UTF-8, the target string is not, and a Latin-1
character precedes a character in the string that should match the pattern. [perl #101710]

• In case-insensitive regular expression pattern matching, no longer on UTF-8 encoded strings does
the scan for the start of match look only at the first possible position. This caused matches such as
"f\x{FB00}" =˜ /ff/i to fail.

• The regexp optimizer no longer crashes on debugging builds when merging fixed-string nodes
with inconvenient contents.

• A panic involving the combination of the regular expression modifiers /aa and the \b escape
sequence introduced in 5.14.0 has been fixed [perl #95964]. (5.14.2)

• The combination of the regular expression modifiers /aa and the \b and \B escape sequences did
not work properly on UTF-8 encoded strings. All non-ASCII characters under /aa should be
treated as non-word characters, but what was happening was that Unicode rules were used to
determine wordness/non-wordness for non-ASCII characters. This is now fixed [perl #95968].

• (?foo: ...) no longer loses passed in character set.

• The trie optimization used to have problems with alternations containing an empty (?:), causing
"x" =˜ /\A(?>(?:(?:)A|B|C?x))\z/ not to match, whereas it should [perl #111842].

• Use of lexical (my) variables in code blocks embedded in regular expressions will no longer result
in memory corruption or crashes.

Nevertheless, these code blocks are still experimental, as there are still problems with the wrong
variables being closed over (in loops for instance) and with abnormal exiting (e.g., die) causing
memory corruption.

• The \h, \H, \v and \V regular expression metacharacters used to cause a panic error message
when trying to match at the end of the string [perl #96354].

• The abbreviations for four C1 control characters MW PM, RI, and ST were previously
unrecognized by \N{}, vianame(), and string_vianame().

• Mentioning a variable named ‘‘&’’ other than $& (i.e., @& or %&) no longer stops $& from
working. The same applies to variables named ‘‘’’’ and ‘‘‘’’ [perl #24237].

• Creating a UNIVERSAL::AUTOLOAD sub no longer stops %+, %- and %! from working some of
the time [perl #105024].

Smartmatching
• ˜˜ now correctly handles the precedence of Any˜˜Object, and is not tricked by an overloaded

object on the left-hand side.

• In Perl 5.14.0, $tainted ˜˜ @array stopped working properly. Sometimes it would
erroneously fail (when $tainted contained a string that occurs in the array after the first
element) or erroneously succeed (when undef occurred after the first element) [perl #93590].

perl v5.36.0 2021-04-29 191

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

The sort operator
• sort was not treating sub {} and sub {()} as equivalent when such a sub was provided as

the comparison routine. It used to croak on sub {()}.

• sort now works once more with custom sort routines that are XSUBs. It stopped working in
5.10.0.

• sort with a constant for a custom sort routine, although it produces unsorted results, no longer
crashes. It started crashing in 5.10.0.

• Warnings emitted by sort when a custom comparison routine returns a non-numeric value now
contain ‘‘in sort’’ and show the line number of the sort operator, rather than the last line of the
comparison routine. The warnings also now occur only if warnings are enabled in the scope
where sort occurs. Previously the warnings would occur if enabled in the comparison routine’s
scope.

• sort { $a <=> $b }, which is optimized internally, now produces ‘‘uninitialized’’ warnings
for NaNs (not-a-number values), since <=> returns undef for those. This brings it in line with
sort { 1; $a <=> $b } and other more complex cases, which are not optimized [perl
#94390].

The substr operator
• Tied (and otherwise magical) variables are no longer exempt from the ‘‘Attempt to use reference

as lvalue in substr’’ warning.

• That warning now occurs when the returned lvalue is assigned to, not when substr itself is
called. This makes a difference only if the return value of substr is referenced and later
assigned to.

• Passing a substring of a read-only value or a typeglob to a function (potential lvalue context) no
longer causes an immediate ‘‘Can’t coerce’’ or ‘‘Modification of a read-only value’’ error. That
error occurs only if the passed value is assigned to.

The same thing happens with the ‘‘substr outside of string’’ error. If the lvalue is only read from,
not written to, it is now just a warning, as with rvalue substr.

• substr assignments no longer call FETCH twice if the first argument is a tied variable, just once.

Support for embedded nulls
Some parts of Perl did not work correctly with nulls (chr 0) embedded in strings. That meant that,
for instance, $m = "a\0b"; foo->$m would call the ‘‘a’’ method, instead of the actual method
name contained in $m. These parts of perl have been fixed to support nulls:

• Method names

• Typeglob names (including filehandle and subroutine names)

• Package names, including the return value of ref()

• Typeglob elements (*foo{"THING\0stuff"})

• Signal names

• Various warnings and error messages that mention variable names or values, methods, etc.

One side effect of these changes is that blessing into ‘‘\0’’ no longer causes ref() to return false.

Threading bugs
• Typeglobs returned from threads are no longer cloned if the parent thread already has a glob with

the same name. This means that returned subroutines will now assign to the right package
variables [perl #107366].

• Some cases of threads crashing due to memory allocation during cloning have been fixed [perl
#90006].

• Thread joining would sometimes emit ‘‘Attempt to free unreferenced scalar’’ warnings if caller
had been used from the DB package before thread creation [perl #98092].

• Locking a subroutine (via lock &sub) is no longer a compile-time error for regular subs. For
lvalue subroutines, it no longer tries to return the sub as a scalar, resulting in strange side effects
like ref \$_ returning ‘‘CODE’’ in some instances.

perl v5.36.0 2021-04-29 192

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

lock &sub is now a run-time error if threads::shared is loaded (a no-op otherwise), but that may
be rectified in a future version.

Tied variables
• Various cases in which FETCH was being ignored or called too many times have been fixed:

• PerlIO::get_layers [perl #97956]

• $tied =˜ y/a/b/, chop $tied and chomp $tied when $tied holds a reference.

• When calling local $_ [perl #105912]

• Four-argument select

• A tied buffer passed to sysread

• $tied .= <>

• Three-argument open, the third being a tied file handle (as in open $fh, ">&",
$tied)

• sort with a reference to a tied glob for the comparison routine.

• .. and ... in list context [perl #53554].

• ${$tied}, @{$tied}, %{$tied} and *{$tied} where the tied variable returns a
string (&{} was unaffected)

• defined ${ $tied_variable }

• Various functions that take a filehandle argument in rvalue context (close, readline,
etc.) [perl #97482]

• Some cases of dereferencing a complex expression, such as ${ (), $tied } = 1, used
to call FETCH multiple times, but now call it once.

• $tied->method where $tied returns a package name — even resulting in a failure to
call the method, due to memory corruption

• Assignments like *$tied = \&{"..."} and *glob = $tied

• chdir, chmod, chown, utime, truncate, stat, lstat and the filetest ops (-r, -x,
etc.)

• caller sets @DB::args to the subroutine arguments when called from the DB package. It
used to crash when doing so if @DB::args happened to be tied. Now it croaks instead.

• Tying an element of %ENV or %ˆH and then deleting that element would result in a call to the tie
object’s DELETE method, even though tying the element itself is supposed to be equivalent to
tying a scalar (the element is, of course, a scalar) [perl #67490].

• When Perl autovivifies an element of a tied array or hash (which entails calling STORE with a new
reference), it now calls FETCH immediately after the STORE, instead of assuming that FETCH
would have returned the same reference. This can make it easier to implement tied objects [perl
#35865, #43011].

• Four-argument select no longer produces its ‘‘Non-string passed as bitmask’’ warning on tied
or tainted variables that are strings.

• Localizing a tied scalar that returns a typeglob no longer stops it from being tied till the end of the
scope.

• Attempting to goto out of a tied handle method used to cause memory corruption or crashes.
Now it produces an error message instead [perl #8611].

• A bug has been fixed that occurs when a tied variable is used as a subroutine reference: if the last
thing assigned to or returned from the variable was a reference or typeglob, the \&$tied could
either crash or return the wrong subroutine. The reference case is a regression introduced in Perl
5.10.0. For typeglobs, it has probably never worked till now.

Version objects and vstrings
• The bitwise complement operator (and possibly other operators, too) when passed a vstring would

leave vstring magic attached to the return value, even though the string had changed. This meant
that version->new(˜v1.2.3) would create a version looking like ‘‘v1.2.3’’ even though the

perl v5.36.0 2021-04-29 193

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

string passed to version->new was actually ‘‘\376\375\374’’. This also caused B::Deparse to
deparse ˜v1.2.3 incorrectly, without the ˜ [perl #29070].

• Assigning a vstring to a magic (e.g., tied, $!) variable and then assigning something else used to
blow away all magic. This meant that tied variables would come undone, $! would stop getting
updated on failed system calls, $| would stop setting autoflush, and other mischief would take
place. This has been fixed.

• version->new("version") and printf "%vd", "version" no longer crash [perl
#102586].

• Version comparisons, such as those that happen implicitly with use v5.43, no longer cause
locale settings to change [perl #105784].

• Version objects no longer cause memory leaks in boolean context [perl #109762].

Warnings, redefinition
• Subroutines from the autouse namespace are once more exempt from redefinition warnings.

This used to work in 5.005, but was broken in 5.6 for most subroutines. For subs created via XS
that redefine subroutines from the autouse package, this stopped working in 5.10.

• New XSUBs now produce redefinition warnings if they overwrite existing subs, as they did in
5.8.x. (The autouse logic was reversed in 5.10-14. Only subroutines from the autouse
namespace would warn when clobbered.)

• newCONSTSUB used to use compile-time warning hints, instead of run-time hints. The following
code should never produce a redefinition warning, but it used to, if newCONSTSUB redefined an
existing subroutine:

use warnings;
BEGIN {

no warnings;
some_XS_function_that_calls_new_CONSTSUB();

}

• Redefinition warnings for constant subroutines are on by default (what are known as severe
warnings in perldiag). This occurred only when it was a glob assignment or declaration of a Perl
subroutine that caused the warning. If the creation of XSUBs triggered the warning, it was not a
default warning. This has been corrected.

• The internal check to see whether a redefinition warning should occur used to emit ‘‘uninitialized’’
warnings in cases like this:

use warnings "uninitialized";
use constant {u => undef, v => undef};
sub foo(){u}
sub foo(){v}

Warnings, ‘‘Uninitialized’’
• Various functions that take a filehandle argument in rvalue context (close, readline, etc.)

used to warn twice for an undefined handle [perl #97482].

• dbmopen now only warns once, rather than three times, if the mode argument is undef [perl
#90064].

• The += operator does not usually warn when the left-hand side is undef, but it was doing so for
tied variables. This has been fixed [perl #44895].

• A bug fix in Perl 5.14 introduced a new bug, causing ‘‘uninitialized’’ warnings to report the wrong
variable if the operator in question had two operands and one was %{...} or @{...}. This has
been fixed [perl #103766].

• .. and ... in list context now mention the name of the variable in ‘‘uninitialized’’ warnings for
string (as opposed to numeric) ranges.

Weak references
• Weakening the first argument to an automatically-invoked DESTROY method could result in

erroneous ‘‘DESTROY created new reference’’ errors or crashes. Now it is an error to weaken a
read-only reference.

perl v5.36.0 2021-04-29 194

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• Weak references to lexical hashes going out of scope were not going stale (becoming undefined),
but continued to point to the hash.

• Weak references to lexical variables going out of scope are now broken before any magical
methods (e.g., DESTROY on a tie object) are called. This prevents such methods from modifying
the variable that will be seen the next time the scope is entered.

• Creating a weak reference to an @ISA array or accessing the array index ($#ISA) could result in
confused internal bookkeeping for elements later added to the @ISA array. For instance, creating
a weak reference to the element itself could push that weak reference on to @ISA; and elements
added after use of $#ISA would be ignored by method lookup [perl #85670].

Other notable fixes
• quotemeta now quotes consistently the same non-ASCII characters under use feature

'unicode_strings' , regardless of whether the string is encoded in UTF-8 or not, hence
fixing the last vestiges (we hope) of the notorious ‘‘The ’’Unicode Bug"" in perlunicode. [perl
#77654].

Which of these code points is quoted has changed, based on Unicode’s recommendations. See
‘‘quotemeta’’ in perlfunc for details.

• study is now a no-op, presumably fixing all outstanding bugs related to study causing regex
matches to behave incorrectly!

• When one writes open foo || die, which used to work in Perl 4, a ‘‘Precedence problem’’
warning is produced. This warning used erroneously to apply to fully-qualified bareword handle
names not followed by ||. This has been corrected.

• After package aliasing (*foo:: = *bar::), select with 0 or 1 argument would sometimes
return a name that could not be used to refer to the filehandle, or sometimes it would return
undef even when a filehandle was selected. Now it returns a typeglob reference in such cases.

• PerlIO::get_layers no longer ignores some arguments that it thinks are numeric, while
treating others as filehandle names. It is now consistent for flat scalars (i.e., not references).

• Unrecognized switches on #! line

If a switch, such as -x, that cannot occur on the #! line is used there, perl dies with ‘‘Can’t
emulate...’’.

It used to produce the same message for switches that perl did not recognize at all, whether on the
command line or the #! line.

Now it produces the ‘‘Unrecognized switch’’ error message [perl #104288].

• system now temporarily blocks the SIGCHLD signal handler, to prevent the signal handler from
stealing the exit status [perl #105700].

• The %n formatting code for printf and sprintf, which causes the number of characters to be
assigned to the next argument, now actually assigns the number of characters, instead of the
number of bytes.

It also works now with special lvalue functions like substr and with nonexistent hash and array
elements [perl #3471, #103492].

• Perl skips copying values returned from a subroutine, for the sake of speed, if doing so would
make no observable difference. Because of faulty logic, this would happen with the result of
delete, shift or splice, even if the result was referenced elsewhere. It also did so with tied
variables about to be freed [perl #91844, #95548].

• utf8::decode now refuses to modify read-only scalars [perl #91850].

• Freeing $_ inside a grep or map block, a code block embedded in a regular expression, or an
@INC filter (a subroutine returned by a subroutine in @INC) used to result in double frees or
crashes [perl #91880, #92254, #92256].

• eval returns undef in scalar context or an empty list in list context when there is a run-time
error. When eval was passed a string in list context and a syntax error occurred, it used to return
a list containing a single undefined element. Now it returns an empty list in list context for all
errors [perl #80630].

perl v5.36.0 2021-04-29 195

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• goto &func no longer crashes, but produces an error message, when the unwinding of the
current subroutine’s scope fires a destructor that undefines the subroutine being ‘‘goneto’’ [perl
#99850].

• Perl now holds an extra reference count on the package that code is currently compiling in. This
means that the following code no longer crashes [perl #101486]:

package Foo;
BEGIN {*Foo:: = *Bar::}
sub foo;

• The x repetition operator no longer crashes on 64-bit builds with large repeat counts [perl
#94560].

• Calling require on an implicit $_ when *CORE::GLOBAL::require has been overridden
does not segfault anymore, and $_ is now passed to the overriding subroutine [perl #78260].

• use and require are no longer affected by the I/O layers active in the caller’s scope (enabled
by open.pm) [perl #96008].

• our $::é; $é (which is invalid) no longer produces the ‘‘Compilation error at
lib/utf8_heavy.pl...’’ error message, which it started emitting in 5.10.0 [perl #99984].

• On 64-bit systems, read() now understands large string offsets beyond the 32-bit range.

• Errors that occur when processing subroutine attributes no longer cause the subroutine’s op tree to
leak.

• Passing the same constant subroutine to both index and formline no longer causes one or the
other to fail [perl #89218]. (5.14.1)

• List assignment to lexical variables declared with attributes in the same statement (my ($x,@y)
: blimp = (72,94)) stopped working in Perl 5.8.0. It has now been fixed.

• Perl 5.10.0 introduced some faulty logic that made ‘‘U*’’ in the middle of a pack template
equivalent to ‘‘U0’’ if the input string was empty. This has been fixed [perl #90160]. (5.14.2)

• Destructors on objects were not called during global destruction on objects that were not
referenced by any scalars. This could happen if an array element were blessed (e.g., bless
\$a[0]) or if a closure referenced a blessed variable (bless \my @a; sub foo { @a }).

Now there is an extra pass during global destruction to fire destructors on any objects that might
be left after the usual passes that check for objects referenced by scalars [perl #36347].

• Fixed a case where it was possible that a freed buffer may have been read from when parsing a
here document [perl #90128]. (5.14.1)

• each(ARRAY) is now wrapped in defined(...), like each(HASH), inside a while
condition [perl #90888].

• A problem with context propagation when a do block is an argument to return has been fixed.
It used to cause undef to be returned in certain cases of a return inside an if block which
itself is followed by another return.

• Calling index with a tainted constant no longer causes constants in subsequently compiled code
to become tainted [perl #64804].

• Infinite loops like 1 while 1 used to stop strict 'subs' mode from working for the rest
of the block.

• For list assignments like ($a,$b) = ($b,$a), Perl has to make a copy of the items on the
right-hand side before assignment them to the left. For efficiency’s sake, it assigns the values on
the right straight to the items on the left if no one variable is mentioned on both sides, as in
($a,$b) = ($c,$d). The logic for determining when it can cheat was faulty, in that && and
|| on the right-hand side could fool it. So ($a,$b) = $some_true_value &&
($b,$a) would end up assigning the value of $b to both scalars.

• Perl no longer tries to apply lvalue context to the string in ("string", $variable) ||= 1
(which used to be an error). Since the left-hand side of ||= is evaluated in scalar context, that’s a
scalar comma operator, which gives all but the last item void context. There is no such thing as

perl v5.36.0 2021-04-29 196

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

void lvalue context, so it was a mistake for Perl to try to force it [perl #96942].

• caller no longer leaks memory when called from the DB package if @DB::args was assigned
to after the first call to caller. Carp was triggering this bug [perl #97010]. (5.14.2)

• close and similar filehandle functions, when called on built-in global variables (like $+), used to
die if the variable happened to hold the undefined value, instead of producing the usual ‘‘Use of
uninitialized value’’ warning.

• When autovivified file handles were introduced in Perl 5.6.0, readline was inadvertently made
to autovivify when called as readline($foo) (but not as <$foo>). It has now been fixed
never to autovivify.

• Calling an undefined anonymous subroutine (e.g., what $x holds after undef &{$x =
sub{}}) used to cause a ‘‘Not a CODE reference’’ error, which has been corrected to ‘‘Undefined
subroutine called’’ [perl #71154].

• Causing @DB::args to be freed between uses of caller no longer results in a crash [perl
#93320].

• setpgrp($foo) used to be equivalent to ($foo, setpgrp), because setpgrp was
ignoring its argument if there was just one. Now it is equivalent to setpgrp($foo,0).

• shmread was not setting the scalar flags correctly when reading from shared memory, causing
the existing cached numeric representation in the scalar to persist [perl #98480].

• ++ and -- now work on copies of globs, instead of dying.

• splice() doesn’t warn when truncating

You can now limit the size of an array using splice(@a,MAX_LEN) without worrying about
warnings.

• $$ is no longer tainted. Since this value comes directly from getpid(), it is always safe.

• The parser no longer leaks a filehandle if STDIN was closed before parsing started [perl #37033].

• die; with a non-reference, non-string, or magical (e.g., tainted) value in $@ now properly
propagates that value [perl #111654].

Known Problems
• On Solaris, we have two kinds of failure.

If make is Sun’s make, we get an error about a badly formed macro assignment in the Makefile.
That happens when ./Configure tries to make depends. Configure then exits 0, but further
make-ing fails.

If make is gmake, Configure completes, then we get errors related to /usr/include/stdbool.h

• On Win32, a number of tests hang unless STDERR is redirected. The cause of this is still under
investigation.

• When building as root with a umask that prevents files from being other-readable, t/op/filetest.t
will fail. This is a test bug, not a bug in perl’s behavior.

• Configuring with a recent gcc and link-time-optimization, such as Configure
-Doptimize='-O2 -flto' fails because the optimizer optimizes away some of Configure’s
tests. A workaround is to omit the -flto flag when running Configure, but add it back in while
actually building, something like

sh Configure -Doptimize=-O2
make OPTIMIZE='-O2 -flto'

• The following CPAN modules have test failures with perl 5.16. Patches have been submitted for
all of these, so hopefully there will be new releases soon:

• Date::Pcalc version 6.1

• Module::CPANTS::Analyse version 0.85

This fails due to problems in Module::Find 0.10 and File::MMagic 1.27.

perl v5.36.0 2021-04-29 197

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

• PerlIO::Util version 0.72

Acknowledgements
Perl 5.16.0 represents approximately 12 months of development since Perl 5.14.0 and contains
approximately 590,000 lines of changes across 2,500 files from 139 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.16.0:

Aaron Crane, Abhijit Menon-Sen, Abigail, Alan Haggai Alavi, Alberto Simões, Alexandr Ciornii,
Andreas Ko

..
nig, Andy Dougherty, Aristotle Pagaltzis, Bo Johansson, Bo Lindbergh, Breno G. de

Oliveira, brian d foy, Brian Fraser, Brian Greenfield, Carl Hayter, Chas. Owens, Chia-liang Kao, Chip
Salzenberg, Chris ’BinGOs’ Williams, Christian Hansen, Christopher J. Madsen, chromatic, Claes
Jacobsson, Claudio Ramirez, Craig A. Berry, Damian Conway, Daniel Kahn Gillmor, Darin McBride,
Dave Rolsky, David Cantrell, David Golden, David Leadbeater, David Mitchell, Dee Newcum, Dennis
Kaarsemaker, Dominic Hargreaves, Douglas Christopher Wilson, Eric Brine, Father Chrysostomos,
Florian Ragwitz, Frederic Briere, George Greer, Gerard Goossen, Gisle Aas, H.Merijn Brand, Hojung
Youn, Ian Goodacre, James E Keenan, Jan Dubois, Jerry D. Hedden, Jesse Luehrs, Jesse Vincent, Jilles
Tjoelker, Jim Cromie, Jim Meyering, Joel Berger, Johan Vromans, Johannes Plunien, John Hawkinson,
John P. Linderman, John Peacock, Joshua ben Jore, Juerd Waalboer, Karl Williamson, Karthik
Rajagopalan, Keith Thompson, Kevin J. Woolley, Kevin Ryde, Laurent Dami, Leo Lapworth, Leon
Brocard, Leon Timmermans, Louis Strous, Lukas Mai, Marc Green, Marcel Gru

..
nauer, Mark A.

Stratman, Mark Dootson, Mark Jason Dominus, Martin Hasch, Matthew Horsfall, Max Maischein,
Michael G Schwern, Michael Witten, Mike Sheldrake, Moritz Lenz, Nicholas Clark, Niko Tyni, Nuno
Carvalho, Pau Amma, Paul Evans, Paul Green, Paul Johnson, Perlover, Peter John Acklam, Peter
Martini, Peter Scott, Phil Monsen, Pino Toscano, Rafael Garcia-Suarez, Rainer Tammer, Reini Urban,
Ricardo Signes, Robin Barker, Rodolfo Carvalho, Salvador Fandiño, Sam Kimbrel, Samuel Thibault,
Shawn M Moore, Shigeya Suzuki, Shirakata Kentaro, Shlomi Fish, Sisyphus, Slaven Rezic, Spiros
Denaxas, Steffen Mu

..
ller, Steffen Schwigon, Stephen Bennett, Stephen Oberholtzer, Stevan Little, Steve

Hay, Steve Peters, Thomas Sibley, Thorsten Glaser, Timothe Litt, Todd Rinaldo, Tom Christiansen,
Tom Hukins, Tony Cook, Vadim Konovalov, Vincent Pit, Vladimir Timofeev, Walt Mankowski, Yves
Orton, Zefram, Zsbán Ambrus, AEvar Arnfjo

..
r∂- Bjarmason.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at <http://rt.perl.org/perlbug/>. There may
also be information at <http://www.perl.org/>, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please use this address
only for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

perl v5.36.0 2021-04-29 198

PERL5160DELTA(1) Perl Programmers Reference Guide PERL5160DELTA(1)

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 199

PERL5161DELTA(1) Perl Programmers Reference Guide PERL5161DELTA(1)

NAME
perl5161delta - what is new for perl v5.16.1

DESCRIPTION
This document describes differences between the 5.16.0 release and the 5.16.1 release.

If you are upgrading from an earlier release such as 5.14.0, first read perl5160delta, which describes
differences between 5.14.0 and 5.16.0.

Security
an off-by-two error in Scalar-List-Util has been fixed

The bugfix was in Scalar-List-Util 1.23_04, and perl 5.16.1 includes Scalar-List-Util 1.25.

Incompatible Changes
There are no changes intentionally incompatible with 5.16.0 If any exist, they are bugs, and we request
that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Scalar::Util and List::Util have been upgraded from version 1.23 to version 1.25.

• B::Deparse has been updated from version 1.14 to 1.14_01. An ‘‘uninitialized’’ warning emitted
by B::Deparse has been squashed [perl #113464].

Configuration and Compilation
• Building perl with some Windows compilers used to fail due to a problem with miniperl’s glob

operator (which uses the perlglob program) deleting the PATH environment variable [perl
#113798].

Platform Support
Platform-Specific Notes

VMS
All C header files from the top-level directory of the distribution are now installed on VMS,
providing consistency with a long-standing practice on other platforms. Previously only a subset
were installed, which broke non-core extension builds for extensions that depended on the missing
include files.

Selected Bug Fixes
• A regression introduced in Perl v5.16.0 involving tr/SEARCHLIST/REPLACEMENTLIST/

has been fixed. Only the first instance is supposed to be meaningful if a character appears more
than once in SEARCHLIST. Under some circumstances, the final instance was overriding all
earlier ones. [perl #113584]

• B::COP::stashlen has been added. This provides access to an internal field added in perl
5.16 under threaded builds. It was broken at the last minute before 5.16 was released [perl
#113034].

• The re pragma will no longer clobber $_. [perl #113750]

• Unicode 6.1 published an incorrect alias for one of the Canonical_Combining_Class property’s
values (which range between 0 and 254). The alias CCC133 should have been CCC132. Perl
now overrides the data file furnished by Unicode to give the correct value.

• Duplicating scalar filehandles works again. [perl #113764]

• Under threaded perls, a runtime code block in a regular expression could corrupt the package
name stored in the op tree, resulting in bad reads in caller, and possibly crashes [perl #113060].

• For efficiency’s sake, many operators and built-in functions return the same scalar each time.
Lvalue subroutines and subroutines in the CORE:: namespace were allowing this implementation
detail to leak through. print &CORE::uc("a"), &CORE::uc("b") used to print ‘‘BB’’.
The same thing would happen with an lvalue subroutine returning the return value of uc. Now the
value is copied in such cases [perl #113044].

• _ _SUB_ _ now works in special blocks (BEGIN, END, etc.).

• Formats that reference lexical variables from outside no longer result in crashes.

perl v5.36.0 2019-02-18 200

PERL5161DELTA(1) Perl Programmers Reference Guide PERL5161DELTA(1)

Known Problems
There are no new known problems, but consult ‘‘Known Problems’’ in perl5160delta to see those
identified in the 5.16.0 release.

Acknowledgements
Perl 5.16.1 represents approximately 2 months of development since Perl 5.16.0 and contains
approximately 14,000 lines of changes across 96 files from 8 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.16.1:

Chris ’BinGOs’ Williams, Craig A. Berry, Father Chrysostomos, Karl Williamson, Paul Johnson, Reini
Urban, Ricardo Signes, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this address
for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 201

PERL5162DELTA(1) Perl Programmers Reference Guide PERL5162DELTA(1)

NAME
perl5162delta - what is new for perl v5.16.2

DESCRIPTION
This document describes differences between the 5.16.1 release and the 5.16.2 release.

If you are upgrading from an earlier release such as 5.16.0, first read perl5161delta, which describes
differences between 5.16.0 and 5.16.1.

Incompatible Changes
There are no changes intentionally incompatible with 5.16.0 If any exist, they are bugs, and we request
that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Module::CoreList has been upgraded from version 2.70 to version 2.76.

Configuration and Compilation
• configuration should no longer be confused by ls colorization

Platform Support
Platform-Specific Notes

AIX
Configure now always adds -qlanglvl=extc99 to the CC flags on AIX when using xlC. This will
make it easier to compile a number of XS-based modules that assume C99 [perl #113778].

Selected Bug Fixes
• fix /\h/ equivalence with /[\h]/

see [perl #114220]

Known Problems
There are no new known problems.

Acknowledgements
Perl 5.16.2 represents approximately 2 months of development since Perl 5.16.1 and contains
approximately 740 lines of changes across 20 files from 9 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.16.2:

Andy Dougherty, Craig A. Berry, Darin McBride, Dominic Hargreaves, Karen Etheridge, Karl
Williamson, Peter Martini, Ricardo Signes, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this address
for security issues in the Perl core, not for modules independently distributed on CPAN.

perl v5.36.0 2019-02-18 202

PERL5162DELTA(1) Perl Programmers Reference Guide PERL5162DELTA(1)

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 203

PERL5163DELTA(1) Perl Programmers Reference Guide PERL5163DELTA(1)

NAME
perl5163delta - what is new for perl v5.16.3

DESCRIPTION
This document describes differences between the 5.16.2 release and the 5.16.3 release.

If you are upgrading from an earlier release such as 5.16.1, first read perl5162delta, which describes
differences between 5.16.1 and 5.16.2.

Core Enhancements
No changes since 5.16.0.

Security
This release contains one major and a number of minor security fixes. These latter are included mainly
to allow the test suite to pass cleanly with the clang compiler’s address sanitizer facility.

CVE-2013-1667: memory exhaustion with arbitrary hash keys
With a carefully crafted set of hash keys (for example arguments on a URL), it is possible to cause a
hash to consume a large amount of memory and CPU, and thus possibly to achieve a Denial-of-Service.

This problem has been fixed.

wrap-around with IO on long strings
Reading or writing strings greater than 2**31 bytes in size could segfault due to integer wraparound.

This problem has been fixed.

memory leak in Encode
The UTF-8 encoding implementation in Encode.xs had a memory leak which has been fixed.

Incompatible Changes
There are no changes intentionally incompatible with 5.16.0. If any exist, they are bugs and reports are
welcome.

Deprecations
There have been no deprecations since 5.16.0.

Modules and Pragmata
Updated Modules and Pragmata

• Encode has been upgraded from version 2.44 to version 2.44_01.

• Module::CoreList has been upgraded from version 2.76 to version 2.76_02.

• XS::APItest has been upgraded from version 0.38 to version 0.39.

Known Problems
None.

Acknowledgements
Perl 5.16.3 represents approximately 4 months of development since Perl 5.16.2 and contains
approximately 870 lines of changes across 39 files from 7 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.16.3:

Andy Dougherty, Chris ’BinGOs’ Williams, Dave Rolsky, David Mitchell, Michael Schroeder, Ricardo
Signes, Yves Orton.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output

perl v5.36.0 2019-02-18 204

PERL5163DELTA(1) Perl Programmers Reference Guide PERL5163DELTA(1)

of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this address
for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 205

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

NAME
perl5180delta - what is new for perl v5.18.0

DESCRIPTION
This document describes differences between the v5.16.0 release and the v5.18.0 release.

If you are upgrading from an earlier release such as v5.14.0, first read perl5160delta, which describes
differences between v5.14.0 and v5.16.0.

Core Enhancements
New mechanism for experimental features

Newly-added experimental features will now require this incantation:

no warnings "experimental::feature_name";
use feature "feature_name"; # would warn without the prev line

There is a new warnings category, called ‘‘experimental’’, containing warnings that the feature pragma
emits when enabling experimental features.

Newly-added experimental features will also be given special warning IDs, which consist of
‘‘experimental::’’ followed by the name of the feature. (The plan is to extend this mechanism
eventually to all warnings, to allow them to be enabled or disabled individually, and not just by
category.)

By saying

no warnings "experimental::feature_name";

you are taking responsibility for any breakage that future changes to, or removal of, the feature may
cause.

Since some features (like ˜˜ or my $_) now emit experimental warnings, and you may want to disable
them in code that is also run on perls that do not recognize these warning categories, consider using the
if pragma like this:

no if $] >= 5.018, warnings => "experimental::feature_name";

Existing experimental features may begin emitting these warnings, too. Please consult perlexperiment
for information on which features are considered experimental.

Hash overhaul
Changes to the implementation of hashes in perl v5.18.0 will be one of the most visible changes to the
behavior of existing code.

By default, two distinct hash variables with identical keys and values may now provide their contents in
a different order where it was previously identical.

When encountering these changes, the key to cleaning up from them is to accept that hashes are
unordered collections and to act accordingly.

Hash randomization

The seed used by Perl’s hash function is now random. This means that the order which keys/values
will be returned from functions like keys(), values(), and each() will differ from run to run.

This change was introduced to make Perl’s hashes more robust to algorithmic complexity attacks, and
also because we discovered that it exposes hash ordering dependency bugs and makes them easier to
track down.

Toolchain maintainers might want to invest in additional infrastructure to test for things like this.
Running tests several times in a row and then comparing results will make it easier to spot hash order
dependencies in code. Authors are strongly encouraged not to expose the key order of Perl’s hashes to
insecure audiences.

Further, every hash has its own iteration order, which should make it much more difficult to determine
what the current hash seed is.

New hash functions

Perl v5.18 includes support for multiple hash functions, and changed the default (to
ONE_AT_A_TIME_HARD), you can choose a different algorithm by defining a symbol at compile time.
For a current list, consult the INSTALL document. Note that as of Perl v5.18 we can only recommend

perl v5.36.0 2020-12-28 206

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

use of the default or SIPHASH. All the others are known to have security issues and are for research
purposes only.

PERL_HASH_SEED environment variable now takes a hex value

PERL_HASH_SEED no longer accepts an integer as a parameter; instead the value is expected to be a
binary value encoded in a hex string, such as ‘‘0xf5867c55039dc724’’. This is to make the
infrastructure support hash seeds of arbitrary lengths, which might exceed that of an integer. (SipHash
uses a 16 byte seed.)

PERL_PERTURB_KEYS environment variable added

The PERL_PERTURB_KEYS environment variable allows one to control the level of randomization
applied to keys and friends.

When PERL_PERTURB_KEYS is 0, perl will not randomize the key order at all. The chance that
keys changes due to an insert will be the same as in previous perls, basically only when the bucket
size is changed.

When PERL_PERTURB_KEYS is 1, perl will randomize keys in a non-repeatable way. The chance that
keys changes due to an insert will be very high. This is the most secure and default mode.

When PERL_PERTURB_KEYS is 2, perl will randomize keys in a repeatable way. Repeated runs of
the same program should produce the same output every time.

PERL_HASH_SEED implies a non-default PERL_PERTURB_KEYS setting. Setting
PERL_HASH_SEED=0 (exactly one 0) implies PERL_PERTURB_KEYS=0 (hash key randomization
disabled); setting PERL_HASH_SEED to any other value implies PERL_PERTURB_KEYS=2
(deterministic and repeatable hash key randomization). Specifying PERL_PERTURB_KEYS explicitly
to a different level overrides this behavior.

Hash::Util::hash_seed() now returns a string

Hash::Util::hash_seed() now returns a string instead of an integer. This is to make the infrastructure
support hash seeds of arbitrary lengths which might exceed that of an integer. (SipHash uses a 16 byte
seed.)

Output of PERL_HASH_SEED_DEBUG has been changed

The environment variable PERL_HASH_SEED_DEBUG now makes perl show both the hash function
perl was built with, and the seed, in hex, in use for that process. Code parsing this output, should it
exist, must change to accommodate the new format. Example of the new format:

$ PERL_HASH_SEED_DEBUG=1 ./perl -e1
HASH_FUNCTION = MURMUR3 HASH_SEED = 0x1476bb9f

Upgrade to Unicode 6.2
Perl now supports Unicode 6.2. A list of changes from Unicode 6.1 is at
<http://www.unicode.org/versions/Unicode6.2.0>.

Character name aliases may now include non-Latin1-range characters
It is possible to define your own names for characters for use in \N{...},
charnames::vianame(), etc. These names can now be comprised of characters from the whole
Unicode range. This allows for names to be in your native language, and not just English. Certain
restrictions apply to the characters that may be used (you can’t define a name that has punctuation in it,
for example). See ‘‘CUSTOM ALIASES’’ in charnames.

New DTrace probes
The following new DTrace probes have been added:

• op-entry

• loading-file

• loaded-file

${ˆLAST_FH}
This new variable provides access to the filehandle that was last read. This is the handle used by $.
and by tell and eof without arguments.

perl v5.36.0 2020-12-28 207

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

Regular Expression Set Operations
This is an experimental feature to allow matching against the union, intersection, etc., of sets of code
points, similar to Unicode::Regex::Set. It can also be used to extend /x processing to [bracketed]
character classes, and as a replacement of user-defined properties, allowing more complex expressions
than they do. See ‘‘Extended Bracketed Character Classes’’ in perlrecharclass.

Lexical subroutines
This new feature is still considered experimental. To enable it:

use 5.018;
no warnings "experimental::lexical_subs";
use feature "lexical_subs";

You can now declare subroutines with state sub foo, my sub foo, and our sub foo.
(state sub requires that the ‘‘state’’ feature be enabled, unless you write it as CORE::state sub
foo.)

state sub creates a subroutine visible within the lexical scope in which it is declared. The
subroutine is shared between calls to the outer sub.

my sub declares a lexical subroutine that is created each time the enclosing block is entered. state
sub is generally slightly faster than my sub.

our sub declares a lexical alias to the package subroutine of the same name.

For more information, see ‘‘Lexical Subroutines’’ in perlsub.

Computed Labels
The loop controls next, last and redo, and the special dump operator, now allow arbitrary
expressions to be used to compute labels at run time. Previously, any argument that was not a constant
was treated as the empty string.

More CORE:: subs
Several more built-in functions have been added as subroutines to the CORE:: namespace - namely,
those non-overridable keywords that can be implemented without custom parsers: defined, delete,
exists, glob, pos, prototype, scalar, split, study, and undef.

As some of these have prototypes, prototype('CORE::...') has been changed to not make a
distinction between overridable and non-overridable keywords. This is to make
prototype('CORE::pos') consistent with prototype(&CORE::pos).

kill with negative signal names
kill has always allowed a negative signal number, which kills the process group instead of a single
process. It has also allowed signal names. But it did not behave consistently, because negative signal
names were treated as 0. Now negative signals names like -INT are supported and treated the same
way as -2 [perl #112990].

Security
See also: hash overhaul

Some of the changes in the hash overhaul were made to enhance security. Please read that section.

Storable security warning in documentation
The documentation for Storable now includes a section which warns readers of the danger of
accepting Storable documents from untrusted sources. The short version is that deserializing certain
types of data can lead to loading modules and other code execution. This is documented behavior and
wanted behavior, but this opens an attack vector for malicious entities.

Locale::Maketext allowed code injection via a malicious template
If users could provide a translation string to Locale::Maketext, this could be used to invoke arbitrary
Perl subroutines available in the current process.

This has been fixed, but it is still possible to invoke any method provided by Locale::Maketext
itself or a subclass that you are using. One of these methods in turn will invoke the Perl core’s
sprintf subroutine.

In summary, allowing users to provide translation strings without auditing them is a bad idea.

This vulnerability is documented in CVE-2012-6329.

perl v5.36.0 2020-12-28 208

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

Avoid calling memset with a negative count
Poorly written perl code that allows an attacker to specify the count to perl’s x string repeat operator
can already cause a memory exhaustion denial-of-service attack. A flaw in versions of perl before
v5.15.5 can escalate that into a heap buffer overrun; coupled with versions of glibc before 2.16, it
possibly allows the execution of arbitrary code.

The flaw addressed to this commit has been assigned identifier CVE-2012-5195 and was researched by
Tim Brown.

Incompatible Changes
See also: hash overhaul

Some of the changes in the hash overhaul are not fully compatible with previous versions of perl.
Please read that section.

An unknown character name in \N{...} is now a syntax error
Previously, it warned, and the Unicode REPLACEMENT CHARACTER was substituted. Unicode now
recommends that this situation be a syntax error. Also, the previous behavior led to some confusing
warnings and behaviors, and since the REPLACEMENT CHARACTER has no use other than as a stand-
in for some unknown character, any code that has this problem is buggy.

Formerly deprecated characters in \N{} character name aliases are now errors.
Since v5.12.0, it has been deprecated to use certain characters in user-defined \N{...} character
names. These now cause a syntax error. For example, it is now an error to begin a name with a digit,
such as in

my $undraftable = "\N{4F}"; # Syntax error!

or to have commas anywhere in the name. See ‘‘CUSTOM ALIASES’’ in charnames.

\N{BELL} now refers to U+1F514 instead of U+0007
Unicode 6.0 reused the name ‘‘BELL’’ for a different code point than it traditionally had meant. Since
Perl v5.14, use of this name still referred to U+0007, but would raise a deprecation warning. Now,
‘‘BELL’’ refers to U+1F514, and the name for U+0007 is ‘‘ALERT’’. All the functions in charnames
have been correspondingly updated.

New Restrictions in Multi-Character Case-Insensitive Matching in Regular Expression
Bracketed Character Classes
Unicode has now withdrawn their previous recommendation for regular expressions to automatically
handle cases where a single character can match multiple characters case-insensitively, for example, the
letter LATIN SMALL LETTER SHARP S and the sequence ss. This is because it turns out to be
impracticable to do this correctly in all circumstances. Because Perl has tried to do this as best it can, it
will continue to do so. (We are considering an option to turn it off.) However, a new restriction is
being added on such matches when they occur in [bracketed] character classes. People were specifying
things such as /[\0-\xff]/i, and being surprised that it matches the two character sequence ss
(since LATIN SMALL LETTER SHARP S occurs in this range). This behavior is also inconsistent with
using a property instead of a range: \p{Block=Latin1} also includes LATIN SMALL LETTER
SHARP S, but /[\p{Block=Latin1}]/i does not match ss. The new rule is that for there to be a
multi-character case-insensitive match within a bracketed character class, the character must be
explicitly listed, and not as an end point of a range. This more closely obeys the Principle of Least
Astonishment. See ‘‘Bracketed Character Classes’’ in perlrecharclass. Note that a bug [perl #89774],
now fixed as part of this change, prevented the previous behavior from working fully.

Explicit rules for variable names and identifiers
Due to an oversight, single character variable names in v5.16 were completely unrestricted. This
opened the door to several kinds of insanity. As of v5.18, these now follow the rules of other
identifiers, in addition to accepting characters that match the \p{POSIX_Punct} property.

There is no longer any difference in the parsing of identifiers specified by using braces versus without
braces. For instance, perl used to allow ${foo:bar} (with a single colon) but not $foo:bar. Now
that both are handled by a single code path, they are both treated the same way: both are forbidden.
Note that this change is about the range of permissible literal identifiers, not other expressions.

Vertical tabs are now whitespace
No one could recall why \s didn’t match \cK, the vertical tab. Now it does. Given the extreme rarity
of that character, very little breakage is expected. That said, here’s what it means:

perl v5.36.0 2020-12-28 209

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

\s in a regex now matches a vertical tab in all circumstances.

Literal vertical tabs in a regex literal are ignored when the /x modifier is used.

Leading vertical tabs, alone or mixed with other whitespace, are now ignored when interpreting a string
as a number. For example:

$dec = " \cK \t 123";
$hex = " \cK \t 0xF";

say 0 + $dec; # was 0 with warning, now 123
say int $dec; # was 0, now 123
say oct $hex; # was 0, now 15

/(?{})/ and /(??{})/ have been heavily reworked
The implementation of this feature has been almost completely rewritten. Although its main intent is to
fix bugs, some behaviors, especially related to the scope of lexical variables, will have changed. This is
described more fully in the ‘‘Selected Bug Fixes’’ section.

Stricter parsing of substitution replacement
It is no longer possible to abuse the way the parser parses s///e like this:

%_=(_,"Just another ");
$_="Perl hacker,\n";
s//_}->{_/e;print

given now aliases the global $_
Instead of assigning to an implicit lexical $_, given now makes the global $_ an alias for its
argument, just like foreach. However, it still uses lexical $_ if there is lexical $_ in scope (again,
just like foreach) [perl #114020].

The smartmatch family of features are now experimental
Smart match, added in v5.10.0 and significantly revised in v5.10.1, has been a regular point of
complaint. Although there are a number of ways in which it is useful, it has also proven problematic
and confusing for both users and implementors of Perl. There have been a number of proposals on how
to best address the problem. It is clear that smartmatch is almost certainly either going to change or go
away in the future. Relying on its current behavior is not recommended.

Warnings will now be issued when the parser sees ˜˜, given, or when. To disable these warnings,
you can add this line to the appropriate scope:

no if $] >= 5.018, warnings => "experimental::smartmatch";

Consider, though, replacing the use of these features, as they may change behavior again before
becoming stable.

Lexical $_ is now experimental
Since it was introduced in Perl v5.10, it has caused much confusion with no obvious solution:

• Various modules (e.g., List::Util) expect callback routines to use the global $_. use
List::Util 'first'; my $_; first { $_ == 1 } @list does not work as one
would expect.

• A my $_ declaration earlier in the same file can cause confusing closure warnings.

• The ‘‘_’’ subroutine prototype character allows called subroutines to access your lexical $_, so it
is not really private after all.

• Nevertheless, subroutines with a ‘‘(@)’’ prototype and methods cannot access the caller’s lexical
$_, unless they are written in XS.

• But even XS routines cannot access a lexical $_ declared, not in the calling subroutine, but in an
outer scope, iff that subroutine happened not to mention $_ or use any operators that default to
$_.

It is our hope that lexical $_ can be rehabilitated, but this may cause changes in its behavior. Please
use it with caution until it becomes stable.

perl v5.36.0 2020-12-28 210

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

readline() with $/ = \N now reads N characters, not N bytes
Previously, when reading from a stream with I/O layers such as encoding, the readline() function,
otherwise known as the <> operator, would read N bytes from the top-most layer. [perl #79960]

Now, N characters are read instead.

There is no change in behaviour when reading from streams with no extra layers, since bytes map
exactly to characters.

Overridden glob is now passed one argument
glob overrides used to be passed a magical undocumented second argument that identified the caller.
Nothing on CPAN was using this, and it got in the way of a bug fix, so it was removed. If you really
need to identify the caller, see Devel::Callsite on CPAN.

Here doc parsing
The body of a here document inside a quote-like operator now always begins on the line after the
‘‘<<foo’’ marker. Previously, it was documented to begin on the line following the containing quote-
like operator, but that was only sometimes the case [perl #114040].

Alphanumeric operators must now be separated from the closing delimiter of regular
expressions
You may no longer write something like:

m/a/and 1

Instead you must write

m/a/ and 1

with whitespace separating the operator from the closing delimiter of the regular expression. Not
having whitespace has resulted in a deprecation warning since Perl v5.14.0.

qw(...) can no longer be used as parentheses
qw lists used to fool the parser into thinking they were always surrounded by parentheses. This
permitted some surprising constructions such as foreach $x qw(a b c) {...}, which should
really be written foreach $x (qw(a b c)) {...}. These would sometimes get the lexer into
the wrong state, so they didn’t fully work, and the similar foreach qw(a b c) {...} that one
might expect to be permitted never worked at all.

This side effect of qw has now been abolished. It has been deprecated since Perl v5.13.11. It is now
necessary to use real parentheses everywhere that the grammar calls for them.

Interaction of lexical and default warnings
Turning on any lexical warnings used first to disable all default warnings if lexical warnings were not
already enabled:

$*; # deprecation warning
use warnings "void";
$#; # void warning; no deprecation warning

Now, the debugging, deprecated, glob, inplace and malloc warnings categories are left on
when turning on lexical warnings (unless they are turned off by no warnings, of course).

This may cause deprecation warnings to occur in code that used to be free of warnings.

Those are the only categories consisting only of default warnings. Default warnings in other categories
are still disabled by use warnings "category", as we do not yet have the infrastructure for
controlling individual warnings.

state sub and our sub
Due to an accident of history, state sub and our sub were equivalent to a plain sub, so one
could even create an anonymous sub with our sub { ... }. These are now disallowed outside of
the ‘‘lexical_subs’’ feature. Under the ‘‘lexical_subs’’ feature they have new meanings described in
‘‘Lexical Subroutines’’ in perlsub.

Defined values stored in environment are forced to byte strings
A value stored in an environment variable has always been stringified when inherited by child
processes.

In this release, when assigning to %ENV, values are immediately stringified, and converted to be only a

perl v5.36.0 2020-12-28 211

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

byte string.

First, it is forced to be only a string. Then if the string is utf8 and the equivalent of
utf8::downgrade() works, that result is used; otherwise, the equivalent of utf8::encode() is
used, and a warning is issued about wide characters (‘‘Diagnostics’’).

require dies for unreadable files
When require encounters an unreadable file, it now dies. It used to ignore the file and continue
searching the directories in @INC [perl #113422].

gv_fetchmeth_* and SUPER
The various gv_fetchmeth_* XS functions used to treat a package whose named ended with
::SUPER specially. A method lookup on the Foo::SUPER package would be treated as a SUPER
method lookup on the Foo package. This is no longer the case. To do a SUPER lookup, pass the Foo
stash and the GV_SUPER flag.

split’s first argument is more consistently interpreted
After some changes earlier in v5.17, split’s behavior has been simplified: if the PATTERN argument
evaluates to a string containing one space, it is treated the way that a literal string containing one space
once was.

Deprecations
Module removals

The following modules will be removed from the core distribution in a future release, and will at that
time need to be installed from CPAN. Distributions on CPAN which require these modules will need to
list them as prerequisites.

The core versions of these modules will now issue "deprecated"-category warnings to alert you to
this fact. To silence these deprecation warnings, install the modules in question from CPAN.

Note that these are (with rare exceptions) fine modules that you are encouraged to continue to use.
Their disinclusion from core primarily hinges on their necessity to bootstrapping a fully functional,
CPAN-capable Perl installation, not usually on concerns over their design.

encoding
The use of this pragma is now strongly discouraged. It conflates the encoding of source text with
the encoding of I/O data, reinterprets escape sequences in source text (a questionable choice), and
introduces the UTF-8 bug to all runtime handling of character strings. It is broken as designed and
beyond repair.

For using non-ASCII literal characters in source text, please refer to utf8. For dealing with textual
I/O data, please refer to Encode and open.

Archive::Extract
B::Lint
B::Lint::Debug
CPANPLUS and all included CPANPLUS::* modules
Devel::InnerPackage
Log::Message
Log::Message::Config
Log::Message::Handlers
Log::Message::Item
Log::Message::Simple
Module::Pluggable
Module::Pluggable::Object
Object::Accessor
Pod::LaTeX
Term::UI
Term::UI::History

Deprecated Utilities
The following utilities will be removed from the core distribution in a future release as their associated
modules have been deprecated. They will remain available with the applicable CPAN distribution.

perl v5.36.0 2020-12-28 212

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

cpanp
cpanp-run-perl
cpan2dist

These items are part of the CPANPLUS distribution.

pod2latex
This item is part of the Pod::LaTeX distribution.

PL_sv_objcount
This interpreter-global variable used to track the total number of Perl objects in the interpreter. It is no
longer maintained and will be removed altogether in Perl v5.20.

Five additional characters should be escaped in patterns with /x
When a regular expression pattern is compiled with /x, Perl treats 6 characters as white space to
ignore, such as SPACE and TAB. However, Unicode recommends 11 characters be treated thusly. We
will conform with this in a future Perl version. In the meantime, use of any of the missing characters
will raise a deprecation warning, unless turned off. The five characters are:

U+0085 NEXT LINE
U+200E LEFT-TO-RIGHT MARK
U+200F RIGHT-TO-LEFT MARK
U+2028 LINE SEPARATOR
U+2029 PARAGRAPH SEPARATOR

User-defined charnames with surprising whitespace
A user-defined character name with trailing or multiple spaces in a row is likely a typo. This now
generates a warning when defined, on the assumption that uses of it will be unlikely to include the
excess whitespace.

Various XS-callable functions are now deprecated
All the functions used to classify characters will be removed from a future version of Perl, and should
not be used. With participating C compilers (e.g., gcc), compiling any file that uses any of these will
generate a warning. These were not intended for public use; there are equivalent, faster, macros for
most of them.

See ‘‘Character classes’’ in perlapi. The complete list is:

is_uni_alnum, is_uni_alnumc, is_uni_alnumc_lc, is_uni_alnum_lc,
is_uni_alpha, is_uni_alpha_lc, is_uni_ascii, is_uni_ascii_lc,
is_uni_blank, is_uni_blank_lc, is_uni_cntrl, is_uni_cntrl_lc,
is_uni_digit, is_uni_digit_lc, is_uni_graph, is_uni_graph_lc,
is_uni_idfirst, is_uni_idfirst_lc, is_uni_lower, is_uni_lower_lc,
is_uni_print, is_uni_print_lc, is_uni_punct, is_uni_punct_lc,
is_uni_space, is_uni_space_lc, is_uni_upper, is_uni_upper_lc,
is_uni_xdigit, is_uni_xdigit_lc, is_utf8_alnum, is_utf8_alnumc,
is_utf8_alpha, is_utf8_ascii, is_utf8_blank, is_utf8_char, is_utf8_cntrl,
is_utf8_digit, is_utf8_graph, is_utf8_idcont, is_utf8_idfirst,
is_utf8_lower, is_utf8_mark, is_utf8_perl_space, is_utf8_perl_word,
is_utf8_posix_digit, is_utf8_print, is_utf8_punct, is_utf8_space,
is_utf8_upper, is_utf8_xdigit, is_utf8_xidcont, is_utf8_xidfirst.

In addition these three functions that have never worked properly are deprecated:
to_uni_lower_lc, to_uni_title_lc, and to_uni_upper_lc.

Certain rare uses of backslashes within regexes are now deprecated
There are three pairs of characters that Perl recognizes as metacharacters in regular expression patterns:
{}, [], and (). These can be used as well to delimit patterns, as in:

m{foo}
s(foo)(bar)

Since they are metacharacters, they have special meaning to regular expression patterns, and it turns out
that you can’t turn off that special meaning by the normal means of preceding them with a backslash, if
you use them, paired, within a pattern delimited by them. For example, in

perl v5.36.0 2020-12-28 213

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

m{foo\{1,3\}}

the backslashes do not change the behavior, and this matches "f o" followed by one to three more
occurrences of "o".

Usages like this, where they are interpreted as metacharacters, are exceedingly rare; we think there are
none, for example, in all of CPAN. Hence, this deprecation should affect very little code. It does give
notice, however, that any such code needs to change, which will in turn allow us to change the behavior
in future Perl versions so that the backslashes do have an effect, and without fear that we are silently
breaking any existing code.

Splitting the tokens (? and (* in regular expressions
A deprecation warning is now raised if the (and ? are separated by white space or comments in
(?...) regular expression constructs. Similarly, if the (and * are separated in (*VERB...)
constructs.

Pre-PerlIO IO implementations
In theory, you can currently build perl without PerlIO. Instead, you’d use a wrapper around stdio or
sfio. In practice, this isn’t very useful. It’s not well tested, and without any support for IO layers or
(thus) Unicode, it’s not much of a perl. Building without PerlIO will most likely be removed in the
next version of perl.

PerlIO supports a stdio layer if stdio use is desired. Similarly a sfio layer could be produced in the
future, if needed.

Future Deprecations
• Platforms without support infrastructure

Both Windows CE and z/OS have been historically under-maintained, and are currently neither
successfully building nor regularly being smoke tested. Efforts are underway to change this
situation, but it should not be taken for granted that the platforms are safe and supported. If they
do not become buildable and regularly smoked, support for them may be actively removed in
future releases. If you have an interest in these platforms and you can lend your time, expertise, or
hardware to help support these platforms, please let the perl development effort know by emailing
perl5-porters@perl.org.

Some platforms that appear otherwise entirely dead are also on the short list for removal between
now and v5.20.0:

DG/UX
NeXT

We also think it likely that current versions of Perl will no longer build AmigaOS, DJGPP,
NetWare (natively), OS/2 and Plan 9. If you are using Perl on such a platform and have an interest
in ensuring Perl’s future on them, please contact us.

We believe that Perl has long been unable to build on mixed endian architectures (such as
PDP-11s), and intend to remove any remaining support code. Similarly, code supporting the long
unmaintained GNU dld will be removed soon if no-one makes themselves known as an active user.

• Swapping of $< and $>

Perl has supported the idiom of swapping $< and $> (and likewise $(and $)) to temporarily drop
permissions since 5.0, like this:

($<, $>) = ($>, $<);

However, this idiom modifies the real user/group id, which can have undesirable side-effects, is no
longer useful on any platform perl supports and complicates the implementation of these variables
and list assignment in general.

As an alternative, assignment only to $> is recommended:

local $> = $<;

See also: Setuid Demystified <http://www.cs.berkeley.edu/˜daw/papers/setuid-usenix02.pdf>.

perl v5.36.0 2020-12-28 214

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• microperl, long broken and of unclear present purpose, will be removed.

• Revamping "\Q" semantics in double-quotish strings when combined with other escapes.

There are several bugs and inconsistencies involving combinations of \Q and escapes like \x, \L,
etc., within a \Q...\E pair. These need to be fixed, and doing so will necessarily change current
behavior. The changes have not yet been settled.

• Use of $x, where x stands for any actual (non-printing) C0 control character will be disallowed in
a future Perl version. Use ${x} instead (where again x stands for a control character), or better,
$ˆA , where ˆ is a caret (CIRCUMFLEX ACCENT), and A stands for any of the characters listed at
the end of ‘‘OPERATOR DIFFERENCES’’ in perlebcdic.

Performance Enhancements
• Lists of lexical variable declarations (my($x, $y)) are now optimised down to a single op and

are hence faster than before.

• A new C preprocessor define NO_TAINT_SUPPORT was added that, if set, disables Perl’s taint
support altogether. Using the -T or -t command line flags will cause a fatal error. Beware that
both core tests as well as many a CPAN distribution’s tests will fail with this change. On the
upside, it provides a small performance benefit due to reduced branching.

Do not enable this unless you know exactly what you are getting yourself into.

• pack with constant arguments is now constant folded in most cases [perl #113470].

• Speed up in regular expression matching against Unicode properties. The largest gain is for \X,
the Unicode ‘‘extended grapheme cluster.’’ The gain for it is about 35% - 40%. Bracketed
character classes, e.g., [0-9\x{100}] containing code points above 255 are also now faster.

• On platforms supporting it, several former macros are now implemented as static inline functions.
This should speed things up slightly on non-GCC platforms.

• The optimisation of hashes in boolean context has been extended to affect scalar(%hash),
%hash ? ... : ..., and sub { %hash || ... }.

• Filetest operators manage the stack in a fractionally more efficient manner.

• Globs used in a numeric context are now numified directly in most cases, rather than being
numified via stringification.

• The x repetition operator is now folded to a single constant at compile time if called in scalar
context with constant operands and no parentheses around the left operand.

Modules and Pragmata
New Modules and Pragmata

• Config::Perl::V version 0.16 has been added as a dual-lifed module. It provides structured data
retrieval of perl -V output including information only known to the perl binary and not
available via Config.

Updated Modules and Pragmata
For a complete list of updates, run:

$ corelist --diff 5.16.0 5.18.0

You can substitute your favorite version in place of 5.16.0, too.

• Archive::Extract has been upgraded to 0.68.

Work around an edge case on Linux with Busybox’s unzip.

• Archive::Tar has been upgraded to 1.90.

ptar now supports the -T option as well as dashless options [rt.cpan.org #75473], [rt.cpan.org
#75475].

Auto-encode filenames marked as UTF-8 [rt.cpan.org #75474].

Don’t use tell on IO::Zlib handles [rt.cpan.org #64339].

Don’t try to chown on symlinks.

perl v5.36.0 2020-12-28 215

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• autodie has been upgraded to 2.13.

autodie now plays nicely with the ’open’ pragma.

• B has been upgraded to 1.42.

The stashoff method of COPs has been added. This provides access to an internal field added
in perl 5.16 under threaded builds [perl #113034].

B::COP::stashpv now supports UTF-8 package names and embedded NULs.

All CVf_* and GVf_* and more SV-related flag values are now provided as constants in the B::
namespace and available for export. The default export list has not changed.

This makes the module work with the new pad API.

• B::Concise has been upgraded to 0.95.

The -nobanner option has been fixed, and formats can now be dumped. When passed a sub
name to dump, it will check also to see whether it is the name of a format. If a sub and a format
share the same name, it will dump both.

This adds support for the new OpMAYBE_TRUEBOOL and OPpTRUEBOOL flags.

• B::Debug has been upgraded to 1.18.

This adds support (experimentally) for B::PADLIST, which was added in Perl 5.17.4.

• B::Deparse has been upgraded to 1.20.

Avoid warning when run under perl -w.

It now deparses loop controls with the correct precedence, and multiple statements in a format
line are also now deparsed correctly.

This release suppresses trailing semicolons in formats.

This release adds stub deparsing for lexical subroutines.

It no longer dies when deparsing sort without arguments. It now correctly omits the comma for
system $prog @args and exec $prog @args.

• bignum, bigint and bigrat have been upgraded to 0.33.

The overrides for hex and oct have been rewritten, eliminating several problems, and making
one incompatible change:

• Formerly, whichever of use bigint or use bigrat was compiled later would take
precedence over the other, causing hex and oct not to respect the other pragma when in
scope.

• Using any of these three pragmata would cause hex and oct anywhere else in the program
to evaluate their arguments in list context and prevent them from inferring $_ when called
without arguments.

• Using any of these three pragmata would make oct("1234") return 1234 (for any number
not beginning with 0) anywhere in the program. Now ‘‘1234’’ is translated from octal to
decimal, whether within the pragma’s scope or not.

• The global overrides that facilitate lexical use of hex and oct now respect any existing
overrides that were in place before the new overrides were installed, falling back to them
outside of the scope of use bignum.

• use bignum "hex", use bignum "oct" and similar invocations for bigint and bigrat
now export a hex or oct function, instead of providing a global override.

• Carp has been upgraded to 1.29.

Carp is no longer confused when caller returns undef for a package that has been deleted.

The longmess() and shortmess() functions are now documented.

perl v5.36.0 2020-12-28 216

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• CGI has been upgraded to 3.63.

Unrecognized HTML escape sequences are now handled better, problematic trailing newlines are
no longer inserted after <form> tags by startform() or start_form(), and bogus
‘‘Insecure Dependency’’ warnings appearing with some versions of perl are now worked around.

• Class::Struct has been upgraded to 0.64.

The constructor now respects overridden accessor methods [perl #29230].

• Compress::Raw::Bzip2 has been upgraded to 2.060.

The misuse of Perl’s ‘‘magic’’ API has been fixed.

• Compress::Raw::Zlib has been upgraded to 2.060.

Upgrade bundled zlib to version 1.2.7.

Fix build failures on Irix, Solaris, and Win32, and also when building as C++ [rt.cpan.org #69985],
[rt.cpan.org #77030], [rt.cpan.org #75222].

The misuse of Perl’s ‘‘magic’’ API has been fixed.

compress(), uncompress(), memGzip() and memGunzip() have been speeded up by
making parameter validation more efficient.

• CPAN::Meta::Requirements has been upgraded to 2.122.

Treat undef requirements to from_string_hash as 0 (with a warning).

Added requirements_for_module method.

• CPANPLUS has been upgraded to 0.9135.

Allow adding blib/script to PATH.

Save the history between invocations of the shell.

Handle multiple makemakerargs and makeflags arguments better.

This resolves issues with the SQLite source engine.

• Data::Dumper has been upgraded to 2.145.

It has been optimized to only build a seen-scalar hash as necessary, thereby speeding up
serialization drastically.

Additional tests were added in order to improve statement, branch, condition and subroutine
coverage. On the basis of the coverage analysis, some of the internals of Dumper.pm were
refactored. Almost all methods are now documented.

• DB_File has been upgraded to 1.827.

The main Perl module no longer uses the "@_" construct.

• Devel::Peek has been upgraded to 1.11.

This fixes compilation with C++ compilers and makes the module work with the new pad API.

• Digest::MD5 has been upgraded to 2.52.

Fix Digest::Perl::MD5 OO fallback [rt.cpan.org #66634].

• Digest::SHA has been upgraded to 5.84.

This fixes a double-free bug, which might have caused vulnerabilities in some cases.

• DynaLoader has been upgraded to 1.18.

This is due to a minor code change in the XS for the VMS implementation.

This fixes warnings about using CODE sections without an OUTPUT section.

• Encode has been upgraded to 2.49.

The Mac alias x-mac-ce has been added, and various bugs have been fixed in Encode::Unicode,
Encode::UTF7 and Encode::GSM0338.

perl v5.36.0 2020-12-28 217

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• Env has been upgraded to 1.04.

Its SPLICE implementation no longer misbehaves in list context.

• ExtUtils::CBuilder has been upgraded to 0.280210.

Manifest files are now correctly embedded for those versions of VC++ which make use of them.
[perl #111782, #111798].

A list of symbols to export can now be passed to link() when on Windows, as on other OSes
[perl #115100].

• ExtUtils::ParseXS has been upgraded to 3.18.

The generated C code now avoids unnecessarily incrementing PL_amagic_generation on
Perl versions where it’s done automatically (or on current Perl where the variable no longer
exists).

This avoids a bogus warning for initialised XSUB non-parameters [perl #112776].

• File::Copy has been upgraded to 2.26.

copy() no longer zeros files when copying into the same directory, and also now fails (as it has
long been documented to do) when attempting to copy a file over itself.

• File::DosGlob has been upgraded to 1.10.

The internal cache of file names that it keeps for each caller is now freed when that caller is freed.
This means use File::DosGlob 'glob'; eval 'scalar <*>' no longer leaks
memory.

• File::Fetch has been upgraded to 0.38.

Added the ’file_default’ option for URLs that do not have a file component.

Use File::HomeDir when available, and provide PERL5_CPANPLUS_HOME to override the
autodetection.

Always re-fetch CHECKSUMS if fetchdir is set.

• File::Find has been upgraded to 1.23.

This fixes inconsistent unixy path handling on VMS.

Individual files may now appear in list of directories to be searched [perl #59750].

• File::Glob has been upgraded to 1.20.

File::Glob has had exactly the same fix as File::DosGlob. Since it is what Perl’s own glob
operator itself uses (except on VMS), this means eval 'scalar <*>' no longer leaks.

A space-separated list of patterns return long lists of results no longer results in memory
corruption or crashes. This bug was introduced in Perl 5.16.0. [perl #114984]

• File::Spec::Unix has been upgraded to 3.40.

abs2rel could produce incorrect results when given two relative paths or the root directory
twice [perl #111510].

• File::stat has been upgraded to 1.07.

File::stat ignores the filetest pragma, and warns when used in combination therewith. But it
was not warning for -r. This has been fixed [perl #111640].

-p now works, and does not return false for pipes [perl #111638].

Previously File::stat’s overloaded -x and -X operators did not give the correct results for
directories or executable files when running as root. They had been treating executable
permissions for root just like for any other user, performing group membership tests etc for files
not owned by root. They now follow the correct Unix behaviour - for a directory they are always
true, and for a file if any of the three execute permission bits are set then they report that root can
execute the file. Perl’s builtin -x and -X operators have always been correct.

perl v5.36.0 2020-12-28 218

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• File::Temp has been upgraded to 0.23

Fixes various bugs involving directory removal. Defers unlinking tempfiles if the initial unlink
fails, which fixes problems on NFS.

• GDBM_File has been upgraded to 1.15.

The undocumented optional fifth parameter to TIEHASH has been removed. This was intended to
provide control of the callback used by gdbm* functions in case of fatal errors (such as filesystem
problems), but did not work (and could never have worked). No code on CPAN even attempted to
use it. The callback is now always the previous default, croak. Problems on some platforms with
how the C croak function is called have also been resolved.

• Hash::Util has been upgraded to 0.15.

hash_unlocked and hashref_unlocked now returns true if the hash is unlocked, instead
of always returning false [perl #112126].

hash_unlocked, hashref_unlocked, lock_hash_recurse and
unlock_hash_recurse are now exportable [perl #112126].

Two new functions, hash_locked and hashref_locked, have been added. Oddly enough,
these two functions were already exported, even though they did not exist [perl #112126].

• HTTP::Tiny has been upgraded to 0.025.

Add SSL verification features [github #6], [github #9].

Include the final URL in the response hashref.

Add local_address option.

This improves SSL support.

• IO has been upgraded to 1.28.

sync() can now be called on read-only file handles [perl #64772].

IO::Socket tries harder to cache or otherwise fetch socket information.

• IPC::Cmd has been upgraded to 0.80.

Use POSIX::_exit instead of exit in run_forked [rt.cpan.org #76901].

• IPC::Open3 has been upgraded to 1.13.

The open3() function no longer uses POSIX::close() to close file descriptors since that
breaks the ref-counting of file descriptors done by PerlIO in cases where the file descriptors are
shared by PerlIO streams, leading to attempts to close the file descriptors a second time when any
such PerlIO streams are closed later on.

• Locale::Codes has been upgraded to 3.25.

It includes some new codes.

• Memoize has been upgraded to 1.03.

Fix the MERGE cache option.

• Module::Build has been upgraded to 0.4003.

Fixed bug where modules without $VERSION might have a version of ’0’ listed in ’provides’
metadata, which will be rejected by PAUSE.

Fixed bug in PodParser to allow numerals in module names.

Fixed bug where giving arguments twice led to them becoming arrays, resulting in install paths
like ARRAY (0xdeadbeef)/lib/Foo.pm.

A minor bug fix allows markup to be used around the leading ‘‘Name’’ in a POD ‘‘abstract’’ line,
and some documentation improvements have been made.

perl v5.36.0 2020-12-28 219

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• Module::CoreList has been upgraded to 2.90

Version information is now stored as a delta, which greatly reduces the size of the CoreList.pm
file.

This restores compatibility with older versions of perl and cleans up the corelist data for various
modules.

• Module::Load::Conditional has been upgraded to 0.54.

Fix use of requires on perls installed to a path with spaces.

Various enhancements include the new use of Module::Metadata.

• Module::Metadata has been upgraded to 1.000011.

The creation of a Module::Metadata object for a typical module file has been sped up by about
40%, and some spurious warnings about $VERSIONs have been suppressed.

• Module::Pluggable has been upgraded to 4.7.

Amongst other changes, triggers are now allowed on events, which gives a powerful way to
modify behaviour.

• Net::Ping has been upgraded to 2.41.

This fixes some test failures on Windows.

• Opcode has been upgraded to 1.25.

Reflect the removal of the boolkeys opcode and the addition of the clonecv, introcv and padcv
opcodes.

• overload has been upgraded to 1.22.

no overload now warns for invalid arguments, just like use overload.

• PerlIO::encoding has been upgraded to 0.16.

This is the module implementing the ‘‘:encoding(...)’’ I/O layer. It no longer corrupts memory or
crashes when the encoding back-end reallocates the buffer or gives it a typeglob or shared hash
key scalar.

• PerlIO::scalar has been upgraded to 0.16.

The buffer scalar supplied may now only contain code points 0xFF or lower. [perl #109828]

• Perl::OSType has been upgraded to 1.003.

This fixes a bug detecting the VOS operating system.

• Pod::Html has been upgraded to 1.18.

The option --libpods has been reinstated. It is deprecated, and its use does nothing other than
issue a warning that it is no longer supported.

Since the HTML files generated by pod2html claim to have a UTF-8 charset, actually write the
files out using UTF-8 [perl #111446].

• Pod::Simple has been upgraded to 3.28.

Numerous improvements have been made, mostly to Pod::Simple::XHTML, which also has a
compatibility change: the codes_in_verbatim option is now disabled by default. See
cpan/Pod-Simple/ChangeLog for the full details.

• re has been upgraded to 0.23

Single character [class]es like /[s]/ or /[s]/i are now optimized as if they did not have the
brackets, i.e. /s/ or /s/i.

See note about op_comp in the ‘‘Internal Changes’’ section below.

• Safe has been upgraded to 2.35.

Fix interactions with Devel::Cover.

perl v5.36.0 2020-12-28 220

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

Don’t eval code under no strict.

• Scalar::Util has been upgraded to version 1.27.

Fix an overloading issue with sum.

first and reduce now check the callback first (so &first(1) is disallowed).

Fix tainted on magical values [rt.cpan.org #55763].

Fix sum on previously magical values [rt.cpan.org #61118].

Fix reading past the end of a fixed buffer [rt.cpan.org #72700].

• Search::Dict has been upgraded to 1.07.

No longer require stat on filehandles.

Use fc for casefolding.

• Socket has been upgraded to 2.009.

Constants and functions required for IP multicast source group membership have been added.

unpack_sockaddr_in() and unpack_sockaddr_in6() now return just the IP address
in scalar context, and inet_ntop() now guards against incorrect length scalars being passed in.

This fixes an uninitialized memory read.

• Storable has been upgraded to 2.41.

Modifying $_[0] within STORABLE_freeze no longer results in crashes [perl #112358].

An object whose class implements STORABLE_attach is now thawed only once when there are
multiple references to it in the structure being thawed [perl #111918].

Restricted hashes were not always thawed correctly [perl #73972].

Storable would croak when freezing a blessed REF object with a STORABLE_freeze() method
[perl #113880].

It can now freeze and thaw vstrings correctly. This causes a slight incompatible change in the
storage format, so the format version has increased to 2.9.

This contains various bugfixes, including compatibility fixes for older versions of Perl and vstring
handling.

• Sys::Syslog has been upgraded to 0.32.

This contains several bug fixes relating to getservbyname(), setlogsock()and log levels
in syslog(), together with fixes for Windows, Haiku-OS and GNU/kFreeBSD. See
cpan/Sys-Syslog/Changes for the full details.

• Term::ANSIColor has been upgraded to 4.02.

Add support for italics.

Improve error handling.

• Term::ReadLine has been upgraded to 1.10. This fixes the use of the cpan and cpanp shells on
Windows in the event that the current drive happens to contain a \dev\tty file.

• Test::Harness has been upgraded to 3.26.

Fix glob semantics on Win32 [rt.cpan.org #49732].

Don’t use Win32::GetShortPathName when calling perl [rt.cpan.org #47890].

Ignore -T when reading shebang [rt.cpan.org #64404].

Handle the case where we don’t know the wait status of the test more gracefully.

Make the test summary ’ok’ line overridable so that it can be changed to a plugin to make the
output of prove idempotent.

Don’t run world-writable files.

perl v5.36.0 2020-12-28 221

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• Text::Tabs and Text::Wrap have been upgraded to 2012.0818. Support for Unicode combining
characters has been added to them both.

• threads::shared has been upgraded to 1.31.

This adds the option to warn about or ignore attempts to clone structures that can’t be cloned, as
opposed to just unconditionally dying in that case.

This adds support for dual-valued values as created by Scalar::Util::dualvar.

• Tie::StdHandle has been upgraded to 4.3.

READ now respects the offset argument to read [perl #112826].

• Time::Local has been upgraded to 1.2300.

Seconds values greater than 59 but less than 60 no longer cause timegm() and timelocal()
to croak.

• Unicode::UCD has been upgraded to 0.53.

This adds a function all_casefolds() that returns all the casefolds.

• Win32 has been upgraded to 0.47.

New APIs have been added for getting and setting the current code page.

Removed Modules and Pragmata
• Version::Requirements has been removed from the core distribution. It is available under a

different name: CPAN::Meta::Requirements.

Documentation
Changes to Existing Documentation

perlcheat

• perlcheat has been reorganized, and a few new sections were added.

perldata

• Now explicitly documents the behaviour of hash initializer lists that contain duplicate keys.

perldiag

• The explanation of symbolic references being prevented by ‘‘strict refs’’ now doesn’t assume that
the reader knows what symbolic references are.

perlfaq

• perlfaq has been synchronized with version 5.0150040 from CPAN.

perlfunc

• The return value of pipe is now documented.

• Clarified documentation of our.

perlop

• Loop control verbs (dump, goto, next, last and redo) have always had the same precedence
as assignment operators, but this was not documented until now.

Diagnostics

The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• Unterminated delimiter for here document

This message now occurs when a here document label has an initial quotation mark but the final
quotation mark is missing.

This replaces a bogus and misleading error message about not finding the label itself [perl
#114104].

perl v5.36.0 2020-12-28 222

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• panic: child pseudo-process was never scheduled

This error is thrown when a child pseudo-process in the ithreads implementation on Windows was
not scheduled within the time period allowed and therefore was not able to initialize properly [perl
#88840].

• Group name must start with a non-digit word character in regex; marked by <-- HERE in m/%s/

This error has been added for (?&0), which is invalid. It used to produce an incomprehensible
error message [perl #101666].

• Can’t use an undefined value as a subroutine reference

Calling an undefined value as a subroutine now produces this error message. It used to, but was
accidentally disabled, first in Perl 5.004 for non-magical variables, and then in Perl v5.14 for
magical (e.g., tied) variables. It has now been restored. In the mean time, undef was treated as an
empty string [perl #113576].

• Experimental ‘‘%s’’ subs not enabled

To use lexical subs, you must first enable them:

no warnings 'experimental::lexical_subs';
use feature 'lexical_subs';
my sub foo { ... }

New Warnings

• ’Strings with code points over 0xFF may not be mapped into in-memory file handles’

• ’%s’ resolved to ’\o{%s}%d’

• ’Trailing white-space in a charnames alias definition is deprecated’

• ’A sequence of multiple spaces in a charnames alias definition is deprecated’

• ’Passing malformed UTF-8 to ‘‘%s’’ is deprecated’

• Subroutine ‘‘&%s’’ is not available

(W closure) During compilation, an inner named subroutine or eval is attempting to capture an
outer lexical subroutine that is not currently available. This can happen for one of two reasons.
First, the lexical subroutine may be declared in an outer anonymous subroutine that has not yet
been created. (Remember that named subs are created at compile time, while anonymous subs are
created at run-time.) For example,

sub { my sub a {...} sub f { \&a } }

At the time that f is created, it can’t capture the current the ‘‘a’’ sub, since the anonymous
subroutine hasn’t been created yet. Conversely, the following won’t give a warning since the
anonymous subroutine has by now been created and is live:

sub { my sub a {...} eval 'sub f { \&a }' }->();

The second situation is caused by an eval accessing a variable that has gone out of scope, for
example,

sub f {
my sub a {...}
sub { eval '\&a' }

}
f()->();

Here, when the ’\&a’ in the eval is being compiled, f() is not currently being executed, so its &a is
not available for capture.

• ‘‘%s’’ subroutine &%s masks earlier declaration in same %s

(W misc) A ‘‘my’’ or ‘‘state’’ subroutine has been redeclared in the current scope or statement,
effectively eliminating all access to the previous instance. This is almost always a typographical
error. Note that the earlier subroutine will still exist until the end of the scope or until all closure
references to it are destroyed.

perl v5.36.0 2020-12-28 223

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• The %s feature is experimental

(S experimental) This warning is emitted if you enable an experimental feature via use
feature. Simply suppress the warning if you want to use the feature, but know that in doing so
you are taking the risk of using an experimental feature which may change or be removed in a
future Perl version:

no warnings "experimental::lexical_subs";
use feature "lexical_subs";

• sleep(%u) too large

(W overflow) You called sleep with a number that was larger than it can reliably handle and
sleep probably slept for less time than requested.

• Wide character in setenv

Attempts to put wide characters into environment variables via %ENV now provoke this warning.

• "Invalid negative number (%s) in chr"

chr() now warns when passed a negative value [perl #83048].

• "Integer overflow in srand"

srand() now warns when passed a value that doesn’t fit in a UV (since the value will be
truncated rather than overflowing) [perl #40605].

• "-i used with no filenames on the command line, reading from STDIN"

Running perl with the -i flag now warns if no input files are provided on the command line [perl
#113410].

Changes to Existing Diagnostics
• $* is no longer supported

The warning that use of $* and $# is no longer supported is now generated for every location that
references them. Previously it would fail to be generated if another variable using the same
typeglob was seen first (e.g. @* before $*), and would not be generated for the second and
subsequent uses. (It’s hard to fix the failure to generate warnings at all without also generating
them every time, and warning every time is consistent with the warnings that $[used to generate.)

• The warnings for \b{ and \B{ were added. They are a deprecation warning which should be
turned off by that category. One should not have to turn off regular regexp warnings as well to get
rid of these.

• Constant(%s): Call to &{$ˆH{%s}} did not return a defined value

Constant overloading that returns undef results in this error message. For numeric constants, it
used to say ‘‘Constant(undef)’’. ‘‘undef’’ has been replaced with the number itself.

• The error produced when a module cannot be loaded now includes a hint that the module may
need to be installed: ‘‘Can’t locate hopping.pm in @INC (you may need to install the hopping
module) (@INC contains: ...)’’

• vector argument not supported with alpha versions

This warning was not suppressible, even with no warnings. Now it is suppressible, and has
been moved from the ‘‘internal’’ category to the ‘‘printf’’ category.

• Can't do {n,m} with n > m in regex; marked by <-- HERE in m/%s/

This fatal error has been turned into a warning that reads:

Quantifier {n,m} with n > m can’t match in regex

(W regexp) Minima should be less than or equal to maxima. If you really want your regexp to
match something 0 times, just put {0}.

• The ‘‘Runaway prototype’’ warning that occurs in bizarre cases has been removed as being
unhelpful and inconsistent.

perl v5.36.0 2020-12-28 224

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• The ‘‘Not a format reference’’ error has been removed, as the only case in which it could be
triggered was a bug.

• The ‘‘Unable to create sub named %s’’ error has been removed for the same reason.

• The ’Can’t use ‘‘my %s’’ in sort comparison’ error has been downgraded to a warning, ’‘‘my %s’’
used in sort comparison’ (with ’state’ instead of ’my’ for state variables). In addition, the
heuristics for guessing whether lexical $a or $b has been misused have been improved to
generate fewer false positives. Lexical $a and $b are no longer disallowed if they are outside the
sort block. Also, a named unary or list operator inside the sort block no longer causes the $a or
$b to be ignored [perl #86136].

Utility Changes
h2xs

• h2xs no longer produces invalid code for empty defines. [perl #20636]

Configuration and Compilation
• Added useversionedarchname option to Configure

When set, it includes ’api_versionstring’ in ’archname’. E.g. x86_64-linux-5.13.6-thread-multi.
It is unset by default.

This feature was requested by Tim Bunce, who observed that INSTALL_BASE creates a library
structure that does not differentiate by perl version. Instead, it places architecture specific files in
‘‘$install_base/lib/perl5/$archname’’. This makes it difficult to use a common INSTALL_BASE
library path with multiple versions of perl.

By setting -Duseversionedarchname, the $archname will be distinct for architecture and
API version, allowing mixed use of INSTALL_BASE.

• Add a PERL_NO_INLINE_FUNCTIONS option

If PERL_NO_INLINE_FUNCTIONS is defined, don’t include ‘‘inline.h’’

This permits test code to include the perl headers for definitions without creating a link
dependency on the perl library (which may not exist yet).

• Configure will honour the external MAILDOMAIN environment variable, if set.

• installman no longer ignores the silent option

• Both META.yml and META.json files are now included in the distribution.

• Configure will now correctly detect isblank() when compiling with a C++ compiler.

• The pager detection in Configure has been improved to allow responses which specify options
after the program name, e.g. /usr/bin/less -R, if the user accepts the default value. This helps
perldoc when handling ANSI escapes [perl #72156].

Testing
• The test suite now has a section for tests that require very large amounts of memory. These tests

won’t run by default; they can be enabled by setting the PERL_TEST_MEMORY environment
variable to the number of gibibytes of memory that may be safely used.

Platform Support
Discontinued Platforms

BeOS
BeOS was an operating system for personal computers developed by Be Inc, initially for their
BeBox hardware. The OS Haiku was written as an open source replacement for/continuation of
BeOS, and its perl port is current and actively maintained.

UTS Global
Support code relating to UTS global has been removed. UTS was a mainframe version of System
V created by Amdahl, subsequently sold to UTS Global. The port has not been touched since
before Perl v5.8.0, and UTS Global is now defunct.

VM/ESA
Support for VM/ESA has been removed. The port was tested on 2.3.0, which IBM ended service on
in March 2002. 2.4.0 ended service in June 2003, and was superseded by Z/VM. The current

perl v5.36.0 2020-12-28 225

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

version of Z/VM is V6.2.0, and scheduled for end of service on 2015/04/30.

MPE/IX
Support for MPE/IX has been removed.

EPOC
Support code relating to EPOC has been removed. EPOC was a family of operating systems
developed by Psion for mobile devices. It was the predecessor of Symbian. The port was last
updated in April 2002.

Rhapsody
Support for Rhapsody has been removed.

Platform-Specific Notes
AIX

Configure now always adds -qlanglvl=extc99 to the CC flags on AIX when using xlC. This will
make it easier to compile a number of XS-based modules that assume C99 [perl #113778].

clang++

There is now a workaround for a compiler bug that prevented compiling with clang++ since Perl
v5.15.7 [perl #112786].

C++

When compiling the Perl core as C++ (which is only semi-supported), the mathom functions are now
compiled as extern "C", to ensure proper binary compatibility. (However, binary compatibility
isn’t generally guaranteed anyway in the situations where this would matter.)

Darwin

Stop hardcoding an alignment on 8 byte boundaries to fix builds using -Dusemorebits.

Haiku

Perl should now work out of the box on Haiku R1 Alpha 4.

MidnightBSD

libc_r was removed from recent versions of MidnightBSD and older versions work better with
pthread. Threading is now enabled using pthread which corrects build errors with threading
enabled on 0.4-CURRENT.

Solaris

In Configure, avoid running sed commands with flags not supported on Solaris.

VMS

• Where possible, the case of filenames and command-line arguments is now preserved by enabling
the CRTL features DECC$EFS_CASE_PRESERVE and DECC$ARGV_PARSE_STYLE at start-up
time. The latter only takes effect when extended parse is enabled in the process from which Perl is
run.

• The character set for Extended Filename Syntax (EFS) is now enabled by default on VMS. Among
other things, this provides better handling of dots in directory names, multiple dots in filenames,
and spaces in filenames. To obtain the old behavior, set the logical name DECC$EFS_CHARSET
to DISABLE.

• Fixed linking on builds configured with -Dusemymalloc=y.

• Experimental support for building Perl with the HP C++compiler is available by configuring with -Dusecxx.

• All C header files from the top-level directory of the distribution are now installed on VMS,
providing consistency with a long-standing practice on other platforms. Previously only a subset
were installed, which broke non-core extension builds for extensions that depended on the missing
include files.

• Quotes are now removed from the command verb (but not the parameters) for commands spawned
via system, backticks, or a piped open. Previously, quotes on the verb were passed through to
DCL, which would fail to recognize the command. Also, if the verb is actually a path to an image
or command procedure on an ODS-5 volume, quoting it now allows the path to contain spaces.

perl v5.36.0 2020-12-28 226

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• The a2p build has been fixed for the HP C++compiler on OpenVMS.

Win32

• Perl can now be built using Microsoft’s Visual C++ 2012 compiler by specifying
CCTYPE=MSVC110 (or MSVC110FREE if you are using the free Express edition for Windows
Desktop) in win32/Makefile.

• The option to build without USE_SOCKETS_AS_HANDLES has been removed.

• Fixed a problem where perl could crash while cleaning up threads (including the main thread) in
threaded debugging builds on Win32 and possibly other platforms [perl #114496].

• A rare race condition that would lead to sleep taking more time than requested, and possibly even
hanging, has been fixed [perl #33096].

• link on Win32 now attempts to set $! to more appropriate values based on the Win32 API error
code. [perl #112272]

Perl no longer mangles the environment block, e.g. when launching a new sub-process, when the
environment contains non-ASCII characters. Known problems still remain, however, when the
environment contains characters outside of the current ANSI codepage (e.g. see the item about
Unicode in %ENV in <http://perl5.git.perl.org/perl.git/blob/HEAD:/Porting/todo.pod>). [perl
#113536]

• Building perl with some Windows compilers used to fail due to a problem with miniperl’s glob
operator (which uses the perlglob program) deleting the PATH environment variable [perl
#113798].

• A new makefile option, USE_64_BIT_INT, has been added to the Windows makefiles. Set this
to ‘‘define’’ when building a 32-bit perl if you want it to use 64-bit integers.

Machine code size reductions, already made to the DLLs of XS modules in Perl v5.17.2, have now
been extended to the perl DLL itself.

Building with VC++ 6.0 was inadvertently broken in Perl v5.17.2 but has now been fixed again.

WinCE

Building on WinCE is now possible once again, although more work is required to fully restore a clean
build.

Internal Changes
• Synonyms for the misleadingly named av_len() have been created: av_top_index() and

av_tindex. All three of these return the number of the highest index in the array, not the
number of elements it contains.

• SvUPGRADE() is no longer an expression. Originally this macro (and its underlying function,
sv_upgrade()) were documented as boolean, although in reality they always croaked on error and
never returned false. In 2005 the documentation was updated to specify a void return value, but
SvUPGRADE() was left always returning 1 for backwards compatibility. This has now been
removed, and SvUPGRADE() is now a statement with no return value.

So this is now a syntax error:

if (!SvUPGRADE(sv)) { croak(...); }

If you have code like that, simply replace it with

SvUPGRADE(sv);

or to avoid compiler warnings with older perls, possibly

(void)SvUPGRADE(sv);

• Perl has a new copy-on-write mechanism that allows any SvPOK scalar to be upgraded to a copy-
on-write scalar. A reference count on the string buffer is stored in the string buffer itself. This
feature is not enabled by default.

It can be enabled in a perl build by running Configure with
-Accflags=-DPERL_NEW_COPY_ON_WRITE, and we would encourage XS authors to try

perl v5.36.0 2020-12-28 227

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

their code with such an enabled perl, and provide feedback. Unfortunately, there is not yet a good
guide to updating XS code to cope with COW. Until such a document is available, consult the
perl5-porters mailing list.

It breaks a few XS modules by allowing copy-on-write scalars to go through code paths that never
encountered them before.

• Copy-on-write no longer uses the SvFAKE and SvREADONLY flags. Hence, SvREADONLY
indicates a true read-only SV.

Use the SvIsCOW macro (as before) to identify a copy-on-write scalar.

• PL_glob_index is gone.

• The private Perl_croak_no_modify has had its context parameter removed. It is now has a void
prototype. Users of the public API croak_no_modify remain unaffected.

• Copy-on-write (shared hash key) scalars are no longer marked read-only. SvREADONLY returns
false on such an SV, but SvIsCOW still returns true.

• A new op type, OP_PADRANGE has been introduced. The perl peephole optimiser will, where
possible, substitute a single padrange op for a pushmark followed by one or more pad ops, and
possibly also skipping list and nextstate ops. In addition, the op can carry out the tasks associated
with the RHS of a my(...) = @_ assignment, so those ops may be optimised away too.

• Case-insensitive matching inside a [bracketed] character class with a multi-character fold no
longer excludes one of the possibilities in the circumstances that it used to. [perl #89774].

• PL_formfeed has been removed.

• The regular expression engine no longer reads one byte past the end of the target string. While for
all internally well-formed scalars this should never have been a problem, this change facilitates
clever tricks with string buffers in CPAN modules. [perl #73542]

• Inside a BEGIN block, PL_compcv now points to the currently-compiling subroutine, rather than
the BEGIN block itself.

• mg_length has been deprecated.

• sv_len now always returns a byte count and sv_len_utf8 a character count. Previously,
sv_len and sv_len_utf8 were both buggy and would sometimes returns bytes and
sometimes characters. sv_len_utf8 no longer assumes that its argument is in UTF-8. Neither
of these creates UTF-8 caches for tied or overloaded values or for non-PVs any more.

• sv_mortalcopy now copies string buffers of shared hash key scalars when called from XS
modules [perl #79824].

• The new RXf_MODIFIES_VARS flag can be set by custom regular expression engines to
indicate that the execution of the regular expression may cause variables to be modified. This lets
s/// know to skip certain optimisations. Perl’s own regular expression engine sets this flag for
the special backtracking verbs that set $REGMARK and $REGERROR.

• The APIs for accessing lexical pads have changed considerably.

PADLISTs are now longer AVs, but their own type instead. PADLISTs now contain a PAD and a
PADNAMELIST of PADNAMEs, rather than AVs for the pad and the list of pad names. PADs,
PADNAMELISTs, and PADNAMEs are to be accessed as such through the newly added pad API
instead of the plain AV and SV APIs. See perlapi for details.

• In the regex API, the numbered capture callbacks are passed an index indicating what match
variable is being accessed. There are special index values for the $`, $&, $& variables.
Previously the same three values were used to retrieve ${ˆPREMATCH}, ${ˆMATCH},
${ˆPOSTMATCH} too, but these have now been assigned three separate values. See ‘‘Numbered
capture callbacks’’ in perlreapi.

• PL_sawampersand was previously a boolean indicating that any of $`, $&, $& had been
seen; it now contains three one-bit flags indicating the presence of each of the variables
individually.

perl v5.36.0 2020-12-28 228

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• The CV * typemap entry now supports &{} overloading and typeglobs, just like &{...} [perl
#96872].

• The SVf_AMAGIC flag to indicate overloading is now on the stash, not the object. It is now set
automatically whenever a method or @ISA changes, so its meaning has changed, too. It now
means ‘‘potentially overloaded’’. When the overload table is calculated, the flag is automatically
turned off if there is no overloading, so there should be no noticeable slowdown.

The staleness of the overload tables is now checked when overload methods are invoked, rather
than during bless.

‘‘A’’ magic is gone. The changes to the handling of the SVf_AMAGIC flag eliminate the need for
it.

PL_amagic_generation has been removed as no longer necessary. For XS modules, it is
now a macro alias to PL_na.

The fallback overload setting is now stored in a stash entry separate from overloadedness itself.

• The character-processing code has been cleaned up in places. The changes should be
operationally invisible.

• The study function was made a no-op in v5.16. It was simply disabled via a return statement;
the code was left in place. Now the code supporting what study used to do has been removed.

• Under threaded perls, there is no longer a separate PV allocated for every COP to store its package
name (cop->stashpv). Instead, there is an offset (cop->stashoff) into the new
PL_stashpad array, which holds stash pointers.

• In the pluggable regex API, the regexp_engine struct has acquired a new field op_comp,
which is currently just for perl’s internal use, and should be initialized to NULL by other regex
plugin modules.

• A new function alloccopstash has been added to the API, but is considered experimental.
See perlapi.

• Perl used to implement get magic in a way that would sometimes hide bugs in code that could call
mg_get() too many times on magical values. This hiding of errors no longer occurs, so long-
standing bugs may become visible now. If you see magic-related errors in XS code, check to make
sure it, together with the Perl API functions it uses, calls mg_get() only once on SvGMAGICAL()
values.

• OP allocation for CVs now uses a slab allocator. This simplifies memory management for OPs
allocated to a CV, so cleaning up after a compilation error is simpler and safer [perl #111462][perl
#112312].

• PERL_DEBUG_READONLY_OPS has been rewritten to work with the new slab allocator,
allowing it to catch more violations than before.

• The old slab allocator for ops, which was only enabled for PERL_IMPLICIT_SYS and
PERL_DEBUG_READONLY_OPS, has been retired.

Selected Bug Fixes
• Here document terminators no longer require a terminating newline character when they occur at

the end of a file. This was already the case at the end of a string eval [perl #65838].

• -DPERL_GLOBAL_STRUCT builds now free the global struct after they’ve finished using it.

• A trailing ’/’ on a path in @INC will no longer have an additional ’/’ appended.

• The :crlf layer now works when unread data doesn’t fit into its own buffer. [perl #112244].

• ungetc() now handles UTF-8 encoded data. [perl #116322].

• A bug in the core typemap caused any C types that map to the T_BOOL core typemap entry to not
be set, updated, or modified when the T_BOOL variable was used in an OUTPUT: section with an
exception for RETVAL. T_BOOL in an INPUT: section was not affected. Using a T_BOOL return
type for an XSUB (RETVAL) was not affected. A side effect of fixing this bug is, if a T_BOOL is
specified in the OUTPUT: section (which previous did nothing to the SV), and a read only SV
(literal) is passed to the XSUB, croaks like ‘‘Modification of a read-only value attempted’’ will

perl v5.36.0 2020-12-28 229

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

happen. [perl #115796]

• On many platforms, providing a directory name as the script name caused perl to do nothing and
report success. It should now universally report an error and exit nonzero. [perl #61362]

• sort {undef} ... under fatal warnings no longer crashes. It had begun crashing in Perl
v5.16.

• Stashes blessed into each other (bless \%Foo::, 'Bar'; bless \%Bar::, 'Foo')
no longer result in double frees. This bug started happening in Perl v5.16.

• Numerous memory leaks have been fixed, mostly involving fatal warnings and syntax errors.

• Some failed regular expression matches such as 'f' =˜ /../g were not resetting pos. Also,
‘‘match-once’’ patterns (m?...?g) failed to reset it, too, when invoked a second time [perl
#23180].

• Several bugs involving local *ISA and local *Foo:: causing stale MRO caches have been
fixed.

• Defining a subroutine when its typeglob has been aliased no longer results in stale method caches.
This bug was introduced in Perl v5.10.

• Localising a typeglob containing a subroutine when the typeglob’s package has been deleted from
its parent stash no longer produces an error. This bug was introduced in Perl v5.14.

• Under some circumstances, local *method=... would fail to reset method caches upon
scope exit.

• /[.foo.]/ is no longer an error, but produces a warning (as before) and is treated as /[.fo]/
[perl #115818].

• goto $tied_var now calls FETCH before deciding what type of goto (subroutine or label) this
is.

• Renaming packages through glob assignment (*Foo:: = *Bar::; *Bar:: = *Baz::) in
combination with m?...? and reset no longer makes threaded builds crash.

• A number of bugs related to assigning a list to hash have been fixed. Many of these involve lists
with repeated keys like (1, 1, 1, 1).

• The expression scalar(%h = (1, 1, 1, 1)) now returns 4, not 2.

• The return value of %h = (1, 1, 1) in list context was wrong. Previously this would
return (1, undef, 1), now it returns (1, undef).

• Perl now issues the same warning on ($s, %h) = (1, {}) as it does for (%h) =
({}), ‘‘Reference found where even-sized list expected’’.

• A number of additional edge cases in list assignment to hashes were corrected. For more
details see commit 23b7025ebc.

• Attributes applied to lexical variables no longer leak memory. [perl #114764]

• dump, goto, last, next, redo or require followed by a bareword (or version) and then an
infix operator is no longer a syntax error. It used to be for those infix operators (like +) that have a
different meaning where a term is expected. [perl #105924]

• require a::b . 1 and require a::b + 1 no longer produce erroneous ambiguity
warnings. [perl #107002]

• Class method calls are now allowed on any string, and not just strings beginning with an
alphanumeric character. [perl #105922]

• An empty pattern created with qr// used in m/// no longer triggers the ‘‘empty pattern reuses
last pattern’’ behaviour. [perl #96230]

• Tying a hash during iteration no longer results in a memory leak.

• Freeing a tied hash during iteration no longer results in a memory leak.

• List assignment to a tied array or hash that dies on STORE no longer results in a memory leak.

perl v5.36.0 2020-12-28 230

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• If the hint hash (%ˆH) is tied, compile-time scope entry (which copies the hint hash) no longer
leaks memory if FETCH dies. [perl #107000]

• Constant folding no longer inappropriately triggers the special split " " behaviour. [perl
#94490]

• defined scalar(@array), defined do { &foo }, and similar constructs now treat
the argument to defined as a simple scalar. [perl #97466]

• Running a custom debugging that defines no *DB::DB glob or provides a subroutine stub for
&DB::DB no longer results in a crash, but an error instead. [perl #114990]

• reset "" now matches its documentation. reset only resets m?...? patterns when called
with no argument. An empty string for an argument now does nothing. (It used to be treated as
no argument.) [perl #97958]

• printf with an argument returning an empty list no longer reads past the end of the stack,
resulting in erratic behaviour. [perl #77094]

• --subname no longer produces erroneous ambiguity warnings. [perl #77240]

• v10 is now allowed as a label or package name. This was inadvertently broken when v-strings
were added in Perl v5.6. [perl #56880]

• length, pos, substr and sprintf could be confused by ties, overloading, references and
typeglobs if the stringification of such changed the internal representation to or from UTF-8. [perl
#114410]

• utf8::encode now calls FETCH and STORE on tied variables. utf8::decode now calls STORE (it
was already calling FETCH).

• $tied =˜ s/$non_utf8/$utf8/ no longer loops infinitely if the tied variable returns a
Latin-1 string, shared hash key scalar, or reference or typeglob that stringifies as ASCII or
Latin-1. This was a regression from v5.12.

• s/// without /e is now better at detecting when it needs to forego certain optimisations, fixing
some buggy cases:

• Match variables in certain constructs (&&, ||, .. and others) in the replacement part; e.g.,
s/(.)/$l{$a||$1}/g. [perl #26986]

• Aliases to match variables in the replacement.

• $REGERROR or $REGMARK in the replacement. [perl #49190]

• An empty pattern (s//$foo/) that causes the last-successful pattern to be used, when that
pattern contains code blocks that modify the variables in the replacement.

• The taintedness of the replacement string no longer affects the taintedness of the return value of
s///e.

• The $| autoflush variable is created on-the-fly when needed. If this happened (e.g., if it was
mentioned in a module or eval) when the currently-selected filehandle was a typeglob with an
empty IO slot, it used to crash. [perl #115206]

• Line numbers at the end of a string eval are no longer off by one. [perl #114658]

• @INC filters (subroutines returned by subroutines in @INC) that set $_ to a copy-on-write scalar
no longer cause the parser to modify that string buffer in place.

• length($object) no longer returns the undefined value if the object has string overloading
that returns undef. [perl #115260]

• The use of PL_stashcache, the stash name lookup cache for method calls, has been restored,

Commit da6b625f78f5f133 in August 2011 inadvertently broke the code that looks up values in
PL_stashcache. As it’s only a cache, quite correctly everything carried on working without it.

• The error ‘‘Can’t localize through a reference’’ had disappeared in v5.16.0 when local %$ref
appeared on the last line of an lvalue subroutine. This error disappeared for \local %$ref in
perl v5.8.1. It has now been restored.

perl v5.36.0 2020-12-28 231

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• The parsing of here-docs has been improved significantly, fixing several parsing bugs and crashes
and one memory leak, and correcting wrong subsequent line numbers under certain conditions.

• Inside an eval, the error message for an unterminated here-doc no longer has a newline in the
middle of it [perl #70836].

• A substitution inside a substitution pattern (s/${s|||}//) no longer confuses the parser.

• It may be an odd place to allow comments, but s//"" # hello/e has always worked, unless
there happens to be a null character before the first #. Now it works even in the presence of nulls.

• An invalid range in tr/// or y/// no longer results in a memory leak.

• String eval no longer treats a semicolon-delimited quote-like operator at the very end (eval
'q;;') as a syntax error.

• warn {$_ => 1} + 1 is no longer a syntax error. The parser used to get confused with
certain list operators followed by an anonymous hash and then an infix operator that shares its
form with a unary operator.

• (caller $n)[6] (which gives the text of the eval) used to return the actual parser buffer.
Modifying it could result in crashes. Now it always returns a copy. The string returned no longer
has ‘‘\n;’’ tacked on to the end. The returned text also includes here-doc bodies, which used to be
omitted.

• The UTF-8 position cache is now reset when accessing magical variables, to avoid the string
buffer and the UTF-8 position cache getting out of sync [perl #114410].

• Various cases of get magic being called twice for magical UTF-8 strings have been fixed.

• This code (when not in the presence of $& etc)

$_ = 'x' x 1_000_000;
1 while /(.)/;

used to skip the buffer copy for performance reasons, but suffered from $1 etc changing if the
original string changed. That’s now been fixed.

• Perl doesn’t use PerlIO anymore to report out of memory messages, as PerlIO might attempt to
allocate more memory.

• In a regular expression, if something is quantified with {n,m} where n > m, it can’t possibly
match. Previously this was a fatal error, but now is merely a warning (and that something won’t
match). [perl #82954].

• It used to be possible for formats defined in subroutines that have subsequently been undefined
and redefined to close over variables in the wrong pad (the newly-defined enclosing sub), resulting
in crashes or ‘‘Bizarre copy’’ errors.

• Redefinition of XSUBs at run time could produce warnings with the wrong line number.

• The %vd sprintf format does not support version objects for alpha versions. It used to output the
format itself (%vd) when passed an alpha version, and also emit an ‘‘Invalid conversion in printf’’
warning. It no longer does, but produces the empty string in the output. It also no longer leaks
memory in this case.

• $obj->SUPER::method calls in the main package could fail if the SUPER package had
already been accessed by other means.

• Stash aliasing (*foo:: = *bar::) no longer causes SUPER calls to ignore changes to methods
or @ISA or use the wrong package.

• Method calls on packages whose names end in ::SUPER are no longer treated as SUPER method
calls, resulting in failure to find the method. Furthermore, defining subroutines in such packages
no longer causes them to be found by SUPER method calls on the containing package [perl
#114924].

• \w now matches the code points U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO
WIDTH JOINER). \W no longer matches these. This change is because Unicode corrected their
definition of what \w should match.

perl v5.36.0 2020-12-28 232

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• dump LABEL no longer leaks its label.

• Constant folding no longer changes the behaviour of functions like stat() and truncate()
that can take either filenames or handles. stat 1 ? foo : bar nows treats its argument as a
file name (since it is an arbitrary expression), rather than the handle ‘‘foo’’.

• truncate FOO, $len no longer falls back to treating ‘‘FOO’’ as a file name if the filehandle
has been deleted. This was broken in Perl v5.16.0.

• Subroutine redefinitions after sub-to-glob and glob-to-glob assignments no longer cause double
frees or panic messages.

• s/// now turns vstrings into plain strings when performing a substitution, even if the resulting
string is the same (s/a/a/).

• Prototype mismatch warnings no longer erroneously treat constant subs as having no prototype
when they actually have "".

• Constant subroutines and forward declarations no longer prevent prototype mismatch warnings
from omitting the sub name.

• undef on a subroutine now clears call checkers.

• The ref operator started leaking memory on blessed objects in Perl v5.16.0. This has been fixed
[perl #114340].

• use no longer tries to parse its arguments as a statement, making use constant { () }; a
syntax error [perl #114222].

• On debugging builds, ‘‘uninitialized’’ warnings inside formats no longer cause assertion failures.

• On debugging builds, subroutines nested inside formats no longer cause assertion failures [perl
#78550].

• Formats and use statements are now permitted inside formats.

• print $x and sub { print $x }->() now always produce the same output. It was
possible for the latter to refuse to close over $x if the variable was not active; e.g., if it was
defined outside a currently-running named subroutine.

• Similarly, print $x and print eval '$x' now produce the same output. This also allows
‘‘my $x if 0’’ variables to be seen in the debugger [perl #114018].

• Formats called recursively no longer stomp on their own lexical variables, but each recursive call
has its own set of lexicals.

• Attempting to free an active format or the handle associated with it no longer results in a crash.

• Format parsing no longer gets confused by braces, semicolons and low-precedence operators. It
used to be possible to use braces as format delimiters (instead of = and .), but only sometimes.
Semicolons and low-precedence operators in format argument lines no longer confuse the parser
into ignoring the line’s return value. In format argument lines, braces can now be used for
anonymous hashes, instead of being treated always as do blocks.

• Formats can now be nested inside code blocks in regular expressions and other quoted constructs
(/(?{...})/ and qq/${...}/) [perl #114040].

• Formats are no longer created after compilation errors.

• Under debugging builds, the -DA command line option started crashing in Perl v5.16.0. It has
been fixed [perl #114368].

• A potential deadlock scenario involving the premature termination of a pseudo- forked child in a
Windows build with ithreads enabled has been fixed. This resolves the common problem of the
t/op/fork.t test hanging on Windows [perl #88840].

• The code which generates errors from require() could potentially read one or two bytes before
the start of the filename for filenames less than three bytes long and ending /\.p?\z/. This has
now been fixed. Note that it could never have happened with module names given to use() or
require() anyway.

perl v5.36.0 2020-12-28 233

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• The handling of pathnames of modules given to require() has been made thread-safe on VMS.

• Non-blocking sockets have been fixed on VMS.

• Pod can now be nested in code inside a quoted construct outside of a string eval. This used to
work only within string evals [perl #114040].

• goto '' now looks for an empty label, producing the ‘‘goto must have label’’ error message,
instead of exiting the program [perl #111794].

• goto "\0" now dies with ‘‘Can’t find label’’ instead of ‘‘goto must have label’’.

• The C function hv_store used to result in crashes when used on %ˆH [perl #111000].

• A call checker attached to a closure prototype via cv_set_call_checker is now copied to
closures cloned from it. So cv_set_call_checker now works inside an attribute handler for
a closure.

• Writing to $ˆN used to have no effect. Now it croaks with ‘‘Modification of a read-only value’’
by default, but that can be overridden by a custom regular expression engine, as with $1 [perl
#112184].

• undef on a control character glob (undef *ˆH) no longer emits an erroneous warning about
ambiguity [perl #112456].

• For efficiency’s sake, many operators and built-in functions return the same scalar each time.
Lvalue subroutines and subroutines in the CORE:: namespace were allowing this implementation
detail to leak through. print &CORE::uc("a"), &CORE::uc("b") used to print ‘‘BB’’.
The same thing would happen with an lvalue subroutine returning the return value of uc. Now the
value is copied in such cases.

• method {} syntax with an empty block or a block returning an empty list used to crash or use
some random value left on the stack as its invocant. Now it produces an error.

• vec now works with extremely large offsets (>2 GB) [perl #111730].

• Changes to overload settings now take effect immediately, as do changes to inheritance that affect
overloading. They used to take effect only after bless.

Objects that were created before a class had any overloading used to remain non-overloaded even
if the class gained overloading through use overload or @ISA changes, and even after
bless. This has been fixed [perl #112708].

• Classes with overloading can now inherit fallback values.

• Overloading was not respecting a fallback value of 0 if there were overloaded objects on both
sides of an assignment operator like += [perl #111856].

• pos now croaks with hash and array arguments, instead of producing erroneous warnings.

• while(each %h) now implies while(defined($_ = each %h)), like readline and
readdir.

• Subs in the CORE:: namespace no longer crash after undef *_ when called with no argument
list (&CORE::time with no parentheses).

• unpack no longer produces the ‘‘’/’ must follow a numeric type in unpack’’ error when it is the
data that are at fault [perl #60204].

• join and "@array" now call FETCH only once on a tied $" [perl #8931].

• Some subroutine calls generated by compiling core ops affected by a CORE::GLOBAL override
had op checking performed twice. The checking is always idempotent for pure Perl code, but the
double checking can matter when custom call checkers are involved.

• A race condition used to exist around fork that could cause a signal sent to the parent to be
handled by both parent and child. Signals are now blocked briefly around fork to prevent this from
happening [perl #82580].

• The implementation of code blocks in regular expressions, such as (?{}) and (??{}), has been
heavily reworked to eliminate a whole slew of bugs. The main user-visible changes are:

perl v5.36.0 2020-12-28 234

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• Code blocks within patterns are now parsed in the same pass as the surrounding code; in
particular it is no longer necessary to have balanced braces: this now works:

/(?{ $x='{' })/

This means that this error message is no longer generated:

Sequence (?{...}) not terminated or not {}-balanced in regex

but a new error may be seen:

Sequence (?{...}) not terminated with ')'

In addition, literal code blocks within run-time patterns are only compiled once, at perl
compile-time:

for my $p (...) {
this 'FOO' block of code is compiled once,
at the same time as the surrounding 'for' loop
/$p{(?{FOO;})/;

}

• Lexical variables are now sane as regards scope, recursion and closure behavior. In particular,
/A(?{B})C/ behaves (from a closure viewpoint) exactly like /A/ && do { B } &&
/C/, while qr/A(?{B})C/ is like sub {/A/ && do { B } && /C/}. So this code
now works how you might expect, creating three regexes that match 0, 1, and 2:

for my $i (0..2) {
push @r, qr/ˆ(??{$i})$/;

}
"1" =˜ $r[1]; # matches

• The use re 'eval' pragma is now only required for code blocks defined at runtime; in
particular in the following, the text of the $r pattern is still interpolated into the new pattern
and recompiled, but the individual compiled code-blocks within $r are reused rather than
being recompiled, and use re 'eval' isn’t needed any more:

my $r = qr/abc(?{....})def/;
/xyz$r/;

• Flow control operators no longer crash. Each code block runs in a new dynamic scope, so
next etc. will not see any enclosing loops. return returns a value from the code block, not
from any enclosing subroutine.

• Perl normally caches the compilation of run-time patterns, and doesn’t recompile if the
pattern hasn’t changed, but this is now disabled if required for the correct behavior of
closures. For example:

my $code = '(??{$x})';
for my $x (1..3) {

recompile to see fresh value of $x each time
$x =˜ /$code/;

}

• The /msix and (?msix) etc. flags are now propagated into the return value from (??{});
this now works:

"AB" =˜ /a(??{'b'})/i;

• Warnings and errors will appear to come from the surrounding code (or for run-time code
blocks, from an eval) rather than from an re_eval:

use re 'eval'; $c = '(?{ warn "foo" })'; /$c/;
/(?{ warn "foo" })/;

formerly gave:

perl v5.36.0 2020-12-28 235

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

foo at (re_eval 1) line 1.
foo at (re_eval 2) line 1.

and now gives:

foo at (eval 1) line 1.
foo at /some/prog line 2.

• Perl now can be recompiled to use any Unicode version. In v5.16, it worked on Unicodes 6.0 and
6.1, but there were various bugs if earlier releases were used; the older the release the more
problems.

• vec no longer produces ‘‘uninitialized’’ warnings in lvalue context [perl #9423].

• An optimization involving fixed strings in regular expressions could cause a severe performance
penalty in edge cases. This has been fixed [perl #76546].

• In certain cases, including empty subpatterns within a regular expression (such as (?:) or
(?:|)) could disable some optimizations. This has been fixed.

• The ‘‘Can’t find an opnumber’’ message that prototype produces when passed a string like
‘‘CORE::nonexistent_keyword’’ now passes UTF-8 and embedded NULs through unchanged [perl
#97478].

• prototype now treats magical variables like $1 the same way as non-magical variables when
checking for the CORE:: prefix, instead of treating them as subroutine names.

• Under threaded perls, a runtime code block in a regular expression could corrupt the package
name stored in the op tree, resulting in bad reads in caller, and possibly crashes [perl #113060].

• Referencing a closure prototype (\&{$_[1]} in an attribute handler for a closure) no longer
results in a copy of the subroutine (or assertion failures on debugging builds).

• eval '_ _PACKAGE_ _' now returns the right answer on threaded builds if the current package
has been assigned over (as in *ThisPackage:: = *ThatPackage::) [perl #78742].

• If a package is deleted by code that it calls, it is possible for caller to see a stack frame
belonging to that deleted package. caller could crash if the stash’s memory address was reused
for a scalar and a substitution was performed on the same scalar [perl #113486].

• UNIVERSAL::can no longer treats its first argument differently depending on whether it is a
string or number internally.

• open with <& for the mode checks to see whether the third argument is a number, in determining
whether to treat it as a file descriptor or a handle name. Magical variables like $1 were always
failing the numeric check and being treated as handle names.

• warn’s handling of magical variables ($1, ties) has undergone several fixes. FETCH is only
called once now on a tied argument or a tied $@ [perl #97480]. Tied variables returning objects
that stringify as "" are no longer ignored. A tied $@ that happened to return a reference the
previous time it was used is no longer ignored.

• warn "" now treats $@ with a number in it the same way, regardless of whether it happened via
$@=3 or $@="3". It used to ignore the former. Now it appends ‘‘\t...caught’’, as it has always
done with $@="3".

• Numeric operators on magical variables (e.g., $1 + 1) used to use floating point operations even
where integer operations were more appropriate, resulting in loss of accuracy on 64-bit platforms
[perl #109542].

• Unary negation no longer treats a string as a number if the string happened to be used as a number
at some point. So, if $x contains the string ‘‘dogs’’, -$x returns ‘‘-dogs’’ even if $y=0+$x has
happened at some point.

• In Perl v5.14, -'-10' was fixed to return ‘‘10’’, not ‘‘+10’’. But magical variables ($1, ties)
were not fixed till now [perl #57706].

• Unary negation now treats strings consistently, regardless of the internal UTF8 flag.

perl v5.36.0 2020-12-28 236

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• A regression introduced in Perl v5.16.0 involving tr/SEARCHLIST/REPLACEMENTLIST/
has been fixed. Only the first instance is supposed to be meaningful if a character appears more
than once in SEARCHLIST. Under some circumstances, the final instance was overriding all
earlier ones. [perl #113584]

• Regular expressions like qr/\87/ previously silently inserted a NUL character, thus matching as
if it had been written qr/\00087/. Now it matches as if it had been written as qr/87/, with a
message that the sequence "\8" is unrecognized.

• _ _SUB_ _ now works in special blocks (BEGIN, END, etc.).

• Thread creation on Windows could theoretically result in a crash if done inside a BEGIN block. It
still does not work properly, but it no longer crashes [perl #111610].

• \&{''} (with the empty string) now autovivifies a stub like any other sub name, and no longer
produces the ‘‘Unable to create sub’’ error [perl #94476].

• A regression introduced in v5.14.0 has been fixed, in which some calls to the re module would
clobber $_ [perl #113750].

• do FILE now always either sets or clears $@, even when the file can’t be read. This ensures that
testing $@ first (as recommended by the documentation) always returns the correct result.

• The array iterator used for the each @array construct is now correctly reset when @array is
cleared [perl #75596]. This happens, for example, when the array is globally assigned to, as in
@array = (...), but not when its values are assigned to. In terms of the XS API, it means that
av_clear() will now reset the iterator.

This mirrors the behaviour of the hash iterator when the hash is cleared.

• $class->can, $class->isa, and $class->DOES now return correct results, regardless of
whether that package referred to by $class exists [perl #47113].

• Arriving signals no longer clear $@ [perl #45173].

• Allow my () declarations with an empty variable list [perl #113554].

• During parsing, subs declared after errors no longer leave stubs [perl #113712].

• Closures containing no string evals no longer hang on to their containing subroutines, allowing
variables closed over by outer subroutines to be freed when the outer sub is freed, even if the inner
sub still exists [perl #89544].

• Duplication of in-memory filehandles by opening with a ‘‘<&=’’ or ‘‘>&=’’ mode stopped
working properly in v5.16.0. It was causing the new handle to reference a different scalar
variable. This has been fixed [perl #113764].

• qr// expressions no longer crash with custom regular expression engines that do not set offs at
regular expression compilation time [perl #112962].

• delete local no longer crashes with certain magical arrays and hashes [perl #112966].

• local on elements of certain magical arrays and hashes used not to arrange to have the element
deleted on scope exit, even if the element did not exist before local.

• scalar(write) no longer returns multiple items [perl #73690].

• String to floating point conversions no longer misparse certain strings under use locale [perl
#109318].

• @INC filters that die no longer leak memory [perl #92252].

• The implementations of overloaded operations are now called in the correct context. This allows,
among other things, being able to properly override <> [perl #47119].

• Specifying only the fallback key when calling use overload now behaves properly [perl
#113010].

• sub foo { my $a = 0; while ($a) { ... } } and sub foo { while (0) {
... } } now return the same thing [perl #73618].

perl v5.36.0 2020-12-28 237

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• String negation now behaves the same under use integer; as it does without [perl #113012].

• chr now returns the Unicode replacement character (U+FFFD) for -1, regardless of the internal
representation. -1 used to wrap if the argument was tied or a string internally.

• Using a format after its enclosing sub was freed could crash as of perl v5.12.0, if the format
referenced lexical variables from the outer sub.

• Using a format after its enclosing sub was undefined could crash as of perl v5.10.0, if the format
referenced lexical variables from the outer sub.

• Using a format defined inside a closure, which format references lexical variables from outside,
never really worked unless the write call was directly inside the closure. In v5.10.0 it even
started crashing. Now the copy of that closure nearest the top of the call stack is used to find those
variables.

• Formats that close over variables in special blocks no longer crash if a stub exists with the same
name as the special block before the special block is compiled.

• The parser no longer gets confused, treating eval foo () as a syntax error if preceded by
print; [perl #16249].

• The return value of syscall is no longer truncated on 64-bit platforms [perl #113980].

• Constant folding no longer causes print 1 ? FOO : BAR to print to the FOO handle [perl
#78064].

• do subname now calls the named subroutine and uses the file name it returns, instead of
opening a file named ‘‘subname’’.

• Subroutines looked up by rv2cv check hooks (registered by XS modules) are now taken into
consideration when determining whether foo bar should be the sub call foo(bar) or the
method call "bar"->foo.

• CORE::foo::bar is no longer treated specially, allowing global overrides to be called directly
via CORE::GLOBAL::uc(...) [perl #113016].

• Calling an undefined sub whose typeglob has been undefined now produces the customary
‘‘Undefined subroutine called’’ error, instead of ‘‘Not a CODE reference’’.

• Two bugs involving @ISA have been fixed. *ISA = *glob_without_array and undef
*ISA; @{*ISA} would prevent future modifications to @ISA from updating the internal caches
used to look up methods. The *glob_without_array case was a regression from Perl v5.12.

• Regular expression optimisations sometimes caused $ with /m to produce failed or incorrect
matches [perl #114068].

• _ _SUB_ _ now works in a sort block when the enclosing subroutine is predeclared with sub
foo; syntax [perl #113710].

• Unicode properties only apply to Unicode code points, which leads to some subtleties when
regular expressions are matched against above-Unicode code points. There is a warning generated
to draw your attention to this. However, this warning was being generated inappropriately in some
cases, such as when a program was being parsed. Non-Unicode matches such as \w and
[:word:] should not generate the warning, as their definitions don’t limit them to apply to only
Unicode code points. Now the message is only generated when matching against \p{} and
\P{}. There remains a bug, [perl #114148], for the very few properties in Unicode that match
just a single code point. The warning is not generated if they are matched against an above-
Unicode code point.

• Uninitialized warnings mentioning hash elements would only mention the element name if it was
not in the first bucket of the hash, due to an off-by-one error.

• A regular expression optimizer bug could cause multiline ‘‘ˆ’’ to behave incorrectly in the
presence of line breaks, such that "/\n\n" =˜ m#\A(?:ˆ/$)#im would not match [perl
#115242].

• Failed fork in list context no longer corrupts the stack. @a = (1, 2, fork, 3) used to
gobble up the 2 and assign (1, undef, 3) if the fork call failed.

perl v5.36.0 2020-12-28 238

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

• Numerous memory leaks have been fixed, mostly involving tied variables that die, regular
expression character classes and code blocks, and syntax errors.

• Assigning a regular expression (${qr//}) to a variable that happens to hold a floating point
number no longer causes assertion failures on debugging builds.

• Assigning a regular expression to a scalar containing a number no longer causes subsequent
numification to produce random numbers.

• Assigning a regular expression to a magic variable no longer wipes away the magic. This was a
regression from v5.10.

• Assigning a regular expression to a blessed scalar no longer results in crashes. This was also a
regression from v5.10.

• Regular expression can now be assigned to tied hash and array elements with flattening into
strings.

• Numifying a regular expression no longer results in an uninitialized warning.

• Negative array indices no longer cause EXISTS methods of tied variables to be ignored. This was
a regression from v5.12.

• Negative array indices no longer result in crashes on arrays tied to non-objects.

• $byte_overload .= $utf8 no longer results in doubly-encoded UTF-8 if the left-hand
scalar happened to have produced a UTF-8 string the last time overloading was invoked.

• goto &sub now uses the current value of @_, instead of using the array the subroutine was
originally called with. This means local @_ = (...); goto &sub now works [perl
#43077].

• If a debugger is invoked recursively, it no longer stomps on its own lexical variables. Formerly
under recursion all calls would share the same set of lexical variables [perl #115742].

• *_{ARRAY} returned from a subroutine no longer spontaneously becomes empty.

• When using say to print to a tied filehandle, the value of $\ is correctly localized, even if it was
previously undef. [perl #119927]

Known Problems
• UTF8-flagged strings in %ENV on HP-UX 11.00 are buggy

The interaction of UTF8-flagged strings and %ENV on HP-UX 11.00 is currently dodgy in some
not-yet-fully-diagnosed way. Expect test failures in t/op/magic.t, followed by unknown behavior
when storing wide characters in the environment.

Obituary
Hojung Yoon (AMORETTE), 24, of Seoul, South Korea, went to his long rest on May 8, 2013 with
llama figurine and autographed TIMTOADY card. He was a brilliant young Perl 5 & 6 hacker and a
devoted member of Seoul.pm. He programmed Perl, talked Perl, ate Perl, and loved Perl. We believe
that he is still programming in Perl with his broken IBM laptop somewhere. He will be missed.

Acknowledgements
Perl v5.18.0 represents approximately 12 months of development since Perl v5.16.0 and contains
approximately 400,000 lines of changes across 2,100 files from 113 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl v5.18.0:

Aaron Crane, Aaron Trevena, Abhijit Menon-Sen, Adrian M. Enache, Alan Haggai Alavi, Alexandr
Ciornii, Andrew Tam, Andy Dougherty, Anton Nikishaev, Aristotle Pagaltzis, Augustina Blair, Bob
Ernst, Brad Gilbert, Breno G. de Oliveira, Brian Carlson, Brian Fraser, Charlie Gonzalez, Chip
Salzenberg, Chris ’BinGOs’ Williams, Christian Hansen, Colin Kuskie, Craig A. Berry, Dagfinn Ilmari
Mannsa°ker, Daniel Dragan, Daniel Perrett, Darin McBride, Dave Rolsky, David Golden, David
Leadbeater, David Mitchell, David Nicol, Dominic Hargreaves, E. Choroba, Eric Brine, Evan Miller,
Father Chrysostomos, Florian Ragwitz, Franc,ois Perrad, George Greer, Goro Fuji, H.Merijn Brand,
Herbert Breunung, Hugo van der Sanden, Igor Zaytsev, James E Keenan, Jan Dubois, Jasmine Ahuja,
Jerry D. Hedden, Jess Robinson, Jesse Luehrs, Joaquin Ferrero, Joel Berger, John Goodyear, John
Peacock, Karen Etheridge, Karl Williamson, Karthik Rajagopalan, Kent Fredric, Leon Timmermans,

perl v5.36.0 2020-12-28 239

PERL5180DELTA(1) Perl Programmers Reference Guide PERL5180DELTA(1)

Lucas Holt, Lukas Mai, Marcus Holland-Moritz, Markus Jansen, Martin Hasch, Matthew Horsfall,
Max Maischein, Michael G Schwern, Michael Schroeder, Moritz Lenz, Nicholas Clark, Niko Tyni,
Oleg Nesterov, Patrik Ha

..
gglund, Paul Green, Paul Johnson, Paul Marquess, Peter Martini, Rafael

Garcia-Suarez, Reini Urban, Renee Baecker, Rhesa Rozendaal, Ricardo Signes, Robin Barker, Ronald
J. Kimball, Ruslan Zakirov, Salvador Fandiño, Sawyer X, Scott Lanning, Sergey Alekseev, Shawn M
Moore, Shirakata Kentaro, Shlomi Fish, Sisyphus, Smylers, Steffen Mu

..
ller, Steve Hay, Steve Peters,

Steven Schubiger, Sullivan Beck, Sven Strickroth, Sébastien Aperghis-Tramoni, Thomas Sibley, Tobias
Leich, Tom Wyant, Tony Cook, Vadim Konovalov, Vincent Pit, Volker Schatz, Walt Mankowski, Yves
Orton, Zefram.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2020-12-28 240

PERL5181DELTA(1) Perl Programmers Reference Guide PERL5181DELTA(1)

NAME
perl5181delta - what is new for perl v5.18.1

DESCRIPTION
This document describes differences between the 5.18.0 release and the 5.18.1 release.

If you are upgrading from an earlier release such as 5.16.0, first read perl5180delta, which describes
differences between 5.16.0 and 5.18.0.

Incompatible Changes
There are no changes intentionally incompatible with 5.18.0 If any exist, they are bugs, and we request
that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• B has been upgraded from 1.42 to 1.42_01, fixing bugs related to lexical subroutines.

• Digest::SHA has been upgraded from 5.84 to 5.84_01, fixing a crashing bug. [RT #118649]

• Module::CoreList has been upgraded from 2.89 to 2.96.

Platform Support
Platform-Specific Notes

AIX
A rarely-encountered configuration bug in the AIX hints file has been corrected.

MidnightBSD
After a patch to the relevant hints file, perl should now build correctly on MidnightBSD
0.4-RELEASE.

Selected Bug Fixes
• Starting in v5.18.0, a construct like /[#](?{})/x would have its # incorrectly interpreted as a

comment. The code block would be skipped, unparsed. This has been corrected.

• A number of memory leaks related to the new, experimental regexp bracketed character class
feature have been plugged.

• The OP allocation code now returns correctly aligned memory in all cases for struct pmop.
Previously it could return memory only aligned to a 4-byte boundary, which is not correct for an
ithreads build with 64 bit IVs on some 32 bit platforms. Notably, this caused the build to fail
completely on sparc GNU/Linux. [RT #118055]

• The debugger’s man command been fixed. It was broken in the v5.18.0 release. The man
command is aliased to the names doc and perldoc - all now work again.

• @_ is now correctly visible in the debugger, fixing a regression introduced in v5.18.0’s debugger.
[RT #118169]

• Fixed a small number of regexp constructions that could either fail to match or crash perl when the
string being matched against was allocated above the 2GB line on 32-bit systems. [RT #118175]

• Perl v5.16 inadvertently introduced a bug whereby calls to XSUBs that were not visible at compile
time were treated as lvalues and could be assigned to, even when the subroutine was not an lvalue
sub. This has been fixed. [perl #117947]

• Perl v5.18 inadvertently introduced a bug whereby dual-vars (i.e. variables with both string and
numeric values, such as $!) where the truthness of the variable was determined by the numeric
value rather than the string value. [RT #118159]

• Perl v5.18 inadvertently introduced a bug whereby interpolating mixed up- and down-graded
UTF-8 strings in a regex could result in malformed UTF-8 in the pattern: specifically if a
downgraded character in the range \x80..\xff followed a UTF-8 string, e.g.

utf8::upgrade(my $u = "\x{e5}");
utf8::downgrade(my $d = "\x{e5}");
/ud/

[perl #118297].

perl v5.36.0 2019-02-18 241

PERL5181DELTA(1) Perl Programmers Reference Guide PERL5181DELTA(1)

• Lexical constants (my sub a() { 42 }) no longer crash when inlined.

• Parameter prototypes attached to lexical subroutines are now respected when compiling sub calls
without parentheses. Previously, the prototypes were honoured only for calls with parentheses.
[RT #116735]

• Syntax errors in lexical subroutines in combination with calls to the same subroutines no longer
cause crashes at compile time.

• The dtrace sub-entry probe now works with lexical subs, instead of crashing [perl #118305].

• Undefining an inlinable lexical subroutine (my sub foo() { 42 } undef &foo) would
result in a crash if warnings were turned on.

• Deep recursion warnings no longer crash lexical subroutines. [RT #118521]

Acknowledgements
Perl 5.18.1 represents approximately 2 months of development since Perl 5.18.0 and contains
approximately 8,400 lines of changes across 60 files from 12 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.18.1:

Chris ’BinGOs’ Williams, Craig A. Berry, Dagfinn Ilmari Mannsa°ker, David Mitchell, Father
Chrysostomos, Karl Williamson, Lukas Mai, Nicholas Clark, Peter Martini, Ricardo Signes, Shlomi
Fish, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 242

PERL5182DELTA(1) Perl Programmers Reference Guide PERL5182DELTA(1)

NAME
perl5182delta - what is new for perl v5.18.2

DESCRIPTION
This document describes differences between the 5.18.1 release and the 5.18.2 release.

If you are upgrading from an earlier release such as 5.18.0, first read perl5181delta, which describes
differences between 5.18.0 and 5.18.1.

Modules and Pragmata
Updated Modules and Pragmata

• B has been upgraded from version 1.42_01 to 1.42_02.

The fix for [perl #118525] introduced a regression in the behaviour of B::CV::GV, changing the
return value from a B::SPECIAL object on a NULL CvGV to undef. B::CV::GV again
returns a B::SPECIAL object in this case. [perl #119413]

• B::Concise has been upgraded from version 0.95 to 0.95_01.

This fixes a bug in dumping unexpected SPECIALs.

• English has been upgraded from version 1.06 to 1.06_01. This fixes an error about the
performance of $`, $&, and $'.

• File::Glob has been upgraded from version 1.20 to 1.20_01.

Documentation
Changes to Existing Documentation

• perlrepository has been restored with a pointer to more useful pages.

• perlhack has been updated with the latest changes from blead.

Selected Bug Fixes
• Perl 5.18.1 introduced a regression along with a bugfix for lexical subs. Some B::SPECIAL

results from B::CV::GV became undefs instead. This broke Devel::Cover among other libraries.
This has been fixed. [perl #119351]

• Perl 5.18.0 introduced a regression whereby [:ˆascii:], if used in the same character class as
other qualifiers, would fail to match characters in the Latin-1 block. This has been fixed. [perl
#120799]

• Perl 5.18.0 introduced a regression when using ->SUPER::method with AUTOLOAD by looking
up AUTOLOAD from the current package, rather than the current packageXs superclass. This has
been fixed. [perl #120694]

• Perl 5.18.0 introduced a regression whereby -bareword was no longer permitted under the
strict and integer pragmata when used together. This has been fixed. [perl #120288]

• Previously PerlIOBase_dup didn’t check if pushing the new layer succeeded before (optionally)
setting the utf8 flag. This could cause segfaults-by-nullpointer. This has been fixed.

• A buffer overflow with very long identifiers has been fixed.

• A regression from 5.16 in the handling of padranges led to assertion failures if a keyword plugin
declined to handle the second XmyX, but only after creating a padop.

This affected, at least, Devel::CallParser under threaded builds.

This has been fixed.

• The construct $r=qr/.../; /$r/p is now handled properly, an issue which had been
worsened by changes 5.18.0. [perl #118213]

Acknowledgements
Perl 5.18.2 represents approximately 3 months of development since Perl 5.18.1 and contains
approximately 980 lines of changes across 39 files from 4 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.18.2:

Craig A. Berry, David Mitchell, Ricardo Signes, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control

perl v5.36.0 2019-02-18 243

PERL5182DELTA(1) Perl Programmers Reference Guide PERL5182DELTA(1)

history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 244

PERL5184DELTA(1) Perl Programmers Reference Guide PERL5184DELTA(1)

NAME
perl5184delta - what is new for perl v5.18.4

DESCRIPTION
This document describes differences between the 5.18.4 release and the 5.18.2 release. Please note:
This document ignores perl 5.18.3, a broken release which existed for a few hours only.

If you are upgrading from an earlier release such as 5.18.1, first read perl5182delta, which describes
differences between 5.18.1 and 5.18.2.

Modules and Pragmata
Updated Modules and Pragmata

• Digest::SHA has been upgraded from 5.84_01 to 5.84_02.

• perl5db.pl has been upgraded from version 1.39_10 to 1.39_11.

This fixes a crash in tab completion, where available. [perl #120827] Also, filehandle information
is properly reset after a pager is run. [perl #121456]

Platform Support
Platform-Specific Notes

Win32
• Introduced by [GH #12161] <https://github.com/Perl/perl5/issues/12161>, a memory leak on

every call to system and backticks (` ̀), on most Win32 Perls starting from 5.18.0 has
been fixed. The memory leak only occurred if you enabled pseudo-fork in your build of
Win32 Perl, and were running that build on Server 2003 R2 or newer OS. The leak does not
appear on WinXP SP3. [GH #13741] <https://github.com/Perl/perl5/issues/13741>

Selected Bug Fixes
• The debugger now properly resets filehandles as needed. [perl #121456]

• A segfault in Digest::SHA has been addressed. [perl #121421]

• perl can again be built with USE_64_BIT_INT, with Visual C 2003, 32 bit. [perl #120925]

• A leading { (brace) in formats is properly parsed again. [perl #119973]

• Copy the values used to perturb hash iteration when cloning an interpreter. This was fairly
harmless but caused valgrind to complain. [perl #121336]

• In Perl v5.18 undef *_; goto &sub and local *_; goto &sub started crashing. This
has been fixed. [perl #119949]

Acknowledgements
Perl 5.18.4 represents approximately 9 months of development since Perl 5.18.2 and contains
approximately 2,000 lines of changes across 53 files from 13 authors.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.18.4:

Daniel Dragan, David Mitchell, Doug Bell, Father Chrysostomos, Hiroo Hayashi, James E Keenan,
Karl Williamson, Mark Shelor, Ricardo Signes, Shlomi Fish, Smylers, Steve Hay, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

perl v5.36.0 2021-04-29 245

PERL5184DELTA(1) Perl Programmers Reference Guide PERL5184DELTA(1)

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 246

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

NAME
perl5200delta - what is new for perl v5.20.0

DESCRIPTION
This document describes differences between the 5.18.0 release and the 5.20.0 release.

If you are upgrading from an earlier release such as 5.16.0, first read perl5180delta, which describes
differences between 5.16.0 and 5.18.0.

Core Enhancements
Experimental Subroutine signatures

Declarative syntax to unwrap argument list into lexical variables. sub foo ($a,$b) {...}
checks the number of arguments and puts the arguments into lexical variables. Signatures are not
equivalent to the existing idiom of sub foo { my($a,$b) = @_; ... }. Signatures are only
available by enabling a non-default feature, and generate warnings about being experimental. The
syntactic clash with prototypes is managed by disabling the short prototype syntax when signatures are
enabled.

See ‘‘Signatures’’ in perlsub for details.

subs now take a prototype attribute
When declaring or defining a sub, the prototype can now be specified inside of a prototype
attribute instead of in parens following the name.

For example, sub foo($$){} could be rewritten as sub foo : prototype($$){}.

More consistent prototype parsing
Multiple semicolons in subroutine prototypes have long been tolerated and treated as a single
semicolon. There was one case where this did not happen. A subroutine whose prototype begins with
‘‘*’’ or ‘‘;*’’ can affect whether a bareword is considered a method name or sub call. This now applies
also to ‘‘;;;*’’.

Whitespace has long been allowed inside subroutine prototypes, so sub($ $) is equivalent to
sub($$), but until now it was stripped when the subroutine was parsed. Hence, whitespace was not
allowed in prototypes set by Scalar::Util::set_prototype. Now it is permitted, and the
parser no longer strips whitespace. This means prototype &mysub returns the original prototype,
whitespace and all.

rand now uses a consistent random number generator
Previously perl would use a platform specific random number generator, varying between the libc
rand(), random() or drand48().

This meant that the quality of perl’s random numbers would vary from platform to platform, from the
15 bits of rand() on Windows to 48-bits on POSIX platforms such as Linux with drand48().

Perl now uses its own internal drand48() implementation on all platforms. This does not make perl’s
rand cryptographically secure. [perl #115928]

New slice syntax
The new %hash{...} and %array[...] syntax returns a list of key/value (or index/value) pairs.
See ‘‘Key/Value Hash Slices’’ in perldata.

Experimental Postfix Dereferencing
When the postderef feature is in effect, the following syntactical equivalencies are set up:

$sref->$*; # same as ${ $sref } # interpolates
$aref->@*; # same as @{ $aref } # interpolates
$href->%*; # same as %{ $href }
$cref->&*; # same as &{ $cref }
$gref->**; # same as *{ $gref }

$aref->$#*; # same as $#{ $aref }

$gref->*{ $slot }; # same as *{ $gref }{ $slot }

$aref->@[...]; # same as @$aref[...] # interpolates
$href->@{ ... }; # same as @$href{ ... } # interpolates

perl v5.36.0 2021-04-29 247

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

$aref->%[...]; # same as %$aref[...]
$href->%{ ... }; # same as %$href{ ... }

Those marked as interpolating only interpolate if the associated postderef_qq feature is also
enabled. This feature is experimental and will trigger experimental::postderef-category
warnings when used, unless they are suppressed.

For more information, consult the Postfix Dereference Syntax section of perlref.

Unicode 6.3 now supported
Perl now supports and is shipped with Unicode 6.3 (though Perl may be recompiled with any previous
Unicode release as well). A detailed list of Unicode 6.3 changes is at
<http://www.unicode.org/versions/Unicode6.3.0/>.

New \p{Unicode} regular expression pattern property
This is a synonym for \p{Any} and matches the set of Unicode-defined code points 0 - 0x10FFFF.

Better 64-bit support
On 64-bit platforms, the internal array functions now use 64-bit offsets, allowing Perl arrays to hold
more than 2**31 elements, if you have the memory available.

The regular expression engine now supports strings longer than 2**31 characters. [perl #112790,
#116907]

The functions PerlIO_get_bufsiz, PerlIO_get_cnt, PerlIO_set_cnt and PerlIO_set_ptrcnt now have
SSize_t, rather than int, return values and parameters.

use locale now works on UTF-8 locales
Until this release, only single-byte locales, such as the ISO 8859 series were supported. Now, the
increasingly common multi-byte UTF-8 locales are also supported. A UTF-8 locale is one in which the
character set is Unicode and the encoding is UTF-8. The POSIX LC_CTYPE category operations (case
changing (like lc(), "\U"), and character classification (\w, \D, qr/[[:punct:]]/)) under such
a locale work just as if not under locale, but instead as if under
use feature 'unicode_strings' , except taint rules are followed. Sorting remains by code
point order in this release. [perl #56820].

use locale now compiles on systems without locale ability
Previously doing this caused the program to not compile. Within its scope the program behaves as if in
the ‘‘C’’ locale. Thus programs written for platforms that support locales can run on locale-less
platforms without change. Attempts to change the locale away from the ‘‘C’’ locale will, of course,
fail.

More locale initialization fallback options
If there was an error with locales during Perl start-up, it immediately gave up and tried to use the "C"
locale. Now it first tries using other locales given by the environment variables, as detailed in
‘‘ENVIRONMENT’’ in perllocale. For example, if LC_ALL and LANG are both set, and using the
LC_ALL locale fails, Perl will now try the LANG locale, and only if that fails, will it fall back to "C".
On Windows machines, Perl will try, ahead of using "C", the system default locale if all the locales
given by environment variables fail.

-DL runtime option now added for tracing locale setting
This is designed for Perl core developers to aid in field debugging bugs regarding locales.

-F now implies -a and -a implies -n
Previously -F without -a was a no-op, and -a without -n or -p was a no-op, with this change, if you
supply -F then both -a and -n are implied and if you supply -a then -n is implied.

You can still use -p for its extra behaviour. [perl #116190]

$a and $b warnings exemption
The special variables $a and $b, used in sort, are now exempt from ‘‘used once’’ warnings, even
where sort is not used. This makes it easier for CPAN modules to provide functions using $a and $b
for similar purposes. [perl #120462]

Security
Avoid possible read of free()d memory during parsing

It was possible that free()d memory could be read during parsing in the unusual circumstance of the
Perl program ending with a heredoc and the last line of the file on disk having no terminating newline

perl v5.36.0 2021-04-29 248

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

character. This has now been fixed.

Incompatible Changes
do can no longer be used to call subroutines

The do SUBROUTINE(LIST) form has resulted in a deprecation warning since Perl v5.0.0, and is
now a syntax error.

Quote-like escape changes
The character after \c in a double-quoted string (‘‘...’’ or qq(...)) or regular expression must now be a
printable character and may not be {.

A literal { after \B or \b is now fatal.

These were deprecated in perl v5.14.0.

Tainting happens under more circumstances; now conforms to documentation
This affects regular expression matching and changing the case of a string (lc, "\U", etc.) within the
scope of use locale. The result is now tainted based on the operation, no matter what the contents
of the string were, as the documentation (perlsec, ‘‘SECURITY’’ in perllocale) indicates it should.
Previously, for the case change operation, if the string contained no characters whose case change
could be affected by the locale, the result would not be tainted. For example, the result of uc() on an
empty string or one containing only above-Latin1 code points is now tainted, and wasn’t before. This
leads to more consistent tainting results. Regular expression patterns taint their non-binary results (like
$&, $2) if and only if the pattern contains elements whose matching depends on the current
(potentially tainted) locale. Like the case changing functions, the actual contents of the string being
matched now do not matter, whereas formerly it did. For example, if the pattern contains a \w, the
results will be tainted even if the match did not have to use that portion of the pattern to succeed or fail,
because what a \w matches depends on locale. However, for example, a . in a pattern will not enable
tainting, because the dot matches any single character, and what the current locale is doesn’t change in
any way what matches and what doesn’t.

\p{}, \P{} matching has changed for non-Unicode code points.
\p{} and \P{} are defined by Unicode only on Unicode-defined code points (U+0000 through
U+10FFFF). Their behavior on matching these legal Unicode code points is unchanged, but there are
changes for code points 0x110000 and above. Previously, Perl treated the result of matching \p{}
and \P{} against these as undef, which translates into ‘‘false’’. For \P{}, this was then
complemented into ‘‘true’’. A warning was supposed to be raised when this happened. However,
various optimizations could prevent the warning, and the results were often counter-intuitive, with both
a match and its seeming complement being false. Now all non-Unicode code points are treated as
typical unassigned Unicode code points. This generally is more Do-What-I-Mean. A warning is raised
only if the results are arguably different from a strict Unicode approach, and from what Perl used to do.
Code that needs to be strictly Unicode compliant can make this warning fatal, and then Perl always
raises the warning.

Details are in ‘‘Beyond Unicode code points’’ in perlunicode.

\p{All} has been expanded to match all possible code points
The Perl-defined regular expression pattern element \p{All}, unused on CPAN, used to match just the
Unicode code points; now it matches all possible code points; that is, it is equivalent to qr/./s. Thus
\p{All} is no longer synonymous with \p{Any}, which continues to match just the Unicode code
points, as Unicode says it should.

Data::Dumper’s output may change
Depending on the data structures dumped and the settings set for Data::Dumper, the dumped output
may have changed from previous versions.

If you have tests that depend on the exact output of Data::Dumper, they may fail.

To avoid this problem in your code, test against the data structure from evaluating the dumped
structure, instead of the dump itself.

Locale decimal point character no longer leaks outside of use locale scope
This is actually a bug fix, but some code has come to rely on the bug being present, so this change is
listed here. The current locale that the program is running under is not supposed to be visible to Perl
code except within the scope of a use locale. However, until now under certain circumstances, the
character used for a decimal point (often a comma) leaked outside the scope. If your code is affected

perl v5.36.0 2021-04-29 249

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

by this change, simply add a use locale.

Assignments of Windows sockets error codes to $! now prefer errno.h values over
WSAGetLastError() values
In previous versions of Perl, Windows sockets error codes as returned by WSAGetLastError() were
assigned to $!, and some constants such as ECONNABORTED, not in errno.h in VC++ (or the various
Windows ports of gcc) were defined to corresponding WSAE* values to allow $! to be tested against
the E* constants exported by Errno and POSIX.

This worked well until VC++ 2010 and later, which introduced new E* constants with values > 100 into
errno.h, including some being (re)defined by perl to WSAE* values. That caused problems when
linking XS code against other libraries which used the original definitions of errno.h constants.

To avoid this incompatibility, perl now maps WSAE* error codes to E* values where possible, and
assigns those values to $!. The E* constants exported by Errno and POSIX are updated to match so that
testing $! against them, wherever previously possible, will continue to work as expected, and all E*
constants found in errno.h are now exported from those modules with their original errno.h values.

In order to avoid breakage in existing Perl code which assigns WSAE* values to $!, perl now intercepts
the assignment and performs the same mapping to E* values as it uses internally when assigning to $!
itself.

However, one backwards-incompatibility remains: existing Perl code which compares $! against the
numeric values of the WSAE* error codes that were previously assigned to $! will now be broken in
those cases where a corresponding E* value has been assigned instead. This is only an issue for those
E* values < 100, which were always exported from Errno and POSIX with their original errno.h values,
and therefore could not be used for WSAE* error code tests (e.g. WSAEINVAL is 10022, but the
corresponding EINVAL is 22). (E* values > 100, if present, were redefined to WSAE* values anyway,
so compatibility can be achieved by using the E* constants, which will work both before and after this
change, albeit using different numeric values under the hood.)

Functions PerlIO_vsprintf and PerlIO_sprintf have been removed
These two functions, undocumented, unused in CPAN, and problematic, have been removed.

Deprecations
The /\C/ character class

The /\C/ regular expression character class is deprecated. From perl 5.22 onwards it will generate a
warning, and from perl 5.24 onwards it will be a regular expression compiler error. If you need to
examine the individual bytes that make up a UTF8-encoded character, then use utf8::encode()
on the string (or a copy) first.

Literal control characters in variable names
This deprecation affects things like $\cT, where \cT is a literal control (such as a NAK or NEGATIVE
ACKNOWLEDGE character) in the source code. Surprisingly, it appears that originally this was intended
as the canonical way of accessing variables like $ˆT, with the caret form only being added as an
alternative.

The literal control form is being deprecated for two main reasons. It has what are likely unfixable bugs,
such as $\cI not working as an alias for $ˆI, and their usage not being portable to non-ASCII platforms:
While $ˆT will work everywhere, \cT is whitespace in EBCDIC. [perl #119123]

References to non-integers and non-positive integers in $/
Setting $/ to a reference to zero or a reference to a negative integer is now deprecated, and will behave
exactly as though it was set to undef. If you want slurp behavior set $/ to undef explicitly.

Setting $/ to a reference to a non integer is now forbidden and will throw an error. Perl has never
documented what would happen in this context and while it used to behave the same as setting $/ to
the address of the references in future it may behave differently, so we have forbidden this usage.

Character matching routines in POSIX
Use of any of these functions in the POSIX module is now deprecated: isalnum, isalpha,
iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, and
isxdigit. The functions are buggy and don’t work on UTF-8 encoded strings. See their entries in
POSIX for more information.

A warning is raised on the first call to any of them from each place in the code that they are called.

perl v5.36.0 2021-04-29 250

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

(Hence a repeated statement in a loop will raise just the one warning.)

Interpreter-based threads are now discouraged
The ‘‘interpreter-based threads’’ provided by Perl are not the fast, lightweight system for multitasking
that one might expect or hope for. Threads are implemented in a way that make them easy to misuse.
Few people know how to use them correctly or will be able to provide help.

The use of interpreter-based threads in perl is officially discouraged.

Module removals
The following modules will be removed from the core distribution in a future release, and will at that
time need to be installed from CPAN. Distributions on CPAN which require these modules will need to
list them as prerequisites.

The core versions of these modules will now issue "deprecated"-category warnings to alert you to
this fact. To silence these deprecation warnings, install the modules in question from CPAN.

Note that the planned removal of these modules from core does not reflect a judgement about the
quality of the code and should not be taken as a suggestion that their use be halted. Their disinclusion
from core primarily hinges on their necessity to bootstrapping a fully functional, CPAN-capable Perl
installation, not on concerns over their design.

CGI and its associated CGI:: packages
inc::latest
Package::Constants
Module::Build and its associated Module::Build:: packages

Utility removals
The following utilities will be removed from the core distribution in a future release, and will at that
time need to be installed from CPAN.

find2perl
s2p
a2p

Performance Enhancements
• Perl has a new copy-on-write mechanism that avoids the need to copy the internal string buffer

when assigning from one scalar to another. This makes copying large strings appear much faster.
Modifying one of the two (or more) strings after an assignment will force a copy internally. This
makes it unnecessary to pass strings by reference for efficiency.

This feature was already available in 5.18.0, but wasn’t enabled by default. It is the default now,
and so you no longer need build perl with the Configure argument:

-Accflags=-DPERL_NEW_COPY_ON_WRITE

It can be disabled (for now) in a perl build with:

-Accflags=-DPERL_NO_COW

On some operating systems Perl can be compiled in such a way that any attempt to modify string
buffers shared by multiple SVs will crash. This way XS authors can test that their modules handle
copy-on-write scalars correctly. See ‘‘Copy on Write’’ in perlguts for detail.

• Perl has an optimizer for regular expression patterns. It analyzes the pattern to find things such as
the minimum length a string has to be to match, etc. It now better handles code points that are
above the Latin1 range.

• Executing a regex that contains the ˆ anchor (or its variant under the /m flag) has been made
much faster in several situations.

• Precomputed hash values are now used in more places during method lookup.

• Constant hash key lookups ($hash{key} as opposed to $hash{$key}) have long had the
internal hash value computed at compile time, to speed up lookup. This optimisation has only
now been applied to hash slices as well.

• Combined and and or operators in void context, like those generated for unless ($a &&
$b) and if ($a || b) now short circuit directly to the end of the statement. [perl #120128]

perl v5.36.0 2021-04-29 251

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• In certain situations, when return is the last statement in a subroutine’s main scope, it will be
optimized out. This means code like:

sub baz { return $cat; }

will now behave like:

sub baz { $cat; }

which is notably faster.

[perl #120765]

• Code like:

my $x; # or @x, %x
my $y;

is now optimized to:

my ($x, $y);

In combination with the padrange optimization introduced in v5.18.0, this means longer
uninitialized my variable statements are also optimized, so:

my $x; my @y; my %z;

becomes:

my ($x, @y, %z);

[perl #121077]

• The creation of certain sorts of lists, including array and hash slices, is now faster.

• The optimisation for arrays indexed with a small constant integer is now applied for integers in the
range -128..127, rather than 0..255. This should speed up Perl code using expressions like
$x[-1], at the expense of (presumably much rarer) code using expressions like $x[200].

• The first iteration over a large hash (using keys or each) is now faster. This is achieved by
preallocating the hash’s internal iterator state, rather than lazily creating it when the hash is first
iterated. (For small hashes, the iterator is still created only when first needed. The assumption is
that small hashes are more likely to be used as objects, and therefore never allocated. For large
hashes, that’s less likely to be true, and the cost of allocating the iterator is swamped by the cost of
allocating space for the hash itself.)

• When doing a global regex match on a string that came from the readline or <> operator, the
data is no longer copied unnecessarily. [perl #121259]

• Dereferencing (as in $obj->[0] or $obj->{k}) is now faster when $obj is an instance of a
class that has overloaded methods, but doesn’t overload any of the dereferencing methods @{},
%{}, and so on.

• Perl’s optimiser no longer skips optimising code that follows certain eval {} expressions
(including those with an apparent infinite loop).

• The implementation now does a better job of avoiding meaningless work at runtime. Internal
effect-free ‘‘null’’ operations (created as a side-effect of parsing Perl programs) are normally
deleted during compilation. That deletion is now applied in some situations that weren’t
previously handled.

• Perl now does less disk I/O when dealing with Unicode properties that cover up to three ranges of
consecutive code points.

Modules and Pragmata
New Modules and Pragmata

• experimental 0.007 has been added to the Perl core.

• IO::Socket::IP 0.29 has been added to the Perl core.

perl v5.36.0 2021-04-29 252

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

Updated Modules and Pragmata
• Archive::Tar has been upgraded from version 1.90 to 1.96.

• arybase has been upgraded from version 0.06 to 0.07.

• Attribute::Handlers has been upgraded from version 0.94 to 0.96.

• attributes has been upgraded from version 0.21 to 0.22.

• autodie has been upgraded from version 2.13 to 2.23.

• AutoLoader has been upgraded from version 5.73 to 5.74.

• autouse has been upgraded from version 1.07 to 1.08.

• B has been upgraded from version 1.42 to 1.48.

• B::Concise has been upgraded from version 0.95 to 0.992.

• B::Debug has been upgraded from version 1.18 to 1.19.

• B::Deparse has been upgraded from version 1.20 to 1.26.

• base has been upgraded from version 2.18 to 2.22.

• Benchmark has been upgraded from version 1.15 to 1.18.

• bignum has been upgraded from version 0.33 to 0.37.

• Carp has been upgraded from version 1.29 to 1.3301.

• CGI has been upgraded from version 3.63 to 3.65. NOTE: CGI is deprecated and may be removed
from a future version of Perl.

• charnames has been upgraded from version 1.36 to 1.40.

• Class::Struct has been upgraded from version 0.64 to 0.65.

• Compress::Raw::Bzip2 has been upgraded from version 2.060 to 2.064.

• Compress::Raw::Zlib has been upgraded from version 2.060 to 2.065.

• Config::Perl::V has been upgraded from version 0.17 to 0.20.

• constant has been upgraded from version 1.27 to 1.31.

• CPAN has been upgraded from version 2.00 to 2.05.

• CPAN::Meta has been upgraded from version 2.120921 to 2.140640.

• CPAN::Meta::Requirements has been upgraded from version 2.122 to 2.125.

• CPAN::Meta::YAML has been upgraded from version 0.008 to 0.012.

• Data::Dumper has been upgraded from version 2.145 to 2.151.

• DB has been upgraded from version 1.04 to 1.07.

• DB_File has been upgraded from version 1.827 to 1.831.

• DBM_Filter has been upgraded from version 0.05 to 0.06.

• deprecate has been upgraded from version 0.02 to 0.03.

• Devel::Peek has been upgraded from version 1.11 to 1.16.

• Devel::PPPort has been upgraded from version 3.20 to 3.21.

• diagnostics has been upgraded from version 1.31 to 1.34.

• Digest::MD5 has been upgraded from version 2.52 to 2.53.

• Digest::SHA has been upgraded from version 5.84 to 5.88.

• DynaLoader has been upgraded from version 1.18 to 1.25.

• Encode has been upgraded from version 2.49 to 2.60.

• encoding has been upgraded from version 2.6_01 to 2.12.

perl v5.36.0 2021-04-29 253

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• English has been upgraded from version 1.06 to 1.09.

$OLD_PERL_VERSION was added as an alias of $].

• Errno has been upgraded from version 1.18 to 1.20_03.

• Exporter has been upgraded from version 5.68 to 5.70.

• ExtUtils::CBuilder has been upgraded from version 0.280210 to 0.280216.

• ExtUtils::Command has been upgraded from version 1.17 to 1.18.

• ExtUtils::Embed has been upgraded from version 1.30 to 1.32.

• ExtUtils::Install has been upgraded from version 1.59 to 1.67.

• ExtUtils::MakeMaker has been upgraded from version 6.66 to 6.98.

• ExtUtils::Miniperl has been upgraded from version to 1.01.

• ExtUtils::ParseXS has been upgraded from version 3.18 to 3.24.

• ExtUtils::Typemaps has been upgraded from version 3.19 to 3.24.

• ExtUtils::XSSymSet has been upgraded from version 1.2 to 1.3.

• feature has been upgraded from version 1.32 to 1.36.

• fields has been upgraded from version 2.16 to 2.17.

• File::Basename has been upgraded from version 2.84 to 2.85.

• File::Copy has been upgraded from version 2.26 to 2.29.

• File::DosGlob has been upgraded from version 1.10 to 1.12.

• File::Fetch has been upgraded from version 0.38 to 0.48.

• File::Find has been upgraded from version 1.23 to 1.27.

• File::Glob has been upgraded from version 1.20 to 1.23.

• File::Spec has been upgraded from version 3.40 to 3.47.

• File::Temp has been upgraded from version 0.23 to 0.2304.

• FileCache has been upgraded from version 1.08 to 1.09.

• Filter::Simple has been upgraded from version 0.89 to 0.91.

• Filter::Util::Call has been upgraded from version 1.45 to 1.49.

• Getopt::Long has been upgraded from version 2.39 to 2.42.

• Getopt::Std has been upgraded from version 1.07 to 1.10.

• Hash::Util::FieldHash has been upgraded from version 1.10 to 1.15.

• HTTP::Tiny has been upgraded from version 0.025 to 0.043.

• I18N::Langinfo has been upgraded from version 0.10 to 0.11.

• I18N::LangTags has been upgraded from version 0.39 to 0.40.

• if has been upgraded from version 0.0602 to 0.0603.

• inc::latest has been upgraded from version 0.4003 to 0.4205. NOTE: inc::latest is deprecated and
may be removed from a future version of Perl.

• integer has been upgraded from version 1.00 to 1.01.

• IO has been upgraded from version 1.28 to 1.31.

• IO::Compress::Gzip and friends have been upgraded from version 2.060 to 2.064.

• IPC::Cmd has been upgraded from version 0.80 to 0.92.

• IPC::Open3 has been upgraded from version 1.13 to 1.16.

• IPC::SysV has been upgraded from version 2.03 to 2.04.

perl v5.36.0 2021-04-29 254

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• JSON::PP has been upgraded from version 2.27202 to 2.27203.

• List::Util has been upgraded from version 1.27 to 1.38.

• locale has been upgraded from version 1.02 to 1.03.

• Locale::Codes has been upgraded from version 3.25 to 3.30.

• Locale::Maketext has been upgraded from version 1.23 to 1.25.

• Math::BigInt has been upgraded from version 1.9991 to 1.9993.

• Math::BigInt::FastCalc has been upgraded from version 0.30 to 0.31.

• Math::BigRat has been upgraded from version 0.2604 to 0.2606.

• MIME::Base64 has been upgraded from version 3.13 to 3.14.

• Module::Build has been upgraded from version 0.4003 to 0.4205. NOTE: Module::Build is
deprecated and may be removed from a future version of Perl.

• Module::CoreList has been upgraded from version 2.89 to 3.10.

• Module::Load has been upgraded from version 0.24 to 0.32.

• Module::Load::Conditional has been upgraded from version 0.54 to 0.62.

• Module::Metadata has been upgraded from version 1.000011 to 1.000019.

• mro has been upgraded from version 1.11 to 1.16.

• Net::Ping has been upgraded from version 2.41 to 2.43.

• Opcode has been upgraded from version 1.25 to 1.27.

• Package::Constants has been upgraded from version 0.02 to 0.04. NOTE: Package::Constants is
deprecated and may be removed from a future version of Perl.

• Params::Check has been upgraded from version 0.36 to 0.38.

• parent has been upgraded from version 0.225 to 0.228.

• Parse::CPAN::Meta has been upgraded from version 1.4404 to 1.4414.

• Perl::OSType has been upgraded from version 1.003 to 1.007.

• perlfaq has been upgraded from version 5.0150042 to 5.0150044.

• PerlIO has been upgraded from version 1.07 to 1.09.

• PerlIO::encoding has been upgraded from version 0.16 to 0.18.

• PerlIO::scalar has been upgraded from version 0.16 to 0.18.

• PerlIO::via has been upgraded from version 0.12 to 0.14.

• Pod::Escapes has been upgraded from version 1.04 to 1.06.

• Pod::Functions has been upgraded from version 1.06 to 1.08.

• Pod::Html has been upgraded from version 1.18 to 1.21.

• Pod::Parser has been upgraded from version 1.60 to 1.62.

• Pod::Perldoc has been upgraded from version 3.19 to 3.23.

• Pod::Usage has been upgraded from version 1.61 to 1.63.

• POSIX has been upgraded from version 1.32 to 1.38_03.

• re has been upgraded from version 0.23 to 0.26.

• Safe has been upgraded from version 2.35 to 2.37.

• Scalar::Util has been upgraded from version 1.27 to 1.38.

• SDBM_File has been upgraded from version 1.09 to 1.11.

• Socket has been upgraded from version 2.009 to 2.013.

perl v5.36.0 2021-04-29 255

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• Storable has been upgraded from version 2.41 to 2.49.

• strict has been upgraded from version 1.07 to 1.08.

• subs has been upgraded from version 1.01 to 1.02.

• Sys::Hostname has been upgraded from version 1.17 to 1.18.

• Sys::Syslog has been upgraded from version 0.32 to 0.33.

• Term::Cap has been upgraded from version 1.13 to 1.15.

• Term::ReadLine has been upgraded from version 1.12 to 1.14.

• Test::Harness has been upgraded from version 3.26 to 3.30.

• Test::Simple has been upgraded from version 0.98 to 1.001002.

• Text::ParseWords has been upgraded from version 3.28 to 3.29.

• Text::Tabs has been upgraded from version 2012.0818 to 2013.0523.

• Text::Wrap has been upgraded from version 2012.0818 to 2013.0523.

• Thread has been upgraded from version 3.02 to 3.04.

• Thread::Queue has been upgraded from version 3.02 to 3.05.

• threads has been upgraded from version 1.86 to 1.93.

• threads::shared has been upgraded from version 1.43 to 1.46.

• Tie::Array has been upgraded from version 1.05 to 1.06.

• Tie::File has been upgraded from version 0.99 to 1.00.

• Tie::Hash has been upgraded from version 1.04 to 1.05.

• Tie::Scalar has been upgraded from version 1.02 to 1.03.

• Tie::StdHandle has been upgraded from version 4.3 to 4.4.

• Time::HiRes has been upgraded from version 1.9725 to 1.9726.

• Time::Piece has been upgraded from version 1.20_01 to 1.27.

• Unicode::Collate has been upgraded from version 0.97 to 1.04.

• Unicode::Normalize has been upgraded from version 1.16 to 1.17.

• Unicode::UCD has been upgraded from version 0.51 to 0.57.

• utf8 has been upgraded from version 1.10 to 1.13.

• version has been upgraded from version 0.9902 to 0.9908.

• vmsish has been upgraded from version 1.03 to 1.04.

• warnings has been upgraded from version 1.18 to 1.23.

• Win32 has been upgraded from version 0.47 to 0.49.

• XS::Typemap has been upgraded from version 0.10 to 0.13.

• XSLoader has been upgraded from version 0.16 to 0.17.

Documentation
New Documentation

perlrepository

This document was removed (actually, renamed perlgit and given a major overhaul) in Perl v5.14,
causing Perl documentation websites to show the now out of date version in Perl v5.12 as the latest
version. It has now been restored in stub form, directing readers to current information.

Changes to Existing Documentation
perldata

• New sections have been added to document the new index/value array slice and key/value hash
slice syntax.

perldebguts

perl v5.36.0 2021-04-29 256

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• The DB::goto and DB::lsub debugger subroutines are now documented. [perl #77680]

perlexperiment

• \s matching \cK is marked experimental.

• ithreads were accepted in v5.8.0 (but are discouraged as of v5.20.0).

• Long doubles are not considered experimental.

• Code in regular expressions, regular expression backtracking verbs, and lvalue subroutines are no
longer listed as experimental. (This also affects perlre and perlsub.)

perlfunc

• chop and chomp now note that they can reset the hash iterator.

• exec’s handling of arguments is now more clearly documented.

• eval EXPR now has caveats about expanding floating point numbers in some locales.

• goto EXPR is now documented to handle an expression that evalutes to a code reference as if it
was goto &$coderef. This behavior is at least ten years old.

• Since Perl v5.10, it has been possible for subroutines in @INC to return a reference to a scalar
holding initial source code to prepend to the file. This is now documented.

• The documentation of ref has been updated to recommend the use of blessed, isa and
reftype when dealing with references to blessed objects.

perlguts

• Numerous minor changes have been made to reflect changes made to the perl internals in this
release.

• New sections on Read-Only Values and Copy on Write have been added.

perlhack

• The Super Quick Patch Guide section has been updated.

perlhacktips

• The documentation has been updated to include some more examples of gdb usage.

perllexwarn

• The perllexwarn documentation used to describe the hierarchy of warning categories understood
by the warnings pragma. That description has now been moved to the warnings documentation
itself, leaving perllexwarn as a stub that points to it. This change consolidates all documentation
for lexical warnings in a single place.

perllocale

• The documentation now mentions fc() and \F, and includes many clarifications and corrections in
general.

perlop

• The language design of Perl has always called for monomorphic operators. This is now
mentioned explicitly.

perlopentut

• The open tutorial has been completely rewritten by Tom Christiansen, and now focuses on
covering only the basics, rather than providing a comprehensive reference to all things openable.
This rewrite came as the result of a vigorous discussion on perl5-porters kicked off by a set of
improvements written by Alexander Hartmaier to the existing perlopentut. A "more than you ever
wanted to know about open" document may follow in subsequent versions of perl.

perlre

• The fact that the regexp engine makes no effort to call (?{}) and (??{}) constructs any specified
number of times (although it will basically DWIM in case of a successful match) has been
documented.

perl v5.36.0 2021-04-29 257

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• The /r modifier (for non-destructive substitution) is now documented. [perl #119151]

• The documentation for /x and (?# comment) has been expanded and clarified.

perlreguts

• The documentation has been updated in the light of recent changes to regcomp.c.

perlsub

• The need to predeclare recursive functions with prototypes in order for the prototype to be
honoured in the recursive call is now documented. [perl #2726]

• A list of subroutine names used by the perl implementation is now included. [perl #77680]

perltrap

• There is now a JavaScript section.

perlunicode

• The documentation has been updated to reflect Bidi_Class changes in Unicode 6.3.

perlvar

• A new section explaining the performance issues of $‘, $& and $’, including workarounds and
changes in different versions of Perl, has been added.

• Three English variable names which have long been documented but do not actually exist have
been removed from the documentation. These were $OLD_PERL_VERSION, $OFMT, and
$ARRAY_BASE.

(Actually, OLD_PERL_VERSION does exist, starting with this revision, but remained
undocumented until perl 5.22.0.)

perlxs

• Several problems in the MY_CXT example have been fixed.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• delete argument is index/value array slice, use array slice

(F) You used index/value array slice syntax (%array[...]) as the argument to delete. You
probably meant @array[...] with an @ symbol instead.

• delete argument is key/value hash slice, use hash slice

(F) You used key/value hash slice syntax (%hash{...}) as the argument to delete. You
probably meant @hash{...} with an @ symbol instead.

• Magical list constants are not supported

(F) You assigned a magical array to a stash element, and then tried to use the subroutine from the
same slot. You are asking Perl to do something it cannot do, details subject to change between
Perl versions.

• Added Setting $/ to a %s reference is forbidden

New Warnings

• %s on reference is experimental:

The ‘‘auto-deref’’ feature is experimental.

Starting in v5.14.0, it was possible to use push, pop, keys, and other built-in functions not only on
aggregate types, but on references to them. The feature was not deployed to its original intended
specification, and now may become redundant to postfix dereferencing. It has always been
categorized as an experimental feature, and in v5.20.0 is carries a warning as such.

Warnings will now be issued at compile time when these operations are detected.

perl v5.36.0 2021-04-29 258

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

no if $] >= 5.01908, warnings => "experimental::autoderef";

Consider, though, replacing the use of these features, as they may change behavior again before
becoming stable.

• A sequence of multiple spaces in a charnames alias definition is deprecated

Trailing white-space in a charnames alias definition is deprecated

These two deprecation warnings involving \N{...} were incorrectly implemented. They did not
warn by default (now they do) and could not be made fatal via use warnings FATAL =>
'deprecated' (now they can).

• Attribute prototype(%s) discards earlier prototype attribute in same sub

(W misc) A sub was declared as sub foo : prototype(A) : prototype(B) {}, for
example. Since each sub can only have one prototype, the earlier declaration(s) are discarded
while the last one is applied.

• Invalid \0 character in %s for %s: %s\0%s

(W syscalls) Embedded \0 characters in pathnames or other system call arguments produce a
warning as of 5.20. The parts after the \0 were formerly ignored by system calls.

• Matched non-Unicode code point 0x%X against Unicode property; may not be portable.

This replaces the message ‘‘Code point 0x%X is not Unicode, all \p{} matches fail; all \P{}
matches succeed’’.

• Missing ’]’ in prototype for %s : %s

(W illegalproto) A grouping was started with [but never closed with].

• Possible precedence issue with control flow operator

(W syntax) There is a possible problem with the mixing of a control flow operator (e.g. return)
and a low-precedence operator like or. Consider:

sub { return $a or $b; }

This is parsed as:

sub { (return $a) or $b; }

Which is effectively just:

sub { return $a; }

Either use parentheses or the high-precedence variant of the operator.

Note this may be also triggered for constructs like:

sub { 1 if die; }

• Postfix dereference is experimental

(S experimental::postderef) This warning is emitted if you use the experimental postfix
dereference syntax. Simply suppress the warning if you want to use the feature, but know that in
doing so you are taking the risk of using an experimental feature which may change or be
removed in a future Perl version:

no warnings "experimental::postderef";
use feature "postderef", "postderef_qq";
$ref->$*;
$aref->@*;
$aref->@[@indices];
... etc ...

• Prototype ’%s’ overridden by attribute ’prototype(%s)’ in %s

(W prototype) A prototype was declared in both the parentheses after the sub name and via the
prototype attribute. The prototype in parentheses is useless, since it will be replaced by the
prototype from the attribute before it’s ever used.

perl v5.36.0 2021-04-29 259

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• Scalar value @%s[%s] better written as $%s[%s]

(W syntax) In scalar context, you’ve used an array index/value slice (indicated by %) to select a
single element of an array. Generally it’s better to ask for a scalar value (indicated by $). The
difference is that $foo[&bar] always behaves like a scalar, both in the value it returns and when
evaluating its argument, while %foo[&bar] provides a list context to its subscript, which can do
weird things if you’re expecting only one subscript. When called in list context, it also returns the
index (what &bar returns) in addition to the value.

• Scalar value @%s{%s} better written as $%s{%s}

(W syntax) In scalar context, you’ve used a hash key/value slice (indicated by %) to select a single
element of a hash. Generally it’s better to ask for a scalar value (indicated by $). The difference is
that $foo{&bar} always behaves like a scalar, both in the value it returns and when evaluating
its argument, while @foo{&bar} and provides a list context to its subscript, which can do weird
things if you’re expecting only one subscript. When called in list context, it also returns the key in
addition to the value.

• Setting $/ to a reference to %s as a form of slurp is deprecated, treating as undef

• Unexpected exit %u

(S) exit() was called or the script otherwise finished gracefully when PERL_EXIT_WARN was set
in PL_exit_flags.

• Unexpected exit failure %d

(S) An uncaught die() was called when PERL_EXIT_WARN was set in PL_exit_flags.

• Use of literal control characters in variable names is deprecated

(D deprecated) Using literal control characters in the source to refer to the ˆFOO variables, like
$ˆX and ${ˆGLOBAL_PHASE} is now deprecated. This only affects code like $\cT, where \cT is
a control (like a SOH) in the source code: ${‘‘\cT’’} and $ˆT remain valid.

• Useless use of greediness modifier

This fixes [Perl #42957].

Changes to Existing Diagnostics
• Warnings and errors from the regexp engine are now UTF-8 clean.

• The ‘‘Unknown switch condition’’ error message has some slight changes. This error triggers
when there is an unknown condition in a (?(foo)) conditional. The error message used to read:

Unknown switch condition (?(%s in regex;

But what %s could be was mostly up to luck. For (?(foobar)), you might have seen ‘‘fo’’ or
‘‘f’’. For Unicode characters, you would generally get a corrupted string. The message has been
changed to read:

Unknown switch condition (?(...)) in regex;

Additionally, the '<-- HERE' marker in the error will now point to the correct spot in the regex.

• The ‘‘%s ’’\x%X‘‘ does not map to Unicode’’ warning is now correctly listed as a severe warning
rather than as a fatal error.

• Under rare circumstances, one could get a ‘‘Can’t coerce readonly REF to string’’ instead of the
customary ‘‘Modification of a read-only value’’. This alternate error message has been removed.

• ‘‘Ambiguous use of * resolved as operator *’’: This and similar warnings about ‘‘%’’ and ‘‘&’’
used to occur in some circumstances where there was no operator of the type cited, so the warning
was completely wrong. This has been fixed [perl #117535, #76910].

• Warnings about malformed subroutine prototypes are now more consistent in how the prototypes
are rendered. Some of these warnings would truncate prototypes containing nulls. In other cases
one warning would suppress another. The warning about illegal characters in prototypes no longer
says ‘‘after ’_’’’ if the bad character came before the underscore.

perl v5.36.0 2021-04-29 260

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• Perl folding rules are not up-to-date for 0x%X; please use the perlbug utility to report; in regex;
marked by <-- HERE in m/%s/

This message is now only in the regexp category, and not in the deprecated category. It is still a
default (i.e., severe) warning [perl #89648].

• %%s[%s] in scalar context better written as $%s[%s]

This warning now occurs for any %array[$index] or %hash{key} known to be in scalar
context at compile time. Previously it was worded ‘‘Scalar value %%s[%s] better written as
$%s[%s]’’.

• Switch condition not recognized in regex; marked by <-- HERE in m/%s/:

The description for this diagnostic has been extended to cover all cases where the warning may
occur. Issues with the positioning of the arrow indicator have also been resolved.

• The error messages for my($a?$b$c) and my(do{}) now mention ‘‘conditional expression’’
and ‘‘do block’’, respectively, instead of reading ’Can’t declare null operation in ‘‘my’’’.

• When use re "debug" executes a regex containing a backreference, the debugging output
now shows what string is being matched.

• The now fatal error message Character following "\c" must be ASCII has been
reworded as Character following "\c" must be printable ASCII to emphasize
that in \cX, X must be a printable (non-control) ASCII character.

Utility Changes
a2p

• A possible crash from an off-by-one error when trying to access before the beginning of a buffer
has been fixed. [perl #120244]

bisect.pl

The git bisection tool Porting/bisect.pl has had many enhancements.

It is provided as part of the source distribution but not installed because it is not self-contained as it
relies on being run from within a git checkout. Note also that it makes no attempt to fix tests, correct
runtime bugs or make something useful to install - its purpose is to make minimal changes to get any
historical revision of interest to build and run as close as possible to ‘‘as-was’’, and thereby make git
bisect easy to use.

• Can optionally run the test case with a timeout.

• Can now run in-place in a clean git checkout.

• Can run the test case under valgrind.

• Can apply user supplied patches and fixes to the source checkout before building.

• Now has fixups to enable building several more historical ranges of bleadperl, which can be useful
for pinpointing the origins of bugs or behaviour changes.

find2perl

• find2perl now handles ? wildcards correctly. [perl #113054]

perlbug

• perlbug now has a -p option for attaching patches with a bug report.

• perlbug has been modified to supply the report template with CRLF line endings on Windows.
[GH #13612] <https://github.com/Perl/perl5/issues/13612>

• perlbug now makes as few assumptions as possible about the encoding of the report. This will
likely change in the future to assume UTF-8 by default but allow a user override.

Configuration and Compilation
• The Makefile.PL for SDBM_File now generates a better Makefile, which avoids a race condition

during parallel makes, which could cause the build to fail. This is the last known parallel make
problem (on *nix platforms), and therefore we believe that a parallel make should now always be
error free.

perl v5.36.0 2021-04-29 261

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• installperl and installman’s option handling has been refactored to use Getopt::Long. Both are
used by the Makefile install targets, and are not installed, so these changes are only likely to
affect custom installation scripts.

• Single letter options now also have long names.

• Invalid options are now rejected.

• Command line arguments that are not options are now rejected.

• Each now has a --help option to display the usage message.

The behaviour for all valid documented invocations is unchanged.

• Where possible, the build now avoids recursive invocations of make when building pure-Perl
extensions, without removing any parallelism from the build. Currently around 80 extensions can
be processed directly by the make_ext.pl tool, meaning that 80 invocations of make and 160
invocations of miniperl are no longer made.

• The build system now works correctly when compiling under GCC or Clang with link-time
optimization enabled (the -flto option). [perl #113022]

• Distinct library basenames with d_libname_unique.

When compiling perl with this option, the library files for XS modules are named something
‘‘unique’’ — for example, Hash/Util/Util.so becomes Hash/Util/PL_Hash_ _Util.so. This
behavior is similar to what currently happens on VMS, and serves as groundwork for the Android
port.

• sysroot option to indicate the logical root directory under gcc and clang.

When building with this option set, both Configure and the compilers search for all headers and
libraries under this new sysroot, instead of /.

This is a huge time saver if cross-compiling, but can also help on native builds if your toolchain’s
files have non-standard locations.

• The cross-compilation model has been renovated. There’s several new options, and some
backwards-incompatible changes:

We now build binaries for miniperl and generate_uudmap to be used on the host, rather than
running every miniperl call on the target; this means that, short of ’make test’, we no longer need
access to the target system once Configure is done. You can provide already-built binaries through
the hostperl and hostgenerate options to Configure.

Additionally, if targeting an EBCDIC platform from an ASCII host, or viceversa, you’ll need to run
Configure with -Uhostgenerate, to indicate that generate_uudmap should be run on the
target.

Finally, there’s also a way of having Configure end early, right after building the host binaries, by
cross-compiling without specifying a targethost.

The incompatible changes include no longer using xconfig.h, xlib, or Cross.pm, so canned config
files and Makefiles will have to be updated.

• Related to the above, there is now a way of specifying the location of sh (or equivalent) on the
target system: targetsh.

For example, Android has its sh in /system/bin/sh, so if cross-compiling from a more normal
Unixy system with sh in /bin/sh, ‘‘targetsh’’ would end up as /system/bin/sh, and ‘‘sh’’ as /bin/sh.

• By default, gcc 4.9 does some optimizations that break perl. The -fwrapv option disables those
optimizations (and probably others), so for gcc 4.3 and later (since the there might be similar
problems lurking on older versions too, but -fwrapv was broken before 4.3, and the optimizations
probably won’t go away), Configure now adds -fwrapv unless the user requests -fno-wrapv,
which disables -fwrapv, or -fsanitize=undefined, which turns the overflows -fwrapv ignores
into runtime errors. [GH #13690] <https://github.com/Perl/perl5/issues/13690>

perl v5.36.0 2021-04-29 262

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

Testing
• The test.valgrind make target now allows tests to be run in parallel. This target allows

Perl’s test suite to be run under Valgrind, which detects certain sorts of C programming errors,
though at significant cost in running time. On suitable hardware, allowing parallel execution claws
back a lot of that additional cost. [perl #121431]

• Various tests in t/porting/ are no longer skipped when the perl .git directory is outside the perl tree
and pointed to by $GIT_DIR. [perl #120505]

• The test suite no longer fails when the user’s interactive shell maintains a $PWD environment
variable, but the /bin/sh used for running tests doesn’t.

Platform Support
New Platforms

Android
Perl can now be built for Android, either natively or through cross-compilation, for all three
currently available architectures (ARM, MIPS, and x86), on a wide range of versions.

Bitrig
Compile support has been added for Bitrig, a fork of OpenBSD.

FreeMiNT
Support has been added for FreeMiNT, a free open-source OS for the Atari ST system and its
successors, based on the original MiNT that was officially adopted by Atari.

Synology
Synology ships its NAS boxes with a lean Linux distribution (DSM) on relative cheap CPU’s (like
the Marvell Kirkwood mv6282 - ARMv5tel or Freescale QorIQ P1022 ppc - e500v2) not meant
for workstations or development. These boxes should build now. The basic problems are the non-
standard location for tools.

Discontinued Platforms
sfio

Code related to supporting the sfio I/O system has been removed.

Perl 5.004 added support to use the native API of sfio, AT&T’s Safe/Fast I/O library. This code
still built with v5.8.0, albeit with many regression tests failing, but was inadvertently broken
before the v5.8.1 release, meaning that it has not worked on any version of Perl released since
then. In over a decade we have received no bug reports about this, hence it is clear that no-one is
using this functionality on any version of Perl that is still supported to any degree.

AT&T 3b1
Configure support for the 3b1, also known as the AT&T Unix PC (and the similar AT&T 7300), has
been removed.

DG/UX
DG/UX was a Unix sold by Data General. The last release was in April 2001. It only runs on Data
General’s own hardware.

EBCDIC
In the absence of a regular source of smoke reports, code intended to support native EBCDIC
platforms will be removed from perl before 5.22.0.

Platform-Specific Notes
Cygwin

• recv() on a connected handle would populate the returned sender address with whatever
happened to be in the working buffer. recv() now uses a workaround similar to the Win32
recv() wrapper and returns an empty string when recvfrom (2) doesn’t modify the supplied
address length. [perl #118843]

• Fixed a build error in cygwin.c on Cygwin 1.7.28.

Tests now handle the errors that occur when cygserver isn’t running.

GNU/Hurd
The BSD compatibility library libbsd is no longer required for builds.

perl v5.36.0 2021-04-29 263

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

Linux
The hints file now looks for libgdbm_compat only if libgdbm itself is also wanted. The
former is never useful without the latter, and in some circumstances, including it could actually
prevent building.

Mac OS
The build system now honors an ld setting supplied by the user running Configure.

MidnightBSD
objformat was removed from version 0.4-RELEASE of MidnightBSD and had been
deprecated on earlier versions. This caused the build environment to be erroneously configured
for a.out rather than elf. This has been now been corrected.

Mixed-endian platforms
The code supporting pack and unpack operations on mixed endian platforms has been removed.
We believe that Perl has long been unable to build on mixed endian architectures (such as
PDP-11s), so we don’t think that this change will affect any platforms which were able to build
v5.18.0.

VMS
• The PERL_ENV_TABLES feature to control the population of %ENV at perl start-up was

broken in Perl 5.16.0 but has now been fixed.

• Skip access checks on remotes in opendir(). [perl #121002]

• A check for glob metacharacters in a path returned by the glob() operator has been
replaced with a check for VMS wildcard characters. This saves a significant number of
unnecessary lstat() calls such that some simple glob operations become 60-80% faster.

Win32
• rename and link on Win32 now set $! to ENOSPC and EDQUOT when appropriate. [perl

#119857]

• The BUILD_STATIC and ALL_STATIC makefile options for linking some or (nearly) all
extensions statically (into perl520.dll, and into a separate perl-static.exe too) were broken for
MinGW builds. This has now been fixed.

The ALL_STATIC option has also been improved to include the Encode and Win32 extensions
(for both VC++ and MinGW builds).

• Support for building with Visual C++ 2013 has been added. There are currently two possible
test failures (see ‘‘Testing Perl on Windows’’ in perlwin32) which will hopefully be resolved
soon.

• Experimental support for building with Intel C++ Compiler has been added. The nmake
makefile (win32/Makefile) and the dmake makefile (win32/makefile.mk) can be used. A
‘‘nmake test’’ will not pass at this time due to cpan/CGI/t/url.t.

• Killing a process tree with ‘‘kill’’ in perlfunc and a negative signal, was broken starting in
5.18.0. In this bug, kill always returned 0 for a negative signal even for valid PIDs, and no
processes were terminated. This has been fixed [perl #121230].

• The time taken to build perl on Windows has been reduced quite significantly (time savings
in the region of 30-40% are typically seen) by reducing the number of, usually failing, I/O
calls for each require() (for miniperl.exe only). [GH #13566]
<https://github.com/Perl/perl5/issues/13566>

• About 15 minutes of idle sleeping was removed from running make test due to a bug in
which the timeout monitor used for tests could not be cancelled once the test completes, and
the full timeout period elapsed before running the next test file. [GH #13647]
<https://github.com/Perl/perl5/issues/13647>

• On a perl built without pseudo-fork (pseudo-fork builds were not affected by this bug),
killing a process tree with kill() and a negative signal resulted in kill() inverting the
returned value. For example, if kill() killed 1 process tree PID then it returned 0 instead
of 1, and if kill() was passed 2 invalid PIDs then it returned 2 instead of 0. This has
probably been the case since the process tree kill feature was implemented on Win32. It has
now been corrected to follow the documented behaviour. [GH #13595]

perl v5.36.0 2021-04-29 264

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

<https://github.com/Perl/perl5/issues/13595>

• When building a 64-bit perl, an uninitialized memory read in miniperl.exe, used during the
build process, could lead to a 4GB wperl.exe being created. This has now been fixed. (Note
that perl.exe itself was unaffected, but obviously wperl.exe would have been completely
broken.) [GH #13677] <https://github.com/Perl/perl5/issues/13677>

• Perl can now be built with gcc version 4.8.1 from <http://www.mingw.org>. This was
previously broken due to an incorrect definition of DllMain() in one of perl’s source files.
Earlier gcc versions were also affected when using version 4 of the w32api package.
Versions of gcc available from <http://mingw-w64.sourceforge.net/> were not affected. [GH
#13733] <https://github.com/Perl/perl5/issues/13733>

• The test harness now has no failures when perl is built on a FAT drive with the Windows OS
on an NTFS drive. [GH #6348] <https://github.com/Perl/perl5/issues/6348>

• When cloning the context stack in fork() emulation, Perl_cx_dup() would crash accessing
parameter information for context stack entries that included no parameters, as with &foo;.
[GH #13763] <https://github.com/Perl/perl5/issues/13763>

• Introduced by [GH #12161] <https://github.com/Perl/perl5/issues/12161>, a memory leak on
every call to system and backticks (` ̀), on most Win32 Perls starting from 5.18.0 has
been fixed. The memory leak only occurred if you enabled pseudo-fork in your build of
Win32 Perl, and were running that build on Server 2003 R2 or newer OS. The leak does not
appear on WinXP SP3. [GH #13741] <https://github.com/Perl/perl5/issues/13741>

WinCE
• The building of XS modules has largely been restored. Several still cannot (yet) be built but

it is now possible to build Perl on WinCE with only a couple of further patches (to Socket
and ExtUtils::MakeMaker), hopefully to be incorporated soon.

• Perl can now be built in one shot with no user intervention on WinCE by running nmake -f
Makefile.ce all.

Support for building with EVC (Embedded Visual C++) 4 has been restored. Perl can also be
built using Smart Devices for Visual C++ 2005 or 2008.

Internal Changes
• The internal representation has changed for the match variables $1, $2 etc., $‘, $&, $’,

${ˆPREMATCH}, ${ˆMATCH} and ${ˆPOSTMATCH}. It uses slightly less memory, avoids
string comparisons and numeric conversions during lookup, and uses 23 fewer lines of C. This
change should not affect any external code.

• Arrays now use NULL internally to represent unused slots, instead of &PL_sv_undef.
&PL_sv_undef is no longer treated as a special value, so av_store(av, 0, &PL_sv_undef) will
cause element 0 of that array to hold a read-only undefined scalar. $array[0] = anything
will croak and \$array[0] will compare equal to \undef.

• The SV returned by HeSVKEY_force() now correctly reflects the UTF8ness of the underlying
hash key when that key is not stored as a SV. [perl #79074]

• Certain rarely used functions and macros available to XS code are now deprecated. These are:
utf8_to_uvuni_buf (use utf8_to_uvchr_buf instead), valid_utf8_to_uvuni
(use utf8_to_uvchr_buf instead), NATIVE_TO_NEED (this did not work properly anyway),
and ASCII_TO_NEED (this did not work properly anyway).

Starting in this release, almost never does application code need to distinguish between the
platform’s character set and Latin1, on which the lowest 256 characters of Unicode are based.
New code should not use utf8n_to_uvuni (use utf8_to_uvchr_buf instead), nor
uvuni_to_utf8 (use uvchr_to_utf8 instead),

• The Makefile shortcut targets for many rarely (or never) used testing and profiling targets have
been removed, or merged into the only other Makefile target that uses them. Specifically, these
targets are gone, along with documentation that referenced them or explained how to use them:

perl v5.36.0 2021-04-29 265

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

check.third check.utf16 check.utf8 coretest minitest.prep
minitest.utf16 perl.config.dashg perl.config.dashpg
perl.config.gcov perl.gcov perl.gprof perl.gprof.config
perl.pixie perl.pixie.atom perl.pixie.config perl.pixie.irix
perl.third perl.third.config perl.valgrind.config purecovperl
pureperl quantperl test.deparse test.taintwarn test.third
test.torture test.utf16 test.utf8 test_notty.deparse
test_notty.third test_notty.valgrind test_prep.third
test_prep.valgrind torturetest ucheck ucheck.third ucheck.utf16
ucheck.valgrind utest utest.third utest.utf16 utest.valgrind

It’s still possible to run the relevant commands by ‘‘hand’’ - no underlying functionality has been
removed.

• It is now possible to keep Perl from initializing locale handling. For the most part, Perl doesn’t
pay attention to locale. (See perllocale.) Nonetheless, until now, on startup, it has always
initialized locale handling to the system default, just in case the program being executed ends up
using locales. (This is one of the first things a locale-aware program should do, long before Perl
knows if it will actually be needed or not.) This works well except when Perl is embedded in
another application which wants a locale that isn’t the system default. Now, if the environment
variable PERL_SKIP_LOCALE_INIT is set at the time Perl is started, this initialization step is
skipped. Prior to this, on Windows platforms, the only workaround for this deficiency was to use
a hacked-up copy of internal Perl code. Applications that need to use older Perls can discover if
the embedded Perl they are using needs the workaround by testing that the C preprocessor symbol
HAS_SKIP_LOCALE_INIT is not defined. [RT #38193]

• BmRARE and BmPREVIOUS have been removed. They were not used anywhere and are not part
of the API. For XS modules, they are now #defined as 0.

• sv_force_normal, which usually croaks on read-only values, used to allow read-only values
to be modified at compile time. This has been changed to croak on read-only values regardless.
This change uncovered several core bugs.

• Perl’s new copy-on-write mechanism (which is now enabled by default), allows any SvPOK
scalar to be automatically upgraded to a copy-on-write scalar when copied. A reference count on
the string buffer is stored in the string buffer itself.

For example:

$ perl -MDevel::Peek -e'$a="abc"; $b = $a; Dump $a; Dump $b'
SV = PV(0x260cd80) at 0x2620ad8

REFCNT = 1
FLAGS = (POK,IsCOW,pPOK)
PV = 0x2619bc0 "abc"\0
CUR = 3
LEN = 16
COW_REFCNT = 1

SV = PV(0x260ce30) at 0x2620b20
REFCNT = 1
FLAGS = (POK,IsCOW,pPOK)
PV = 0x2619bc0 "abc"\0
CUR = 3
LEN = 16
COW_REFCNT = 1

Note that both scalars share the same PV buffer and have a COW_REFCNT greater than zero.

This means that XS code which wishes to modify the SvPVX() buffer of an SV should call
SvPV_force() or similar first, to ensure a valid (and unshared) buffer, and to call
SvSETMAGIC() afterwards. This in fact has always been the case (for example hash keys were
already copy-on-write); this change just spreads the COW behaviour to a wider variety of SVs.

One important difference is that before 5.18.0, shared hash-key scalars used to have the
SvREADONLY flag set; this is no longer the case.

perl v5.36.0 2021-04-29 266

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

This new behaviour can still be disabled by running Configure with
-Accflags=-DPERL_NO_COW. This option will probably be removed in Perl 5.22.

• PL_sawampersand is now a constant. The switch this variable provided (to enable/disable the
pre-match copy depending on whether $& had been seen) has been removed and replaced with
copy-on-write, eliminating a few bugs.

The previous behaviour can still be enabled by running Configure with
-Accflags=-DPERL_SAWAMPERSAND.

• The functions my_swap, my_htonl and my_ntohl have been removed. It is unclear why
these functions were ever marked as A, part of the API. XS code can’t call them directly, as it can’t
rely on them being compiled. Unsurprisingly, no code on CPAN references them.

• The signature of the Perl_re_intuit_start() regex function has changed; the function
pointer intuit in the regex engine plugin structure has also changed accordingly. A new
parameter, strbeg has been added; this has the same meaning as the same-named parameter in
Perl_regexec_flags. Previously intuit would try to guess the start of the string from the
passed SV (if any), and would sometimes get it wrong (e.g. with an overloaded SV).

• The signature of the Perl_regexec_flags() regex function has changed; the function
pointer exec in the regex engine plugin structure has also changed to match. The minend
parameter now has type SSize_t to better support 64-bit systems.

• XS code may use various macros to change the case of a character or code point (for example
toLOWER_utf8()). Only a couple of these were documented until now; and now they should
be used in preference to calling the underlying functions. See ‘‘Character case changing’’ in
perlapi.

• The code dealt rather inconsistently with uids and gids. Some places assumed that they could be
safely stored in UVs, others in IVs, others in ints. Four new macros are introduced: SvUID(),
sv_setuid(), SvGID(), and sv_setgid()

• sv_pos_b2u_flags has been added to the API. It is similar to sv_pos_b2u, but supports
long strings on 64-bit platforms.

• PL_exit_flags can now be used by perl embedders or other XS code to have perl warn or
abort on an attempted exit. [perl #52000]

• Compiling with -Accflags=-PERL_BOOL_AS_CHAR now allows C99 and C++ compilers to
emulate the aliasing of bool to char that perl does for C89 compilers. [perl #120314]

• The sv argument in ‘‘sv_2pv_flags’’ in perlapi, ‘‘sv_2iv_flags’’ in perlapi, ‘‘sv_2uv_flags’’ in
perlapi, and ‘‘sv_2nv_flags’’ in perlapi and their older wrappers sv_2pv, sv_2iv, sv_2uv, sv_2nv, is
now non-NULL. Passing NULL now will crash. When the non-NULL marker was introduced en
masse in 5.9.3 the functions were marked non-NULL, but since the creation of the SV API in 5.0
alpha 2, if NULL was passed, the functions returned 0 or false-type values. The code that supports
sv argument being non-NULL dates to 5.0 alpha 2 directly, and indirectly to Perl 1.0 (pre 5.0 api).
The lack of documentation that the functions accepted a NULL sv was corrected in 5.11.0 and
between 5.11.0 and 5.19.5 the functions were marked NULLOK. As an optimization the NULLOK
code has now been removed, and the functions became non-NULL marked again, because core
getter-type macros never pass NULL to these functions and would crash before ever passing NULL.

The only way a NULL sv can be passed to sv_2*v* functions is if XS code directly calls sv_2*v*.
This is unlikely as XS code uses Sv*V* macros to get the underlying value out of the SV. One
possible situation which leads to a NULL sv being passed to sv_2*v* functions, is if XS code
defines its own getter type Sv*V* macros, which check for NULL before dereferencing and
checking the SV’s flags through public API Sv*OK* macros or directly using private API
SvFLAGS, and if sv is NULL, then calling the sv_2*v functions with a NULL literal or passing
the sv containing a NULL value.

• newATTRSUB is now a macro

The public API newATTRSUB was previously a macro to the private function
Perl_newATTRSUB. Function Perl_newATTRSUB has been removed. newATTRSUB is now
macro to a different internal function.

perl v5.36.0 2021-04-29 267

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• Changes in warnings raised by utf8n_to_uvchr()

This bottom level function decodes the first character of a UTF-8 string into a code point. It is
accessible to XS level code, but it’s discouraged from using it directly. There are higher level
functions that call this that should be used instead, such as ‘‘utf8_to_uvchr_buf’’ in perlapi. For
completeness though, this documents some changes to it. Now, tests for malformations are done
before any tests for other potential issues. One of those issues involves code points so large that
they have never appeared in any official standard (the current standard has scaled back the highest
acceptable code point from earlier versions). It is possible (though not done in CPAN) to warn
and/or forbid these code points, while accepting smaller code points that are still above the legal
Unicode maximum. The warning message for this now includes the code point if representable on
the machine. Previously it always displayed raw bytes, which is what it still does for non-
representable code points.

• Regexp engine changes that affect the pluggable regex engine interface

Many flags that used to be exposed via regexp.h and used to populate the extflags member of
struct regexp have been removed. These fields were technically private to Perl’s own regexp
engine and should not have been exposed there in the first place.

The affected flags are:

RXf_NOSCAN
RXf_CANY_SEEN
RXf_GPOS_SEEN
RXf_GPOS_FLOAT
RXf_ANCH_BOL
RXf_ANCH_MBOL
RXf_ANCH_SBOL
RXf_ANCH_GPOS

As well as the follow flag masks:

RXf_ANCH_SINGLE
RXf_ANCH

All have been renamed to PREGf_ equivalents and moved to regcomp.h.

The behavior previously achieved by setting one or more of the RXf_ANCH_ flags (via the
RXf_ANCH mask) have now been replaced by a *single* flag bit in extflags:

RXf_IS_ANCHORED

pluggable regex engines which previously used to set these flags should now set this flag ALONE.

• The Perl core now consistently uses av_tindex() (‘‘the top index of an array’’) as a more
clearly-named synonym for av_len().

• The obscure interpreter variable PL_timesbuf is expected to be removed early in the 5.21.x
development series, so that Perl 5.22.0 will not provide it to XS authors. While the variable still
exists in 5.20.0, we hope that this advance warning of the deprecation will help anyone who is
using that variable.

Selected Bug Fixes
Regular Expressions

• Fixed a small number of regexp constructions that could either fail to match or crash perl when the
string being matched against was allocated above the 2GB line on 32-bit systems. [RT #118175]

• Various memory leaks involving the parsing of the (?[...]) regular expression construct have
been fixed.

• (?[...]) now allows interpolation of precompiled patterns consisting of (?[...]) with
bracketed character classes inside ($pat = qr/(?[[a]])/; /(?[$pat])/).
Formerly, the brackets would confuse the regular expression parser.

• The ‘‘Quantifier unexpected on zero-length expression’’ warning message could appear twice
starting in Perl v5.10 for a regular expression also containing alternations (e.g., ‘‘a|b’’) triggering
the trie optimisation.

perl v5.36.0 2021-04-29 268

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• Perl v5.18 inadvertently introduced a bug whereby interpolating mixed up- and down-graded
UTF-8 strings in a regex could result in malformed UTF-8 in the pattern: specifically if a
downgraded character in the range \x80..\xff followed a UTF-8 string, e.g.

utf8::upgrade(my $u = "\x{e5}");
utf8::downgrade(my $d = "\x{e5}");
/ud/

[RT #118297]

• In regular expressions containing multiple code blocks, the values of $1, $2, etc., set by nested
regular expression calls would leak from one block to the next. Now these variables always refer
to the outer regular expression at the start of an embedded block [perl #117917].

• /$qr/p was broken in Perl 5.18.0; the /p flag was ignored. This has been fixed. [perl #118213]

• Starting in Perl 5.18.0, a construct like /[#](?{})/x would have its # incorrectly interpreted as
a comment. The code block would be skipped, unparsed. This has been corrected.

• Starting in Perl 5.001, a regular expression like /[#$a]/x or /[#]$a/x would have its #
incorrectly interpreted as a comment, so the variable would not interpolate. This has been
corrected. [perl #45667]

• Perl 5.18.0 inadvertently made dereferenced regular expressions (${ qr// }) false as booleans.
This has been fixed.

• The use of \G in regular expressions, where it’s not at the start of the pattern, is now slightly less
buggy (although it is still somewhat problematic).

• Where a regular expression included code blocks (/(?{...})/), and where the use of constant
overloading triggered a re-compilation of the code block, the second compilation didn’t see its
outer lexical scope. This was a regression in Perl 5.18.0.

• The string position set by pos could shift if the string changed representation internally to or from
utf8. This could happen, e.g., with references to objects with string overloading.

• Taking references to the return values of two pos calls with the same argument, and then
assigning a reference to one and undef to the other, could result in assertion failures or memory
leaks.

• Elements of @- and @+ now update correctly when they refer to non-existent captures.
Previously, a referenced element ($ref = \$-[1]) could refer to the wrong match after
subsequent matches.

• The code that parses regex backrefs (or ambiguous backref/octals) such as \123 did a simple
atoi(), which could wrap round to negative values on long digit strings and cause segmentation
faults. This has now been fixed. [perl #119505]

• Assigning another typeglob to *ˆR no longer makes the regular expression engine crash.

• The \N regular expression escape, when used without the curly braces (to mean [ˆ\n]), was
ignoring a following * if followed by whitespace under /x. It had been this way since \N to mean
[ˆ\n] was introduced in 5.12.0.

• s///, tr/// and y/// now work when a wide character is used as the delimiter. [perl
#120463]

• Some cases of unterminated (?...) sequences in regular expressions (e.g., /(?</) have been fixed
to produce the proper error message instead of ‘‘panic: memory wrap’’. Other cases (e.g.,
/(?(/) have yet to be fixed.

• When a reference to a reference to an overloaded object was returned from a regular expression
(??{...}) code block, an incorrect implicit dereference could take place if the inner reference
had been returned by a code block previously.

• A tied variable returned from (??{...}) sees the inner values of match variables (i.e., the $1
etc. from any matches inside the block) in its FETCH method. This was not the case if a reference
to an overloaded object was the last thing assigned to the tied variable. Instead, the match
variables referred to the outer pattern during the FETCH call.

perl v5.36.0 2021-04-29 269

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• Fix unexpected tainting via regexp using locale. Previously, under certain conditions, the use of
character classes could cause tainting when it shouldn’t. Some character classes are locale-
dependent, but before this patch, sometimes tainting was happening even for character classes that
don’t depend on the locale. [perl #120675]

• Under certain conditions, Perl would throw an error if in a lookbehind assertion in a regexp, the
assertion referred to a named subpattern, complaining the lookbehind was variable when it wasn’t.
This has been fixed. [perl #120600], [perl #120618]. The current fix may be improved on in the
future.

• $ˆR wasn’t available outside of the regular expression that initialized it. [perl #121070]

• A large set of fixes and refactoring for re_intuit_start() was merged, the highlights are:

• Fixed a panic when compiling the regular expression /\x{100}[xy]\x{100}{2}/.

• Fixed a performance regression when performing a global pattern match against a UTF-8
string. [perl #120692]

• Fixed another performance issue where matching a regular expression like /ab.{1,2}x/
against a long UTF-8 string would unnecessarily calculate byte offsets for a large portion of
the string. [perl #120692]

• Fixed an alignment error when compiling regular expressions when built with GCC on HP-UX
64-bit.

• On 64-bit platforms pos can now be set to a value higher than 2**31-1. [perl #72766]

Perl 5 Debugger and -d
• The debugger’s man command been fixed. It was broken in the v5.18.0 release. The man

command is aliased to the names doc and perldoc - all now work again.

• @_ is now correctly visible in the debugger, fixing a regression introduced in v5.18.0’s debugger.
[RT #118169]

• Under copy-on-write builds (the default as of 5.20.0) ${'_<-e'}[0] no longer gets mangled.
This is the first line of input saved for the debugger’s use for one-liners [perl #118627].

• On non-threaded builds, setting ${"_<filename"} to a reference or typeglob no longer causes
_ _FILE_ _ and some error messages to produce a corrupt string, and no longer prevents #line
directives in string evals from providing the source lines to the debugger. Threaded builds were
unaffected.

• Starting with Perl 5.12, line numbers were off by one if the -d switch was used on the #! line.
Now they are correct.

• *DB::DB = sub {} if 0 no longer stops Perl’s debugging mode from finding DB::DB
subs declared thereafter.

• %{'_<...'} hashes now set breakpoints on the corresponding @{'_<...'} rather than
whichever array @DB::dbline is aliased to. [perl #119799]

• Call set-magic when setting $DB::sub. [perl #121255]

• The debugger’s ‘‘n’’ command now respects lvalue subroutines and steps over them [perl
#118839].

Lexical Subroutines
• Lexical constants (my sub a() { 42 }) no longer crash when inlined.

• Parameter prototypes attached to lexical subroutines are now respected when compiling sub calls
without parentheses. Previously, the prototypes were honoured only for calls with parentheses.
[RT #116735]

• Syntax errors in lexical subroutines in combination with calls to the same subroutines no longer
cause crashes at compile time.

• Deep recursion warnings no longer crash lexical subroutines. [RT #118521]

• The dtrace sub-entry probe now works with lexical subs, instead of crashing [perl #118305].

perl v5.36.0 2021-04-29 270

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• Undefining an inlinable lexical subroutine (my sub foo() { 42 } undef &foo) would
result in a crash if warnings were turned on.

• An undefined lexical sub used as an inherited method no longer crashes.

• The presence of a lexical sub named ‘‘CORE’’ no longer stops the CORE:: prefix from working.

Everything Else
• The OP allocation code now returns correctly aligned memory in all cases for struct pmop.

Previously it could return memory only aligned to a 4-byte boundary, which is not correct for an
ithreads build with 64 bit IVs on some 32 bit platforms. Notably, this caused the build to fail
completely on sparc GNU/Linux. [RT #118055]

• Evaluating large hashes in scalar context is now much faster, as the number of used chains in the
hash is now cached for larger hashes. Smaller hashes continue not to store it and calculate it when
needed, as this saves one IV. That would be 1 IV overhead for every object built from a hash. [RT
#114576]

• Perl v5.16 inadvertently introduced a bug whereby calls to XSUBs that were not visible at compile
time were treated as lvalues and could be assigned to, even when the subroutine was not an lvalue
sub. This has been fixed. [RT #117947]

• In Perl v5.18.0 dualvars that had an empty string for the string part but a non-zero number for the
number part starting being treated as true. In previous versions they were treated as false, the
string representation taking precedence. The old behaviour has been restored. [RT #118159]

• Since Perl v5.12, inlining of constants that override built-in keywords of the same name had
countermanded use subs, causing subsequent mentions of the constant to use the built-in
keyword instead. This has been fixed.

• The warning produced by -l $handle now applies to IO refs and globs, not just to glob refs.
That warning is also now UTF8-clean. [RT #117595]

• delete local $ENV{nonexistent_env_var} no longer leaks memory.

• sort and require followed by a keyword prefixed with CORE:: now treat it as a keyword,
and not as a subroutine or module name. [RT #24482]

• Through certain conundrums, it is possible to cause the current package to be freed. Certain
operators (bless, reset, open, eval) could not cope and would crash. They have been made
more resilient. [RT #117941]

• Aliasing filehandles through glob-to-glob assignment would not update internal method caches
properly if a package of the same name as the filehandle existed, resulting in filehandle method
calls going to the package instead. This has been fixed.

• ./Configure -de -Dusevendorprefix didn’t default. [RT #64126]

• The Statement unlikely to be reached warning was listed in perldiag as an
exec-category warning, but was enabled and disabled by the syntax category. On the other
hand, the exec category controlled its fatal-ness. It is now entirely handled by the exec
category.

• The ‘‘Replacement list is longer that search list’’ warning for tr/// and y/// no longer occurs
in the presence of the /c flag. [RT #118047]

• Stringification of NVs are not cached so that the lexical locale controls stringification of the
decimal point. [perl #108378] [perl #115800]

• There have been several fixes related to Perl’s handling of locales. perl #38193 was described
above in ‘‘Internal Changes’’. Also fixed is #118197, where the radix (decimal point) character
had to be an ASCII character (which doesn’t work for some non-Western languages); and
#115808, in which POSIX::setlocale() on failure returned an undef which didn’t warn
about not being defined even if those warnings were enabled.

• Compiling a split operator whose third argument is a named constant evaluating to 0 no longer
causes the constant’s value to change.

perl v5.36.0 2021-04-29 271

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• A named constant used as the second argument to index no longer gets coerced to a string if it is
a reference, regular expression, dualvar, etc.

• A named constant evaluating to the undefined value used as the second argument to index no
longer produces ‘‘uninitialized’’ warnings at compile time. It will still produce them at run time.

• When a scalar was returned from a subroutine in @INC, the referenced scalar was magically
converted into an IO thingy, possibly resulting in ‘‘Bizarre copy’’ errors if that scalar continued to
be used elsewhere. Now Perl uses an internal copy of the scalar instead.

• Certain uses of the sort operator are optimised to modify an array in place, such as @a = sort
@a. During the sorting, the array is made read-only. If a sort block should happen to die, then the
array remained read-only even outside the sort. This has been fixed.

• $a and $b inside a sort block are aliased to the actual arguments to sort, so they can be
modified through those two variables. This did not always work, e.g., for lvalue subs and $#ary,
and probably many other operators. It works now.

• The arguments to sort are now all in list context. If the sort itself were called in void or scalar
context, then some, but not all, of the arguments used to be in void or scalar context.

• Subroutine prototypes with Unicode characters above U+00FF were getting mangled during
closure cloning. This would happen with subroutines closing over lexical variables declared
outside, and with lexical subs.

• UNIVERSAL::can now treats its first argument the same way that method calls do: Typeglobs
and glob references with non-empty IO slots are treated as handles, and strings are treated as
filehandles, rather than packages, if a handle with that name exists [perl #113932].

• Method calls on typeglobs (e.g., *ARGV->getline) used to stringify the typeglob and then look
it up again. Combined with changes in Perl 5.18.0, this allowed *foo->bar to call methods on
the ‘‘foo’’ package (like foo->bar). In some cases it could cause the method to be called on the
wrong handle. Now a typeglob argument is treated as a handle (just like (*foo)->bar), or, if
its IO slot is empty, an error is raised.

• Assigning a vstring to a tied variable or to a subroutine argument aliased to a nonexistent hash or
array element now works, without flattening the vstring into a regular string.

• pos, tie, tied and untie did not work properly on subroutine arguments aliased to
nonexistent hash and array elements [perl #77814, #27010].

• The => fat arrow operator can now quote built-in keywords even if it occurs on the next line,
making it consistent with how it treats other barewords.

• Autovivifying a subroutine stub via \&$glob started causing crashes in Perl 5.18.0 if the $glob
was merely a copy of a real glob, i.e., a scalar that had had a glob assigned to it. This has been
fixed. [perl #119051]

• Perl used to leak an implementation detail when it came to referencing the return values of certain
operators. for ($a+$b) { warn \$_; warn \$_ } used to display two different
memory addresses, because the \ operator was copying the variable. Under threaded builds, it
would also happen for constants (for(1) { ... }). This has been fixed. [perl #21979,
#78194, #89188, #109746, #114838, #115388]

• The range operator .. was returning the same modifiable scalars with each call, unless it was the
only thing in a foreach loop header. This meant that changes to values within the list returned
would be visible the next time the operator was executed. [perl #3105]

• Constant folding and subroutine inlining no longer cause operations that would normally return
new modifiable scalars to return read-only values instead.

• Closures of the form sub () { $some_variable } are no longer inlined, causing changes
to the variable to be ignored by callers of the subroutine. [perl #79908]

• Return values of certain operators such as ref would sometimes be shared between recursive
calls to the same subroutine, causing the inner call to modify the value returned by ref in the
outer call. This has been fixed.

perl v5.36.0 2021-04-29 272

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• _ _PACKAGE_ _ and constants returning a package name or hash key are now consistently read-
only. In various previous Perl releases, they have become mutable under certain circumstances.

• Enabling ‘‘used once’’ warnings no longer causes crashes on stash circularities created at compile
time (*Foo::Bar::Foo:: = *Foo::).

• Undef constants used in hash keys (use constant u => undef; $h{+u}) no longer
produce ‘‘uninitialized’’ warnings at compile time.

• Modifying a substitution target inside the substitution replacement no longer causes crashes.

• The first statement inside a string eval used to use the wrong pragma setting sometimes during
constant folding. eval 'uc chr 0xe0' would randomly choose between Unicode, byte, and
locale semantics. This has been fixed.

• The handling of return values of @INC filters (subroutines returned by subroutines in @INC) has
been fixed in various ways. Previously tied variables were mishandled, and setting $_ to a
reference or typeglob could result in crashes.

• The SvPVbyte XS function has been fixed to work with tied scalars returning something other
than a string. It used to return utf8 in those cases where SvPV would.

• Perl 5.18.0 inadvertently made -- and ++ crash on dereferenced regular expressions, and stopped
++ from flattening vstrings.

• bless no longer dies with ‘‘Can’t bless non-reference value’’ if its first argument is a tied
reference.

• reset with an argument no longer skips copy-on-write scalars, regular expressions, typeglob
copies, and vstrings. Also, when encountering those or read-only values, it no longer skips any
array or hash with the same name.

• reset with an argument now skips scalars aliased to typeglobs (for $z (*foo) { reset
"z" }). Previously it would corrupt memory or crash.

• ucfirst and lcfirst were not respecting the bytes pragma. This was a regression from Perl
5.12. [perl #117355]

• Changes to UNIVERSAL::DESTROY now update DESTROY caches in all classes, instead of
causing classes that have already had objects destroyed to continue using the old sub. This was a
regression in Perl 5.18. [perl #114864]

• All known false-positive occurrences of the deprecation warning ‘‘Useless use of ’\’; doesn’t
escape metacharacter ’%c’’’, added in Perl 5.18.0, have been removed. [perl #119101]

• The value of $ˆE is now saved across signal handlers on Windows. [perl #85104]

• A lexical filehandle (as in open my $fh...) is usually given a name based on the current
package and the name of the variable, e.g. ‘‘main::$fh’’. Under recursion, the filehandle was
losing the ‘‘$fh’’ part of the name. This has been fixed.

• Uninitialized values returned by XSUBs are no longer exempt from uninitialized warnings. [perl
#118693]

• elsif ("") no longer erroneously produces a warning about void context. [perl #118753]

• Passing undef to a subroutine now causes @_ to contain the same read-only undefined scalar that
undef returns. Furthermore, exists $_[0] will now return true if undef was the first
argument. [perl #7508, #109726]

• Passing a non-existent array element to a subroutine does not usually autovivify it unless the
subroutine modifies its argument. This did not work correctly with negative indices and with non-
existent elements within the array. The element would be vivified immediately. The delayed
vivification has been extended to work with those. [perl #118691]

• Assigning references or globs to the scalar returned by $#foo after the @foo array has been freed
no longer causes assertion failures on debugging builds and memory leaks on regular builds.

• On 64-bit platforms, large ranges like 1..1000000000000 no longer crash, but eat up all your
memory instead. [perl #119161]

perl v5.36.0 2021-04-29 273

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• _ _DATA_ _ now puts the DATA handle in the right package, even if the current package has been
renamed through glob assignment.

• When die, last, next, redo, goto and exit unwind the scope, it is possible for DESTROY
recursively to call a subroutine or format that is currently being exited. It that case, sometimes the
lexical variables inside the sub would start out having values from the outer call, instead of being
undefined as they should. This has been fixed. [perl #119311]

• ${ˆMPEN} is no longer treated as a synonym for ${ˆMATCH}.

• Perl now tries a little harder to return the correct line number in (caller)[2]. [perl #115768]

• Line numbers inside multiline quote-like operators are now reported correctly. [perl #3643]

• #line directives inside code embedded in quote-like operators are now respected.

• Line numbers are now correct inside the second here-doc when two here-doc markers occur on the
same line.

• An optimization in Perl 5.18 made incorrect assumptions causing a bad interaction with the
Devel::CallParser CPAN module. If the module was loaded then lexical variables declared in
separate statements following a my(...) list might fail to be cleared on scope exit.

• &xsub and goto &xsub calls now allow the called subroutine to autovivify elements of @_.

• &xsub and goto &xsub no longer crash if *_ has been undefined and has no ARRAY entry (i.e.
@_ does not exist).

• &xsub and goto &xsub now work with tied @_.

• Overlong identifiers no longer cause a buffer overflow (and a crash). They started doing so in Perl
5.18.

• The warning ‘‘Scalar value @hash{foo} better written as $hash{foo}’’ now produces far fewer
false positives. In particular, @hash{+function_returning_a_list} and @hash{ qw
"foo bar baz" } no longer warn. The same applies to array slices. [perl #28380, #114024]

• $! = EINVAL; waitpid(0, WNOHANG); no longer goes into an internal infinite loop.
[perl #85228]

• A possible segmentation fault in filehandle duplication has been fixed.

• A subroutine in @INC can return a reference to a scalar containing the initial contents of the file.
However, that scalar was freed prematurely if not referenced elsewhere, giving random results.

• last no longer returns values that the same statement has accumulated so far, fixing amongst
other things the long-standing bug that push @a, last would try to return the @a, copying it
like a scalar in the process and resulting in the error, ‘‘Bizarre copy of ARRAY in last.’’ [perl
#3112]

• In some cases, closing file handles opened to pipe to or from a process, which had been duplicated
into a standard handle, would call perl’s internal waitpid wrapper with a pid of zero. With the fix
for [perl #85228] this zero pid was passed to waitpid, possibly blocking the process. This wait
for process zero no longer occurs. [perl #119893]

• select used to ignore magic on the fourth (timeout) argument, leading to effects such as
select blocking indefinitely rather than the expected sleep time. This has now been fixed. [perl
#120102]

• The class name in for my class $foo is now parsed correctly. In the case of the second
character of the class name being followed by a digit (e.g. ’a1b’) this used to give the error
‘‘Missing $ on loop variable’’. [perl #120112]

• Perl 5.18.0 accidentally disallowed -bareword under use strict and use integer. This
has been fixed. [perl #120288]

• -a at the start of a line (or a hyphen with any single letter that is not a filetest operator) no longer
produces an erroneous ’Use of ‘‘-a’’ without parentheses is ambiguous’ warning. [perl #120288]

• Lvalue context is now properly propagated into bare blocks and if and else blocks in lvalue
subroutines. Previously, arrays and hashes would sometimes incorrectly be flattened when
returned in lvalue list context, or ‘‘Bizarre copy’’ errors could occur. [perl #119797]

perl v5.36.0 2021-04-29 274

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• Lvalue context is now propagated to the branches of || and && (and their alphabetic equivalents,
or and and). This means foreach (pos $x || pos $y) {...} now allows pos to be
modified through $_.

• stat and readline remember the last handle used; the former for the special _ filehandle, the
latter for ${ˆLAST_FH}. eval "*foo if 0" where *foo was the last handle passed to
stat or readline could cause that handle to be forgotten if the handle were not opened yet.
This has been fixed.

• Various cases of delete $::{a}, delete $::{ENV} etc. causing a crash have been fixed.
[perl #54044]

• Setting $! to EACCESS before calling require could affect require’s behaviour. This has
been fixed.

• The ‘‘Can’t use \1 to mean $1 in expression’’ warning message now only occurs on the right-hand
(replacement) part of a substitution. Formerly it could happen in code embedded in the left-hand
side, or in any other quote-like operator.

• Blessing into a reference (bless $thisref, $thatref) has long been disallowed, but
magical scalars for the second like $/ and those tied were exempt. They no longer are. [perl
#119809]

• Blessing into a reference was accidentally allowed in 5.18 if the class argument were a blessed
reference with stale method caches (i.e., whose class had had subs defined since the last method
call). They are disallowed once more, as in 5.16.

• $x->{key} where $x was declared as my Class $x no longer crashes if a Class::FIELDS
subroutine stub has been declared.

• @$obj{'key'} and ${$obj}{key} used to be exempt from compile-time field checking
(‘‘No such class field’’; see fields) but no longer are.

• A nonexistent array element with a large index passed to a subroutine that ties the array and then
tries to access the element no longer results in a crash.

• Declaring a subroutine stub named NEGATIVE_INDICES no longer makes negative array indices
crash when the current package is a tied array class.

• Declaring a require, glob, or do subroutine stub in the CORE::GLOBAL:: package no longer
makes compilation of calls to the corresponding functions crash.

• Aliasing CORE::GLOBAL:: functions to constants stopped working in Perl 5.10 but has now been
fixed.

• When `... ̀ or qx/.../ calls a readpipe override, double-quotish interpolation now
happens, as is the case when there is no override. Previously, the presence of an override would
make these quote-like operators act like q{}, suppressing interpolation. [perl #115330]

• <<<`... ̀ here-docs (with backticks as the delimiters) now call readpipe overrides. [perl
#119827]

• &CORE::exit() and &CORE::die() now respect vmsish hints.

• Undefining a glob that triggers a DESTROY method that undefines the same glob is now safe. It
used to produce ‘‘Attempt to free unreferenced glob pointer’’ warnings and leak memory.

• If subroutine redefinition (eval 'sub foo{}' or newXS for XS code) triggers a DESTROY
method on the sub that is being redefined, and that method assigns a subroutine to the same slot
(*foo = sub {}), $_[0] is no longer left pointing to a freed scalar. Now DESTROY is
delayed until the new subroutine has been installed.

• On Windows, perl no longer calls CloseHandle() on a socket handle. This makes debugging
easier on Windows by removing certain irrelevant bad handle exceptions. It also fixes a race
condition that made socket functions randomly fail in a Perl process with multiple OS threads, and
possible test failures in dist/IO/t/cachepropagate-tcp.t. [perl #120091/118059]

• Formats involving UTF-8 encoded strings, or strange vars like ties, overloads, or stringified refs
(and in recent perls, pure NOK vars) would generally do the wrong thing in formats when the var
is treated as a string and repeatedly chopped, as in ˆ<<<˜˜ and similar. This has now been

perl v5.36.0 2021-04-29 275

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

resolved. [perl #33832/45325/113868/119847/119849/119851]

• semctl(..., SETVAL, ...) would set the semaphore to the top 32-bits of the supplied
integer instead of the bottom 32-bits on 64-bit big-endian systems. [perl #120635]

• readdir() now only sets $! on error. $! is no longer set to EBADF when then terminating
undef is read from the directory unless the system call sets $!. [perl #118651]

• &CORE::glob no longer causes an intermittent crash due to perl’s stack getting corrupted. [perl
#119993]

• open with layers that load modules (e.g., ‘‘<:encoding(utf8)’’) no longer runs the risk of crashing
due to stack corruption.

• Perl 5.18 broke autoloading via ->SUPER::foo method calls by looking up AUTOLOAD from
the current package rather than the current package’s superclass. This has been fixed. [perl
#120694]

• A longstanding bug causing do {} until CONSTANT, where the constant holds a true value,
to read unallocated memory has been resolved. This would usually happen after a syntax error. In
past versions of Perl it has crashed intermittently. [perl #72406]

• Fix HP-UX $! failure. HP-UX strerror() returns an empty string for an unknown error code.
This caused an assertion to fail under DEBUGGING builds. Now instead, the returned string for
"$!" contains text indicating the code is for an unknown error.

• Individually-tied elements of @INC (as in tie $INC[0]...) are now handled correctly.
Formerly, whether a sub returned by such a tied element would be treated as a sub depended on
whether a FETCH had occurred previously.

• getc on a byte-sized handle after the same getc operator had been used on a utf8 handle used to
treat the bytes as utf8, resulting in erratic behavior (e.g., malformed UTF-8 warnings).

• An initial { at the beginning of a format argument line was always interpreted as the beginning of
a block prior to v5.18. In Perl v5.18, it started being treated as an ambiguous token. The parser
would guess whether it was supposed to be an anonymous hash constructor or a block based on
the contents. Now the previous behaviour has been restored. [perl #119973]

• In Perl v5.18 undef *_; goto &sub and local *_; goto &sub started crashing. This
has been fixed. [perl #119949]

• Backticks (` ̀ or qx//) combined with multiple threads on Win32 could result in output
sent to stdout on one thread being captured by backticks of an external command in another
thread.

This could occur for pseudo-forked processes too, as Win32’s pseudo-fork is implemented in
terms of threads. [perl #77672]

• open $fh, ">+", undef no longer leaks memory when TMPDIR is set but points to a
directory a temporary file cannot be created in. [perl #120951]

• for ($h{k} || '') no longer auto-vivifies $h{k}. [perl #120374]

• On Windows machines, Perl now emulates the POSIX use of the environment for locale
initialization. Previously, the environment was ignored. See ‘‘ENVIRONMENT’’ in perllocale.

• Fixed a crash when destroying a self-referencing GLOB. [perl #121242]

Known Problems
• IO::Socket is known to fail tests on AIX 5.3. There is a patch

<https://github.com/Perl/perl5/issues/13484> in the request tracker, #120835, which may be
applied to future releases.

• The following modules are known to have test failures with this version of Perl. Patches have
been submitted, so there will hopefully be new releases soon:

• Data::Structure::Util version 0.15

• HTML::StripScripts version 1.05

perl v5.36.0 2021-04-29 276

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

• List::Gather version 0.08.

Obituary
Diana Rosa, 27, of Rio de Janeiro, went to her long rest on May 10, 2014, along with the plush camel
she kept hanging on her computer screen all the time. She was a passionate Perl hacker who loved the
language and its community, and who never missed a Rio.pm event. She was a true artist, an enthusiast
about writing code, singing arias and graffiting walls. We’ll never forget you.

Greg McCarroll died on August 28, 2013.

Greg was well known for many good reasons. He was one of the organisers of the first YAPC::Europe,
which concluded with an unscheduled auction where he frantically tried to raise extra money to avoid
the conference making a loss. It was Greg who mistakenly arrived for a london.pm meeting a week
late; some years later he was the one who sold the choice of official meeting date at a YAPC::Europe
auction, and eventually as glorious leader of london.pm he got to inherit the irreverent confusion that he
had created.

Always helpful, friendly and cheerfully optimistic, you will be missed, but never forgotten.

Acknowledgements
Perl 5.20.0 represents approximately 12 months of development since Perl 5.18.0 and contains
approximately 470,000 lines of changes across 2,900 files from 124 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 280,000
lines of changes to 1,800 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.20.0:

Aaron Crane, Abhijit Menon-Sen, Abigail, Abir Viqar, Alan Haggai Alavi, Alan Hourihane, Alexander
Voronov, Alexandr Ciornii, Andy Dougherty, Anno Siegel, Aristotle Pagaltzis, Arthur Axel ’fREW’
Schmidt, Brad Gilbert, Brendan Byrd, Brian Childs, Brian Fraser, Brian Gottreu, Chris ’BinGOs’
Williams, Christian Millour, Colin Kuskie, Craig A. Berry, Dabrien ’Dabe’ Murphy, Dagfinn Ilmari
Mannsa°ker, Daniel Dragan, Darin McBride, David Golden, David Leadbeater, David Mitchell, David
Nicol, David Steinbrunner, Dennis Kaarsemaker, Dominic Hargreaves, Ed Avis, Eric Brine, Evan
Zacks, Father Chrysostomos, Florian Ragwitz, Franc,ois Perrad, Gavin Shelley, Gideon Israel Dsouza,
Gisle Aas, Graham Knop, H.Merijn Brand, Hauke D, Heiko Eissfeldt, Hiroo Hayashi, Hojung Youn,
James E Keenan, Jarkko Hietaniemi, Jerry D. Hedden, Jess Robinson, Jesse Luehrs, Johan Vromans,
John Gardiner Myers, John Goodyear, John P. Linderman, John Peacock, kafka, Kang-min Liu, Karen
Etheridge, Karl Williamson, Keedi Kim, Kent Fredric, kevin dawson, Kevin Falcone, Kevin Ryde,
Leon Timmermans, Lukas Mai, Marc Simpson, Marcel Gru

..
nauer, Marco Peereboom, Marcus Holland-

Moritz, Mark Jason Dominus, Martin McGrath, Matthew Horsfall, Max Maischein, Mike Doherty,
Moritz Lenz, Nathan Glenn, Nathan Trapuzzano, Neil Bowers, Neil Williams, Nicholas Clark, Niels
Thykier, Niko Tyni, Olivier Mengué, Owain G. Ainsworth, Paul Green, Paul Johnson, Peter John
Acklam, Peter Martini, Peter Rabbitson, Petr PísaX, Philip Boulain, Philip Guenther, Piotr Roszatycki,
Rafael Garcia-Suarez, Reini Urban, Reuben Thomas, Ricardo Signes, Ruslan Zakirov, Sergey
Alekseev, Shirakata Kentaro, Shlomi Fish, Slaven Rezic, Smylers, Steffen Mu

..
ller, Steve Hay, Sullivan

Beck, Thomas Sibley, Tobias Leich, Toby Inkster, Tokuhiro Matsuno, Tom Christiansen, Tom Hukins,
Tony Cook, Victor Efimov, Viktor Turskyi, Vladimir Timofeev, YAMASHINA Hio, Yves Orton, Zefram,
Zsbá n Ambrus, AEvar Arnfjo

..
r∂- Bjarmason.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://rt.perl.org/perlbug/ . There may also
be information at http://www.perl.org/ , the Perl Home Page.

perl v5.36.0 2021-04-29 277

PERL5200DELTA(1) Perl Programmers Reference Guide PERL5200DELTA(1)

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 278

PERL5201DELTA(1) Perl Programmers Reference Guide PERL5201DELTA(1)

NAME
perl5201delta - what is new for perl v5.20.1

DESCRIPTION
This document describes differences between the 5.20.0 release and the 5.20.1 release.

If you are upgrading from an earlier release such as 5.18.0, first read perl5200delta, which describes
differences between 5.18.0 and 5.20.0.

Incompatible Changes
There are no changes intentionally incompatible with 5.20.0. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Performance Enhancements
• An optimization to avoid problems with COW and deliberately overallocated PVs has been

disabled because it interfered with another, more important, optimization, causing a slowdown on
some platforms. [GH #13878] <https://github.com/Perl/perl5/issues/13878>

• Returning a string from a lexical variable could be slow in some cases. This has now been fixed.
[GH #13880] <https://github.com/Perl/perl5/issues/13880>

Modules and Pragmata
Updated Modules and Pragmata

• Config::Perl::V has been upgraded from version 0.20 to 0.22.

The list of Perl versions covered has been updated and some flaws in the parsing have been fixed.

• Exporter has been upgraded from version 5.70 to 5.71.

Illegal POD syntax in the documentation has been corrected.

• ExtUtils::CBuilder has been upgraded from version 0.280216 to 0.280217.

Android builds now link to both -lperl and $Config::Config{perllibs}.

• File::Copy has been upgraded from version 2.29 to 2.30.

The documentation now notes that copy will not overwrite read-only files.

• Module::CoreList has been upgraded from version 3.11 to 5.020001.

The list of Perl versions covered has been updated.

• The PathTools module collection has been upgraded from version 3.47 to 3.48.

Fallbacks are now in place when cross-compiling for Android and $Config::Config{sh} is
not yet defined. [GH #13872] <https://github.com/Perl/perl5/issues/13872>

• PerlIO::via has been upgraded from version 0.14 to 0.15.

A minor portability improvement has been made to the XS implementation.

• Unicode::UCD has been upgraded from version 0.57 to 0.58.

The documentation includes many clarifications and fixes.

• utf8 has been upgraded from version 1.13 to 1.13_01.

The documentation has some minor formatting improvements.

• version has been upgraded from version 0.9908 to 0.9909.

External libraries and Perl may have different ideas of what the locale is. This is problematic
when parsing version strings if the locale’s numeric separator has been changed. Version parsing
has been patched to ensure it handles the locales correctly. [GH #13863]
<https://github.com/Perl/perl5/issues/13863>

Documentation
Changes to Existing Documentation

perlapi

• av_len - Emphasize that this returns the highest index in the array, not the size of the array.
[GH #13377] <https://github.com/Perl/perl5/issues/13377>

perl v5.36.0 2021-04-29 279

PERL5201DELTA(1) Perl Programmers Reference Guide PERL5201DELTA(1)

• Note that SvSetSV doesn’t do set magic.

• sv_usepvn_flags - Fix documentation to mention the use of NewX instead of malloc. [GH
#13835] <https://github.com/Perl/perl5/issues/13835>

• Clarify where NUL may be embedded or is required to terminate a string.

perlfunc

• Clarify the meaning of -B and -T.

• -l now notes that it will return false if symlinks aren’t supported by the file system. [GH #13695]
<https://github.com/Perl/perl5/issues/13695>

• Note that each, keys and values may produce different orderings for tied hashes compared to
other perl hashes. [GH #13650] <https://github.com/Perl/perl5/issues/13650>

• Note that exec LIST and system LIST may fall back to the shell on Win32. Only exec
PROGRAM LIST and system PROGRAM LIST indirect object syntax will reliably avoid using
the shell. This has also been noted in perlport. [GH #13907]
<https://github.com/Perl/perl5/issues/13907>

• Clarify the meaning of our. [GH #13938] <https://github.com/Perl/perl5/issues/13938>

perlguts

• Explain various ways of modifying an existing SV’s buffer. [GH #12813]
<https://github.com/Perl/perl5/issues/12813>

perlpolicy

• We now have a code of conduct for the p5p mailing list, as documented in ‘‘STANDARDS OF
CONDUCT’’ in perlpolicy.

perlre

• The /x modifier has been clarified to note that comments cannot be continued onto the next line
by escaping them.

perlsyn

• Mention the use of empty conditionals in for/while loops for infinite loops.

perlxs

• Added a discussion of locale issues in XS code.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

Changes to Existing Diagnostics
• Variable length lookbehind not implemented in regex m/%s/

Information about Unicode behaviour has been added.

Configuration and Compilation
• Building Perl no longer writes to the source tree when configured with Configure’s

-Dmksymlinks option. [GH #13712] <https://github.com/Perl/perl5/issues/13712>

Platform Support
Platform-Specific Notes

Android
Build support has been improved for cross-compiling in general and for Android in particular.

OpenBSD
Corrected architectures and version numbers used in configuration hints when building Perl.

Solaris
c99 options have been cleaned up, hints look for solstudio as well as SUNWspro, and support for
native setenv has been added.

perl v5.36.0 2021-04-29 280

PERL5201DELTA(1) Perl Programmers Reference Guide PERL5201DELTA(1)

VMS
An old bug in feature checking, mainly affecting pre-7.3 systems, has been fixed.

Windows
%I64d is now being used instead of %lld for MinGW.

Internal Changes
• Added ‘‘sync_locale’’ in perlapi. Changing the program’s locale should be avoided by XS code.

Nevertheless, certain non-Perl libraries called from XS, such as Gtk do so. When this happens,
Perl needs to be told that the locale has changed. Use this function to do so, before returning to
Perl.

Selected Bug Fixes
• A bug has been fixed where zero-length assertions and code blocks inside of a regex could cause

pos to see an incorrect value. [GH #14016] <https://github.com/Perl/perl5/issues/14016>

• Using s///e on tainted utf8 strings could issue bogus ‘‘Malformed UTF-8 character (unexpected
end of string)’’ warnings. This has now been fixed. [GH #13948]
<https://github.com/Perl/perl5/issues/13948>

• system and friends should now work properly on more Android builds.

Due to an oversight, the value specified through -Dtargetsh to Configure would end up being
ignored by some of the build process. This caused perls cross-compiled for Android to end up
with defective versions of system, exec and backticks: the commands would end up looking for
/bin/sh instead of /system/bin/sh, and so would fail for the vast majority of devices, leaving $! as
ENOENT.

• Many issues have been detected by Coverity <http://www.coverity.com/> and fixed.

Acknowledgements
Perl 5.20.1 represents approximately 4 months of development since Perl 5.20.0 and contains
approximately 12,000 lines of changes across 170 files from 36 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 2,600 lines
of changes to 110 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.20.1:

Aaron Crane, Abigail, Alberto Simões, Alexandr Ciornii, Alexandre (Midnite) Jousset, Andrew Fresh,
Andy Dougherty, Brian Fraser, Chris ’BinGOs’ Williams, Craig A. Berry, Daniel Dragan, David
Golden, David Mitchell, H.Merijn Brand, James E Keenan, Jan Dubois, Jarkko Hietaniemi, John
Peacock, kafka, Karen Etheridge, Karl Williamson, Lukas Mai, Matthew Horsfall, Michael Bunk, Peter
Martini, Rafael Garcia-Suarez, Reini Urban, Ricardo Signes, Shirakata Kentaro, Smylers, Steve Hay,
Thomas Sibley, Todd Rinaldo, Tony Cook, Vladimir Marek, Yves Orton.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at https://rt.perl.org/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help

perl v5.36.0 2021-04-29 281

PERL5201DELTA(1) Perl Programmers Reference Guide PERL5201DELTA(1)

assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 282

PERL5202DELTA(1) Perl Programmers Reference Guide PERL5202DELTA(1)

NAME
perl5202delta - what is new for perl v5.20.2

DESCRIPTION
This document describes differences between the 5.20.1 release and the 5.20.2 release.

If you are upgrading from an earlier release such as 5.20.0, first read perl5201delta, which describes
differences between 5.20.0 and 5.20.1.

Incompatible Changes
There are no changes intentionally incompatible with 5.20.1. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• attributes has been upgraded from version 0.22 to 0.23.

The usage of memEQs in the XS has been corrected. [GH #14072]
<https://github.com/Perl/perl5/issues/14072>

• Data::Dumper has been upgraded from version 2.151 to 2.151_01.

Fixes CVE-2014-4330 by adding a configuration variable/option to limit recursion when dumping
deep data structures.

• Errno has been upgraded from version 1.20_03 to 1.20_05.

Warnings when building the XS on Windows with the Visual C++ compiler are now avoided.

• feature has been upgraded from version 1.36 to 1.36_01.

The postderef feature has now been documented. This feature was actually added in Perl
5.20.0 but was accidentally omitted from the feature documentation until now.

• IO::Socket has been upgraded from version 1.37 to 1.38.

Document the limitations of the connected() method. [GH #14199]
<https://github.com/Perl/perl5/issues/14199>

• Module::CoreList has been upgraded from version 5.020001 to 5.20150214.

The list of Perl versions covered has been updated.

• PathTools has been upgraded from version 3.48 to 3.48_01.

A warning from the gcc compiler is now avoided when building the XS.

• PerlIO::scalar has been upgraded from version 0.18 to 0.18_01.

Reading from a position well past the end of the scalar now correctly returns end of file. [GH
#14342] <https://github.com/Perl/perl5/issues/14342>

Seeking to a negative position still fails, but no longer leaves the file position set to a negation
location.

eof() on a PerlIO::scalar handle now properly returns true when the file position is past
the 2GB mark on 32-bit systems.

• Storable has been upgraded from version 2.49 to 2.49_01.

Minor grammatical change to the documentation only.

• VMS::DCLsym has been upgraded from version 1.05 to 1.05_01.

Minor formatting change to the documentation only.

• VMS::Stdio has been upgraded from version 2.4 to 2.41.

Minor formatting change to the documentation only.

Documentation
New Documentation

perlunicook

This document, by Tom Christiansen, provides examples of handling Unicode in Perl.

perl v5.36.0 2021-04-29 283

PERL5202DELTA(1) Perl Programmers Reference Guide PERL5202DELTA(1)

Changes to Existing Documentation
perlexperiment

• Added reference to subroutine signatures. This feature was actually added in Perl 5.20.0 but was
accidentally omitted from the experimental feature documentation until now.

perlpolicy

• The process whereby features may graduate from experimental status has now been formally
documented.

perlsyn

• An ambiguity in the documentation of the ellipsis statement has been corrected. [GH #14054]
<https://github.com/Perl/perl5/issues/14054>

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

Changes to Existing Diagnostics
• Bad symbol for scalar is now documented. This error is not new, but was not previously

documented here.

• Missing right brace on \N{} is now documented. This error is not new, but was not previously
documented here.

Testing
• The test script re/rt122747.t has been added to verify that [GH #14081]

<https://github.com/Perl/perl5/issues/14081> remains fixed.

Platform Support
Regained Platforms

IRIX and Tru64 platforms are working again. (Some make test failures remain.)

Selected Bug Fixes
• AIX now sets the length in getsockopt correctly. [GH #13484]

<https://github.com/Perl/perl5/issues/13484>, [cpan #91183]
<https://rt.cpan.org/Ticket/Display.html?id=91183>, [cpan #85570]
<https://rt.cpan.org/Ticket/Display.html?id=85570>

• In Perl 5.20.0, $ˆN accidentally had the internal UTF8 flag turned off if accessed from a code
block within a regular expression, effectively UTF8-encoding the value. This has been fixed.
[GH #14211] <https://github.com/Perl/perl5/issues/14211>

• Various cases where the name of a sub is used (autoload, overloading, error messages) used to
crash for lexical subs, but have been fixed.

• An assertion failure when parsing sort with debugging enabled has been fixed. [GH #14087]
<https://github.com/Perl/perl5/issues/14087>

• Loading UTF8 tables during a regular expression match could cause assertion failures under
debugging builds if the previous match used the very same regular expression. [GH #14081]
<https://github.com/Perl/perl5/issues/14081>

• Due to a mistake in the string-copying logic, copying the value of a state variable could instead
steal the value and undefine the variable. This bug, introduced in Perl 5.20, would happen mostly
for long strings (1250 chars or more), but could happen for any strings under builds with copy-on-
write disabled. [GH #14175] <https://github.com/Perl/perl5/issues/14175>

• Fixed a bug that could cause perl to execute an infinite loop during compilation. [GH #14165]
<https://github.com/Perl/perl5/issues/14165>

• On Win32, restoring in a child pseudo-process a variable that was local()ed in a parent
pseudo-process before the fork happened caused memory corruption and a crash in the child
pseudo-process (and therefore OS process). [GH #8641]
<https://github.com/Perl/perl5/issues/8641>

perl v5.36.0 2021-04-29 284

PERL5202DELTA(1) Perl Programmers Reference Guide PERL5202DELTA(1)

• Tainted constants evaluated at compile time no longer cause unrelated statements to become
tainted. [GH #14059] <https://github.com/Perl/perl5/issues/14059>

• Calling write on a format with a ˆ** field could produce a panic in sv_chop() if there were
insufficient arguments or if the variable used to fill the field was empty. [GH #14255]
<https://github.com/Perl/perl5/issues/14255>

• In Perl 5.20.0, sort CORE::fake where ’fake’ is anything other than a keyword started
chopping of the last 6 characters and treating the result as a sort sub name. The previous
behaviour of treating ‘‘CORE::fake’’ as a sort sub name has been restored. [GH #14323]
<https://github.com/Perl/perl5/issues/14323>

• A bug in regular expression patterns that could lead to segfaults and other crashes has been fixed.
This occurred only in patterns compiled with "/i", while taking into account the current POSIX
locale (this usually means they have to be compiled within the scope of "use locale"), and
there must be a string of at least 128 consecutive bytes to match. [GH #14389]
<https://github.com/Perl/perl5/issues/14389>

• qr/@array(?{block})/ no longer dies with ‘‘Bizarre copy of ARRAY’’. [GH #14292]
<https://github.com/Perl/perl5/issues/14292>

• gmtime no longer crashes with not-a-number values. [GH #14365]
<https://github.com/Perl/perl5/issues/14365>

• Certain syntax errors in substitutions, such as s/${<>{})//, would crash, and had done so
since Perl 5.10. (In some cases the crash did not start happening until Perl 5.16.) The crash has,
of course, been fixed. [GH #14391] <https://github.com/Perl/perl5/issues/14391>

• A memory leak in some regular expressions, introduced in Perl 5.20.1, has been fixed. [GH
#14236] <https://github.com/Perl/perl5/issues/14236>

• formline("@...", "a"); would crash. The FF_CHECKNL case in pp_formline() didn’t
set the pointer used to mark the chop position, which led to the FF_MORE case crashing with a
segmentation fault. This has been fixed. [GH #14388]
<https://github.com/Perl/perl5/issues/14388> [GH #14425]
<https://github.com/Perl/perl5/issues/14425>

• A possible buffer overrun and crash when parsing a literal pattern during regular expression
compilation has been fixed. [GH #14416] <https://github.com/Perl/perl5/issues/14416>

Known Problems
• It is a known bug that lexical subroutines cannot be used as the SUBNAME argument to sort.

This will be fixed in a future version of Perl.

Errata From Previous Releases
• A regression has been fixed that was introduced in Perl 5.20.0 (fixed in Perl 5.20.1 as well as here)

in which a UTF-8 encoded regular expression pattern that contains a single ASCII lowercase letter
does not match its uppercase counterpart. [GH #14051]
<https://github.com/Perl/perl5/issues/14051>

Acknowledgements
Perl 5.20.2 represents approximately 5 months of development since Perl 5.20.1 and contains
approximately 6,300 lines of changes across 170 files from 34 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,900 lines
of changes to 80 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.20.2:

Aaron Crane, Abigail, Andreas Voegele, Andy Dougherty, Anthony Heading, Aristotle Pagaltzis, Chris
’BinGOs’ Williams, Craig A. Berry, Daniel Dragan, Doug Bell, Ed J, Father Chrysostomos, Glenn D.
Golden, H.Merijn Brand, Hugo van der Sanden, James E Keenan, Jarkko Hietaniemi, Jim Cromie,
Karen Etheridge, Karl Williamson, kmx, Matthew Horsfall, Max Maischein, Peter Martini, Rafael
Garcia-Suarez, Ricardo Signes, Shlomi Fish, Slaven Rezic, Steffen Mu

..
ller, Steve Hay, Tadeusz

SoXnierz, Tony Cook, Yves Orton, AEvar Arnfjo
..
r∂- Bjarmason.

The list above is almost certainly incomplete as it is automatically generated from version control

perl v5.36.0 2021-04-29 285

PERL5202DELTA(1) Perl Programmers Reference Guide PERL5202DELTA(1)

history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at https://rt.perl.org/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 286

PERL5203DELTA(1) Perl Programmers Reference Guide PERL5203DELTA(1)

NAME
perl5203delta - what is new for perl v5.20.3

DESCRIPTION
This document describes differences between the 5.20.2 release and the 5.20.3 release.

If you are upgrading from an earlier release such as 5.20.1, first read perl5202delta, which describes
differences between 5.20.1 and 5.20.2.

Incompatible Changes
There are no changes intentionally incompatible with 5.20.2. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Errno has been upgraded from version 1.20_05 to 1.20_06.

Add -P to the pre-processor command-line on GCC 5. GCC added extra line directives, breaking
parsing of error code definitions. [GH #14491] <https://github.com/Perl/perl5/issues/14491>

• Module::CoreList has been upgraded from version 5.20150214 to 5.20150822.

Updated to cover the latest releases of Perl.

• perl5db.pl has been upgraded from 1.44 to 1.44_01.

The debugger would cause an assertion failure. [GH #14605]
<https://github.com/Perl/perl5/issues/14605>

Documentation
Changes to Existing Documentation

perlfunc

• Mention that study() is currently a no-op.

perlguts

• The OOK example has been updated to account for COW changes and a change in the storage of
the offset.

perlhacktips

• Documentation has been added illustrating the perils of assuming the contents of static memory
pointed to by the return values of Perl wrappers for C library functions doesn’t change.

perlpodspec

• The specification of the POD language is changing so that the default encoding of PODs that aren’t
in UTF-8 (unless otherwise indicated) is CP1252 instead of ISO-8859-1 (Latin1).

Utility Changes
h2ph

• h2ph now handles hexadecimal constants in the compiler’s predefined macro definitions, as
visible in $Config{cppsymbols}. [GH #14491]
<https://github.com/Perl/perl5/issues/14491>

Testing
• t/perf/taint.t has been added to see if optimisations with taint issues are keeping things fast.

• t/porting/re_context.t has been added to test that utf8 and its dependencies only use the subset of
the $1..$n capture vars that Perl_save_re_context() is hard-coded to localize, because that
function has no efficient way of determining at runtime what vars to localize.

Platform Support
Platform-Specific Notes

Win32
• Previously, when compiling with a 64-bit Visual C++, every Perl XS module (including CPAN

ones) and Perl aware C file would unconditionally have around a dozen warnings from
hv_func.h. These warnings have been silenced. GCC (all bitness) and 32-bit Visual C++ were
not affected.

perl v5.36.0 2021-04-29 287

PERL5203DELTA(1) Perl Programmers Reference Guide PERL5203DELTA(1)

• miniperl.exe is now built with -fno-strict-aliasing, allowing 64-bit builds to complete
with GCC 4.8. [GH #14556] <https://github.com/Perl/perl5/issues/14556>

Selected Bug Fixes
• Repeated global pattern matches in scalar context on large tainted strings were exponentially slow

depending on the current match position in the string. [GH #14238]
<https://github.com/Perl/perl5/issues/14238>

• The original visible value of $/ is now preserved when it is set to an invalid value. Previously if
you set $/ to a reference to an array, for example, perl would produce a runtime error and not set
PL_rs, but Perl code that checked $/ would see the array reference. [GH #14245]
<https://github.com/Perl/perl5/issues/14245>

• Perl 5.14.0 introduced a bug whereby eval { LABEL: } would crash. This has been fixed.
[GH #14438] <https://github.com/Perl/perl5/issues/14438>

• Extending an array cloned from a parent thread could result in ‘‘Modification of a read-only value
attempted’’ errors when attempting to modify the new elements. [GH #14605]
<https://github.com/Perl/perl5/issues/14605>

• Several cases of data used to store environment variable contents in core C code being potentially
overwritten before being used have been fixed. [GH #14476]
<https://github.com/Perl/perl5/issues/14476>

• UTF-8 variable names used in array indexes, unquoted UTF-8 HERE-document terminators and
UTF-8 function names all now work correctly. [GH #14601]
<https://github.com/Perl/perl5/issues/14601>

• A subtle bug introduced in Perl 5.20.2 involving UTF-8 in regular expressions and sometimes
causing a crash has been fixed. A new test script has been added to test this fix; see under
‘‘Testing’’. [GH #14600] <https://github.com/Perl/perl5/issues/14600>

• Some patterns starting with /.*..../ matched against long strings have been slow since Perl
5.8, and some of the form /.*..../i have been slow since Perl 5.18. They are now all fast
again. [GH #14475] <https://github.com/Perl/perl5/issues/14475>

• Warning fatality is now ignored when rewinding the stack. This prevents infinite recursion when
the now fatal error also causes rewinding of the stack. [GH #14319]
<https://github.com/Perl/perl5/issues/14319>

• setpgrp($nonzero) (with one argument) was accidentally changed in Perl 5.16 to mean
setpgrp(0). This has been fixed.

• A crash with %::=(); J->${\"::"} has been fixed. [GH #14790]
<https://github.com/Perl/perl5/issues/14790>

• Regular expression possessive quantifier Perl 5.20 regression now fixed. qr/PAT{min,max}+/ is
supposed to behave identically to qr/(?>PAT{min,max})/. Since Perl 5.20, this didn’t work if
min and max were equal. [GH #14857] <https://github.com/Perl/perl5/issues/14857>

• Code like /$a[/ used to read the next line of input and treat it as though it came immediately
after the opening bracket. Some invalid code consequently would parse and run, but some code
caused crashes, so this is now disallowed. [GH #14462]
<https://github.com/Perl/perl5/issues/14462>

Acknowledgements
Perl 5.20.3 represents approximately 7 months of development since Perl 5.20.2 and contains
approximately 3,200 lines of changes across 99 files from 26 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,500 lines
of changes to 43 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.20.3:

Alex Vandiver, Andy Dougherty, Aristotle Pagaltzis, Chris ’BinGOs’ Williams, Craig A. Berry,
Dagfinn Ilmari Mannsa°ker, Daniel Dragan, David Mitchell, Father Chrysostomos, H.Merijn Brand,
James E Keenan, James McCoy, Jarkko Hietaniemi, Karen Etheridge, Karl Williamson, kmx, Lajos
Veres, Lukas Mai, Matthew Horsfall, Petr PísaX, Randy Stauner, Ricardo Signes, Sawyer X, Steve Hay,

perl v5.36.0 2021-04-29 288

PERL5203DELTA(1) Perl Programmers Reference Guide PERL5203DELTA(1)

Tony Cook, Yves Orton.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at https://rt.perl.org/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 289

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

NAME
perl5220delta - what is new for perl v5.22.0

DESCRIPTION
This document describes differences between the 5.20.0 release and the 5.22.0 release.

If you are upgrading from an earlier release such as 5.18.0, first read perl5200delta, which describes
differences between 5.18.0 and 5.20.0.

Core Enhancements
New bitwise operators

A new experimental facility has been added that makes the four standard bitwise operators (& | ˆ ˜)
treat their operands consistently as numbers, and introduces four new dotted operators (&. |. ˆ.
˜.) that treat their operands consistently as strings. The same applies to the assignment variants (&=
|= ˆ= &.= |.= ˆ.=).

To use this, enable the ‘‘bitwise’’ feature and disable the ‘‘experimental::bitwise’’ warnings category.
See ‘‘Bitwise String Operators’’ in perlop for details. [GH #14348]
<https://github.com/Perl/perl5/issues/14348>.

New double-diamond operator
<<>> is like <> but uses three-argument open to open each file in @ARGV. This means that each
element of @ARGV will be treated as an actual file name, and "|foo" won’t be treated as a pipe open.

New \b boundaries in regular expressions
qr/\b{gcb}/

gcb stands for Grapheme Cluster Boundary. It is a Unicode property that finds the boundary between
sequences of characters that look like a single character to a native speaker of a language. Perl has long
had the ability to deal with these through the \X regular escape sequence. Now, there is an alternative
way of handling these. See ‘‘\b{}, \b, \B{}, \B’’ in perlrebackslash for details.

qr/\b{wb}/

wb stands for Word Boundary. It is a Unicode property that finds the boundary between words. This is
similar to the plain \b (without braces) but is more suitable for natural language processing. It knows,
for example, that apostrophes can occur in the middle of words. See ‘‘\b{}, \b, \B{}, \B’’ in
perlrebackslash for details.

qr/\b{sb}/

sb stands for Sentence Boundary. It is a Unicode property to aid in parsing natural language
sentences. See ‘‘\b{}, \b, \B{}, \B’’ in perlrebackslash for details.

Non-Capturing Regular Expression Flag
Regular expressions now support a /n flag that disables capturing and filling in $1, $2, etc inside of
groups:

"hello" =˜ /(hi|hello)/n; # $1 is not set

This is equivalent to putting ?: at the beginning of every capturing group.

See ‘‘n’’ in perlre for more information.

use re 'strict'
This applies stricter syntax rules to regular expression patterns compiled within its scope. This will
hopefully alert you to typos and other unintentional behavior that backwards-compatibility issues
prevent us from reporting in normal regular expression compilations. Because the behavior of this is
subject to change in future Perl releases as we gain experience, using this pragma will raise a warning
of category experimental::re_strict. See ’strict’ in re.

Unicode 7.0 (with correction) is now supported
For details on what is in this release, see <http://www.unicode.org/versions/Unicode7.0.0/>. The
version of Unicode 7.0 that comes with Perl includes a correction dealing with glyph shaping in Arabic
(see <http://www.unicode.org/errata/#current_errata>).

use locale can restrict which locale categories are affected
It is now possible to pass a parameter to use locale to specify a subset of locale categories to be
locale-aware, with the remaining ones unaffected. See ‘‘The ’’use locale‘‘ pragma’’ in perllocale for

perl v5.36.0 2021-04-29 290

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

details.

Perl now supports POSIX 2008 locale currency additions
On platforms that are able to handle POSIX.1-2008, the hash returned by POSIX::localeconv()
includes the international currency fields added by that version of the POSIX standard. These are
int_n_cs_precedes, int_n_sep_by_space, int_n_sign_posn,
int_p_cs_precedes, int_p_sep_by_space, and int_p_sign_posn.

Better heuristics on older platforms for determining locale UTF-8ness
On platforms that implement neither the C99 standard nor the POSIX 2001 standard, determining if the
current locale is UTF-8 or not depends on heuristics. These are improved in this release.

Aliasing via reference
Variables and subroutines can now be aliased by assigning to a reference:

\$c = \$d;
\&x = \&y;

Aliasing can also be accomplished by using a backslash before a foreach iterator variable; this is
perhaps the most useful idiom this feature provides:

foreach \%hash (@array_of_hash_refs) { ... }

This feature is experimental and must be enabled via use feature 'refaliasing'. It will
warn unless the experimental::refaliasing warnings category is disabled.

See ‘‘Assigning to References’’ in perlref

prototype with no arguments
prototype() with no arguments now infers $_. [GH #14376]
<https://github.com/Perl/perl5/issues/14376>.

New :const subroutine attribute
The const attribute can be applied to an anonymous subroutine. It causes the new sub to be executed
immediately whenever one is created (i.e. when the sub expression is evaluated). Its value is captured
and used to create a new constant subroutine that is returned. This feature is experimental. See
‘‘Constant Functions’’ in perlsub.

fileno now works on directory handles
When the relevant support is available in the operating system, the fileno builtin now works on
directory handles, yielding the underlying file descriptor in the same way as for filehandles. On
operating systems without such support, fileno on a directory handle continues to return the
undefined value, as before, but also sets $! to indicate that the operation is not supported.

Currently, this uses either a dd_fd member in the OS DIR structure, or a dirfd(3) function as
specified by POSIX.1-2008.

List form of pipe open implemented for Win32
The list form of pipe:

open my $fh, "-|", "program", @arguments;

is now implemented on Win32. It has the same limitations as system LIST on Win32, since the
Win32 API doesn’t accept program arguments as a list.

Assignment to list repetition
(...) x ... can now be used within a list that is assigned to, as long as the left-hand side is a valid
lvalue. This allows (undef,undef,$foo) = that_function() to be written as
((undef)x2, $foo) = that_function().

Infinity and NaN (not-a-number) handling improved
Floating point values are able to hold the special values infinity, negative infinity, and NaN (not-a-
number). Now we more robustly recognize and propagate the value in computations, and on output
normalize them to the strings Inf, -Inf, and NaN.

See also the POSIX enhancements.

Floating point parsing has been improved
Parsing and printing of floating point values has been improved.

As a completely new feature, hexadecimal floating point literals (like 0x1.23p-4) are now

perl v5.36.0 2021-04-29 291

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

supported, and they can be output with printf "%a". See ‘‘Scalar value constructors’’ in perldata
for more details.

Packing infinity or not-a-number into a character is now fatal
Before, when trying to pack infinity or not-a-number into a (signed) character, Perl would warn, and
assumed you tried to pack 0xFF; if you gave it as an argument to chr, U+FFFD was returned.

But now, all such actions (pack, chr, and print '%c') result in a fatal error.

Experimental C Backtrace API
Perl now supports (via a C level API) retrieving the C level backtrace (similar to what symbolic
debuggers like gdb do).

The backtrace returns the stack trace of the C call frames, with the symbol names (function names), the
object names (like ‘‘perl’’), and if it can, also the source code locations (file:line).

The supported platforms are Linux and OS X (some *BSD might work at least partly, but they have not
yet been tested).

The feature needs to be enabled with Configure -Dusecbacktrace.

See ‘‘C backtrace’’ in perlhacktips for more information.

Security
Perl is now compiled with -fstack-protector-strong if available

Perl has been compiled with the anti-stack-smashing option -fstack-protector since 5.10.1.
Now Perl uses the newer variant called -fstack-protector-strong, if available.

The Safe module could allow outside packages to be replaced
Critical bugfix: outside packages could be replaced. Safe has been patched to 2.38 to address this.

Perl is now always compiled with -D_FORTIFY_SOURCE=2 if available
The ’code hardening’ option called _FORTIFY_SOURCE, available in gcc 4.*, is now always used for
compiling Perl, if available.

Note that this isn’t necessarily a huge step since in many platforms the step had already been taken
several years ago: many Linux distributions (like Fedora) have been using this option for Perl, and OS
X has enforced the same for many years.

Incompatible Changes
Subroutine signatures moved before attributes

The experimental sub signatures feature, as introduced in 5.20, parsed signatures after attributes. In this
release, following feedback from users of the experimental feature, the positioning has been moved
such that signatures occur after the subroutine name (if any) and before the attribute list (if any).

& and \& prototypes accepts only subs
The & prototype character now accepts only anonymous subs (sub {...}), things beginning with
\&, or an explicit undef. Formerly it erroneously also allowed references to arrays, hashes, and lists.
[GH #2776] <https://github.com/Perl/perl5/issues/2776>. [GH #14186]
<https://github.com/Perl/perl5/issues/14186>. [GH #14353]
<https://github.com/Perl/perl5/issues/14353>.

In addition, the \& prototype was allowing subroutine calls, whereas now it only allows subroutines:
&foo is still permitted as an argument, while &foo() and foo() no longer are. [GH #10633]
<https://github.com/Perl/perl5/issues/10633>.

use encoding is now lexical
The encoding pragma’s effect is now limited to lexical scope. This pragma is deprecated, but in the
meantime, it could adversely affect unrelated modules that are included in the same program; this
change fixes that.

List slices returning empty lists
List slices now return an empty list only if the original list was empty (or if there are no indices).
Formerly, a list slice would return an empty list if all indices fell outside the original list; now it returns
a list of undef values in that case. [GH #12335] <https://github.com/Perl/perl5/issues/12335>.

\N{} with a sequence of multiple spaces is now a fatal error
E.g. \N{TOO MANY SPACES} or \N{TRAILING SPACE }. This has been deprecated since
v5.18.

perl v5.36.0 2021-04-29 292

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

use UNIVERSAL '...' is now a fatal error
Importing functions from UNIVERSAL has been deprecated since v5.12, and is now a fatal error.
use UNIVERSAL without any arguments is still allowed.

In double-quotish \cX, X must now be a printable ASCII character
In prior releases, failure to do this raised a deprecation warning.

Splitting the tokens (? and (* in regular expressions is now a fatal compilation error.
These had been deprecated since v5.18.

qr/foo/x now ignores all Unicode pattern white space
The /x regular expression modifier allows the pattern to contain white space and comments (both of
which are ignored) for improved readability. Until now, not all the white space characters that Unicode
designates for this purpose were handled. The additional ones now recognized are:

U+0085 NEXT LINE
U+200E LEFT-TO-RIGHT MARK
U+200F RIGHT-TO-LEFT MARK
U+2028 LINE SEPARATOR
U+2029 PARAGRAPH SEPARATOR

The use of these characters with /x outside bracketed character classes and when not preceded by a
backslash has raised a deprecation warning since v5.18. Now they will be ignored.

Comment lines within (?[]) are now ended only by a \n
(?[]) is an experimental feature, introduced in v5.18. It operates as if /x is always enabled. But
there was a difference: comment lines (following a # character) were terminated by anything matching
\R which includes all vertical whitespace, such as form feeds. For consistency, this is now changed to
match what terminates comment lines outside (?[]), namely a \n (even if escaped), which is the
same as what terminates a heredoc string and formats.

(?[...]) operators now follow standard Perl precedence
This experimental feature allows set operations in regular expression patterns. Prior to this, the
intersection operator had the same precedence as the other binary operators. Now it has higher
precedence. This could lead to different outcomes than existing code expects (though the
documentation has always noted that this change might happen, recommending fully parenthesizing the
expressions). See ‘‘Extended Bracketed Character Classes’’ in perlrecharclass.

Omitting % and @ on hash and array names is no longer permitted
Really old Perl let you omit the @ on array names and the % on hash names in some spots. This has
issued a deprecation warning since Perl 5.000, and is no longer permitted.

‘‘$!’’ text is now in English outside the scope of use locale
Previously, the text, unlike almost everything else, always came out based on the current underlying
locale of the program. (Also affected on some systems is "$ˆE".) For programs that are unprepared
to handle locale differences, this can cause garbage text to be displayed. It’s better to display text that
is translatable via some tool than garbage text which is much harder to figure out.

‘‘$!’’ text will be returned in UTF-8 when appropriate
The stringification of $! and $ˆE will have the UTF-8 flag set when the text is actually non-ASCII
UTF-8. This will enable programs that are set up to be locale-aware to properly output messages in the
user’s native language. Code that needs to continue the 5.20 and earlier behavior can do the
stringification within the scopes of both use bytes and use locale ":messages". Within
these two scopes, no other Perl operations will be affected by locale; only $! and $ˆE stringification.
The bytes pragma causes the UTF-8 flag to not be set, just as in previous Perl releases. This resolves
[GH #12035] <https://github.com/Perl/perl5/issues/12035>.

Support for ?PATTERN? without explicit operator has been removed
The m?PATTERN? construct, which allows matching a regex only once, previously had an alternative
form that was written directly with a question mark delimiter, omitting the explicit m operator. This
usage has produced a deprecation warning since 5.14.0. It is now a syntax error, so that the question
mark can be available for use in new operators.

defined(@array) and defined(%hash) are now fatal errors
These have been deprecated since v5.6.1 and have raised deprecation warnings since v5.16.

perl v5.36.0 2021-04-29 293

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

Using a hash or an array as a reference are now fatal errors
For example, %foo->{"bar"} now causes a fatal compilation error. These have been deprecated
since before v5.8, and have raised deprecation warnings since then.

Changes to the * prototype
The * character in a subroutine’s prototype used to allow barewords to take precedence over most, but
not all, subroutine names. It was never consistent and exhibited buggy behavior.

Now it has been changed, so subroutines always take precedence over barewords, which brings it into
conformity with similarly prototyped built-in functions:

sub splat(*) { ... }
sub foo { ... }
splat(foo); # now always splat(foo())
splat(bar); # still splat('bar') as before
close(foo); # close(foo())
close(bar); # close('bar')

Deprecations
Setting ${ˆENCODING} to anything but undef

This variable allows Perl scripts to be written in an encoding other than ASCII or UTF-8. However, it
affects all modules globally, leading to wrong answers and segmentation faults. New scripts should be
written in UTF-8; old scripts should be converted to UTF-8, which is easily done with the piconv utility.

Use of non-graphic characters in single-character variable names
The syntax for single-character variable names is more lenient than for longer variable names, allowing
the one-character name to be a punctuation character or even invisible (a non-graphic). Perl v5.20
deprecated the ASCII-range controls as such a name. Now, all non-graphic characters that formerly
were allowed are deprecated. The practical effect of this occurs only when not under use utf8, and
affects just the C1 controls (code points 0x80 through 0xFF), NO-BREAK SPACE, and SOFT HYPHEN.

Inlining of sub () { $var } with observable side-effects
In many cases Perl makes sub () { $var } into an inlinable constant subroutine, capturing the
value of $var at the time the sub expression is evaluated. This can break the closure behavior in
those cases where $var is subsequently modified, since the subroutine won’t return the changed value.
(Note that this all only applies to anonymous subroutines with an empty prototype (sub ()).)

This usage is now deprecated in those cases where the variable could be modified elsewhere. Perl
detects those cases and emits a deprecation warning. Such code will likely change in the future and
stop producing a constant.

If your variable is only modified in the place where it is declared, then Perl will continue to make the
sub inlinable with no warnings.

sub make_constant {
my $var = shift;
return sub () { $var }; # fine

}

sub make_constant_deprecated {
my $var;
$var = shift;
return sub () { $var }; # deprecated

}

sub make_constant_deprecated2 {
my $var = shift;
log_that_value($var); # could modify $var
return sub () { $var }; # deprecated

}

In the second example above, detecting that $var is assigned to only once is too hard to detect. That it
happens in a spot other than the my declaration is enough for Perl to find it suspicious.

This deprecation warning happens only for a simple variable for the body of the sub. (A BEGIN block

perl v5.36.0 2021-04-29 294

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

or use statement inside the sub is ignored, because it does not become part of the sub’s body.) For
more complex cases, such as sub () { do_something() if 0; $var } the behavior has
changed such that inlining does not happen if the variable is modifiable elsewhere. Such cases should
be rare.

Use of multiple /x regexp modifiers
It is now deprecated to say something like any of the following:

qr/foo/xx;
/(?xax:foo)/;
use re qw(/amxx);

That is, now x should only occur once in any string of contiguous regular expression pattern modifiers.
We do not believe there are any occurrences of this in all of CPAN. This is in preparation for a future
Perl release having /xx permit white-space for readability in bracketed character classes (those
enclosed in square brackets: [...]).

Using a NO-BREAK space in a character alias for \N{...} is now deprecated
This non-graphic character is essentially indistinguishable from a regular space, and so should not be
allowed. See ‘‘CUSTOM ALIASES’’ in charnames.

A literal ‘‘{’’ should now be escaped in a pattern
If you want a literal left curly bracket (also called a left brace) in a regular expression pattern, you
should now escape it by either preceding it with a backslash ("\{") or enclosing it within square
brackets "[{]", or by using \Q; otherwise a deprecation warning will be raised. This was first
announced as forthcoming in the v5.16 release; it will allow future extensions to the language to
happen.

Making all warnings fatal is discouraged
The documentation for fatal warnings notes that use warnings FATAL => 'all' is
discouraged, and provides stronger language about the risks of fatal warnings in general.

Performance Enhancements
• If a method or class name is known at compile time, a hash is precomputed to speed up run-time

method lookup. Also, compound method names like SUPER::new are parsed at compile time, to
save having to parse them at run time.

• Array and hash lookups (especially nested ones) that use only constants or simple variables as
keys, are now considerably faster. See ‘‘Internal Changes’’ for more details.

• (...)x1, ("constant")x0 and ($scalar)x0 are now optimised in list context. If the
right-hand argument is a constant 1, the repetition operator disappears. If the right-hand argument
is a constant 0, the whole expression is optimised to the empty list, so long as the left-hand
argument is a simple scalar or constant. (That is, (foo())x0 is not subject to this optimisation.)

• substr assignment is now optimised into 4-argument substr at the end of a subroutine (or as
the argument to return). Previously, this optimisation only happened in void context.

• In "\L...", "\Q...", etc., the extra ‘‘stringify’’ op is now optimised away, making these just
as fast as lcfirst, quotemeta, etc.

• Assignment to an empty list is now sometimes faster. In particular, it never calls FETCH on tied
arguments on the right-hand side, whereas it used to sometimes.

• There is a performance improvement of up to 20% when length is applied to a non-magical,
non-tied string, and either use bytes is in scope or the string doesn’t use UTF-8 internally.

• On most perl builds with 64-bit integers, memory usage for non-magical, non-tied scalars
containing only a floating point value has been reduced by between 8 and 32 bytes, depending on
OS.

• In @array = split, the assignment can be optimized away, so that split writes directly to
the array. This optimisation was happening only for package arrays other than @_, and only
sometimes. Now this optimisation happens almost all the time.

• join is now subject to constant folding. So for example join "-", "a", "b" is converted
at compile-time to "a-b". Moreover, join with a scalar or constant for the separator and a
single-item list to join is simplified to a stringification, and the separator doesn’t even get

perl v5.36.0 2021-04-29 295

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

evaluated.

• qq(@array) is implemented using two ops: a stringify op and a join op. If the qq contains
nothing but a single array, the stringification is optimized away.

• our $var and our($s,@a,%h) in void context are no longer evaluated at run time. Even a
whole sequence of our $foo; statements will simply be skipped over. The same applies to
state variables.

• Many internal functions have been refactored to improve performance and reduce their memory
footprints. [GH #13659] <https://github.com/Perl/perl5/issues/13659> [GH #13856]
<https://github.com/Perl/perl5/issues/13856> [GH #13874]
<https://github.com/Perl/perl5/issues/13874>

• -T and -B filetests will return sooner when an empty file is detected. [GH #13686]
<https://github.com/Perl/perl5/issues/13686>

• Hash lookups where the key is a constant are faster.

• Subroutines with an empty prototype and a body containing just undef are now eligible for
inlining. [GH #14077] <https://github.com/Perl/perl5/issues/14077>

• Subroutines in packages no longer need to be stored in typeglobs: declaring a subroutine will now
put a simple sub reference directly in the stash if possible, saving memory. The typeglob still
notionally exists, so accessing it will cause the stash entry to be upgraded to a typeglob (i.e. this is
just an internal implementation detail). This optimization does not currently apply to XSUBs or
exported subroutines, and method calls will undo it, since they cache things in typeglobs. [GH
#13392] <https://github.com/Perl/perl5/issues/13392>

• The functions utf8::native_to_unicode() and utf8::unicode_to_native()
(see utf8) are now optimized out on ASCII platforms. There is now not even a minimal
performance hit in writing code portable between ASCII and EBCDIC platforms.

• Win32 Perl uses 8 KB less of per-process memory than before for every perl process, because
some data is now memory mapped from disk and shared between processes from the same perl
binary.

Modules and Pragmata
Updated Modules and Pragmata

Many of the libraries distributed with perl have been upgraded since v5.20.0. For a complete list of
changes, run:

corelist --diff 5.20.0 5.22.0

You can substitute your favorite version in place of 5.20.0, too.

Some notable changes include:

• Archive::Tar has been upgraded to version 2.04.

Tests can now be run in parallel.

• attributes has been upgraded to version 0.27.

The usage of memEQs in the XS has been corrected. [GH #14072]
<https://github.com/Perl/perl5/issues/14072>

Avoid reading beyond the end of a buffer. [perl #122629]

• B has been upgraded to version 1.58.

It provides a new B::safename function, based on the existing B::GV->SAFENAME, that
converts \cOPEN to ˆOPEN.

Nulled COPs are now of class B::COP, rather than B::OP.

B::REGEXP objects now provide a qr_anoncv method for accessing the implicit CV associated
with qr// things containing code blocks, and a compflags method that returns the pertinent
flags originating from the qr//blahblah op.

B::PMOP now provides a pmregexp method returning a B::REGEXP object. Two new classes,
B::PADNAME and B::PADNAMELIST, have been introduced.

perl v5.36.0 2021-04-29 296

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

A bug where, after an ithread creation or pseudofork, special/immortal SVs in the child
ithread/pseudoprocess did not have the correct class of B::SPECIAL, has been fixed. The id
and outid PADLIST methods have been added.

• B::Concise has been upgraded to version 0.996.

Null ops that are part of the execution chain are now given sequence numbers.

Private flags for nulled ops are now dumped with mnemonics as they would be for the non-nulled
counterparts.

• B::Deparse has been upgraded to version 1.35.

It now deparses +sub : attr { ... } correctly at the start of a statement. Without the
initial +, sub would be a statement label.

BEGIN blocks are now emitted in the right place most of the time, but the change unfortunately
introduced a regression, in that BEGIN blocks occurring just before the end of the enclosing block
may appear below it instead.

B::Deparse no longer puts erroneous local here and there, such as for LIST = tr/a//d.
[perl #119815]

Adjacent use statements are no longer accidentally nested if one contains a do block. [perl
#115066]

Parenthesised arrays in lists passed to \ are now correctly deparsed with parentheses (e.g., \(@a,
(@b), @c) now retains the parentheses around @b), thus preserving the flattening behavior of
referenced parenthesised arrays. Formerly, it only worked for one array: \(@a).

local our is now deparsed correctly, with the our included.

for($foo; !$bar; $baz) {...} was deparsed without the ! (or not). This has been
fixed.

Core keywords that conflict with lexical subroutines are now deparsed with the CORE:: prefix.

foreach state $x (...) {...} now deparses correctly with state and not my.

our @array = split(...) now deparses correctly with our in those cases where the
assignment is optimized away.

It now deparses our(LIST) and typed lexical (my Dog $spot) correctly.

Deparse $#_ as that instead of as $#{_}. [GH #14545]
<https://github.com/Perl/perl5/issues/14545>

BEGIN blocks at the end of the enclosing scope are now deparsed in the right place. [perl #77452]

BEGIN blocks were sometimes deparsed as _ _ANON_ _, but are now always called BEGIN.

Lexical subroutines are now fully deparsed. [perl #116553]

Anything =˜ y///r with /r no longer omits the left-hand operand.

The op trees that make up regexp code blocks are now deparsed for real. Formerly, the original
string that made up the regular expression was used. That caused problems with
qr/(?{<<heredoc})/ and multiline code blocks, which were deparsed incorrectly. [perl
#123217] [perl #115256]

$; at the end of a statement no longer loses its semicolon. [perl #123357]

Some cases of subroutine declarations stored in the stash in shorthand form were being omitted.

Non-ASCII characters are now consistently escaped in strings, instead of some of the time.
(There are still outstanding problems with regular expressions and identifiers that have not been
fixed.)

When prototype sub calls are deparsed with & (e.g., under the -P option), scalar is now added
where appropriate, to force the scalar context implied by the prototype.

require(foo()), do(foo()), goto(foo()) and similar constructs with loop controls are

perl v5.36.0 2021-04-29 297

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

now deparsed correctly. The outer parentheses are not optional.

Whitespace is no longer escaped in regular expressions, because it was getting erroneously
escaped within (?x:...) sections.

sub foo { foo() } is now deparsed with those mandatory parentheses.

/@array/ is now deparsed as a regular expression, and not just @array.

/@{-}/, /@{+}/ and $#{1} are now deparsed with the braces, which are mandatory in these
cases.

In deparsing feature bundles, B::Deparse was emitting no feature; first instead of no
feature ':all';. This has been fixed.

chdir FH is now deparsed without quotation marks.

\my @a is now deparsed without parentheses. (Parenthese would flatten the array.)

system and exec followed by a block are now deparsed correctly. Formerly there was an
erroneous do before the block.

use constant QR => qr/.../flags followed by "" =˜ QR is no longer without the
flags.

Deparsing BEGIN { undef &foo } with the -w switch enabled started to emit ’uninitialized’
warnings in Perl 5.14. This has been fixed.

Deparsing calls to subs with a (;+) prototype resulted in an infinite loop. The (;$) (_) and
(;_) prototypes were given the wrong precedence, causing foo($a<$b) to be deparsed
without the parentheses.

Deparse now provides a defined state sub in inner subs.

• B::Op_private has been added.

B::Op_private provides detailed information about the flags used in the op_private field of
perl opcodes.

• bigint, bignum, bigrat have been upgraded to version 0.39.

Document in CAVEATS that using strings as numbers won’t always invoke the big number
overloading, and how to invoke it. [rt.perl.org #123064]

• Carp has been upgraded to version 1.36.

Carp::Heavy now ignores version mismatches with Carp if Carp is newer than 1.12, since
Carp::Heavy’s guts were merged into Carp at that point. [GH #13708]
<https://github.com/Perl/perl5/issues/13708>

Carp now handles non-ASCII platforms better.

Off-by-one error fix for Perl < 5.14.

• constant has been upgraded to version 1.33.

It now accepts fully-qualified constant names, allowing constants to be defined in packages other
than the caller.

• CPAN has been upgraded to version 2.11.

Add support for Cwd::getdcwd() and introduce workaround for a misbehavior seen on
Strawberry Perl 5.20.1.

Fix chdir() after building dependencies bug.

Introduce experimental support for plugins/hooks.

Integrate the App::Cpan sources.

Do not check recursion on optional dependencies.

Sanity check META.yml to contain a hash. [cpan #95271]
<https://rt.cpan.org/Ticket/Display.html?id=95271>

perl v5.36.0 2021-04-29 298

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• CPAN::Meta::Requirements has been upgraded to version 2.132.

Works around limitations in version::vpp detecting v-string magic and adds support for
forthcoming ExtUtils::MakeMaker bootstrap version.pm for Perls older than 5.10.0.

• Data::Dumper has been upgraded to version 2.158.

Fixes CVE-2014-4330 by adding a configuration variable/option to limit recursion when dumping
deep data structures.

Changes to resolve Coverity issues. XS dumps incorrectly stored the name of code references
stored in a GLOB. [GH #13911] <https://github.com/Perl/perl5/issues/13911>

• DynaLoader has been upgraded to version 1.32.

Remove dl_nonlazy global if unused in Dynaloader. [perl #122926]

• Encode has been upgraded to version 2.72.

piconv now has better error handling when the encoding name is nonexistent, and a build
breakage when upgrading Encode in perl-5.8.2 and earlier has been fixed.

Building in C++ mode on Windows now works.

• Errno has been upgraded to version 1.23.

Add -P to the preprocessor command-line on GCC 5. GCC added extra line directives, breaking
parsing of error code definitions. [rt.perl.org #123784]

• experimental has been upgraded to version 0.013.

Hardcodes features for Perls older than 5.15.7.

• ExtUtils::CBuilder has been upgraded to version 0.280221.

Fixes a regression on Android. [GH #14064] <https://github.com/Perl/perl5/issues/14064>

• ExtUtils::Manifest has been upgraded to version 1.70.

Fixes a bug with maniread()’s handling of quoted filenames and improves manifind() to
follow symlinks. [GH #14003] <https://github.com/Perl/perl5/issues/14003>

• ExtUtils::ParseXS has been upgraded to version 3.28.

Only declare file unused if we actually define it. Improve generated RETVAL code generation
to avoid repeated references to ST(0). [perl #123278] Broaden and document the /OBJ$/ to
/REF$/ typemap optimization for the DESTROY method. [perl #123418]

• Fcntl has been upgraded to version 1.13.

Add support for the Linux pipe buffer size fcntl() commands.

• File::Find has been upgraded to version 1.29.

find() and finddepth() will now warn if passed inappropriate or misspelled options.

• File::Glob has been upgraded to version 1.24.

Avoid SvIV() expanding to call get_sv() three times in a few places. [perl #123606]

• HTTP::Tiny has been upgraded to version 0.054.

keep_alive is now fork-safe and thread-safe.

• IO has been upgraded to version 1.35.

The XS implementation has been fixed for the sake of older Perls.

• IO::Socket has been upgraded to version 1.38.

Document the limitations of the connected() method. [perl #123096]

• IO::Socket::IP has been upgraded to version 0.37.

A better fix for subclassing connect(). [cpan #95983]
<https://rt.cpan.org/Ticket/Display.html?id=95983> [cpan #97050]
<https://rt.cpan.org/Ticket/Display.html?id=97050>

perl v5.36.0 2021-04-29 299

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

Implements Timeout for connect(). [cpan #92075]
<https://rt.cpan.org/Ticket/Display.html?id=92075>

• The libnet collection of modules has been upgraded to version 3.05.

Support for IPv6 and SSL to Net::FTP, Net::NNTP, Net::POP3 and Net::SMTP.
Improvements in Net::SMTP authentication.

• Locale::Codes has been upgraded to version 3.34.

Fixed a bug in the scripts used to extract data from spreadsheets that prevented the SHP currency
code from being found. [cpan #94229] <https://rt.cpan.org/Ticket/Display.html?id=94229>

New codes have been added.

• Math::BigInt has been upgraded to version 1.9997.

Synchronize POD changes from the CPAN release. Math::BigFloat->blog(x) would
sometimes return blog(2*x) when the accuracy was greater than 70 digits. The result of
Math::BigFloat->bdiv() in list context now satisfies x = quotient * divisor +
remainder.

Correct handling of subclasses. [cpan #96254]
<https://rt.cpan.org/Ticket/Display.html?id=96254> [cpan #96329]
<https://rt.cpan.org/Ticket/Display.html?id=96329>

• Module::Metadata has been upgraded to version 1.000026.

Support installations on older perls with an ExtUtils::MakeMaker earlier than 6.63_03

• overload has been upgraded to version 1.26.

A redundant ref $sub check has been removed.

• The PathTools module collection has been upgraded to version 3.56.

A warning from the gcc compiler is now avoided when building the XS.

Don’t turn leading // into / on Cygwin. [perl #122635]

• perl5db.pl has been upgraded to version 1.49.

The debugger would cause an assertion failure. [GH #14605]
<https://github.com/Perl/perl5/issues/14605>

fork() in the debugger under tmux will now create a new window for the forked process. [GH
#13602] <https://github.com/Perl/perl5/issues/13602>

The debugger now saves the current working directory on startup and restores it when you restart
your program with R or rerun. [GH #13691] <https://github.com/Perl/perl5/issues/13691>

• PerlIO::scalar has been upgraded to version 0.22.

Reading from a position well past the end of the scalar now correctly returns end of file. [perl
#123443]

Seeking to a negative position still fails, but no longer leaves the file position set to a negation
location.

eof() on a PerlIO::scalar handle now properly returns true when the file position is past
the 2GB mark on 32-bit systems.

Attempting to write at file positions impossible for the platform now fail early rather than
wrapping at 4GB.

• Pod::Perldoc has been upgraded to version 3.25.

Filehandles opened for reading or writing now have :encoding(UTF-8) set. [cpan #98019]
<https://rt.cpan.org/Ticket/Display.html?id=98019>

• POSIX has been upgraded to version 1.53.

The C99 math functions and constants (for example acosh, isinf, isnan, round, trunc;
M_E, M_SQRT2, M_PI) have been added.

perl v5.36.0 2021-04-29 300

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

POSIX::tmpnam() now produces a deprecation warning. [perl #122005]

• Safe has been upgraded to version 2.39.

reval was not propagating void context properly.

• Scalar-List-Utils has been upgraded to version 1.41.

A new module, Sub::Util, has been added, containing functions related to CODE refs, including
subname (inspired by Sub::Identity) and set_subname (copied and renamed from
Sub::Name). The use of GetMagic in List::Util::reduce() has also been fixed.
[cpan #63211] <https://rt.cpan.org/Ticket/Display.html?id=63211>

• SDBM_File has been upgraded to version 1.13.

Simplified the build process. [perl #123413]

• Time::Piece has been upgraded to version 1.29.

When pretty printing negative Time::Seconds, the ‘‘minus’’ is no longer lost.

• Unicode::Collate has been upgraded to version 1.12.

Version 0.67’s improved discontiguous contractions is invalidated by default and is supported as a
parameter long_contraction.

• Unicode::Normalize has been upgraded to version 1.18.

The XSUB implementation has been removed in favor of pure Perl.

• Unicode::UCD has been upgraded to version 0.61.

A new function property_values() has been added to return a given property’s possible values.

A new function charprop() has been added to return the value of a given property for a given code
point.

A new function charprops_all() has been added to return the values of all Unicode properties for
a given code point.

A bug has been fixed so that propaliases() returns the correct short and long names for the Perl
extensions where it was incorrect.

A bug has been fixed so that prop_value_aliases() returns undef instead of a wrong result for
properties that are Perl extensions.

This module now works on EBCDIC platforms.

• utf8 has been upgraded to version 1.17

A mismatch between the documentation and the code in utf8::downgrade() was fixed in
favor of the documentation. The optional second argument is now correctly treated as a perl
boolean (true/false semantics) and not as an integer.

• version has been upgraded to version 0.9909.

Numerous changes. See the Changes file in the CPAN distribution for details.

• Win32 has been upgraded to version 0.51.

GetOSName() now supports Windows 8.1, and building in C++ mode now works.

• Win32API::File has been upgraded to version 0.1202

Building in C++ mode now works.

• XSLoader has been upgraded to version 0.20.

Allow XSLoader to load modules from a different namespace. [perl #122455]

Removed Modules and Pragmata
The following modules (and associated modules) have been removed from the core perl distribution:

• CGI

perl v5.36.0 2021-04-29 301

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• Module::Build

Documentation
New Documentation

perlunicook

This document, by Tom Christiansen, provides examples of handling Unicode in Perl.

Changes to Existing Documentation
perlaix

• A note on long doubles has been added.

perlapi

• Note that SvSetSV doesn’t do set magic.

• sv_usepvn_flags - fix documentation to mention the use of Newx instead of malloc.

[GH #13835] <https://github.com/Perl/perl5/issues/13835>

• Clarify where NUL may be embedded or is required to terminate a string.

• Some documentation that was previously missing due to formatting errors is now included.

• Entries are now organized into groups rather than by the file where they are found.

• Alphabetical sorting of entries is now done consistently (automatically by the POD generator) to
make entries easier to find when scanning.

perldata

• The syntax of single-character variable names has been brought up-to-date and more fully
explained.

• Hexadecimal floating point numbers are described, as are infinity and NaN.

perlebcdic

• This document has been significantly updated in the light of recent improvements to EBCDIC
support.

perlfilter

• Added a LIMITATIONS section.

perlfunc

• Mention that study() is currently a no-op.

• Calling delete or exists on array values is now described as ‘‘strongly discouraged’’ rather
than ‘‘deprecated’’.

• Improve documentation of our.

• -l now notes that it will return false if symlinks aren’t supported by the file system. [GH #13695]
<https://github.com/Perl/perl5/issues/13695>

• Note that exec LIST and system LIST may fall back to the shell on Win32. Only the
indirect-object syntax exec PROGRAM LIST and system PROGRAM LIST will reliably
avoid using the shell.

This has also been noted in perlport.

[GH #13907] <https://github.com/Perl/perl5/issues/13907>

perlguts

• The OOK example has been updated to account for COW changes and a change in the storage of
the offset.

• Details on C level symbols and libperl.t added.

• Information on Unicode handling has been added

• Information on EBCDIC handling has been added

perlhack

perl v5.36.0 2021-04-29 302

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• A note has been added about running on platforms with non-ASCII character sets

• A note has been added about performance testing

perlhacktips

• Documentation has been added illustrating the perils of assuming that there is no change to the
contents of static memory pointed to by the return values of Perl’s wrappers for C library
functions.

• Replacements for tmpfile, atoi, strtol, and strtoul are now recommended.

• Updated documentation for the test.valgrind make target. [GH #13658]
<https://github.com/Perl/perl5/issues/13658>

• Information is given about writing test files portably to non-ASCII platforms.

• A note has been added about how to get a C language stack backtrace.

perlhpux

• Note that the message ‘‘Redeclaration of ’’sendpath‘‘ with a different storage class specifier’’ is
harmless.

perllocale

• Updated for the enhancements in v5.22, along with some clarifications.

perlmodstyle

• Instead of pointing to the module list, we are now pointing to PrePAN <http://prepan.org/>.

perlop

• Updated for the enhancements in v5.22, along with some clarifications.

perlpodspec

• The specification of the pod language is changing so that the default encoding of pods that aren’t
in UTF-8 (unless otherwise indicated) is CP1252 instead of ISO 8859-1 (Latin1).

perlpolicy

• We now have a code of conduct for the p5p mailing list, as documented in ‘‘STANDARDS OF
CONDUCT’’ in perlpolicy.

• The conditions for marking an experimental feature as non-experimental are now set out.

• Clarification has been made as to what sorts of changes are permissible in maintenance releases.

perlport

• Out-of-date VMS-specific information has been fixed and/or simplified.

• Notes about EBCDIC have been added.

perlre

• The description of the /x modifier has been clarified to note that comments cannot be continued
onto the next line by escaping them; and there is now a list of all the characters that are considered
whitespace by this modifier.

• The new /n modifier is described.

• A note has been added on how to make bracketed character class ranges portable to non-ASCII
machines.

perlrebackslash

• Added documentation of \b{sb}, \b{wb}, \b{gcb}, and \b{g}.

perlrecharclass

• Clarifications have been added to ‘‘Character Ranges’’ in perlrecharclass to the effect [A-Z],
[a-z], [0-9] and any subranges thereof in regular expression bracketed character classes are
guaranteed to match exactly what a naive English speaker would expect them to match, even on
platforms (such as EBCDIC) where perl has to do extra work to accomplish this.

perl v5.36.0 2021-04-29 303

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• The documentation of Bracketed Character Classes has been expanded to cover the improvements
in qr/[\N{named sequence}]/ (see under ‘‘Selected Bug Fixes’’).

perlref

• A new section has been added Assigning to References

perlsec

• Comments added on algorithmic complexity and tied hashes.

perlsyn

• An ambiguity in the documentation of the ... statement has been corrected. [GH #14054]
<https://github.com/Perl/perl5/issues/14054>

• The empty conditional in for and while is now documented in perlsyn.

perlunicode

• This has had extensive revisions to bring it up-to-date with current Unicode support and to make it
more readable. Notable is that Unicode 7.0 changed what it should do with non-characters. Perl
retains the old way of handling for reasons of backward compatibility. See ‘‘Noncharacter code
points’’ in perlunicode.

perluniintro

• Advice for how to make sure your strings and regular expression patterns are interpreted as
Unicode has been updated.

perlvar

• $] is no longer listed as being deprecated. Instead, discussion has been added on the advantages
and disadvantages of using it versus $ˆV. $OLD_PERL_VERSION was re-added to the
documentation as the long form of $].

• ${ˆENCODING} is now marked as deprecated.

• The entry for %ˆH has been clarified to indicate it can only handle simple values.

perlvms

• Out-of-date and/or incorrect material has been removed.

• Updated documentation on environment and shell interaction in VMS.

perlxs

• Added a discussion of locale issues in XS code.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• Bad symbol for scalar

(P) An internal request asked to add a scalar entry to something that wasn’t a symbol table entry.

• Can’t use a hash as a reference

(F) You tried to use a hash as a reference, as in %foo->{"bar"} or %$ref->{"hello"}.
Versions of perl <= 5.6.1 used to allow this syntax, but shouldn’t have.

• Can’t use an array as a reference

(F) You tried to use an array as a reference, as in @foo->[23] or @$ref->[99]. Versions of
perl <= 5.6.1 used to allow this syntax, but shouldn’t have.

• Can’t use ’defined(@array)’ (Maybe you should just omit the defined()?)

(F) defined() is not useful on arrays because it checks for an undefined scalar value. If you
want to see if the array is empty, just use if (@array) { # not empty } for example.

perl v5.36.0 2021-04-29 304

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• Can’t use ’defined(%hash)’ (Maybe you should just omit the defined()?)

(F) defined() is not usually right on hashes.

Although defined %hash is false on a plain not-yet-used hash, it becomes true in several non-
obvious circumstances, including iterators, weak references, stash names, even remaining true
after undef %hash. These things make defined %hash fairly useless in practice, so it now
generates a fatal error.

If a check for non-empty is what you wanted then just put it in boolean context (see ‘‘Scalar
values’’ in perldata):

if (%hash) {
not empty

}

If you had defined %Foo::Bar::QUUX to check whether such a package variable exists then
that’s never really been reliable, and isn’t a good way to enquire about the features of a package,
or whether it’s loaded, etc.

• Cannot chr %f

(F) You passed an invalid number (like an infinity or not-a-number) to chr.

• Cannot compress %f in pack

(F) You tried converting an infinity or not-a-number to an unsigned character, which makes no
sense.

• Cannot pack %f with ’%c’

(F) You tried converting an infinity or not-a-number to a character, which makes no sense.

• Cannot print %f with ’%c’

(F) You tried printing an infinity or not-a-number as a character (%c), which makes no sense.
Maybe you meant '%s' , or just stringifying it?

• charnames alias definitions may not contain a sequence of multiple spaces

(F) You defined a character name which had multiple space characters in a row. Change them to
single spaces. Usually these names are defined in the :alias import argument to use
charnames, but they could be defined by a translator installed into $ˆH{charnames}. See
‘‘CUSTOM ALIASES’’ in charnames.

• charnames alias definitions may not contain trailing white-space

(F) You defined a character name which ended in a space character. Remove the trailing space(s).
Usually these names are defined in the :alias import argument to use charnames, but they
could be defined by a translator installed into $ˆH{charnames}. See ‘‘CUSTOM ALIASES’’ in
charnames.

• :const is not permitted on named subroutines

(F) The const attribute causes an anonymous subroutine to be run and its value captured at the
time that it is cloned. Named subroutines are not cloned like this, so the attribute does not make
sense on them.

• Hexadecimal float: internal error

(F) Something went horribly bad in hexadecimal float handling.

• Hexadecimal float: unsupported long double format

(F) You have configured Perl to use long doubles but the internals of the long double format are
unknown, therefore the hexadecimal float output is impossible.

• Illegal suidscript

(F) The script run under suidperl was somehow illegal.

perl v5.36.0 2021-04-29 305

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• In ’(?...)’, the ’(’ and ’?’ must be adjacent in regex; marked by <-- HERE in m/%s/

(F) The two-character sequence "(?" in this context in a regular expression pattern should be an
indivisible token, with nothing intervening between the "(" and the "?", but you separated them.

• In ’(*VERB...)’, the ’(’ and ’*’ must be adjacent in regex; marked by <-- HERE in m/%s/

(F) The two-character sequence "(*" in this context in a regular expression pattern should be an
indivisible token, with nothing intervening between the "(" and the "*", but you separated them.

• Invalid quantifier in {,} in regex; marked by <-- HERE in m/%s/

(F) The pattern looks like a {min,max} quantifier, but the min or max could not be parsed as a
valid number: either it has leading zeroes, or it represents too big a number to cope with. The
<-- HERE shows where in the regular expression the problem was discovered. See perlre.

• ’%s’ is an unknown bound type in regex

(F) You used \b{...} or \B{...} and the ... is not known to Perl. The current valid ones
are given in ‘‘\b{}, \b, \B{}, \B’’ in perlrebackslash.

• Missing or undefined argument to require

(F) You tried to call require with no argument or with an undefined value as an argument.
require expects either a package name or a file-specification as an argument. See ‘‘require’’ in
perlfunc.

Formerly, require with no argument or undef warned about a Null filename.

New Warnings

• \C is deprecated in regex

(D deprecated) The /\C/ character class was deprecated in v5.20, and now emits a warning. It is
intended that it will become an error in v5.24. This character class matches a single byte even if it
appears within a multi-byte character, breaks encapsulation, and can corrupt UTF-8 strings.

• ‘‘%s’’ is more clearly written simply as ‘‘%s’’ in regex; marked by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

You specified a character that has the given plainer way of writing it, and which is also portable to
platforms running with different character sets.

• Argument ‘‘%s’’ treated as 0 in increment (++)

(W numeric) The indicated string was fed as an argument to the ++ operator which expects either
a number or a string matching /ˆ[a-zA-Z]*[0-9]*\z/. See ‘‘Auto-increment and Auto-
decrement’’ in perlop for details.

• Both or neither range ends should be Unicode in regex; marked by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

In a bracketed character class in a regular expression pattern, you had a range which has exactly
one end of it specified using \N{}, and the other end is specified using a non-portable
mechanism. Perl treats the range as a Unicode range, that is, all the characters in it are considered
to be the Unicode characters, and which may be different code points on some platforms Perl runs
on. For example, [\N{U+06}-\x08] is treated as if you had instead said
[\N{U+06}-\N{U+08}], that is it matches the characters whose code points in Unicode are 6,
7, and 8. But that \x08 might indicate that you meant something different, so the warning gets
raised.

• Can’t do %s(‘‘%s’’) on non-UTF-8 locale; resolved to ‘‘%s’’.

(W locale) You are 1) running under "use locale"; 2) the current locale is not a UTF-8 one; 3)
you tried to do the designated case-change operation on the specified Unicode character; and 4)
the result of this operation would mix Unicode and locale rules, which likely conflict.

The warnings category locale is new.

perl v5.36.0 2021-04-29 306

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• :const is experimental

(S experimental::const_attr) The const attribute is experimental. If you want to use the feature,
disable the warning with no warnings 'experimental::const_attr' , but know that
in doing so you are taking the risk that your code may break in a future Perl version.

• gmtime(%f) failed

(W overflow) You called gmtime with a number that it could not handle: too large, too small, or
NaN. The returned value is undef.

• Hexadecimal float: exponent overflow

(W overflow) The hexadecimal floating point has larger exponent than the floating point supports.

• Hexadecimal float: exponent underflow

(W overflow) The hexadecimal floating point has smaller exponent than the floating point
supports.

• Hexadecimal float: mantissa overflow

(W overflow) The hexadecimal floating point literal had more bits in the mantissa (the part
between the 0x and the exponent, also known as the fraction or the significand) than the floating
point supports.

• Hexadecimal float: precision loss

(W overflow) The hexadecimal floating point had internally more digits than could be output.
This can be caused by unsupported long double formats, or by 64-bit integers not being available
(needed to retrieve the digits under some configurations).

• Locale ’%s’ may not work well.%s

(W locale) You are using the named locale, which is a non-UTF-8 one, and which perl has
determined is not fully compatible with what it can handle. The second %s gives a reason.

The warnings category locale is new.

• localtime(%f) failed

(W overflow) You called localtime with a number that it could not handle: too large, too small,
or NaN. The returned value is undef.

• Negative repeat count does nothing

(W numeric) You tried to execute the x repetition operator fewer than 0 times, which doesn’t
make sense.

• NO-BREAK SPACE in a charnames alias definition is deprecated

(D deprecated) You defined a character name which contained a no-break space character. Change
it to a regular space. Usually these names are defined in the :alias import argument to use
charnames, but they could be defined by a translator installed into $ˆH{charnames}. See
‘‘CUSTOM ALIASES’’ in charnames.

• Non-finite repeat count does nothing

(W numeric) You tried to execute the x repetition operator Inf (or -Inf) or NaN times, which
doesn’t make sense.

• PerlIO layer ’:win32’ is experimental

(S experimental::win32_perlio) The :win32 PerlIO layer is experimental. If you want to take the
risk of using this layer, simply disable this warning:

no warnings "experimental::win32_perlio";

• Ranges of ASCII printables should be some subset of ‘‘0-9’’, ‘‘A-Z’’, or ‘‘a-z’’ in regex; marked
by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

Stricter rules help to find typos and other errors. Perhaps you didn’t even intend a range here, if

perl v5.36.0 2021-04-29 307

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

the "-" was meant to be some other character, or should have been escaped (like "\-"). If you
did intend a range, the one that was used is not portable between ASCII and EBCDIC platforms,
and doesn’t have an obvious meaning to a casual reader.

[3-7] # OK; Obvious and portable
[d-g] # OK; Obvious and portable
[A-Y] # OK; Obvious and portable
[A-z] # WRONG; Not portable; not clear what is meant
[a-Z] # WRONG; Not portable; not clear what is meant
[%-.] # WRONG; Not portable; not clear what is meant
[\x41-Z] # WRONG; Not portable; not obvious to non-geek

(You can force portability by specifying a Unicode range, which means that the endpoints are
specified by \N{...}, but the meaning may still not be obvious.) The stricter rules require that
ranges that start or stop with an ASCII character that is not a control have all their endpoints be a
literal character, and not some escape sequence (like "\x41"), and the ranges must be all digits,
or all uppercase letters, or all lowercase letters.

• Ranges of digits should be from the same group in regex; marked by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

Stricter rules help to find typos and other errors. You included a range, and at least one of the end
points is a decimal digit. Under the stricter rules, when this happens, both end points should be
digits in the same group of 10 consecutive digits.

• Redundant argument in %s

(W redundant) You called a function with more arguments than were needed, as indicated by
information within other arguments you supplied (e.g. a printf format). Currently only emitted
when a printf-type format required fewer arguments than were supplied, but might be used in the
future for e.g. ‘‘pack’’ in perlfunc.

The warnings category redundant is new. See also [GH #13534]
<https://github.com/Perl/perl5/issues/13534>.

• Replacement list is longer than search list

This is not a new diagnostic, but in earlier releases was accidentally not displayed if the
transliteration contained wide characters. This is now fixed, so that you may see this diagnostic in
places where you previously didn’t (but should have).

• Use of \b{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale

(W locale) You are matching a regular expression using locale rules, and a Unicode boundary is
being matched, but the locale is not a Unicode one. This doesn’t make sense. Perl will continue,
assuming a Unicode (UTF-8) locale, but the results could well be wrong except if the locale
happens to be ISO-8859-1 (Latin1) where this message is spurious and can be ignored.

The warnings category locale is new.

• Using /u for ’%s’ instead of /%s in regex; marked by <-- HERE in m/%s/

(W regexp) You used a Unicode boundary (\b{...} or \B{...}) in a portion of a regular
expression where the character set modifiers /a or /aa are in effect. These two modifiers
indicate an ASCII interpretation, and this doesn’t make sense for a Unicode definition. The
generated regular expression will compile so that the boundary uses all of Unicode. No other
portion of the regular expression is affected.

• The bitwise feature is experimental

(S experimental::bitwise) This warning is emitted if you use bitwise operators (& | ˆ ˜ &. |.
ˆ. ˜.) with the ‘‘bitwise’’ feature enabled. Simply suppress the warning if you want to use the
feature, but know that in doing so you are taking the risk of using an experimental feature which
may change or be removed in a future Perl version:

perl v5.36.0 2021-04-29 308

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

no warnings "experimental::bitwise";
use feature "bitwise";
$x |.= $y;

• Unescaped left brace in regex is deprecated, passed through in regex; marked by <-- HERE in
m/%s/

(D deprecated, regexp) You used a literal "{" character in a regular expression pattern. You
should change to use "\{" instead, because a future version of Perl (tentatively v5.26) will
consider this to be a syntax error. If the pattern delimiters are also braces, any matching right
brace ("}") should also be escaped to avoid confusing the parser, for example,

qr{abc\{def\}ghi}

• Use of literal non-graphic characters in variable names is deprecated

(D deprecated) Using literal non-graphic (including control) characters in the source to refer to the
ˆFOO variables, like $ˆX and ${ˆGLOBAL_PHASE} is now deprecated.

• Useless use of attribute ‘‘const’’

(W misc) The const attribute has no effect except on anonymous closure prototypes. You
applied it to a subroutine via attributes.pm. This is only useful inside an attribute handler for an
anonymous subroutine.

• Useless use of /d modifier in transliteration operator

This is not a new diagnostic, but in earlier releases was accidentally not displayed if the
transliteration contained wide characters. This is now fixed, so that you may see this diagnostic in
places where you previously didn’t (but should have).

• ‘‘use re ’strict’’’ is experimental

(S experimental::re_strict) The things that are different when a regular expression pattern is
compiled under 'strict' are subject to change in future Perl releases in incompatible ways;
there are also proposals to change how to enable strict checking instead of using this subpragma.
This means that a pattern that compiles today may not in a future Perl release. This warning is to
alert you to that risk.

• Warning: unable to close filehandle properly: %s

Warning: unable to close filehandle %s properly: %s

(S io) Previously, perl silently ignored any errors when doing an implicit close of a filehandle, i.e.
where the reference count of the filehandle reached zero and the user’s code hadn’t already called
close(); e.g.

{
open my $fh, '>', $file or die "open: '$file': $!\n";
print $fh, $data or die;

} # implicit close here

In a situation such as disk full, due to buffering, the error may only be detected during the final
close, so not checking the result of the close is dangerous.

So perl now warns in such situations.

• Wide character (U+%X) in %s

(W locale) While in a single-byte locale (i.e., a non-UTF-8 one), a multi-byte character was
encountered. Perl considers this character to be the specified Unicode code point. Combining
non-UTF-8 locales and Unicode is dangerous. Almost certainly some characters will have two
different representations. For example, in the ISO 8859-7 (Greek) locale, the code point 0xC3
represents a Capital Gamma. But so also does 0x393. This will make string comparisons
unreliable.

You likely need to figure out how this multi-byte character got mixed up with your single-byte
locale (or perhaps you thought you had a UTF-8 locale, but Perl disagrees).

The warnings category locale is new.

perl v5.36.0 2021-04-29 309

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

Changes to Existing Diagnostics
• <> should be quotes

This warning has been changed to <> at require-statement should be quotes to make the issue
more identifiable.

• Argument ‘‘%s’’ isn’t numeric%s

The perldiag entry for this warning has added this clarifying note:

Note that for the Inf and NaN (infinity and not-a-number) the
definition of "numeric" is somewhat unusual: the strings themselves
(like "Inf") are considered numeric, and anything following them is
considered non-numeric.

• Global symbol ‘‘%s’’ requires explicit package name

This message has had ’(did you forget to declare ‘‘my %s’’?)’ appended to it, to make it more
helpful to new Perl programmers. [GH #13732] <https://github.com/Perl/perl5/issues/13732>

• ’‘‘my’’ variable &foo::bar can’t be in a package’ has been reworded to say ’subroutine’ instead of
’variable’.

• \N{} in character class restricted to one character in regex; marked by <-- HERE in m/%s/

This message has had character class changed to inverted character class or as a range end-point
is to reflect improvements in qr/[\N{named sequence}]/ (see under ‘‘Selected Bug
Fixes’’).

• panic: frexp

This message has had ’: %f’ appended to it, to show what the offending floating point number is.

• Possible precedence problem on bitwise %c operator reworded as Possible precedence problem on
bitwise %s operator.

• Unsuccessful %s on filename containing newline

This warning is now only produced when the newline is at the end of the filename.

• "Variable %s will not stay shared‘‘ has been changed to say ’’Subroutine" when it is actually a
lexical sub that will not stay shared.

• Variable length lookbehind not implemented in regex m/%s/

The perldiag entry for this warning has had information about Unicode behavior added.

Diagnostic Removals
• ‘‘Ambiguous use of -foo resolved as -&foo()’’

There is actually no ambiguity here, and this impedes the use of negated constants; e.g., -Inf.

• ‘‘Constant is not a FOO reference’’

Compile-time checking of constant dereferencing (e.g., my_constant->()) has been removed,
since it was not taking overloading into account. [GH #9891]
<https://github.com/Perl/perl5/issues/9891> [GH #14044]
<https://github.com/Perl/perl5/issues/14044>

Utility Changes
find2perl, s2p and a2p removal

• The x2p/ directory has been removed from the Perl core.

This removes find2perl, s2p and a2p. They have all been released to CPAN as separate distributions
(App::find2perl, App::s2p, App::a2p).

h2ph
• h2ph now handles hexadecimal constants in the compiler’s predefined macro definitions, as visible

in $Config{cppsymbols}. [GH #14491] <https://github.com/Perl/perl5/issues/14491>.

encguess

perl v5.36.0 2021-04-29 310

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• No longer depends on non-core modules.

Configuration and Compilation
• Configure now checks for lrintl(), lroundl(), llrintl(), and llroundl().

• Configure with -Dmksymlinks should now be faster. [GH #13890]
<https://github.com/Perl/perl5/issues/13890>.

• The pthreads and cl libraries will be linked by default if present. This allows XS modules that
require threading to work on non-threaded perls. Note that you must still pass -Dusethreads if
you want a threaded perl.

• To get more precision and range for floating point numbers one can now use the GCC quadmath
library which implements the quadruple precision floating point numbers on x86 and IA-64
platforms. See INSTALL for details.

• MurmurHash64A and MurmurHash64B can now be configured as the internal hash function.

• make test.valgrind now supports parallel testing.

For example:

TEST_JOBS=9 make test.valgrind

See ‘‘valgrind’’ in perlhacktips for more information.

[GH #13658] <https://github.com/Perl/perl5/issues/13658>

• The MAD (Misc Attribute Decoration) build option has been removed

This was an unmaintained attempt at preserving the Perl parse tree more faithfully so that
automatic conversion of Perl 5 to Perl 6 would have been easier.

This build-time configuration option had been unmaintained for years, and had probably seriously
diverged on both Perl 5 and Perl 6 sides.

• A new compilation flag, -DPERL_OP_PARENT is available. For details, see the discussion below
at ‘‘Internal Changes’’.

• Pathtools no longer tries to load XS on miniperl. This speeds up building perl slightly.

Testing
• t/porting/re_context.t has been added to test that utf8 and its dependencies only use the subset of

the $1..$n capture vars that Perl_save_re_context() is hard-coded to localize, because
that function has no efficient way of determining at runtime what vars to localize.

• Tests for performance issues have been added in the file t/perf/taint.t.

• Some regular expression tests are written in such a way that they will run very slowly if certain
optimizations break. These tests have been moved into new files, t/re/speed.t and t/re/speed_thr.t,
and are run with a watchdog().

• test.pl now allows plan skip_all => $reason, to make it more compatible with
Test::More.

• A new test script, op/infnan.t, has been added to test if infinity and NaN are working correctly.
See ‘‘Infinity and NaN (not-a-number) handling improved’’.

Platform Support
Regained Platforms

IRIX and Tru64 platforms are working again.
Some make test failures remain: [GH #14557] <https://github.com/Perl/perl5/issues/14557>
and [GH #14727] <https://github.com/Perl/perl5/issues/14727> for IRIX; [GH #14629]
<https://github.com/Perl/perl5/issues/14629>, [cpan #99605]
<https://rt.cpan.org/Public/Bug/Display.html?id=99605>, and [cpan #104836]
<https://rt.cpan.org/Ticket/Display.html?id=104836> for Tru64.

z/OS running EBCDIC Code Page 1047
Core perl now works on this EBCDIC platform. Earlier perls also worked, but, even though
support wasn’t officially withdrawn, recent perls would not compile and run well. Perl 5.20 would
work, but had many bugs which have now been fixed. Many CPAN modules that ship with Perl

perl v5.36.0 2021-04-29 311

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

still fail tests, including Pod::Simple. However the version of Pod::Simple currently on
CPAN should work; it was fixed too late to include in Perl 5.22. Work is under way to fix many of
the still-broken CPAN modules, which likely will be installed on CPAN when completed, so that
you may not have to wait until Perl 5.24 to get a working version.

Discontinued Platforms
NeXTSTEP/OPENSTEP

NeXTSTEP was a proprietary operating system bundled with NeXT’s workstations in the early to
mid 90s; OPENSTEP was an API specification that provided a NeXTSTEP-like environment on a
non-NeXTSTEP system. Both are now long dead, so support for building Perl on them has been
removed.

Platform-Specific Notes
EBCDIC

Special handling is required of the perl interpreter on EBCDIC platforms to get qr/[i-j]/ to
match only "i" and "j", since there are 7 characters between the code points for "i" and "j".
This special handling had only been invoked when both ends of the range are literals. Now it is
also invoked if any of the \N{...} forms for specifying a character by name or Unicode code
point is used instead of a literal. See ‘‘Character Ranges’’ in perlrecharclass.

HP-UX
The archname now distinguishes use64bitint from use64bitall.

Android
Build support has been improved for cross-compiling in general and for Android in particular.

VMS
• When spawning a subprocess without waiting, the return value is now the correct PID.

• Fix a prototype so linking doesn’t fail under the VMS C++compiler.

• finite, finitel, and isfinite detection has been added to configure.com,
environment handling has had some minor changes, and a fix for legacy feature checking
status.

Win32
• miniperl.exe is now built with -fno-strict-aliasing, allowing 64-bit builds to

complete on GCC 4.8. [GH #14556] <https://github.com/Perl/perl5/issues/14556>

• nmake minitest now works on Win32. Due to dependency issues you need to build
nmake test-prep first, and a small number of the tests fail. [GH #14318]
<https://github.com/Perl/perl5/issues/14318>

• Perl can now be built in C++ mode on Windows by setting the makefile macro
USE_CPLUSPLUS to the value ‘‘define’’.

• The list form of piped open has been implemented for Win32. Note: unlike system LIST
this does not fall back to the shell. [GH #13574]
<https://github.com/Perl/perl5/issues/13574>

• New DebugSymbols and DebugFull configuration options added to Windows makefiles.

• Previously, compiling XS modules (including CPAN ones) using Visual C++ for Win64
resulted in around a dozen warnings per file from hv_func.h. These warnings have been
silenced.

• Support for building without PerlIO has been removed from the Windows makefiles. Non-
PerlIO builds were all but deprecated in Perl 5.18.0 and are already not supported by
Configure on POSIX systems.

• Between 2 and 6 milliseconds and seven I/O calls have been saved per attempt to open a perl
module for each path in @INC.

• Intel C builds are now always built with C99 mode on.

• %I64d is now being used instead of %lld for MinGW.

perl v5.36.0 2021-04-29 312

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• In the experimental :win32 layer, a crash in open was fixed. Also opening /dev/null (which
works under Win32 Perl’s default :unix layer) was implemented for :win32. [GH
#13968] <https://github.com/Perl/perl5/issues/13968>

• A new makefile option, USE_LONG_DOUBLE, has been added to the Windows dmake
makefile for gcc builds only. Set this to ‘‘define’’ if you want perl to use long doubles to give
more accuracy and range for floating point numbers.

OpenBSD
On OpenBSD, Perl will now default to using the system malloc due to the security features it
provides. Perl’s own malloc wrapper has been in use since v5.14 due to performance reasons, but
the OpenBSD project believes the tradeoff is worth it and would prefer that users who need the
speed specifically ask for it.

[GH #13888] <https://github.com/Perl/perl5/issues/13888>.

Solaris
• We now look for the Sun Studio compiler in both /opt/solstudio* and /opt/solarisstudio*.

• Builds on Solaris 10 with -Dusedtrace would fail early since make didn’t follow implied
dependencies to build perldtrace.h. Added an explicit dependency to depend. [GH
#13334] <https://github.com/Perl/perl5/issues/13334>

• C99 options have been cleaned up; hints look for solstudio as well as SUNWspro; and
support for native setenv has been added.

Internal Changes
• Experimental support has been added to allow ops in the optree to locate their parent, if any. This

is enabled by the non-default build option -DPERL_OP_PARENT. It is envisaged that this will
eventually become enabled by default, so XS code which directly accesses the op_sibling field
of ops should be updated to be future-proofed.

On PERL_OP_PARENT builds, the op_sibling field has been renamed op_sibparent and
a new flag, op_moresib, added. On the last op in a sibling chain, op_moresib is false and
op_sibparent points to the parent (if any) rather than being NULL.

To make existing code work transparently whether using PERL_OP_PARENT or not, a number of
new macros and functions have been added that should be used, rather than directly manipulating
op_sibling.

For the case of just reading op_sibling to determine the next sibling, two new macros have
been added. A simple scan through a sibling chain like this:

for (; kid->op_sibling; kid = kid->op_sibling) { ... }

should now be written as:

for (; OpHAS_SIBLING(kid); kid = OpSIBLING(kid)) { ... }

For altering optrees, a general-purpose function op_sibling_splice() has been added,
which allows for manipulation of a chain of sibling ops. By analogy with the Perl function
splice(), it allows you to cut out zero or more ops from a sibling chain and replace them with
zero or more new ops. It transparently handles all the updating of sibling, parent, op_last pointers
etc.

If you need to manipulate ops at a lower level, then three new macros, OpMORESIB_set,
OpLASTSIB_set and OpMAYBESIB_set are intended to be a low-level portable way to set
op_sibling / op_sibparent while also updating op_moresib. The first sets the sibling
pointer to a new sibling, the second makes the op the last sibling, and the third conditionally does
the first or second action. Note that unlike op_sibling_splice() these macros won’t
maintain consistency in the parent at the same time (e.g. by updating op_first and op_last
where appropriate).

A C-level Perl_op_parent() function and a Perl-level B::OP::parent() method have
been added. The C function only exists under PERL_OP_PARENT builds (using it is build-time
error on vanilla perls). B::OP::parent() exists always, but on a vanilla build it always
returns NULL. Under PERL_OP_PARENT, they return the parent of the current op, if any. The

perl v5.36.0 2021-04-29 313

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

variable $B::OP::does_parent allows you to determine whether B supports retrieving an
op’s parent.

PERL_OP_PARENT was introduced in 5.21.2, but the interface was changed considerably in
5.21.11. If you updated your code before the 5.21.11 changes, it may require further revision. The
main changes after 5.21.2 were:

• The OP_SIBLING and OP_HAS_SIBLING macros have been renamed OpSIBLING and
OpHAS_SIBLING for consistency with other op-manipulating macros.

• The op_lastsib field has been renamed op_moresib, and its meaning inverted.

• The macro OpSIBLING_set has been removed, and has been superseded by
OpMORESIB_set et al.

• The op_sibling_splice() function now accepts a null parent argument where the
splicing doesn’t affect the first or last ops in the sibling chain

• Macros have been created to allow XS code to better manipulate the POSIX locale category
LC_NUMERIC. See ‘‘Locale-related functions and macros’’ in perlapi.

• The previous atoi et al replacement function, grok_atou, has now been superseded by
grok_atoUV. See perlclib for details.

• A new function, Perl_sv_get_backrefs(), has been added which allows you retrieve the
weak references, if any, which point at an SV.

• The screaminstr() function has been removed. Although marked as public API, it was
undocumented and had no usage in CPAN modules. Calling it has been fatal since 5.17.0.

• The newDEFSVOP(), block_start(), block_end() and intro_my() functions have
been added to the API.

• The internal convert function in op.c has been renamed op_convert_list and added to the
API.

• The sv_magic() function no longer forbids ‘‘ext’’ magic on read-only values. After all, perl
can’t know whether the custom magic will modify the SV or not. [GH #14202]
<https://github.com/Perl/perl5/issues/14202>.

• Accessing ‘‘CvPADLIST’’ in perlapi on an XSUB is now forbidden.

The CvPADLIST field has been reused for a different internal purpose for XSUBs. So in
particular, you can no longer rely on it being NULL as a test of whether a CV is an XSUB. Use
CvISXSUB() instead.

• SVs of type SVt_NV are now sometimes bodiless when the build configuration and platform
allow it: specifically, when sizeof(NV) <= sizeof(IV). ‘‘Bodiless’’ means that the NV
value is stored directly in the head of an SV, without requiring a separate body to be allocated.
This trick has already been used for IVs since 5.9.2 (though in the case of IVs, it is always used,
regardless of platform and build configuration).

• The $DB::single, $DB::signal and $DB::trace variables now have set- and get-magic
that stores their values as IVs, and those IVs are used when testing their values in
pp_dbstate(). This prevents perl from recursing infinitely if an overloaded object is assigned
to any of those variables. [GH #14013] <https://github.com/Perl/perl5/issues/14013>.

• Perl_tmps_grow(), which is marked as public API but is undocumented, has been removed
from the public API. This change does not affect XS code that uses the EXTEND_MORTAL macro
to pre-extend the mortal stack.

• Perl’s internals no longer sets or uses the SVs_PADMY flag. SvPADMY() now returns a true
value for anything not marked PADTMP and SVs_PADMY is now defined as 0.

• The macros SETsv and SETsvUN have been removed. They were no longer used in the core
since commit 6f1401dc2a five years ago, and have not been found present on CPAN.

• The SvFAKE bit (unused on HVs) got informally reserved by David Mitchell for future work on
vtables.

perl v5.36.0 2021-04-29 314

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• The sv_catpvn_flags() function accepts SV_CATBYTES and SV_CATUTF8 flags, which
specify whether the appended string is bytes or UTF-8, respectively. (These flags have in fact been
present since 5.16.0, but were formerly not regarded as part of the API.)

• A new opcode class, METHOP, has been introduced. It holds information used at runtime to
improve the performance of class/object method calls.

OP_METHOD and OP_METHOD_NAMED have changed from being UNOP/SVOP to being
METHOP.

• cv_name() is a new API function that can be passed a CV or GV. It returns an SV containing the
name of the subroutine, for use in diagnostics.

[GH #12767] <https://github.com/Perl/perl5/issues/12767> [GH #13392]
<https://github.com/Perl/perl5/issues/13392>

• cv_set_call_checker_flags() is a new API function that works like
cv_set_call_checker(), except that it allows the caller to specify whether the call checker
requires a full GV for reporting the subroutine’s name, or whether it could be passed a CV instead.
Whatever value is passed will be acceptable to cv_name(). cv_set_call_checker()
guarantees there will be a GV, but it may have to create one on the fly, which is inefficient. [GH
#12767] <https://github.com/Perl/perl5/issues/12767>

• CvGV (which is not part of the API) is now a more complex macro, which may call a function and
reify a GV. For those cases where it has been used as a boolean, CvHASGV has been added, which
will return true for CVs that notionally have GVs, but without reifying the GV. CvGV also returns
a GV now for lexical subs. [GH #13392] <https://github.com/Perl/perl5/issues/13392>

• The ‘‘sync_locale’’ in perlapi function has been added to the public API. Changing the program’s
locale should be avoided by XS code. Nevertheless, certain non-Perl libraries called from XS need
to do so, such as Gtk. When this happens, Perl needs to be told that the locale has changed. Use
this function to do so, before returning to Perl.

• The defines and labels for the flags in the op_private field of OPs are now auto-generated from
data in regen/op_private. The noticeable effect of this is that some of the flag output of Concise
might differ slightly, and the flag output of perl -Dx may differ considerably (they both use the
same set of labels now). Also, debugging builds now have a new assertion in op_free() to
ensure that the op doesn’t have any unrecognized flags set in op_private.

• The deprecated variable PL_sv_objcount has been removed.

• Perl now tries to keep the locale category LC_NUMERIC set to ‘‘C’’ except around operations that
need it to be set to the program’s underlying locale. This protects the many XS modules that
cannot cope with the decimal radix character not being a dot. Prior to this release, Perl initialized
this category to ‘‘C’’, but a call to POSIX::setlocale() would change it. Now such a call
will change the underlying locale of the LC_NUMERIC category for the program, but the locale
exposed to XS code will remain ‘‘C’’. There are new macros to manipulate the LC_NUMERIC
locale, including STORE_LC_NUMERIC_SET_TO_NEEDED and
STORE_LC_NUMERIC_FORCE_TO_UNDERLYING. See ‘‘Locale-related functions and
macros’’ in perlapi.

• A new macro isUTF8_CHAR has been written which efficiently determines if the string given by
its parameters begins with a well-formed UTF-8 encoded character.

• The following private API functions had their context parameter removed: Perl_cast_ulong,
Perl_cast_i32, Perl_cast_iv, Perl_cast_uv, Perl_cv_const_sv,
Perl_mg_find, Perl_mg_findext, Perl_mg_magical, Perl_mini_mktime,
Perl_my_dirfd, Perl_sv_backoff, Perl_utf8_hop.

Note that the prefix-less versions of those functions that are part of the public API, such as
cast_i32(), remain unaffected.

• The PADNAME and PADNAMELIST types are now separate types, and no longer simply aliases for
SV and AV. [GH #14250] <https://github.com/Perl/perl5/issues/14250>.

perl v5.36.0 2021-04-29 315

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• Pad names are now always UTF-8. The PadnameUTF8 macro always returns true. Previously,
this was effectively the case already, but any support for two different internal representations of
pad names has now been removed.

• A new op class, UNOP_AUX, has been added. This is a subclass of UNOP with an op_aux field
added, which points to an array of unions of UV, SV* etc. It is intended for where an op needs to
store more data than a simple op_sv or whatever. Currently the only op of this type is
OP_MULTIDEREF (see next item).

• A new op has been added, OP_MULTIDEREF, which performs one or more nested array and hash
lookups where the key is a constant or simple variable. For example the expression
$a[0]{$k}[$i], which previously involved ten rv2Xv, Xelem, gvsv and const ops is now
performed by a single multideref op. It can also handle local, exists and delete. A
non-simple index expression, such as [$i+1] is still done using aelem/helem, and single-level
array lookup with a small constant index is still done using aelemfast.

Selected Bug Fixes
• close now sets $!

When an I/O error occurs, the fact that there has been an error is recorded in the handle. close
returns false for such a handle. Previously, the value of $! would be untouched by close, so the
common convention of writing close $fh or die $! did not work reliably. Now the
handle records the value of $!, too, and close restores it.

• no re now can turn off everything that use re enables

Previously, running no re would turn off only a few things. Now it can turn off all the enabled
things. For example, the only way to stop debugging, once enabled, was to exit the enclosing
block; that is now fixed.

• pack("D", $x) and pack("F", $x) now zero the padding on x86 long double builds.
Under some build options on GCC 4.8 and later, they used to either overwrite the zero-initialized
padding, or bypass the initialized buffer entirely. This caused op/pack.t to fail. [GH #14554]
<https://github.com/Perl/perl5/issues/14554>

• Extending an array cloned from a parent thread could result in ‘‘Modification of a read-only value
attempted’’ errors when attempting to modify the new elements. [GH #14605]
<https://github.com/Perl/perl5/issues/14605>

• An assertion failure and subsequent crash with *x=<y> has been fixed. [GH #14493]
<https://github.com/Perl/perl5/issues/14493>

• A possible crashing/looping bug related to compiling lexical subs has been fixed. [GH #14596]
<https://github.com/Perl/perl5/issues/14596>

• UTF-8 now works correctly in function names, in unquoted HERE-document terminators, and in
variable names used as array indexes. [GH #14601] <https://github.com/Perl/perl5/issues/14601>

• Repeated global pattern matches in scalar context on large tainted strings were exponentially slow
depending on the current match position in the string. [GH #14238]
<https://github.com/Perl/perl5/issues/14238>

• Various crashes due to the parser getting confused by syntax errors have been fixed. [GH #14496]
<https://github.com/Perl/perl5/issues/14496> [GH #14497]
<https://github.com/Perl/perl5/issues/14497> [GH #14548]
<https://github.com/Perl/perl5/issues/14548> [GH #14564]
<https://github.com/Perl/perl5/issues/14564>

• split in the scope of lexical $_ has been fixed not to fail assertions. [GH #14483]
<https://github.com/Perl/perl5/issues/14483>

• my $x : attr syntax inside various list operators no longer fails assertions. [GH #14500]
<https://github.com/Perl/perl5/issues/14500>

• An @ sign in quotes followed by a non-ASCII digit (which is not a valid identifier) would cause
the parser to crash, instead of simply trying the @ as literal. This has been fixed. [GH #14553]
<https://github.com/Perl/perl5/issues/14553>

perl v5.36.0 2021-04-29 316

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• *bar::=*foo::=*glob_with_hash has been crashing since Perl 5.14, but no longer does.
[GH #14512] <https://github.com/Perl/perl5/issues/14512>

• foreach in scalar context was not pushing an item on to the stack, resulting in bugs.
(print 4, scalar do { foreach(@x){} } + 1 would print 5.) It has been fixed to
return undef. [GH #14569] <https://github.com/Perl/perl5/issues/14569>

• Several cases of data used to store environment variable contents in core C code being potentially
overwritten before being used have been fixed. [GH #14476]
<https://github.com/Perl/perl5/issues/14476>

• Some patterns starting with /.*..../ matched against long strings have been slow since v5.8,
and some of the form /.*..../i have been slow since v5.18. They are now all fast again. [GH
#14475] <https://github.com/Perl/perl5/issues/14475>.

• The original visible value of $/ is now preserved when it is set to an invalid value. Previously if
you set $/ to a reference to an array, for example, perl would produce a runtime error and not set
PL_rs, but Perl code that checked $/ would see the array reference. [GH #14245]
<https://github.com/Perl/perl5/issues/14245>.

• In a regular expression pattern, a POSIX class, like [:ascii:], must be inside a bracketed
character class, like qr/[[:ascii:]]/. A warning is issued when something looking like a
POSIX class is not inside a bracketed class. That warning wasn’t getting generated when the
POSIX class was negated: [:ˆascii:]. This is now fixed.

• Perl 5.14.0 introduced a bug whereby eval { LABEL: } would crash. This has been fixed.
[GH #14438] <https://github.com/Perl/perl5/issues/14438>.

• Various crashes due to the parser getting confused by syntax errors have been fixed. [GH #14421]
<https://github.com/Perl/perl5/issues/14421>. [GH #14472]
<https://github.com/Perl/perl5/issues/14472>. [GH #14480]
<https://github.com/Perl/perl5/issues/14480>. [GH #14447]
<https://github.com/Perl/perl5/issues/14447>.

• Code like /$a[/ used to read the next line of input and treat it as though it came immediately
after the opening bracket. Some invalid code consequently would parse and run, but some code
caused crashes, so this is now disallowed. [GH #14462]
<https://github.com/Perl/perl5/issues/14462>.

• Fix argument underflow for pack. [GH #14525] <https://github.com/Perl/perl5/issues/14525>.

• Fix handling of non-strict \x{}. Now \x{} is equivalent to \x{0} instead of faulting.

• stat -t is now no longer treated as stackable, just like -t stat. [GH #14499]
<https://github.com/Perl/perl5/issues/14499>.

• The following no longer causes a SEGV: qr{x+(y(?0))*}.

• Fixed infinite loop in parsing backrefs in regexp patterns.

• Several minor bug fixes in behavior of Infinity and NaN, including warnings when stringifying
Infinity-like or NaN-like strings. For example, ‘‘NaNcy’’ doesn’t numify to NaN anymore.

• A bug in regular expression patterns that could lead to segfaults and other crashes has been fixed.
This occurred only in patterns compiled with /i while taking into account the current POSIX
locale (which usually means they have to be compiled within the scope of use locale), and
there must be a string of at least 128 consecutive bytes to match. [GH #14389]
<https://github.com/Perl/perl5/issues/14389>.

• s///g now works on very long strings (where there are more than 2 billion iterations) instead of
dying with ’Substitution loop’. [GH #11742] <https://github.com/Perl/perl5/issues/11742>. [GH
#14190] <https://github.com/Perl/perl5/issues/14190>.

• gmtime no longer crashes with not-a-number values. [GH #14365]
<https://github.com/Perl/perl5/issues/14365>.

• \() (a reference to an empty list), and y/// with lexical $_ in scope, could both do a bad write
past the end of the stack. They have both been fixed to extend the stack first.

perl v5.36.0 2021-04-29 317

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• prototype() with no arguments used to read the previous item on the stack, so
print "foo", prototype() would print foo’s prototype. It has been fixed to infer $_
instead. [GH #14376] <https://github.com/Perl/perl5/issues/14376>.

• Some cases of lexical state subs declared inside predeclared subs could crash, for example when
evalling a string including the name of an outer variable, but no longer do.

• Some cases of nested lexical state subs inside anonymous subs could cause ’Bizarre copy’ errors
or possibly even crashes.

• When trying to emit warnings, perl’s default debugger (perl5db.pl) was sometimes giving
’Undefined subroutine &DB::db_warn called’ instead. This bug, which started to occur in Perl
5.18, has been fixed. [GH #14400] <https://github.com/Perl/perl5/issues/14400>.

• Certain syntax errors in substitutions, such as s/${<>{})//, would crash, and had done so
since Perl 5.10. (In some cases the crash did not start happening till 5.16.) The crash has, of
course, been fixed. [GH #14391] <https://github.com/Perl/perl5/issues/14391>.

• Fix a couple of string grow size calculation overflows; in particular, a repeat expression like
33 x ˜3 could cause a large buffer overflow since the new output buffer size was not correctly
handled by SvGROW(). An expression like this now properly produces a memory wrap panic.
[GH #14401] <https://github.com/Perl/perl5/issues/14401>.

• formline("@...", "a"); would crash. The FF_CHECKNL case in pp_formline()
didn’t set the pointer used to mark the chop position, which led to the FF_MORE case crashing
with a segmentation fault. This has been fixed. [GH #14388]
<https://github.com/Perl/perl5/issues/14388>.

• A possible buffer overrun and crash when parsing a literal pattern during regular expression
compilation has been fixed. [GH #14416] <https://github.com/Perl/perl5/issues/14416>.

• fchmod() and futimes() now set $! when they fail due to being passed a closed file handle.
[GH #14073] <https://github.com/Perl/perl5/issues/14073>.

• op_free() and scalarvoid() no longer crash due to a stack overflow when freeing a
deeply recursive op tree. [GH #11866] <https://github.com/Perl/perl5/issues/11866>.

• In Perl 5.20.0, $ˆN accidentally had the internal UTF-8 flag turned off if accessed from a code
block within a regular expression, effectively UTF-8-encoding the value. This has been fixed.
[GH #14211] <https://github.com/Perl/perl5/issues/14211>.

• A failed semctl call no longer overwrites existing items on the stack, which means that
(semctl(-1,0,0,0))[0] no longer gives an ‘‘uninitialized’’ warning.

• else{foo()} with no space before foo is now better at assigning the right line number to that
statement. [GH #14070] <https://github.com/Perl/perl5/issues/14070>.

• Sometimes the assignment in @array = split gets optimised so that split itself writes
directly to the array. This caused a bug, preventing this assignment from being used in lvalue
context. So (@a=split//,"foo")=bar() was an error. (This bug probably goes back to
Perl 3, when the optimisation was added.) It has now been fixed. [GH #14183]
<https://github.com/Perl/perl5/issues/14183>.

• When an argument list fails the checks specified by a subroutine signature (which is still an
experimental feature), the resulting error messages now give the file and line number of the caller,
not of the called subroutine. [GH #13643] <https://github.com/Perl/perl5/issues/13643>.

• The flip-flop operators (.. and ... in scalar context) used to maintain a separate state for each
recursion level (the number of times the enclosing sub was called recursively), contrary to the
documentation. Now each closure has one internal state for each flip-flop. [GH #14110]
<https://github.com/Perl/perl5/issues/14110>.

• The flip-flop operator (.. in scalar context) would return the same scalar each time, unless the
containing subroutine was called recursively. Now it always returns a new scalar. [GH #14110]
<https://github.com/Perl/perl5/issues/14110>.

• use, no, statement labels, special blocks (BEGIN) and pod are now permitted as the first thing in
a map or grep block, the block after print or say (or other functions) returning a handle, and
within ${...}, @{...}, etc. [GH #14088] <https://github.com/Perl/perl5/issues/14088>.

perl v5.36.0 2021-04-29 318

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• The repetition operator x now propagates lvalue context to its left-hand argument when used in
contexts like foreach. That allows for(($#that_array)x2) { ... } to work as
expected if the loop modifies $_.

• (...) x ... in scalar context used to corrupt the stack if one operand was an object with ‘‘x’’
overloading, causing erratic behavior. [GH #13811] <https://github.com/Perl/perl5/issues/13811>.

• Assignment to a lexical scalar is often optimised away; for example in my $x; $x = $y +
$z, the assign operator is optimised away and the add operator writes its result directly to $x.
Various bugs related to this optimisation have been fixed. Certain operators on the right-hand side
would sometimes fail to assign the value at all or assign the wrong value, or would call STORE
twice or not at all on tied variables. The operators affected were $foo++, $foo-- , and -$foo
under use integer, chomp, chr and setpgrp.

• List assignments were sometimes buggy if the same scalar ended up on both sides of the
assignment due to use of tied, values or each. The result would be the wrong value getting
assigned.

• setpgrp($nonzero) (with one argument) was accidentally changed in 5.16 to mean
setpgrp(0). This has been fixed.

• _ _SUB_ _ could return the wrong value or even corrupt memory under the debugger (the -d
switch) and in subs containing eval $string.

• When sub () { $var } becomes inlinable, it now returns a different scalar each time, just as
a non-inlinable sub would, though Perl still optimises the copy away in cases where it would make
no observable difference.

• my sub f () { $var } and sub () : attr { $var } are no longer eligible for
inlining. The former would crash; the latter would just throw the attributes away. An exception is
made for the little-known :method attribute, which does nothing much.

• Inlining of subs with an empty prototype is now more consistent than before. Previously, a sub
with multiple statements, of which all but the last were optimised away, would be inlinable only if
it were an anonymous sub containing a string eval or state declaration or closing over an outer
lexical variable (or any anonymous sub under the debugger). Now any sub that gets folded to a
single constant after statements have been optimised away is eligible for inlining. This applies to
things like sub () { jabber() if DEBUG; 42 }.

Some subroutines with an explicit return were being made inlinable, contrary to the
documentation, Now return always prevents inlining.

• On some systems, such as VMS, crypt can return a non-ASCII string. If a scalar assigned to had
contained a UTF-8 string previously, then crypt would not turn off the UTF-8 flag, thus
corrupting the return value. This would happen with $lexical = crypt

• crypt no longer calls FETCH twice on a tied first argument.

• An unterminated here-doc on the last line of a quote-like operator (qq[${ <<END }], /(?{
<<END })/) no longer causes a double free. It started doing so in 5.18.

• index() and rindex() no longer crash when used on strings over 2GB in size. [GH #13700]
<https://github.com/Perl/perl5/issues/13700>.

• A small, previously intentional, memory leak in PERL_SYS_INIT/PERL_SYS_INIT3 on
Win32 builds was fixed. This might affect embedders who repeatedly create and destroy perl
engines within the same process.

• POSIX::localeconv() now returns the data for the program’s underlying locale even when
called from outside the scope of use locale.

• POSIX::localeconv() now works properly on platforms which don’t have LC_NUMERIC
and/or LC_MONETARY, or for which Perl has been compiled to disregard either or both of these
locale categories. In such circumstances, there are now no entries for the corresponding values in
the hash returned by localeconv().

• POSIX::localeconv() now marks appropriately the values it returns as UTF-8 or not.
Previously they were always returned as bytes, even if they were supposed to be encoded as
UTF-8.

perl v5.36.0 2021-04-29 319

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• On Microsoft Windows, within the scope of use locale, the following POSIX character classes
gave results for many locales that did not conform to the POSIX standard: [[:alnum:]],
[[:alpha:]], [[:blank:]], [[:digit:]], [[:graph:]], [[:lower:]],
[[:print:]], [[:punct:]], [[:upper:]], [[:word:]], and [[:xdigit:]]. This
was because the underlying Microsoft implementation does not follow the standard. Perl now
takes special precautions to correct for this.

• Many issues have been detected by Coverity <http://www.coverity.com/> and fixed.

• system() and friends should now work properly on more Android builds.

Due to an oversight, the value specified through -Dtargetsh to Configure would end up being
ignored by some of the build process. This caused perls cross-compiled for Android to end up
with defective versions of system(), exec() and backticks: the commands would end up
looking for /bin/sh instead of /system/bin/sh, and so would fail for the vast majority of
devices, leaving $! as ENOENT.

• qr(...\(...\)...), qr[...\[...\]...], and qr{...\{...\}...} now work.
Previously it was impossible to escape these three left-characters with a backslash within a regular
expression pattern where otherwise they would be considered metacharacters, and the pattern
opening delimiter was the character, and the closing delimiter was its mirror character.

• s///e on tainted UTF-8 strings corrupted pos(). This bug, introduced in 5.20, is now fixed.
[GH #13948] <https://github.com/Perl/perl5/issues/13948>.

• A non-word boundary in a regular expression (\B) did not always match the end of the string; in
particular q{} =˜ /\B/ did not match. This bug, introduced in perl 5.14, is now fixed. [GH
#13917] <https://github.com/Perl/perl5/issues/13917>.

• " P" =˜ /(?=.*P)P/ should match, but did not. This is now fixed. [GH #13954]
<https://github.com/Perl/perl5/issues/13954>.

• Failing to compile use Foo in an eval could leave a spurious BEGIN subroutine definition,
which would produce a ‘‘Subroutine BEGIN redefined’’ warning on the next use of use, or other
BEGIN block. [GH #13926] <https://github.com/Perl/perl5/issues/13926>.

• method { BLOCK } ARGS syntax now correctly parses the arguments if they begin with an
opening brace. [GH #9085] <https://github.com/Perl/perl5/issues/9085>.

• External libraries and Perl may have different ideas of what the locale is. This is problematic
when parsing version strings if the locale’s numeric separator has been changed. Version parsing
has been patched to ensure it handles the locales correctly. [GH #13863]
<https://github.com/Perl/perl5/issues/13863>.

• A bug has been fixed where zero-length assertions and code blocks inside of a regex could cause
pos to see an incorrect value. [GH #14016] <https://github.com/Perl/perl5/issues/14016>.

• Dereferencing of constants now works correctly for typeglob constants. Previously the glob was
stringified and its name looked up. Now the glob itself is used. [GH #9891]
<https://github.com/Perl/perl5/issues/9891>

• When parsing a sigil ($ @ % &) followed by braces, the parser no longer tries to guess whether it
is a block or a hash constructor (causing a syntax error when it guesses the latter), since it can only
be a block.

• undef $reference now frees the referent immediately, instead of hanging on to it until the
next statement. [GH #14032] <https://github.com/Perl/perl5/issues/14032>

• Various cases where the name of a sub is used (autoload, overloading, error messages) used to
crash for lexical subs, but have been fixed.

• Bareword lookup now tries to avoid vivifying packages if it turns out the bareword is not going to
be a subroutine name.

• Compilation of anonymous constants (e.g., sub () { 3 }) no longer deletes any subroutine
named _ _ANON_ _ in the current package. Not only was *_ _ANON_ _{CODE} cleared, but
there was a memory leak, too. This bug goes back to Perl 5.8.0.

perl v5.36.0 2021-04-29 320

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• Stub declarations like sub f; and sub f (); no longer wipe out constants of the same name
declared by use constant. This bug was introduced in Perl 5.10.0.

• qr/[\N{named sequence}]/ now works properly in many instances.

Some names known to \N{...} refer to a sequence of multiple characters, instead of the usual
single character. Bracketed character classes generally only match single characters, but now
special handling has been added so that they can match named sequences, but not if the class is
inverted or the sequence is specified as the beginning or end of a range. In these cases, the only
behavior change from before is a slight rewording of the fatal error message given when this class
is part of a ?[...]) construct. When the [...] stands alone, the same non-fatal warning as
before is raised, and only the first character in the sequence is used, again just as before.

• Tainted constants evaluated at compile time no longer cause unrelated statements to become
tainted. [GH #14059] <https://github.com/Perl/perl5/issues/14059>

• open $$fh, ..., which vivifies a handle with a name like "main::_GEN_0", was not
giving the handle the right reference count, so a double free could happen.

• When deciding that a bareword was a method name, the parser would get confused if an our sub
with the same name existed, and look up the method in the package of the our sub, instead of the
package of the invocant.

• The parser no longer gets confused by \U= within a double-quoted string. It used to produce a
syntax error, but now compiles it correctly. [GH #10882]
<https://github.com/Perl/perl5/issues/10882>

• It has always been the intention for the -B and -T file test operators to treat UTF-8 encoded files
as text. (perlfunc has been updated to say this.) Previously, it was possible for some files to be
considered UTF-8 that actually weren’t valid UTF-8. This is now fixed. The operators now work
on EBCDIC platforms as well.

• Under some conditions warning messages raised during regular expression pattern compilation
were being output more than once. This has now been fixed.

• Perl 5.20.0 introduced a regression in which a UTF-8 encoded regular expression pattern that
contains a single ASCII lowercase letter did not match its uppercase counterpart. That has been
fixed in both 5.20.1 and 5.22.0. [GH #14051] <https://github.com/Perl/perl5/issues/14051>

• Constant folding could incorrectly suppress warnings if lexical warnings (use warnings or no
warnings) were not in effect and $ˆW were false at compile time and true at run time.

• Loading Unicode tables during a regular expression match could cause assertion failures under
debugging builds if the previous match used the very same regular expression. [GH #14081]
<https://github.com/Perl/perl5/issues/14081>

• Thread cloning used to work incorrectly for lexical subs, possibly causing crashes or double frees
on exit.

• Since Perl 5.14.0, deleting $SomePackage::{_ _ANON_ _} and then undefining an
anonymous subroutine could corrupt things internally, resulting in Devel::Peek crashing or B.pm
giving nonsensical data. This has been fixed.

• (caller $n)[3] now reports names of lexical subs, instead of treating them as
"(unknown)".

• sort subname LIST now supports using a lexical sub as the comparison routine.

• Aliasing (e.g., via *x = *y) could confuse list assignments that mention the two names for the
same variable on either side, causing wrong values to be assigned. [GH #5788]
<https://github.com/Perl/perl5/issues/5788>

• Long here-doc terminators could cause a bad read on short lines of input. This has been fixed. It
is doubtful that any crash could have occurred. This bug goes back to when here-docs were
introduced in Perl 3.000 twenty-five years ago.

• An optimization in split to treat split /ˆ/ like split /ˆ/m had the unfortunate side-
effect of also treating split /\A/ like split /ˆ/m, which it should not. This has been
fixed. (Note, however, that split /ˆx/ does not behave like split /ˆx/m, which is also

perl v5.36.0 2021-04-29 321

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

considered to be a bug and will be fixed in a future version.) [GH #14086]
<https://github.com/Perl/perl5/issues/14086>

• The little-known my Class $var syntax (see fields and attributes) could get confused in the
scope of use utf8 if Class were a constant whose value contained Latin-1 characters.

• Locking and unlocking values via Hash::Util or Internals::SvREADONLY no longer has any
effect on values that were read-only to begin with. Previously, unlocking such values could result
in crashes, hangs or other erratic behavior.

• Some unterminated (?(...)...) constructs in regular expressions would either crash or give
erroneous error messages. /(?(1)/ is one such example.

• pack "w", $tied no longer calls FETCH twice.

• List assignments like ($x, $z) = (1, $y) now work correctly if $x and $y have been
aliased by foreach.

• Some patterns including code blocks with syntax errors, such as / (?{(ˆ{})/, would hang or
fail assertions on debugging builds. Now they produce errors.

• An assertion failure when parsing sort with debugging enabled has been fixed. [GH #14087]
<https://github.com/Perl/perl5/issues/14087>.

• *a = *b; @a = split //, $b[1] could do a bad read and produce junk results.

• In () = @array = split, the () = at the beginning no longer confuses the optimizer into
assuming a limit of 1.

• Fatal warnings no longer prevent the output of syntax errors. [GH #14155]
<https://github.com/Perl/perl5/issues/14155>.

• Fixed a NaN double-to-long-double conversion error on VMS. For quiet NaNs (and only on
Itanium, not Alpha) negative infinity instead of NaN was produced.

• Fixed the issue that caused make distclean to incorrectly leave some files behind. [GH
#14108] <https://github.com/Perl/perl5/issues/14108>.

• AIX now sets the length in getsockopt correctly. [GH #13484]
<https://github.com/Perl/perl5/issues/13484>. [cpan #91183]
<https://rt.cpan.org/Ticket/Display.html?id=91183>. [cpan #85570]
<https://rt.cpan.org/Ticket/Display.html?id=85570>.

• The optimization phase of a regexp compilation could run ‘‘forever’’ and exhaust all memory
under certain circumstances; now fixed. [GH #13984]
<https://github.com/Perl/perl5/issues/13984>.

• The test script t/op/crypt.t now uses the SHA-256 algorithm if the default one is disabled, rather
than giving failures. [GH #13715] <https://github.com/Perl/perl5/issues/13715>.

• Fixed an off-by-one error when setting the size of a shared array. [GH #14151]
<https://github.com/Perl/perl5/issues/14151>.

• Fixed a bug that could cause perl to enter an infinite loop during compilation. In particular, a
while(1) within a sublist, e.g.

sub foo { () = ($a, my $b, ($c, do { while(1) {} })) }

The bug was introduced in 5.20.0 [GH #14165] <https://github.com/Perl/perl5/issues/14165>.

• On Win32, if a variable was local-ized in a pseudo-process that later forked, restoring the
original value in the child pseudo-process caused memory corruption and a crash in the child
pseudo-process (and therefore the OS process). [GH #8641]
<https://github.com/Perl/perl5/issues/8641>.

• Calling write on a format with a ˆ** field could produce a panic in sv_chop() if there were
insufficient arguments or if the variable used to fill the field was empty. [GH #14255]
<https://github.com/Perl/perl5/issues/14255>.

• Non-ASCII lexical sub names now appear without trailing junk when they appear in error
messages.

perl v5.36.0 2021-04-29 322

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• The \@ subroutine prototype no longer flattens parenthesized arrays (taking a reference to each
element), but takes a reference to the array itself. [GH #9111]
<https://github.com/Perl/perl5/issues/9111>.

• A block containing nothing except a C-style for loop could corrupt the stack, causing lists
outside the block to lose elements or have elements overwritten. This could happen with map {
for(...){...} } ... and with lists containing do { for(...){...} }. [GH
#14269] <https://github.com/Perl/perl5/issues/14269>.

• scalar() now propagates lvalue context, so that for(scalar($#foo)) { ... } can
modify $#foo through $_.

• qr/@array(?{block})/ no longer dies with ‘‘Bizarre copy of ARRAY’’. [GH #14292]
<https://github.com/Perl/perl5/issues/14292>.

• eval '$variable' in nested named subroutines would sometimes look up a global variable
even with a lexical variable in scope.

• In perl 5.20.0, sort CORE::fake where ’fake’ is anything other than a keyword, started
chopping off the last 6 characters and treating the result as a sort sub name. The previous behavior
of treating CORE::fake as a sort sub name has been restored. [GH #14323]
<https://github.com/Perl/perl5/issues/14323>.

• Outside of use utf8, a single-character Latin-1 lexical variable is disallowed. The error
message for it, "Can’t use global $foo...", was giving garbage instead of the variable name.

• readline on a nonexistent handle was causing ${ˆLAST_FH} to produce a reference to an
undefined scalar (or fail an assertion). Now ${ˆLAST_FH} ends up undefined.

• (...) x ... in void context now applies scalar context to the left-hand argument, instead of
the context the current sub was called in. [GH #14174]
<https://github.com/Perl/perl5/issues/14174>.

Known Problems
• pack-ing a NaN on a perl compiled with Visual C 6 does not behave properly, leading to a test

failure in t/op/infnan.t. [GH #14705] <https://github.com/Perl/perl5/issues/14705>

• A goal is for Perl to be able to be recompiled to work reasonably well on any Unicode version. In
Perl 5.22, though, the earliest such version is Unicode 5.1 (current is 7.0).

• EBCDIC platforms

• The cmp (and hence sort) operators do not necessarily give the correct results when both
operands are UTF-EBCDIC encoded strings and there is a mixture of ASCII and/or control
characters, along with other characters.

• Ranges containing \N{...} in the tr/// (and y///) transliteration operators are treated
differently than the equivalent ranges in regular expression patterns. They should, but don’t,
cause the values in the ranges to all be treated as Unicode code points, and not native ones.
(‘‘Version 8 Regular Expressions’’ in perlre gives details as to how it should work.)

• Encode and encoding are mostly broken.

• Many CPAN modules that are shipped with core show failing tests.

• pack/unpack with "U0" format may not work properly.

• The following modules are known to have test failures with this version of Perl. In many cases,
patches have been submitted, so there will hopefully be new releases soon:

• B::Generate version 1.50

• B::Utils version 0.25

• Coro version 6.42

• Dancer version 1.3130

• Data::Alias version 1.18

perl v5.36.0 2021-04-29 323

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

• Data::Dump::Streamer version 2.38

• Data::Util version 0.63

• Devel::Spy version 0.07

• invoker version 0.34

• Lexical::Var version 0.009

• LWP::ConsoleLogger version 0.000018

• Mason version 2.22

• NgxQueue version 0.02

• Padre version 1.00

• Parse::Keyword 0.08

Obituary
Brian McCauley died on May 8, 2015. He was a frequent poster to Usenet, Perl Monks, and other Perl
forums, and made several CPAN contributions under the nick NOBULL, including to the Perl FAQ. He
attended almost every YAPC::Europe, and indeed, helped organise YAPC::Europe 2006 and the QA
Hackathon 2009. His wit and his delight in intricate systems were particularly apparent in his love of
board games; many Perl mongers will have fond memories of playing Fluxx and other games with
Brian. He will be missed.

Acknowledgements
Perl 5.22.0 represents approximately 12 months of development since Perl 5.20.0 and contains
approximately 590,000 lines of changes across 2,400 files from 94 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 370,000
lines of changes to 1,500 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.22.0:

Aaron Crane, Abhijit Menon-Sen, Abigail, Alberto Simões, Alex Solovey, Alex Vandiver, Alexandr
Ciornii, Alexandre (Midnite) Jousset, Andreas Ko

..
nig, Andreas Voegele, Andrew Fresh, Andy

Dougherty, Anthony Heading, Aristotle Pagaltzis, brian d foy, Brian Fraser, Chad Granum, Chris
’BinGOs’ Williams, Craig A. Berry, Dagfinn Ilmari Mannsa°ker, Daniel Dragan, Darin McBride, Dave
Rolsky, David Golden, David Mitchell, David Wheeler, Dmitri Tikhonov, Doug Bell, E. Choroba, Ed J,
Eric Herman, Father Chrysostomos, George Greer, Glenn D. Golden, Graham Knop, H.Merijn Brand,
Herbert Breunung, Hugo van der Sanden, James E Keenan, James McCoy, James Raspass, Jan Dubois,
Jarkko Hietaniemi, Jasmine Ngan, Jerry D. Hedden, Jim Cromie, John Goodyear, kafka, Karen
Etheridge, Karl Williamson, Kent Fredric, kmx, Lajos Veres, Leon Timmermans, Lukas Mai, Mathieu
Arnold, Matthew Horsfall, Max Maischein, Michael Bunk, Nicholas Clark, Niels Thykier, Niko Tyni,
Norman Koch, Olivier Mengué, Peter John Acklam, Peter Martini, Petr PísaX, Philippe Bruhat (BooK),
Pierre Bogossian, Rafael Garcia-Suarez, Randy Stauner, Reini Urban, Ricardo Signes, Rob Hoelz,
Rostislav Skudnov, Sawyer X, Shirakata Kentaro, Shlomi Fish, Sisyphus, Slaven Rezic, Smylers,
Steffen Mu

..
ller, Steve Hay, Sullivan Beck, syber, Tadeusz SoXnierz, Thomas Sibley, Todd Rinaldo,

Tony Cook, Vincent Pit, Vladimir Marek, Yaroslav Kuzmin, Yves Orton, AEvar Arnfjo
..
r∂- Bjarmason.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at <https://rt.perl.org/>. There may also be
information at <http://www.perl.org/>, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.

perl v5.36.0 2021-04-29 324

PERL5220DELTA(1) Perl Programmers Reference Guide PERL5220DELTA(1)

Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 325

PERL5221DELTA(1) Perl Programmers Reference Guide PERL5221DELTA(1)

NAME
perl5221delta - what is new for perl v5.22.1

DESCRIPTION
This document describes differences between the 5.22.0 release and the 5.22.1 release.

If you are upgrading from an earlier release such as 5.20.0, first read perl5220delta, which describes
differences between 5.20.0 and 5.22.0.

Incompatible Changes
There are no changes intentionally incompatible with 5.20.0 other than the following single exception,
which we deemed to be a sensible change to make in order to get the new \b{wb} and (in particular)
\b{sb} features sane before people decided they’re worthless because of bugs in their Perl 5.22.0
implementation and avoided them in the future. If any others exist, they are bugs, and we request that
you submit a report. See ‘‘Reporting Bugs’’ below.

Bounds Checking Constructs
Several bugs, including a segmentation fault, have been fixed with the bounds checking constructs
(introduced in Perl 5.22) \b{gcb}, \b{sb}, \b{wb}, \B{gcb}, \B{sb}, and \B{wb}. All the
\B{} ones now match an empty string; none of the \b{} ones do. [GH #14976]
<https://github.com/Perl/perl5/issues/14976>

Modules and Pragmata
Updated Modules and Pragmata

• Module::CoreList has been upgraded from version 5.20150520 to 5.20151213.

• PerlIO::scalar has been upgraded from version 0.22 to 0.23.

• POSIX has been upgraded from version 1.53 to 1.53_01.

If POSIX::strerror was passed $! as its argument then it accidentally cleared $!. This has
been fixed. [GH #14951] <https://github.com/Perl/perl5/issues/14951>

• Storable has been upgraded from version 2.53 to 2.53_01.

• warnings has been upgraded from version 1.32 to 1.34.

The warnings::enabled example now actually uses warnings::enabled. [GH #14905]
<https://github.com/Perl/perl5/issues/14905>

• Win32 has been upgraded from version 0.51 to 0.52.

This has been updated for Windows 8.1, 10 and 2012 R2 Server.

Documentation
Changes to Existing Documentation

perltie

• The usage of FIRSTKEY and NEXTKEY has been clarified.

perlvar

• The specific true value of $!{E...} is now documented, noting that it is subject to change and
not guaranteed.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

Changes to Existing Diagnostics
• The printf and sprintf builtins are now more careful about the warnings they emit:

argument reordering now disables the ‘‘redundant argument’’ warning in all cases. [GH #14772]
<https://github.com/Perl/perl5/issues/14772>

Configuration and Compilation
• Using the NO_HASH_SEED define in combination with the default hash algorithm

PERL_HASH_FUNC_ONE_AT_A_TIME_HARD resulted in a fatal error while compiling the
interpreter, since Perl 5.17.10. This has been fixed.

perl v5.36.0 2021-04-29 326

PERL5221DELTA(1) Perl Programmers Reference Guide PERL5221DELTA(1)

• Configuring with ccflags containing quotes (e.g.
-Accflags='-DAPPLLIB_EXP=\"/usr/libperl\"') was broken in Perl 5.22.0 but has
now been fixed again. [GH #14732] <https://github.com/Perl/perl5/issues/14732>

Platform Support
Platform-Specific Notes

IRIX
• Under some circumstances IRIX stdio fgetc() and fread() set the errno to ENOENT, which

made no sense according to either IRIX or POSIX docs. Errno is now cleared in such cases.
[GH #14557] <https://github.com/Perl/perl5/issues/14557>

• Problems when multiplying long doubles by infinity have been fixed. [GH #14993]
<https://github.com/Perl/perl5/issues/14993>

• All tests pass now on IRIX with the default build configuration.

Selected Bug Fixes
• qr/(?[()])/ no longer segfaults, giving a syntax error message instead. [GH #14851]

<https://github.com/Perl/perl5/issues/14851>

• Regular expression possessive quantifier Perl 5.20 regression now fixed. qr/PAT{min,max}+/ is
supposed to behave identically to qr/(?>PAT{min,max})/. Since Perl 5.20, this didn’t work if
min and max were equal. [GH #14857] <https://github.com/Perl/perl5/issues/14857>

• Certain syntax errors in ‘‘Extended Bracketed Character Classes’’ in perlrecharclass caused panics
instead of the proper error message. This has now been fixed. [GH #15016]
<https://github.com/Perl/perl5/issues/15016>

• BEGIN <> no longer segfaults and properly produces an error message. [GH #13546]
<https://github.com/Perl/perl5/issues/13546>

• A regression from Perl 5.20 has been fixed, in which some syntax errors in (?[...]) constructs
within regular expression patterns could cause a segfault instead of a proper error message. [GH
#14933] <https://github.com/Perl/perl5/issues/14933>

• Another problem with (?[...]) constructs has been fixed wherein things like \c] could cause
panics. [GH #14934] <https://github.com/Perl/perl5/issues/14934>

• In Perl 5.22.0, the logic changed when parsing a numeric parameter to the -C option, such that the
successfully parsed number was not saved as the option value if it parsed to the end of the
argument. [GH #14748] <https://github.com/Perl/perl5/issues/14748>

• Warning fatality is now ignored when rewinding the stack. This prevents infinite recursion when
the now fatal error also causes rewinding of the stack. [GH #14319]
<https://github.com/Perl/perl5/issues/14319>

• A crash with %::=(); J->${\"::"} has been fixed. [GH #14790]
<https://github.com/Perl/perl5/issues/14790>

• Nested quantifiers such as /.{1}??/ should cause perl to throw a fatal error, but were being
silently accepted since Perl 5.20.0. This has been fixed. [GH #14960]
<https://github.com/Perl/perl5/issues/14960>

• Regular expression sequences such as /(?i/ (and similarly with other recognized flags or
combination of flags) should cause perl to throw a fatal error, but were being silently accepted
since Perl 5.18.0. This has been fixed. [GH #14931] <https://github.com/Perl/perl5/issues/14931>

• A bug in hexadecimal floating point literal support meant that high-order bits could be lost in
cases where mantissa overflow was caused by too many trailing zeros in the fractional part. This
has been fixed. [GH #15032] <https://github.com/Perl/perl5/issues/15032>

• Another hexadecimal floating point bug, causing low-order bits to be lost in cases where the last
hexadecimal digit of the mantissa has bits straddling the limit of the number of bits allowed for the
mantissa, has also been fixed. [GH #15033] <https://github.com/Perl/perl5/issues/15033>

• Further hexadecimal floating point bugs have been fixed: In some circumstances, the %a format
specifier could variously lose the sign of the negative zero, fail to display zeros after the radix
point with the requested precision, or even lose the radix point after the leftmost hexadecimal digit
completely.

perl v5.36.0 2021-04-29 327

PERL5221DELTA(1) Perl Programmers Reference Guide PERL5221DELTA(1)

• A crash caused by incomplete expressions within /(?[])/ (e.g. /(?[[0]+()+])/) has
been fixed. [GH #15045] <https://github.com/Perl/perl5/issues/15045>

Acknowledgements
Perl 5.22.1 represents approximately 6 months of development since Perl 5.22.0 and contains
approximately 19,000 lines of changes across 130 files from 27 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,700 lines
of changes to 44 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.22.1:

Aaron Crane, Abigail, Andy Broad, Aristotle Pagaltzis, Chase Whitener, Chris ’BinGOs’ Williams,
Craig A. Berry, Daniel Dragan, David Mitchell, Father Chrysostomos, Herbert Breunung, Hugo van der
Sanden, James E Keenan, Jan Dubois, Jarkko Hietaniemi, Karen Etheridge, Karl Williamson, Lukas
Mai, Matthew Horsfall, Peter Martini, Rafael Garcia-Suarez, Ricardo Signes, Shlomi Fish, Sisyphus,
Steve Hay, Tony Cook, Victor Adam.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at https://rt.perl.org/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 328

PERL5222DELTA(1) Perl Programmers Reference Guide PERL5222DELTA(1)

NAME
perl5222delta - what is new for perl v5.22.2

DESCRIPTION
This document describes differences between the 5.22.1 release and the 5.22.2 release.

If you are upgrading from an earlier release such as 5.22.0, first read perl5221delta, which describes
differences between 5.22.0 and 5.22.1.

Security
Fix out of boundary access in Win32 path handling

This is CVE-2015-8608. For more information see [GH #15067]
<https://github.com/Perl/perl5/issues/15067>.

Fix loss of taint in canonpath()
This is CVE-2015-8607. For more information see [GH #15084]
<https://github.com/Perl/perl5/issues/15084>.

Set proper umask before calling mkstemp(3)
In 5.22.0 perl started setting umask to 0600 before calling mkstemp(3) and restoring it afterwards.
This wrongfully tells open(2) to strip the owner read and write bits from the given mode before
applying it, rather than the intended negation of leaving only those bits in place.

Systems that use mode 0666 in mkstemp(3) (like old versions of glibc) create a file with
permissions 0066, leaving world read and write permissions regardless of current umask.

This has been fixed by using umask 0177 instead.

[GH #15135] <https://github.com/Perl/perl5/issues/15135>

Avoid accessing uninitialized memory in Win32 crypt()
Validation that will detect both a short salt and invalid characters in the salt has been added.

[GH #15091] <https://github.com/Perl/perl5/issues/15091>

Remove duplicate environment variables from environ
Previously, if an environment variable appeared more than once in environ[], %ENV would contain
the last entry for that name, while a typical getenv() would return the first entry. We now make sure
%ENV contains the same as what getenv() returns.

Secondly, we now remove duplicates from environ[], so if a setting with that name is set in %ENV
we won’t pass an unsafe value to a child process.

This is CVE-2016-2381.

Incompatible Changes
There are no changes intentionally incompatible with Perl 5.22.1. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• File::Spec has been upgraded from version 3.56 to 3.56_01.

canonpath() now preserves taint. See "Fix loss of taint in canonpath()".

• Module::CoreList has been upgraded from version 5.20151213 to 5.20160429.

The version number of Digest::SHA listed for Perl 5.18.4 was wrong and has been corrected.
Likewise for the version number of Config in 5.18.3 and 5.18.4. [GH #15202]
<https://github.com/Perl/perl5/issues/15202>

Documentation
Changes to Existing Documentation

perldiag

• The explanation of the warning ‘‘unable to close filehandle %s properly: %s’’ which can occur
when doing an implicit close of a filehandle has been expanded and improved.

perlfunc

perl v5.36.0 2021-04-29 329

PERL5222DELTA(1) Perl Programmers Reference Guide PERL5222DELTA(1)

• The documentation of hex() has been revised to clarify valid inputs.

Configuration and Compilation
• Dtrace builds now build successfully on systems with a newer dtrace that require an input object

file that uses the probes in the .d file.

Previously the probe would fail and cause a build failure.

[GH #13985] <https://github.com/Perl/perl5/issues/13985>

• Configure no longer probes for libnm by default. Originally this was the ‘‘New Math’’ library, but
the name has been re-used by the GNOME NetworkManager.

[GH #15115] <https://github.com/Perl/perl5/issues/15115>

• Configure now knows about gcc 5.

• Compiling perl with -DPERL_MEM_LOG now works again.

Platform Support
Platform-Specific Notes

Darwin
Compiling perl with -Dusecbacktrace on Darwin now works again.

[GH #15245] <https://github.com/Perl/perl5/issues/15245>

OS X/Darwin
Builds with both -DDEBUGGING and threading enabled would fail with a ‘‘panic: free from
wrong pool’’ error when built or tested from Terminal on OS X. This was caused by perl’s internal
management of the environment conflicting with an atfork handler using the libc setenv()
function to update the environment.

Perl now uses setenv()/unsetenv() to update the environment on OS X.

[GH #14955] <https://github.com/Perl/perl5/issues/14955>

ppc64el
The floating point format of ppc64el (Debian naming for little-endian PowerPC) is now detected
correctly.

Tru64
A test failure in t/porting/extrefs.t has been fixed.

Internal Changes
• An unwarranted assertion in Perl_newATTRSUB_x() has been removed. If a stub subroutine

definition with a prototype has been seen, then any subsequent stub (or definition) of the same
subroutine with an attribute was causing an assertion failure because of a null pointer.

[GH #15081] <https://github.com/Perl/perl5/issues/15081>

Selected Bug Fixes
• Calls to the placeholder &PL_sv_yes used internally when an import() or unimport()

method isn’t found now correctly handle scalar context. [GH #14902]
<https://github.com/Perl/perl5/issues/14902>

• The pipe() operator would assert for DEBUGGING builds instead of producing the correct error
message. The condition asserted on is detected and reported on correctly without the assertions,
so the assertions were removed. [GH #15015] <https://github.com/Perl/perl5/issues/15015>

• In some cases, failing to parse a here-doc would attempt to use freed memory. This was caused by
a pointer not being restored correctly. [GH #15009] <https://github.com/Perl/perl5/issues/15009>

• Perl now reports more context when it sees an array where it expects to see an operator, and avoids
an assertion failure. [GH #14472] <https://github.com/Perl/perl5/issues/14472>

• If a here-doc was found while parsing another operator, the parser had already read end of file, and
the here-doc was not terminated, perl could produce an assertion or a segmentation fault. This
now reliably complains about the unterminated here-doc. [GH #14789]
<https://github.com/Perl/perl5/issues/14789>

perl v5.36.0 2021-04-29 330

PERL5222DELTA(1) Perl Programmers Reference Guide PERL5222DELTA(1)

• Parsing beyond the end of the buffer when processing a #line directive with no filename is now
avoided. [GH #15139] <https://github.com/Perl/perl5/issues/15139>

• Perl 5.22.0 added support for the C99 hexadecimal floating point notation, but sometimes
misparsed hex floats. This has been fixed. [GH #15120]
<https://github.com/Perl/perl5/issues/15120>

• Certain regex patterns involving a complemented posix class in an inverted bracketed character
class, and matching something else optionally would improperly fail to match. An example of one
that could fail is qr/_?[ˆ\Wbar]\x{100}/. This has been fixed. [GH #15181]
<https://github.com/Perl/perl5/issues/15181>

• Fixed an issue with pack() where pack "H" (and pack "h") could read past the source
when given a non-utf8 source and a utf8 target. [GH #14977]
<https://github.com/Perl/perl5/issues/14977>

• Fixed some cases where perl would abort due to a segmentation fault, or a C-level assert. [GH
#14941] <https://github.com/Perl/perl5/issues/14941> [GH #14962]
<https://github.com/Perl/perl5/issues/14962> [GH #14963]
<https://github.com/Perl/perl5/issues/14963> [GH #14997]
<https://github.com/Perl/perl5/issues/14997> [GH #15039]
<https://github.com/Perl/perl5/issues/15039> [GH #15247]
<https://github.com/Perl/perl5/issues/15247> [GH #15251]
<https://github.com/Perl/perl5/issues/15251>

• A memory leak when setting $ENV{foo} on Darwin has been fixed. [GH #14955]
<https://github.com/Perl/perl5/issues/14955>

• Perl now correctly raises an error when trying to compile patterns with unterminated character
classes while there are trailing backslashes. [GH #14919]
<https://github.com/Perl/perl5/issues/14919>

• NOTHING regops and EXACTFU_SS regops in make_trie() are now handled properly. [GH
#14945] <https://github.com/Perl/perl5/issues/14945>

• Perl now only tests semctl() if we have everything needed to use it. In FreeBSD the
semctl() entry point may exist, but it can be disabled by policy. [GH #15180]
<https://github.com/Perl/perl5/issues/15180>

• A regression that allowed undeclared barewords as hash keys to work despite strictures has been
fixed. [GH #15099] <https://github.com/Perl/perl5/issues/15099>

• As an optimization (introduced in Perl 5.20.0), uc(), lc(), ucfirst() and lcfirst()
sometimes modify their argument in-place rather than returning a modified copy. The criteria for
this optimization has been made stricter to avoid these functions accidentally modifying in-place
when they should not, which has been happening in some cases, e.g. in List::Util.

• Excessive memory usage in the compilation of some regular expressions involving non-ASCII
characters has been reduced. A more complete fix is forthcoming in Perl 5.24.0.

Acknowledgements
Perl 5.22.2 represents approximately 5 months of development since Perl 5.22.1 and contains
approximately 3,000 lines of changes across 110 files from 24 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,500 lines
of changes to 52 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.22.2:

Aaron Crane, Abigail, Andreas Ko
..
nig, Aristotle Pagaltzis, Chris ’BinGOs’ Williams, Craig A. Berry,

Dagfinn Ilmari Mannsa°ker, David Golden, David Mitchell, H.Merijn Brand, James E Keenan, Jarkko
Hietaniemi, Karen Etheridge, Karl Williamson, Matthew Horsfall, Niko Tyni, Ricardo Signes, Sawyer
X, Stevan Little, Steve Hay, Todd Rinaldo, Tony Cook, Vladimir Timofeev, Yves Orton.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

perl v5.36.0 2021-04-29 331

PERL5222DELTA(1) Perl Programmers Reference Guide PERL5222DELTA(1)

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at https://rt.perl.org/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 332

PERL5223DELTA(1) Perl Programmers Reference Guide PERL5223DELTA(1)

NAME
perl5223delta - what is new for perl v5.22.3

DESCRIPTION
This document describes differences between the 5.22.2 release and the 5.22.3 release.

If you are upgrading from an earlier release such as 5.22.1, first read perl5222delta, which describes
differences between 5.22.1 and 5.22.2.

Security
-Di switch is now required for PerlIO debugging output

Previously PerlIO debugging output would be sent to the file specified by the PERLIO_DEBUG
environment variable if perl wasn’t running setuid and the -T or -t switches hadn’t been parsed yet.

If perl performed output at a point where it hadn’t yet parsed its switches this could result in perl
creating or overwriting the file named by PERLIO_DEBUG even when the -T switch had been
supplied.

Perl now requires the -Di switch to produce PerlIO debugging output. By default this is written to
stderr, but can optionally be redirected to a file by setting the PERLIO_DEBUG environment
variable.

If perl is running setuid or the -T switch was supplied PERLIO_DEBUG is ignored and the debugging
output is sent to stderr as for any other -D switch.

Core modules and tools no longer search ‘‘.’’ for optional modules
The tools and many modules supplied in core no longer search the default current directory entry in
@INC for optional modules. For example, Storable will remove the final ‘‘.’’ from @INC before trying
to load Log::Agent.

This prevents an attacker injecting an optional module into a process run by another user where the
current directory is writable by the attacker, e.g. the /tmp directory.

In most cases this removal should not cause problems, but difficulties were encountered with base,
which treats every module name supplied as optional. These difficulties have not yet been resolved, so
for this release there are no changes to base. We hope to have a fix for base in Perl 5.22.4.

To protect your own code from this attack, either remove the default ‘‘.’’ entry from @INC at the start
of your script, so:

#!/usr/bin/perl
use strict;
...

becomes:

#!/usr/bin/perl
BEGIN { pop @INC if $INC[-1] eq '.' }
use strict;
...

or for modules, remove ‘‘.’’ from a localized @INC, so:

my $can_foo = eval { require Foo; }

becomes:

my $can_foo = eval {
local @INC = @INC;
pop @INC if $INC[-1] eq '.';
require Foo;

};

Incompatible Changes
Other than the security changes above there are no changes intentionally incompatible with Perl 5.22.2.
If any exist, they are bugs, and we request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata

perl v5.36.0 2021-04-29 333

PERL5223DELTA(1) Perl Programmers Reference Guide PERL5223DELTA(1)

Updated Modules and Pragmata
• Archive::Tar has been upgraded from version 2.04 to 2.04_01.

• bignum has been upgraded from version 0.39 to 0.39_01.

• CPAN has been upgraded from version 2.11 to 2.11_01.

• Digest has been upgraded from version 1.17 to 1.17_01.

• Digest::SHA has been upgraded from version 5.95 to 5.95_01.

• Encode has been upgraded from version 2.72 to 2.72_01.

• ExtUtils::Command has been upgraded from version 1.20 to 1.20_01.

• ExtUtils::MakeMaker has been upgraded from version 7.04_01 to 7.04_02.

• File::Fetch has been upgraded from version 0.48 to 0.48_01.

• File::Spec has been upgraded from version 3.56_01 to 3.56_02.

• HTTP::Tiny has been upgraded from version 0.054 to 0.054_01.

• IO has been upgraded from version 1.35 to 1.35_01.

• The IO-Compress modules have been upgraded from version 2.068 to 2.068_001.

• IPC::Cmd has been upgraded from version 0.92 to 0.92_01.

• JSON::PP has been upgraded from version 2.27300 to 2.27300_01.

• Locale::Maketext has been upgraded from version 1.26 to 1.26_01.

• Locale::Maketext::Simple has been upgraded from version 0.21 to 0.21_01.

• Memoize has been upgraded from version 1.03 to 1.03_01.

• Module::CoreList has been upgraded from version 5.20160429 to 5.20170114_22.

• Net::Ping has been upgraded from version 2.43 to 2.43_01.

• Parse::CPAN::Meta has been upgraded from version 1.4414 to 1.4414_001.

• Pod::Html has been upgraded from version 1.22 to 1.2201.

• Pod::Perldoc has been upgraded from version 3.25 to 3.25_01.

• Storable has been upgraded from version 2.53_01 to 2.53_02.

• Sys::Syslog has been upgraded from version 0.33 to 0.33_01.

• Test has been upgraded from version 1.26 to 1.26_01.

• Test::Harness has been upgraded from version 3.35 to 3.35_01.

• XSLoader has been upgraded from version 0.20 to 0.20_01, fixing a security hole in which binary
files could be loaded from a path outside of @INC. [GH #15418]
<https://github.com/Perl/perl5/issues/15418>

Documentation
Changes to Existing Documentation

perlapio

• The documentation of PERLIO_DEBUG has been updated.

perlrun

• The new -Di switch has been documented, and the documentation of PERLIO_DEBUG has been
updated.

Testing
• A new test script, t/run/switchDx.t, has been added to test that the new -Di switch is working

correctly.

Selected Bug Fixes
• The PadlistNAMES macro is an lvalue again.

perl v5.36.0 2021-04-29 334

PERL5223DELTA(1) Perl Programmers Reference Guide PERL5223DELTA(1)

Acknowledgements
Perl 5.22.3 represents approximately 9 months of development since Perl 5.22.2 and contains
approximately 4,400 lines of changes across 240 files from 20 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 2,200 lines
of changes to 170 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.22.3:

Aaron Crane, Abigail, Alex Vandiver, Aristotle Pagaltzis, Chad Granum, Chris ’BinGOs’ Williams,
Craig A. Berry, David Mitchell, Father Chrysostomos, James E Keenan, Jarkko Hietaniemi, Karen
Etheridge, Karl Williamson, Matthew Horsfall, Niko Tyni, Ricardo Signes, Sawyer X, Stevan Little,
Steve Hay, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the Perl bug database at https://rt.perl.org/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 335

PERL5224DELTA(1) Perl Programmers Reference Guide PERL5224DELTA(1)

NAME
perl5224delta - what is new for perl v5.22.4

DESCRIPTION
This document describes differences between the 5.22.3 release and the 5.22.4 release.

If you are upgrading from an earlier release such as 5.22.2, first read perl5223delta, which describes
differences between 5.22.2 and 5.22.3.

Security
Improved handling of ’.’ in @INC in base.pm

The handling of (the removal of) '.' in @INC in base has been improved. This resolves some
problematic behaviour in the approach taken in Perl 5.22.3, which is probably best described in the
following two threads on the Perl 5 Porters mailing list:
<http://www.nntp.perl.org/group/perl.perl5.porters/2016/08/msg238991.html>,
<http://www.nntp.perl.org/group/perl.perl5.porters/2016/10/msg240297.html>.

‘‘Escaped’’ colons and relative paths in PATH
On Unix systems, Perl treats any relative paths in the PATH environment variable as tainted when
starting a new process. Previously, it was allowing a backslash to escape a colon (unlike the OS),
consequently allowing relative paths to be considered safe if the PATH was set to something like /\:..
The check has been fixed to treat . as tainted in that example.

Modules and Pragmata
Updated Modules and Pragmata

• base has been upgraded from version 2.22 to 2.22_01.

• Module::CoreList has been upgraded from version 5.20170114_22 to 5.20170715_22.

Selected Bug Fixes
• Fixed a crash with s///l where it thought it was dealing with UTF-8 when it wasn’t. [GH

#15543] <https://github.com/Perl/perl5/issues/15543>

Acknowledgements
Perl 5.22.4 represents approximately 6 months of development since Perl 5.22.3 and contains
approximately 2,200 lines of changes across 52 files from 16 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 970 lines of
changes to 18 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.22.4:

Aaron Crane, Abigail, Aristotle Pagaltzis, Chris ’BinGOs’ Williams, David Mitchell, Eric Herman,
Father Chrysostomos, James E Keenan, Karl Williamson, Lukas Mai, Renee Baecker, Ricardo Signes,
Sawyer X, Stevan Little, Steve Hay, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at https://rt.perl.org/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help

perl v5.36.0 2021-04-29 336

PERL5224DELTA(1) Perl Programmers Reference Guide PERL5224DELTA(1)

assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this
address for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 337

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

NAME
perl5240delta - what is new for perl v5.24.0

DESCRIPTION
This document describes the differences between the 5.22.0 release and the 5.24.0 release.

Core Enhancements
Postfix dereferencing is no longer experimental

Using the postderef and postderef_qq features no longer emits a warning. Existing code that
disables the experimental::postderef warning category that they previously used will
continue to work. The postderef feature has no effect; all Perl code can use postfix dereferencing,
regardless of what feature declarations are in scope. The 5.24 feature bundle now includes the
postderef_qq feature.

Unicode 8.0 is now supported
For details on what is in this release, see <http://www.unicode.org/versions/Unicode8.0.0/>.

perl will now croak when closing an in-place output file fails
Until now, failure to close the output file for an in-place edit was not detected, meaning that the input
file could be clobbered without the edit being successfully completed. Now, when the output file
cannot be closed successfully, an exception is raised.

New \b{lb} boundary in regular expressions
lb stands for Line Break. It is a Unicode property that determines where a line of text is suitable to
break (typically so that it can be output without overflowing the available horizontal space). This
capability has long been furnished by the Unicode::LineBreak module, but now a light-weight, non-
customizable version that is suitable for many purposes is in core Perl.

qr/(?[])/ now works in UTF-8 locales
Extended Bracketed Character Classes now will successfully compile when use locale is in effect.
The compiled pattern will use standard Unicode rules. If the runtime locale is not a UTF-8 one, a
warning is raised and standard Unicode rules are used anyway. No tainting is done since the outcome
does not actually depend on the locale.

Integer shift (<< and >>) now more explicitly defined
Negative shifts are reverse shifts: left shift becomes right shift, and right shift becomes left shift.

Shifting by the number of bits in a native integer (or more) is zero, except when the ‘‘overshift’’ is right
shifting a negative value under use integer, in which case the result is -1 (arithmetic shift).

Until now negative shifting and overshifting have been undefined because they have relied on whatever
the C implementation happens to do. For example, for the overshift a common C behavior is ‘‘modulo
shift’’:

1 >> 64 == 1 >> (64 % 64) == 1 >> 0 == 1 # Common C behavior.

And the same for <<, while Perl now produces 0 for both.

Now these behaviors are well-defined under Perl, regardless of what the underlying C implementation
does. Note, however, that you are still constrained by the native integer width: you need to know how
far left you can go. You can use for example:

use Config;
my $wordbits = $Config{uvsize} * 8; # Or $Config{uvsize} << 3.

If you need a more bits on the left shift, you can use for example the bigint pragma, or the
Bit::Vector module from CPAN.

printf and sprintf now allow reordered precision arguments
That is, sprintf '|%.*2$d|', 2, 3 now returns |002|. This extends the existing reordering
mechanism (which allows reordering for arguments that are used as format fields, widths, and vector
separators).

More fields provided to sigaction callback with SA_SIGINFO
When passing the SA_SIGINFO flag to sigaction, the errno, status, uid, pid, addr and band
fields are now included in the hash passed to the handler, if supported by the platform.

perl v5.36.0 2021-04-29 338

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

Hashbang redirection to Perl 6
Previously perl would redirect to another interpreter if it found a hashbang path unless the path contains
‘‘perl’’ (see perlrun). To improve compatibility with Perl 6 this behavior has been extended to also
redirect if ‘‘perl’’ is followed by ‘‘6’’.

Security
Set proper umask before calling mkstemp(3)

In 5.22 perl started setting umask to 0600 before calling mkstemp(3) and restoring it afterwards.
This wrongfully tells open(2) to strip the owner read and write bits from the given mode before
applying it, rather than the intended negation of leaving only those bits in place.

Systems that use mode 0666 in mkstemp(3) (like old versions of glibc) create a file with permissions
0066, leaving world read and write permissions regardless of current umask.

This has been fixed by using umask 0177 instead. [perl #127322]

Fix out of boundary access in Win32 path handling
This is CVE-2015-8608. For more information see [GH #15067]
<https://github.com/Perl/perl5/issues/15067>

Fix loss of taint in canonpath
This is CVE-2015-8607. For more information see [GH #15084]
<https://github.com/Perl/perl5/issues/15084>

Avoid accessing uninitialized memory in win32 crypt()
Added validation that will detect both a short salt and invalid characters in the salt. [GH #15091]
<https://github.com/Perl/perl5/issues/15091>

Remove duplicate environment variables from environ
Previously, if an environment variable appeared more than once in environ[], %ENV would contain
the last entry for that name, while a typical getenv() would return the first entry. We now make sure
%ENV contains the same as what getenv returns.

Second, we remove duplicates from environ[], so if a setting with that name is set in %ENV, we
won’t pass an unsafe value to a child process.

[CVE-2016-2381]

Incompatible Changes
The autoderef feature has been removed

The experimental autoderef feature (which allowed calling push, pop, shift, unshift,
splice, keys, values, and each on a scalar argument) has been deemed unsuccessful. It has now
been removed; trying to use the feature (or to disable the experimental::autoderef warning it
previously triggered) now yields an exception.

Lexical $_ has been removed
my $_ was introduced in Perl 5.10, and subsequently caused much confusion with no obvious
solution. In Perl 5.18.0, it was made experimental on the theory that it would either be removed or
redesigned in a less confusing (but backward-incompatible) way. Over the following years, no
alternatives were proposed. The feature has now been removed and will fail to compile.

qr/\b{wb}/ is now tailored to Perl expectations
This is now more suited to be a drop-in replacement for plain \b, but giving better results for parsing
natural language. Previously it strictly followed the current Unicode rules which calls for it to match
between each white space character. Now it doesn’t generally match within spans of white space,
behaving like \b does. See ‘‘\b{wb}’’ in perlrebackslash

Regular expression compilation errors
Some regular expression patterns that had runtime errors now don’t compile at all.

Almost all Unicode properties using the \p{} and \P{} regular expression pattern constructs are now
checked for validity at pattern compilation time, and invalid ones will cause the program to not
compile. In earlier releases, this check was often deferred until run time. Whenever an error check is
moved from run- to compile time, erroneous code is caught 100% of the time, whereas before it would
only get caught if and when the offending portion actually gets executed, which for unreachable code
might be never.

perl v5.36.0 2021-04-29 339

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

qr/\N{}/ now disallowed under use re ‘‘strict’’
An empty \N{} makes no sense, but for backwards compatibility is accepted as doing nothing, though
a deprecation warning is raised by default. But now this is a fatal error under the experimental feature
‘‘’strict’ mode’’ in re.

Nested declarations are now disallowed
A my, our, or state declaration is no longer allowed inside of another my, our, or state
declaration.

For example, these are now fatal:

my ($x, my($y));
our (my $x);

[GH #14799] <https://github.com/Perl/perl5/issues/14799>

[GH #13548] <https://github.com/Perl/perl5/issues/13548>

The /\C/ character class has been removed.
This regular expression character class was deprecated in v5.20.0 and has produced a deprecation
warning since v5.22.0. It is now a compile-time error. If you need to examine the individual bytes that
make up a UTF8-encoded character, then use utf8::encode() on the string (or a copy) first.

chdir('') no longer chdirs home
Using chdir('') or chdir(undef) to chdir home has been deprecated since perl v5.8, and will
now fail. Use chdir() instead.

ASCII characters in variable names must now be all visible
It was legal until now on ASCII platforms for variable names to contain non-graphical ASCII control
characters (ordinals 0 through 31, and 127, which are the C0 controls and DELETE). This usage has
been deprecated since v5.20, and as of now causes a syntax error. The variables these names referred
to are special, reserved by Perl for whatever use it may choose, now, or in the future. Each such
variable has an alternative way of spelling it. Instead of the single non-graphic control character, a two
character sequence beginning with a caret is used, like $ˆ] and ${ˆGLOBAL_PHASE}. Details are at
perlvar. It remains legal, though unwise and deprecated (raising a deprecation warning), to use certain
non-graphic non-ASCII characters in variables names when not under use utf8. No code should do
this, as all such variables are reserved by Perl, and Perl doesn’t currently define any of them (but could
at any time, without notice).

An off by one issue in $Carp::MaxArgNums has been fixed
$Carp::MaxArgNums is supposed to be the number of arguments to display. Prior to this version, it
was instead showing $Carp::MaxArgNums + 1 arguments, contrary to the documentation.

Only blanks and tabs are now allowed within [...] within (?[...]).
The experimental Extended Bracketed Character Classes can contain regular bracketed character
classes within them. These differ from regular ones in that white space is generally ignored, unless
escaped by preceding it with a backslash. The white space that is ignored is now limited to just tab \t
and SPACE characters. Previously, it was any white space. See ‘‘Extended Bracketed Character
Classes’’ in perlrecharclass.

Deprecations
Using code points above the platform’s IV_MAX is now deprecated

Unicode defines code points in the range 0..0x10FFFF. Some standards at one time defined them
up to 2**31 - 1, but Perl has allowed them to be as high as anything that will fit in a word on the
platform being used. However, use of those above the platform’s IV_MAX is broken in some
constructs, notably tr///, regular expression patterns involving quantifiers, and in some arithmetic
and comparison operations, such as being the upper limit of a loop. Now the use of such code points
raises a deprecation warning, unless that warning category is turned off. IV_MAX is typically 2**31
-1 on 32-bit platforms, and 2**63-1 on 64-bit ones.

Doing bitwise operations on strings containing code points above 0xFF is deprecated
The string bitwise operators treat their operands as strings of bytes, and values beyond 0xFF are
nonsensical in this context. To operate on encoded bytes, first encode the strings. To operate on code
points’ numeric values, use split and map ord. In the future, this warning will be replaced by an
exception.

perl v5.36.0 2021-04-29 340

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

sysread(), syswrite(), recv() and send() are deprecated on :utf8 handles
The sysread(), recv(), syswrite() and send() operators are deprecated on handles that
have the :utf8 layer, either explicitly, or implicitly, eg., with the :encoding(UTF-16LE) layer.

Both sysread() and recv() currently use only the :utf8 flag for the stream, ignoring the actual
layers. Since sysread() and recv() do no UTF-8 validation they can end up creating invalidly
encoded scalars.

Similarly, syswrite() and send() use only the :utf8 flag, otherwise ignoring any layers. If the
flag is set, both write the value UTF-8 encoded, even if the layer is some different encoding, such as the
example above.

Ideally, all of these operators would completely ignore the :utf8 state, working only with bytes, but
this would result in silently breaking existing code. To avoid this a future version of perl will throw an
exception when any of sysread(), recv(), syswrite() or send() are called on handle with
the :utf8 layer.

Performance Enhancements
• The overhead of scope entry and exit has been considerably reduced, so for example subroutine

calls, loops and basic blocks are all faster now. This empty function call now takes about a third
less time to execute:

sub f{} f();

• Many languages, such as Chinese, are caseless. Perl now knows about most common ones, and
skips much of the work when a program tries to change case in them (like ucfirst()) or match
caselessly (qr//i). This will speed up a program, such as a web server, that can operate on
multiple languages, while it is operating on a caseless one.

• /fixed-substr/ has been made much faster.

On platforms with a libc memchr() implementation which makes good use of underlying
hardware support, patterns which include fixed substrings will now often be much faster; for
example with glibc on a recent x86_64 CPU, this:

$s = "a" x 1000 . "wxyz";
$s =˜ /wxyz/ for 1..30000

is now about 7 times faster. On systems with slow memchr(), e.g. 32-bit ARM Raspberry Pi,
there will be a small or little speedup. Conversely, some pathological cases, such as "ab" x
1000 =˜ /aa/ will be slower now; up to 3 times slower on the rPi, 1.5x slower on x86_64.

• Faster addition, subtraction and multiplication.

Since 5.8.0, arithmetic became slower due to the need to support 64-bit integers. To deal with
64-bit integers, a lot more corner cases need to be checked, which adds time. We now detect
common cases where there is no need to check for those corner cases, and special-case them.

• Preincrement, predecrement, postincrement, and postdecrement have been made faster by
internally splitting the functions which handled multiple cases into different functions.

• Creating Perl debugger data structures (see ‘‘Debugger Internals’’ in perldebguts) for XSUBs and
const subs has been removed. This removed one glob/scalar combo for each unique .c file that
XSUBs and const subs came from. On startup (perl -e"0") about half a dozen glob/scalar
debugger combos were created. Loading XS modules created more glob/scalar combos. These
things were being created regardless of whether the perl debugger was being used, and despite the
fact that it can’t debug C code anyway

• On Win32, stating or -Xing a path, if the file or directory does not exist, is now 3.5x faster than
before.

• Single arguments in list assign are now slightly faster:

($x) = (...);
(...) = ($x);

• Less peak memory is now used when compiling regular expression patterns.

perl v5.36.0 2021-04-29 341

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

Modules and Pragmata
Updated Modules and Pragmata

• arybase has been upgraded from version 0.10 to 0.11.

• Attribute::Handlers has been upgraded from version 0.97 to 0.99.

• autodie has been upgraded from version 2.26 to 2.29.

• autouse has been upgraded from version 1.08 to 1.11.

• B has been upgraded from version 1.58 to 1.62.

• B::Deparse has been upgraded from version 1.35 to 1.37.

• base has been upgraded from version 2.22 to 2.23.

• Benchmark has been upgraded from version 1.2 to 1.22.

• bignum has been upgraded from version 0.39 to 0.42.

• bytes has been upgraded from version 1.04 to 1.05.

• Carp has been upgraded from version 1.36 to 1.40.

• Compress::Raw::Bzip2 has been upgraded from version 2.068 to 2.069.

• Compress::Raw::Zlib has been upgraded from version 2.068 to 2.069.

• Config::Perl::V has been upgraded from version 0.24 to 0.25.

• CPAN::Meta has been upgraded from version 2.150001 to 2.150005.

• CPAN::Meta::Requirements has been upgraded from version 2.132 to 2.140.

• CPAN::Meta::YAML has been upgraded from version 0.012 to 0.018.

• Data::Dumper has been upgraded from version 2.158 to 2.160.

• Devel::Peek has been upgraded from version 1.22 to 1.23.

• Devel::PPPort has been upgraded from version 3.31 to 3.32.

• Dumpvalue has been upgraded from version 1.17 to 1.18.

• DynaLoader has been upgraded from version 1.32 to 1.38.

• Encode has been upgraded from version 2.72 to 2.80.

• encoding has been upgraded from version 2.14 to 2.17.

• encoding::warnings has been upgraded from version 0.11 to 0.12.

• English has been upgraded from version 1.09 to 1.10.

• Errno has been upgraded from version 1.23 to 1.25.

• experimental has been upgraded from version 0.013 to 0.016.

• ExtUtils::CBuilder has been upgraded from version 0.280221 to 0.280225.

• ExtUtils::Embed has been upgraded from version 1.32 to 1.33.

• ExtUtils::MakeMaker has been upgraded from version 7.04_01 to 7.10_01.

• ExtUtils::ParseXS has been upgraded from version 3.28 to 3.31.

• ExtUtils::Typemaps has been upgraded from version 3.28 to 3.31.

• feature has been upgraded from version 1.40 to 1.42.

• fields has been upgraded from version 2.17 to 2.23.

• File::Find has been upgraded from version 1.29 to 1.34.

• File::Glob has been upgraded from version 1.24 to 1.26.

• File::Path has been upgraded from version 2.09 to 2.12_01.

• File::Spec has been upgraded from version 3.56 to 3.63.

perl v5.36.0 2021-04-29 342

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• Filter::Util::Call has been upgraded from version 1.54 to 1.55.

• Getopt::Long has been upgraded from version 2.45 to 2.48.

• Hash::Util has been upgraded from version 0.18 to 0.19.

• Hash::Util::FieldHash has been upgraded from version 1.15 to 1.19.

• HTTP::Tiny has been upgraded from version 0.054 to 0.056.

• I18N::Langinfo has been upgraded from version 0.12 to 0.13.

• if has been upgraded from version 0.0604 to 0.0606.

• IO has been upgraded from version 1.35 to 1.36.

• IO-Compress has been upgraded from version 2.068 to 2.069.

• IPC::Open3 has been upgraded from version 1.18 to 1.20.

• IPC::SysV has been upgraded from version 2.04 to 2.06_01.

• List::Util has been upgraded from version 1.41 to 1.42_02.

• locale has been upgraded from version 1.06 to 1.08.

• Locale::Codes has been upgraded from version 3.34 to 3.37.

• Math::BigInt has been upgraded from version 1.9997 to 1.999715.

• Math::BigInt::FastCalc has been upgraded from version 0.31 to 0.40.

• Math::BigRat has been upgraded from version 0.2608 to 0.260802.

• Module::CoreList has been upgraded from version 5.20150520 to 5.20160320.

• Module::Metadata has been upgraded from version 1.000026 to 1.000031.

• mro has been upgraded from version 1.17 to 1.18.

• ODBM_File has been upgraded from version 1.12 to 1.14.

• Opcode has been upgraded from version 1.32 to 1.34.

• parent has been upgraded from version 0.232 to 0.234.

• Parse::CPAN::Meta has been upgraded from version 1.4414 to 1.4417.

• Perl::OSType has been upgraded from version 1.008 to 1.009.

• perlfaq has been upgraded from version 5.021009 to 5.021010.

• PerlIO::encoding has been upgraded from version 0.21 to 0.24.

• PerlIO::mmap has been upgraded from version 0.014 to 0.016.

• PerlIO::scalar has been upgraded from version 0.22 to 0.24.

• PerlIO::via has been upgraded from version 0.15 to 0.16.

• Pod::Functions has been upgraded from version 1.09 to 1.10.

• Pod::Perldoc has been upgraded from version 3.25 to 3.25_02.

• Pod::Simple has been upgraded from version 3.29 to 3.32.

• Pod::Usage has been upgraded from version 1.64 to 1.68.

• POSIX has been upgraded from version 1.53 to 1.65.

• Scalar::Util has been upgraded from version 1.41 to 1.42_02.

• SDBM_File has been upgraded from version 1.13 to 1.14.

• SelfLoader has been upgraded from version 1.22 to 1.23.

• Socket has been upgraded from version 2.018 to 2.020_03.

• Storable has been upgraded from version 2.53 to 2.56.

• strict has been upgraded from version 1.09 to 1.11.

perl v5.36.0 2021-04-29 343

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• Term::ANSIColor has been upgraded from version 4.03 to 4.04.

• Term::Cap has been upgraded from version 1.15 to 1.17.

• Test has been upgraded from version 1.26 to 1.28.

• Test::Harness has been upgraded from version 3.35 to 3.36.

• Thread::Queue has been upgraded from version 3.05 to 3.08.

• threads has been upgraded from version 2.01 to 2.06.

• threads::shared has been upgraded from version 1.48 to 1.50.

• Tie::File has been upgraded from version 1.01 to 1.02.

• Tie::Scalar has been upgraded from version 1.03 to 1.04.

• Time::HiRes has been upgraded from version 1.9726 to 1.9732.

• Time::Piece has been upgraded from version 1.29 to 1.31.

• Unicode::Collate has been upgraded from version 1.12 to 1.14.

• Unicode::Normalize has been upgraded from version 1.18 to 1.25.

• Unicode::UCD has been upgraded from version 0.61 to 0.64.

• UNIVERSAL has been upgraded from version 1.12 to 1.13.

• utf8 has been upgraded from version 1.17 to 1.19.

• version has been upgraded from version 0.9909 to 0.9916.

• warnings has been upgraded from version 1.32 to 1.36.

• Win32 has been upgraded from version 0.51 to 0.52.

• Win32API::File has been upgraded from version 0.1202 to 0.1203.

• XS::Typemap has been upgraded from version 0.13 to 0.14.

• XSLoader has been upgraded from version 0.20 to 0.21.

Documentation
Changes to Existing Documentation

perlapi

• The process of using undocumented globals has been documented, namely, that one should send
email to perl5-porters@perl.org <mailto:perl5-porters@perl.org> first to get the go-ahead for
documenting and using an undocumented function or global variable.

perlcall

• A number of cleanups have been made to perlcall, including:

• use EXTEND(SP, n) and PUSHs() instead of XPUSHs() where applicable and update
prose to match

• add POPu, POPul and POPpbytex to the ‘‘complete list of POP macros’’ and clarify the
documentation for some of the existing entries, and a note about side-effects

• add API documentation for POPu and POPul

• use ERRSV more efficiently

• approaches to thread-safety storage of SVs.

perlfunc

• The documentation of hex has been revised to clarify valid inputs.

• Better explain meaning of negative PIDs in waitpid. [GH #15108]
<https://github.com/Perl/perl5/issues/15108>

• General cleanup: there’s more consistency now (in POD usage, grammar, code examples), better
practices in code examples (use of my, removal of bareword filehandles, dropped usage of & when
calling subroutines, ...), etc.

perlguts

perl v5.36.0 2021-04-29 344

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• A new section has been added, ‘‘Dynamic Scope and the Context Stack’’ in perlguts, which
explains how the perl context stack works.

perllocale

• A stronger caution about using locales in threaded applications is given. Locales are not thread-
safe, and you can get wrong results or even segfaults if you use them there.

perlmodlib

• We now recommend contacting the module-authors list or PAUSE in seeking guidance on the
naming of modules.

perlop

• The documentation of qx// now describes how $? is affected.

perlpolicy

• This note has been added to perlpolicy:

While civility is required, kindness is encouraged; if you have any
doubt about whether you are being civil, simply ask yourself, "Am I
being kind?" and aspire to that.

perlreftut

• Fix some examples to be strict clean.

perlrebackslash

• Clarify that in languages like Japanese and Thai, dictionary lookup is required to determine word
boundaries.

perlsub

• Updated to note that anonymous subroutines can have signatures.

perlsyn

• Fixed a broken example where = was used instead of == in conditional in do/while example.

perltie

• The usage of FIRSTKEY and NEXTKEY has been clarified.

perlunicode

• Discourage use of ’In’ as a prefix signifying the Unicode Block property.

perlvar

• The documentation of $@ was reworded to clarify that it is not just for syntax errors in eval.
[GH #14572] <https://github.com/Perl/perl5/issues/14572>

• The specific true value of $!{E...} is now documented, noting that it is subject to change and
not guaranteed.

• Use of $OLD_PERL_VERSION is now discouraged.

perlxs

• The documentation of PROTOTYPES has been corrected; they are disabled by default, not
enabled.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• %s must not be a named sequence in transliteration operator

• Can’t find Unicode property definition ‘‘%s’’ in regex;

perl v5.36.0 2021-04-29 345

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• Can’t redeclare ‘‘%s’’ in ‘‘%s’’

• Character following \p must be ’{’ or a single-character Unicode property name in regex;

• Empty \%c in regex; marked by <-- HERE in m/%s/

• Illegal user-defined property name

• Invalid number ’%s’ for -C option.

• Sequence (?... not terminated in regex; marked by <-- HERE in m/%s/

• Sequence (?P<... not terminated in regex; marked by <-- HERE in m/%s/

• Sequence (?P>... not terminated in regex; marked by <-- HERE in m/%s/

New Warnings

• Assuming NOT a POSIX class since %s in regex; marked by <-- HERE in m/%s/

• %s() is deprecated on :utf8 handles

Changes to Existing Diagnostics
• Accessing the IO part of a glob as FILEHANDLE instead of IO is no longer deprecated. It is

discouraged to encourage uniformity (so that, for example, one can grep more easily) but it will
not be removed. [GH #15105] <https://github.com/Perl/perl5/issues/15105>

• The diagnostic Hexadecimal float: internal error has been changed to
Hexadecimal float: internal error (%s) to include more information.

• Can’t modify non-lvalue subroutine call of &%s

This error now reports the name of the non-lvalue subroutine you attempted to use as an lvalue.

• When running out of memory during an attempt the increase the stack size, previously, perl would
die using the cryptic message panic: av_extend_guts() negative count
(-9223372036854775681). This has been fixed to show the prettier message: Out of
memory during stack extend

Configuration and Compilation
• Configure now acts as if the -O option is always passed, allowing command line options to

override saved configuration. This should eliminate confusion when command line options are
ignored for no obvious reason. -O is now permitted, but ignored.

• Bison 3.0 is now supported.

• Configure no longer probes for libnm by default. Originally this was the ‘‘New Math’’ library, but
the name has been re-used by the GNOME NetworkManager. [GH #15115]
<https://github.com/Perl/perl5/issues/15115>

• Added Configure probes for newlocale, freelocale, and uselocale.

• PPPort.so/PPPort.dll no longer get installed, as they are not used by PPPort.pm, only
by its test files.

• It is now possible to specify which compilation date to show on perl -V output, by setting the
macro PERL_BUILD_DATE.

• Using the NO_HASH_SEED define in combination with the default hash algorithm
PERL_HASH_FUNC_ONE_AT_A_TIME_HARD resulted in a fatal error while compiling the
interpreter, since Perl 5.17.10. This has been fixed.

• Configure should handle spaces in paths a little better.

• No longer generate EBCDIC POSIX-BC tables. We don’t believe anyone is using Perl and
POSIX-BC at this time, and by not generating these tables it saves time during development, and
makes the resulting tar ball smaller.

• The GNU Make makefile for Win32 now supports parallel builds. [perl #126632]

• You can now build perl with MSVC++ on Win32 using GNU Make. [perl #126632]

• The Win32 miniperl now has a real getcwd which increases build performance resulting in
getcwd() being 605x faster in Win32 miniperl.

perl v5.36.0 2021-04-29 346

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• Configure now takes -Dusequadmath into account when calculating the alignbytes
configuration variable. Previously the mis-calculated alignbytes could cause alignment errors
on debugging builds. [perl #127894]

Testing
• A new test (t/op/aassign.t) has been added to test the list assignment operator OP_AASSIGN.

• Parallel building has been added to the dmake makefile.mk makefile. All Win32 compilers are
supported.

Platform Support
Platform-Specific Notes

AmigaOS
• The AmigaOS port has been reintegrated into the main tree, based off of Perl 5.22.1.

Cygwin
• Tests are more robust against unusual cygdrive prefixes. [GH #15076]

<https://github.com/Perl/perl5/issues/15076>

EBCDIC
UTF-EBCDIC extended

UTF-EBCDIC is like UTF-8, but for EBCDIC platforms. It now has been extended so that it
can represent code points up to 2 ** 64 - 1 on platforms with 64-bit words. This brings it
into parity with UTF-8. This enhancement requires an incompatible change to the
representation of code points in the range 2 ** 30 to 2 ** 31 -1 (the latter was the previous
maximum representable code point). This means that a file that contains one of these code
points, written out with previous versions of perl cannot be read in, without conversion, by a
perl containing this change. We do not believe any such files are in existence, but if you do
have one, submit a ticket at perlbug@perl.org <mailto:perlbug@perl.org>, and we will write
a conversion script for you.

EBCDIC cmp() and sort() fixed for UTF-EBCDIC strings
Comparing two strings that were both encoded in UTF-8 (or more precisely, UTF-EBCDIC)
did not work properly until now. Since sort() uses cmp(), this fixes that as well.

EBCDIC tr/// and y/// fixed for \N{}, and use utf8 ranges
Perl v5.22 introduced the concept of portable ranges to regular expression patterns. A
portable range matches the same set of characters no matter what platform is being run on.
This concept is now extended to tr///. See tr///.

There were also some problems with these operations under use utf8, which are now
fixed

FreeBSD
• Use the fdclose() function from FreeBSD if it is available. [GH #15082]

<https://github.com/Perl/perl5/issues/15082>

IRIX
• Under some circumstances IRIX stdio fgetc() and fread() set the errno to ENOENT,

which made no sense according to either IRIX or POSIX docs. Errno is now cleared in such
cases. [GH #14557] <https://github.com/Perl/perl5/issues/14557>

• Problems when multiplying long doubles by infinity have been fixed. [GH #14993]
<https://github.com/Perl/perl5/issues/14993>

MacOS X
• Until now OS X builds of perl have specified a link target of 10.3 (Panther, 2003) but have not

specified a compiler target. From now on, builds of perl on OS X 10.6 or later (Snow
Leopard, 2008) by default capture the current OS X version and specify that as the explicit
build target in both compiler and linker flags, thus preserving binary compatibility for
extensions built later regardless of changes in OS X, SDK, or compiler and linker versions. To
override the default value used in the build and preserved in the flags, specify export
MACOSX_DEPLOYMENT_TARGET=10.N before configuring and building perl, where 10.N
is the version of OS X you wish to target. In OS X 10.5 or earlier there is no change to the
behavior present when those systems were current; the link target is still OS X 10.3 and there
is no explicit compiler target.

perl v5.36.0 2021-04-29 347

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• Builds with both -DDEBUGGING and threading enabled would fail with a ‘‘panic: free
from wrong pool’’ error when built or tested from Terminal on OS X. This was caused by
perl’s internal management of the environment conflicting with an atfork handler using the
libc setenv() function to update the environment.

Perl now uses setenv()/unsetenv() to update the environment on OS X. [GH #14955]
<https://github.com/Perl/perl5/issues/14955>

Solaris
• All Solaris variants now build a shared libperl

Solaris and variants like OpenIndiana now always build with the shared Perl library
(Configure -Duseshrplib). This was required for the OpenIndiana builds, but this has also
been the setting for Oracle/Sun Perl builds for several years.

Tru64
• Workaround where Tru64 balks when prototypes are listed as PERL_STATIC_INLINE, but

where the test is build with -DPERL_NO_INLINE_FUNCTIONS.

VMS
• On VMS, the math function prototypes in math.h are now visible under C++. Now building

the POSIX extension with C++ will no longer crash.

• VMS has had setenv/unsetenv since v7.0 (released in 1996), Perl_vmssetenv now
always uses setenv/unsetenv.

• Perl now implements its own killpg by scanning for processes in the specified process
group, which may not mean exactly the same thing as a Unix process group, but allows us to
send a signal to a parent (or master) process and all of its sub-processes. At the perl level,
this means we can now send a negative pid like so:

kill SIGKILL, -$pid;

to signal all processes in the same group as $pid.

• For those %ENV elements based on the CRTL environ array, we’ve always preserved case
when setting them but did look-ups only after upcasing the key first, which made lower- or
mixed-case entries go missing. This problem has been corrected by making %ENV elements
derived from the environ array case-sensitive on look-up as well as case-preserving on store.

• Environment look-ups for PERL5LIB and PERLLIB previously only considered logical
names, but now consider all sources of %ENV as determined by PERL_ENV_TABLES and as
documented in ‘‘%ENV’’ in perlvms.

• The minimum supported version of VMS is now v7.3-2, released in 2003. As a side effect of
this change, VAX is no longer supported as the terminal release of OpenVMS VAX was v7.3
in 2001.

Win32
• A new build option USE_NO_REGISTRY has been added to the makefiles. This option is

off by default, meaning the default is to do Windows registry lookups. This option stops Perl
from looking inside the registry for anything. For what values are looked up in the registry
see perlwin32. Internally, in C, the name of this option is WIN32_NO_REGISTRY.

• The behavior of Perl using HKEY_CURRENT_USER\Software\Perl and
HKEY_LOCAL_MACHINE\Software\Perl to lookup certain values, including %ENV
vars starting with PERL has changed. Previously, the 2 keys were checked for entries at all
times through the perl process’s life time even if they did not exist. For performance reasons,
now, if the root key (i.e. HKEY_CURRENT_USER\Software\Perl or
HKEY_LOCAL_MACHINE\Software\Perl) does not exist at process start time, it will
not be checked again for %ENV override entries for the remainder of the perl process’s life.
This more closely matches Unix behavior in that the environment is copied or inherited on
startup and changing the variable in the parent process or another process or editing .bashrc
will not change the environmental variable in other existing, running, processes.

perl v5.36.0 2021-04-29 348

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• One glob fetch was removed for each -X or stat call whether done from Perl code or
internally from Perl’s C code. The glob being looked up was ${ˆWIN32_SLOPPY_STAT}
which is a special variable. This makes -X and stat slightly faster.

• During miniperl’s process startup, during the build process, 4 to 8 IO calls related to the
process starting .pl and the buildcustomize.pl file were removed from the code opening and
executing the first 1 or 2 .pl files.

• Builds using Microsoft Visual C++ 2003 and earlier no longer produce an ‘‘INTERNAL
COMPILER ERROR’’ message. [perl #126045]

• Visual C++ 2013 builds will now execute on XP and higher. Previously they would only
execute on Vista and higher.

• You can now build perl with GNU Make and GCC. [perl #123440]

• truncate($filename, $size) now works for files over 4GB in size. [perl #125347]

• Parallel building has been added to the dmake makefile.mk makefile. All Win32
compilers are supported.

• Building a 64-bit perl with a 64-bit GCC but a 32-bit gmake would result in an invalid
$Config{archname} for the resulting perl. [perl #127584]

• Errors set by Winsock functions are now put directly into $ˆE, and the relevant WSAE* error
codes are now exported from the Errno and POSIX modules for testing this against.

The previous behavior of putting the errors (converted to POSIX-style E* error codes since
Perl 5.20.0) into $! was buggy due to the non-equivalence of like-named Winsock and
POSIX error constants, a relationship between which has unfortunately been established in
one way or another since Perl 5.8.0.

The new behavior provides a much more robust solution for checking Winsock errors in
portable software without accidentally matching POSIX tests that were intended for other
OSes and may have different meanings for Winsock.

The old behavior is currently retained, warts and all, for backwards compatibility, but users
are encouraged to change any code that tests $! against E* constants for Winsock errors to
instead test $ˆE against WSAE* constants. After a suitable deprecation period, the old
behavior may be removed, leaving $! unchanged after Winsock function calls, to avoid any
possible confusion over which error variable to check.

ppc64el
floating point

The floating point format of ppc64el (Debian naming for little-endian PowerPC) is now
detected correctly.

Internal Changes
• The implementation of perl’s context stack system, and its internal API, have been heavily

reworked. Note that no significant changes have been made to any external APIs, but XS code
which relies on such internal details may need to be fixed. The main changes are:

• The PUSHBLOCK(), POPSUB() etc. macros have been replaced with static inline functions
such as cx_pushblock(), cx_popsub() etc. These use function args rather than
implicitly relying on local vars such as gimme and newsp being available. Also their
functionality has changed: in particular, cx_popblock() no longer decrements
cxstack_ix. The ordering of the steps in the pp_leave* functions involving
cx_popblock(), cx_popsub() etc. has changed. See the new documentation,
‘‘Dynamic Scope and the Context Stack’’ in perlguts, for details on how to use them.

• Various macros, which now consistently have a CX_ prefix, have been added:

CX_CUR(), CX_LEAVE_SCOPE(), CX_POP()

or renamed:

CX_POP_SAVEARRAY(), CX_DEBUG(), CX_PUSHSUBST(), CX_POPSUBST()

perl v5.36.0 2021-04-29 349

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• cx_pushblock() now saves PL_savestack_ix and PL_tmps_floor, so
pp_enter* and pp_leave* no longer do

ENTER; SAVETMPS;; LEAVE

• cx_popblock() now also restores PL_curpm.

• In dounwind() for every context type, the current savestack frame is now processed before
each context is popped; formerly this was only done for sub-like context frames. This action
has been removed from cx_popsub() and placed into its own macro,
CX_LEAVE_SCOPE(cx), which must be called before cx_popsub() etc.

dounwind() now also does a cx_popblock() on the last popped frame (formerly it
only did the cx_popsub() etc. actions on each frame).

• The temps stack is now freed on scope exit; previously, temps created during the last
statement of a block wouldn’t be freed until the next nextstate following the block (apart
from an existing hack that did this for recursive subs in scalar context); and in something like
f(g()), the temps created by the last statement in g() would formerly not be freed until
the statement following the return from f().

• Most values that were saved on the savestack on scope entry are now saved in suitable new
fields in the context struct, and saved and restored directly by cx_pushfoo() and
cx_popfoo(), which is much faster.

• Various context struct fields have been added, removed or modified.

• The handling of @_ in cx_pushsub() and cx_popsub() has been considerably tidied
up, including removing the argarray field from the context struct, and extracting out some
common (but rarely used) code into a separate function, clear_defarray(). Also, useful
subsets of cx_popsub() which had been unrolled in places like pp_goto have been
gathered into the new functions cx_popsub_args() and cx_popsub_common().

• pp_leavesub and pp_leavesublv now use the same function as the rest of the
pp_leave*’s to process return args.

• CXp_FOR_PAD and CXp_FOR_GV flags have been added, and CXt_LOOP_FOR has been
split into CXt_LOOP_LIST, CXt_LOOP_ARY.

• Some variables formerly declared by dMULTICALL (but not documented) have been
removed.

• The obscure PL_timesbuf variable, effectively a vestige of Perl 1, has been removed. It was
documented as deprecated in Perl 5.20, with a statement that it would be removed early in the
5.21.x series; that has now finally happened. [GH #13632]
<https://github.com/Perl/perl5/issues/13632>

• An unwarranted assertion in Perl_newATTRSUB_x() has been removed. If a stub subroutine
definition with a prototype has been seen, then any subsequent stub (or definition) of the same
subroutine with an attribute was causing an assertion failure because of a null pointer. [GH
#15081] <https://github.com/Perl/perl5/issues/15081>

• :: has been replaced by _ _ in ExtUtils::ParseXS, like it’s done for parameters/return
values. This is more consistent, and simplifies writing XS code wrapping C++ classes into a nested
Perl namespace (it requires only a typedef for Foo_ _Bar rather than two, one for Foo_Bar and
the other for Foo::Bar).

• The to_utf8_case() function is now deprecated. Instead use toUPPER_utf8,
toTITLE_utf8, toLOWER_utf8, and toFOLD_utf8. (See
<http://nntp.perl.org/group/perl.perl5.porters/233287>.)

• Perl core code and the threads extension have been annotated so that, if Perl is configured to use
threads, then during compile-time clang (3.6 or later) will warn about suspicious uses of mutexes.
See <http://clang.llvm.org/docs/ThreadSafetyAnalysis.html> for more information.

• The signbit() emulation has been enhanced. This will help older and/or more exotic
platforms or configurations.

perl v5.36.0 2021-04-29 350

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• Most EBCDIC-specific code in the core has been unified with non-EBCDIC code, to avoid
repetition and make maintenance easier.

• MSWin32 code for $ˆX has been moved out of the win32 directory to caretx.c, where other
operating systems set that variable.

• sv_ref() is now part of the API.

• ‘‘sv_backoff’’ in perlapi had its return type changed from int to void. It previously has always
returned 0 since Perl 5.000 stable but that was undocumented. Although sv_backoff is
marked as public API, XS code is not expected to be impacted since the proper API call would be
through public API sv_setsv(sv, &PL_sv_undef), or quasi-public SvOOK_off, or non-
public SvOK_off calls, and the return value of sv_backoff was previously a meaningless
constant that can be rewritten as (sv_backoff(sv),0).

• The EXTEND and MEXTEND macros have been improved to avoid various issues with integer
truncation and wrapping. In particular, some casts formerly used within the macros have been
removed. This means for example that passing an unsigned nitems argument is likely to raise a
compiler warning now (it’s always been documented to require a signed value; formerly int, lately
SSize_t).

• PL_sawalias and GPf_ALIASED_SV have been removed.

• GvASSIGN_GENERATION and GvASSIGN_GENERATION_set have been removed.

Selected Bug Fixes
• It now works properly to specify a user-defined property, such as

qr/\p{mypkg1::IsMyProperty}/i

with /i caseless matching, an explicit package name, and IsMyProperty not defined at the time of
the pattern compilation.

• Perl’s memcpy(), memmove(), memset() and memcmp() fallbacks are now more
compatible with the originals. [perl #127619]

• Fixed the issue where a s///r) with -DPERL_NO_COW attempts to modify the source SV,
resulting in the program dying. [perl #127635]

• Fixed an EBCDIC-platform-only case where a pattern could fail to match. This occurred when
matching characters from the set of C1 controls when the target matched string was in UTF-8.

• Narrow the filename check in strict.pm and warnings.pm. Previously, it assumed that if the
filename (without the .pmc? extension) differed from the package name, if was a misspelled use
statement (i.e. use Strict instead of use strict). We now check whether there’s really a
miscapitalization happening, and not some other issue.

• Turn an assertion into a more user friendly failure when parsing regexes. [perl #127599]

• Correctly raise an error when trying to compile patterns with unterminated character classes while
there are trailing backslashes. [perl #126141].

• Line numbers larger than 2**31-1 but less than 2**32 are no longer returned by caller() as
negative numbers. [perl #126991]

• unless (assignment) now properly warns when syntax warnings are enabled. [perl
#127122]

• Setting an ISA glob to an array reference now properly adds isaelem magic to any existing
elements. Previously modifying such an element would not update the ISA cache, so method calls
would call the wrong function. Perl would also crash if the ISA glob was destroyed, since new
code added in 5.23.7 would try to release the isaelem magic from the elements. [perl #127351]

• If a here-doc was found while parsing another operator, the parser had already read end of file, and
the here-doc was not terminated, perl could produce an assertion or a segmentation fault. This
now reliably complains about the unterminated here-doc. [perl #125540]

• untie() would sometimes return the last value returned by the UNTIE() handler as well as its
normal value, messing up the stack. [perl #126621]

perl v5.36.0 2021-04-29 351

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• Fixed an operator precedence problem when castflags & 2 is true. [perl #127474]

• Caching of DESTROY methods could result in a non-pointer or a non-STASH stored in the
SvSTASH() slot of a stash, breaking the B STASH() method. The DESTROY method is now
cached in the MRO metadata for the stash. [perl #126410]

• The AUTOLOAD method is now called when searching for a DESTROY method, and correctly sets
$AUTOLOAD too. [perl #124387] [perl #127494]

• Avoid parsing beyond the end of the buffer when processing a #line directive with no filename.
[perl #127334]

• Perl now raises a warning when a regular expression pattern looks like it was supposed to contain
a POSIX class, like qr/[[:alpha:]]/, but there was some slight defect in its specification
which causes it to instead be treated as a regular bracketed character class. An example would be
missing the second colon in the above like this: qr/[[:alpha]]/. This compiles to match a
sequence of two characters. The second is "]", and the first is any of: "[", ":", "a", "h",
"l", or "p". This is unlikely to be the intended meaning, and now a warning is raised. No
warning is raised unless the specification is very close to one of the 14 legal POSIX classes. (See
‘‘POSIX Character Classes’’ in perlrecharclass.) [perl #8904]

• Certain regex patterns involving a complemented POSIX class in an inverted bracketed character
class, and matching something else optionally would improperly fail to match. An example of one
that could fail is qr/_?[ˆ\Wbar]\x{100}/. This has been fixed. [perl #127537]

• Perl 5.22 added support to the C99 hexadecimal floating point notation, but sometimes misparses
hex floats. This has been fixed. [perl #127183]

• A regression that allowed undeclared barewords in hash keys to work despite strictures has been
fixed. [GH #15099] <https://github.com/Perl/perl5/issues/15099>

• Calls to the placeholder &PL_sv_yes used internally when an import() or unimport()
method isn’t found now correctly handle scalar context. [GH #14902]
<https://github.com/Perl/perl5/issues/14902>

• Report more context when we see an array where we expect to see an operator and avoid an
assertion failure. [GH #14472] <https://github.com/Perl/perl5/issues/14472>

• Modifying an array that was previously a package @ISA no longer causes assertion failures or
crashes. [GH #14492] <https://github.com/Perl/perl5/issues/14492>

• Retain binary compatibility across plain and DEBUGGING perl builds. [GH #15122]
<https://github.com/Perl/perl5/issues/15122>

• Avoid leaking memory when setting $ENV{foo} on darwin. [GH #14955]
<https://github.com/Perl/perl5/issues/14955>

• /...\G/ no longer crashes on utf8 strings. When \G is a fixed number of characters from the
start of the regex, perl needs to count back that many characters from the current pos() position
and start matching from there. However, it was counting back bytes rather than characters, which
could lead to panics on utf8 strings.

• In some cases operators that return integers would return negative integers as large positive
integers. [GH #15049] <https://github.com/Perl/perl5/issues/15049>

• The pipe() operator would assert for DEBUGGING builds instead of producing the correct error
message. The condition asserted on is detected and reported on correctly without the assertions,
so the assertions were removed. [GH #15015] <https://github.com/Perl/perl5/issues/15015>

• In some cases, failing to parse a here-doc would attempt to use freed memory. This was caused by
a pointer not being restored correctly. [GH #15009] <https://github.com/Perl/perl5/issues/15009>

• @x = sort { *a = 0; $a <=> $b } 0 .. 1 no longer frees the GP for *a before
restoring its SV slot. [GH #14595] <https://github.com/Perl/perl5/issues/14595>

• Multiple problems with the new hexadecimal floating point printf format %a were fixed: [GH
#15032] <https://github.com/Perl/perl5/issues/15032>, [GH #15033]
<https://github.com/Perl/perl5/issues/15033>, [GH #15074]
<https://github.com/Perl/perl5/issues/15074>

perl v5.36.0 2021-04-29 352

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• Calling mg_set() in leave_scope() no longer leaks.

• A regression from Perl v5.20 was fixed in which debugging output of regular expression
compilation was wrong. (The pattern was correctly compiled, but what got displayed for it was
wrong.)

• \b{sb} works much better. In Perl v5.22.0, this new construct didn’t seem to give the expected
results, yet passed all the tests in the extensive suite furnished by Unicode. It turns out that it was
because these were short input strings, and the failures had to do with longer inputs.

• Certain syntax errors in ‘‘Extended Bracketed Character Classes’’ in perlrecharclass caused panics
instead of the proper error message. This has now been fixed. [perl #126481]

• Perl 5.20 added a message when a quantifier in a regular expression was useless, but then caused
the parser to skip it; this caused the surplus quantifier to be silently ignored, instead of throwing an
error. This is now fixed. [perl #126253]

• The switch to building non-XS modules last in win32/makefile.mk (introduced by design as part
of the changes to enable parallel building) caused the build of POSIX to break due to problems
with the version module. This is now fixed.

• Improved parsing of hex float constants.

• Fixed an issue with pack where pack "H" (and pack "h") could read past the source when
given a non-utf8 source, and a utf8 target. [perl #126325]

• Fixed several cases where perl would abort due to a segmentation fault, or a C-level assert. [perl
#126615], [perl #126602], [perl #126193].

• There were places in regular expression patterns where comments ((?#...)) weren’t allowed,
but should have been. This is now fixed. [GH #12755]
<https://github.com/Perl/perl5/issues/12755>

• Some regressions from Perl 5.20 have been fixed, in which some syntax errors in (?[...])
constructs within regular expression patterns could cause a segfault instead of a proper error
message. [GH #14933] <https://github.com/Perl/perl5/issues/14933> [GH #14996]
<https://github.com/Perl/perl5/issues/14996>

• Another problem with (?[...]) constructs has been fixed wherein things like \c] could cause
panics. [GH #14934] <https://github.com/Perl/perl5/issues/14934>

• Some problems with attempting to extend the perl stack to around 2G or 4G entries have been
fixed. This was particularly an issue on 32-bit perls built to use 64-bit integers, and was easily
noticeable with the list repetition operator, e.g.

@a = (1) x $big_number

Formerly perl may have crashed, depending on the exact value of $big_number; now it will
typically raise an exception. [GH #14880] <https://github.com/Perl/perl5/issues/14880>

• In a regex conditional expression (?(condition)yes-pattern|no-pattern), if the
condition is (?!) then perl failed the match outright instead of matching the no-pattern. This has
been fixed. [GH #14947] <https://github.com/Perl/perl5/issues/14947>

• The special backtracking control verbs (*VERB:ARG) now all allow an optional argument and
set REGERROR/REGMARK appropriately as well. [GH #14937]
<https://github.com/Perl/perl5/issues/14937>

• Several bugs, including a segmentation fault, have been fixed with the boundary checking
constructs (introduced in Perl 5.22) \b{gcb}, \b{sb}, \b{wb}, \B{gcb}, \B{sb}, and
\B{wb}. All the \B{} ones now match an empty string; none of the \b{} ones do. [GH
#14976] <https://github.com/Perl/perl5/issues/14976>

• Duplicating a closed file handle for write no longer creates a filename of the form
GLOB(0xXXXXXXXX). [perl #125115]

• Warning fatality is now ignored when rewinding the stack. This prevents infinite recursion when
the now fatal error also causes rewinding of the stack. [perl #123398]

perl v5.36.0 2021-04-29 353

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

• In perl v5.22.0, the logic changed when parsing a numeric parameter to the -C option, such that
the successfully parsed number was not saved as the option value if it parsed to the end of the
argument. [perl #125381]

• The PadlistNAMES macro is an lvalue again.

• Zero -DPERL_TRACE_OPS memory for sub-threads.

perl_clone_using() was missing Zero init of PL_op_exec_cnt[]. This caused sub-threads
in threaded -DPERL_TRACE_OPS builds to spew exceedingly large op-counts at destruct. These
counts would print %x as ‘‘ABABABAB’’, clearly a mem-poison value.

• A leak in the XS typemap caused one scalar to be leaked each time a FILE * or a PerlIO *
was OUTPUT:ed or imported to Perl, since perl 5.000. These particular typemap entries are
thought to be extremely rarely used by XS modules. [perl #124181]

• alarm() and sleep() will now warn if the argument is a negative number and return undef.
Previously they would pass the negative value to the underlying C function which may have set up
a timer with a surprising value.

• Perl can again be compiled with any Unicode version. This used to (mostly) work, but was lost in
v5.18 through v5.20. The property Name_Alias did not exist prior to Unicode 5.0.
Unicode::UCD incorrectly said it did. This has been fixed.

• Very large code-points (beyond Unicode) in regular expressions no longer cause a buffer overflow
in some cases when converted to UTF-8. [GH #14858]
<https://github.com/Perl/perl5/issues/14858>

• The integer overflow check for the range operator (...) in list context now correctly handles the
case where the size of the range is larger than the address space. This could happen on 32-bits
with -Duse64bitint. [GH #14843] <https://github.com/Perl/perl5/issues/14843>

• A crash with %::=(); J->${\"::"} has been fixed. [GH #14790]
<https://github.com/Perl/perl5/issues/14790>

• qr/(?[()])/ no longer segfaults, giving a syntax error message instead. [perl #125805]

• Regular expression possessive quantifier v5.20 regression now fixed. qr/PAT{min,max}+/ is
supposed to behave identically to qr/(?>PAT{min,max})/. Since v5.20, this didn’t work if min
and max were equal. [perl #125825]

• BEGIN <> no longer segfaults and properly produces an error message. [perl #125341]

• In tr/// an illegal backwards range like tr/\x{101}-\x{100}// was not always detected,
giving incorrect results. This is now fixed.

Acknowledgements
Perl 5.24.0 represents approximately 11 months of development since Perl 5.24.0 and contains
approximately 360,000 lines of changes across 1,800 files from 75 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 250,000
lines of changes to 1,200 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.24.0:

Aaron Crane, Aaron Priven, Abigail, Achim Gratz, Alexander D’Archangel, Alex Vandiver, Andreas
Ko

..
nig, Andy Broad, Andy Dougherty, Aristotle Pagaltzis, Chase Whitener, Chas. Owens, Chris ’BinGOs’
Williams, Craig A. Berry, Dagfinn Ilmari Mannsa°ker, Dan Collins, Daniel Dragan, David Golden,
David Mitchell, Doug Bell, Dr.Ruud, Ed Avis, Ed J, Father Chrysostomos, Herbert Breunung, H.Merijn
Brand, Hugo van der Sanden, Ivan Pozdeev, James E Keenan, Jan Dubois, Jarkko Hietaniemi, Jerry D.
Hedden, Jim Cromie, John Peacock, John SJ Anderson, Karen Etheridge, Karl Williamson, kmx, Leon
Timmermans, Ludovic E. R. Tolhurst-Cleaver, Lukas Mai, Martijn Lievaart, Matthew Horsfall, Mattia
Barbon, Max Maischein, Mohammed El-Afifi, Nicholas Clark, Nicolas R., Niko Tyni, Peter John
Acklam, Peter Martini, Peter Rabbitson, Pip Cet, Rafael Garcia-Suarez, Reini Urban, Ricardo Signes,
Sawyer X, Shlomi Fish, Sisyphus, Stanislaw Pusep, Steffen Mu

..
ller, Stevan Little, Steve Hay, Sullivan

Beck, Thomas Sibley, Todd Rinaldo, Tom Hukins, Tony Cook, Unicode Consortium, Victor Adam,
Vincent Pit, Vladimir Timofeev, Yves Orton, Zachary Storer, Zefram.

perl v5.36.0 2021-04-29 354

PERL5240DELTA(1) Perl Programmers Reference Guide PERL5240DELTA(1)

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at https://rt.perl.org/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 355

PERL5241DELTA(1) Perl Programmers Reference Guide PERL5241DELTA(1)

NAME
perl5241delta - what is new for perl v5.24.1

DESCRIPTION
This document describes differences between the 5.24.0 release and the 5.24.1 release.

If you are upgrading from an earlier release such as 5.22.0, first read perl5240delta, which describes
differences between 5.22.0 and 5.24.0.

Security
-Di switch is now required for PerlIO debugging output

Previously PerlIO debugging output would be sent to the file specified by the PERLIO_DEBUG
environment variable if perl wasn’t running setuid and the -T or -t switches hadn’t been parsed yet.

If perl performed output at a point where it hadn’t yet parsed its switches this could result in perl
creating or overwriting the file named by PERLIO_DEBUG even when the -T switch had been
supplied.

Perl now requires the -Di switch to produce PerlIO debugging output. By default this is written to
stderr, but can optionally be redirected to a file by setting the PERLIO_DEBUG environment
variable.

If perl is running setuid or the -T switch was supplied PERLIO_DEBUG is ignored and the debugging
output is sent to stderr as for any other -D switch.

Core modules and tools no longer search ‘‘.’’ for optional modules
The tools and many modules supplied in core no longer search the default current directory entry in
@INC for optional modules. For example, Storable will remove the final ‘‘.’’ from @INC before trying
to load Log::Agent.

This prevents an attacker injecting an optional module into a process run by another user where the
current directory is writable by the attacker, e.g. the /tmp directory.

In most cases this removal should not cause problems, but difficulties were encountered with base,
which treats every module name supplied as optional. These difficulties have not yet been resolved, so
for this release there are no changes to base. We hope to have a fix for base in Perl 5.24.2.

To protect your own code from this attack, either remove the default ‘‘.’’ entry from @INC at the start
of your script, so:

#!/usr/bin/perl
use strict;
...

becomes:

#!/usr/bin/perl
BEGIN { pop @INC if $INC[-1] eq '.' }
use strict;
...

or for modules, remove ‘‘.’’ from a localized @INC, so:

my $can_foo = eval { require Foo; }

becomes:

my $can_foo = eval {
local @INC = @INC;
pop @INC if $INC[-1] eq '.';
require Foo;

};

Incompatible Changes
Other than the security changes above there are no changes intentionally incompatible with Perl 5.24.0.
If any exist, they are bugs, and we request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata

perl v5.36.0 2021-04-29 356

PERL5241DELTA(1) Perl Programmers Reference Guide PERL5241DELTA(1)

Updated Modules and Pragmata
• Archive::Tar has been upgraded from version 2.04 to 2.04_01.

• bignum has been upgraded from version 0.42 to 0.42_01.

• CPAN has been upgraded from version 2.11 to 2.11_01.

• Digest has been upgraded from version 1.17 to 1.17_01.

• Digest::SHA has been upgraded from version 5.95 to 5.95_01.

• Encode has been upgraded from version 2.80 to 2.80_01.

• ExtUtils::MakeMaker has been upgraded from version 7.10_01 to 7.10_02.

• File::Fetch has been upgraded from version 0.48 to 0.48_01.

• File::Spec has been upgraded from version 3.63 to 3.63_01.

• HTTP::Tiny has been upgraded from version 0.056 to 0.056_001.

• IO has been upgraded from version 1.36 to 1.36_01.

• The IO-Compress modules have been upgraded from version 2.069 to 2.069_001.

• IPC::Cmd has been upgraded from version 0.92 to 0.92_01.

• JSON::PP has been upgraded from version 2.27300 to 2.27300_01.

• Locale::Maketext has been upgraded from version 1.26 to 1.26_01.

• Locale::Maketext::Simple has been upgraded from version 0.21 to 0.21_01.

• Memoize has been upgraded from version 1.03 to 1.03_01.

• Module::CoreList has been upgraded from version 5.20160506 to 5.20170114_24.

• Net::Ping has been upgraded from version 2.43 to 2.43_01.

• Parse::CPAN::Meta has been upgraded from version 1.4417 to 1.4417_001.

• Pod::Html has been upgraded from version 1.22 to 1.2201.

• Pod::Perldoc has been upgraded from version 3.25_02 to 3.25_03.

• Storable has been upgraded from version 2.56 to 2.56_01.

• Sys::Syslog has been upgraded from version 0.33 to 0.33_01.

• Test has been upgraded from version 1.28 to 1.28_01.

• Test::Harness has been upgraded from version 3.36 to 3.36_01.

• XSLoader has been upgraded from version 0.21 to 0.22, fixing a security hole in which binary
files could be loaded from a path outside of @INC. [GH #15418]
<https://github.com/Perl/perl5/issues/15418>

Documentation
Changes to Existing Documentation

perlapio

• The documentation of PERLIO_DEBUG has been updated.

perlrun

• The new -Di switch has been documented, and the documentation of PERLIO_DEBUG has been
updated.

Testing
• A new test script, t/run/switchDx.t, has been added to test that the new -Di switch is working

correctly.

Selected Bug Fixes
• The change to hashbang redirection introduced in Perl 5.24.0, whereby perl would redirect to

another interpreter (Perl 6) if it found a hashbang path which contains ‘‘perl’’ followed by ‘‘6’’,
has been reverted because it broke in cases such as #!/opt/perl64/bin/perl.

perl v5.36.0 2021-04-29 357

PERL5241DELTA(1) Perl Programmers Reference Guide PERL5241DELTA(1)

Acknowledgements
Perl 5.24.1 represents approximately 8 months of development since Perl 5.24.0 and contains
approximately 8,100 lines of changes across 240 files from 18 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 2,200 lines
of changes to 170 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.24.1:

Aaron Crane, Alex Vandiver, Aristotle Pagaltzis, Chad Granum, Chris ’BinGOs’ Williams, Craig A.
Berry, Father Chrysostomos, James E Keenan, Jarkko Hietaniemi, Karen Etheridge, Leon
Timmermans, Matthew Horsfall, Ricardo Signes, Sawyer X, Sébastien Aperghis-Tramoni, Stevan
Little, Steve Hay, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the Perl bug database at <https://rt.perl.org/> . There may also be
information at <http://www.perl.org/> , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 358

PERL5242DELTA(1) Perl Programmers Reference Guide PERL5242DELTA(1)

NAME
perl5242delta - what is new for perl v5.24.2

DESCRIPTION
This document describes differences between the 5.24.1 release and the 5.24.2 release.

If you are upgrading from an earlier release such as 5.24.0, first read perl5241delta, which describes
differences between 5.24.0 and 5.24.1.

Security
Improved handling of ’.’ in @INC in base.pm

The handling of (the removal of) '.' in @INC in base has been improved. This resolves some
problematic behaviour in the approach taken in Perl 5.24.1, which is probably best described in the
following two threads on the Perl 5 Porters mailing list:
<http://www.nntp.perl.org/group/perl.perl5.porters/2016/08/msg238991.html>,
<http://www.nntp.perl.org/group/perl.perl5.porters/2016/10/msg240297.html>.

‘‘Escaped’’ colons and relative paths in PATH
On Unix systems, Perl treats any relative paths in the PATH environment variable as tainted when
starting a new process. Previously, it was allowing a backslash to escape a colon (unlike the OS),
consequently allowing relative paths to be considered safe if the PATH was set to something like /\:..
The check has been fixed to treat . as tainted in that example.

Modules and Pragmata
Updated Modules and Pragmata

• base has been upgraded from version 2.23 to 2.23_01.

• Module::CoreList has been upgraded from version 5.20170114_24 to 5.20170715_24.

Selected Bug Fixes
• Fixed a crash with s///l where it thought it was dealing with UTF-8 when it wasn’t. [GH

#15543] <https://github.com/Perl/perl5/issues/15543>

Acknowledgements
Perl 5.24.2 represents approximately 6 months of development since Perl 5.24.1 and contains
approximately 2,500 lines of changes across 53 files from 18 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 960 lines of
changes to 17 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.24.2:

Aaron Crane, Abigail, Aristotle Pagaltzis, Chris ’BinGOs’ Williams, Dan Collins, David Mitchell, Eric
Herman, Father Chrysostomos, James E Keenan, Karl Williamson, Lukas Mai, Renee Baecker, Ricardo
Signes, Sawyer X, Stevan Little, Steve Hay, Tony Cook, Yves Orton.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at <https://rt.perl.org/> . There may also be
information at <http://www.perl.org/> , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

perl v5.36.0 2021-04-29 359

PERL5242DELTA(1) Perl Programmers Reference Guide PERL5242DELTA(1)

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 360

PERL5243DELTA(1) Perl Programmers Reference Guide PERL5243DELTA(1)

NAME
perl5243delta - what is new for perl v5.24.3

DESCRIPTION
This document describes differences between the 5.24.2 release and the 5.24.3 release.

If you are upgrading from an earlier release such as 5.24.1, first read perl5242delta, which describes
differences between 5.24.1 and 5.24.2.

Security
[CVE-2017-12837] Heap buffer overflow in regular expression compiler

Compiling certain regular expression patterns with the case-insensitive modifier could cause a heap
buffer overflow and crash perl. This has now been fixed. [GH #16021]
<https://github.com/Perl/perl5/issues/16021>

[CVE-2017-12883] Buffer over-read in regular expression parser
For certain types of syntax error in a regular expression pattern, the error message could either contain
the contents of a random, possibly large, chunk of memory, or could crash perl. This has now been
fixed. [GH #16025] <https://github.com/Perl/perl5/issues/16025>

[CVE-2017-12814] $ENV{$key} stack buffer overflow on Windows
A possible stack buffer overflow in the %ENV code on Windows has been fixed by removing the buffer
completely since it was superfluous anyway. [GH #16051]
<https://github.com/Perl/perl5/issues/16051>

Incompatible Changes
There are no changes intentionally incompatible with 5.24.2. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Module::CoreList has been upgraded from version 5.20170715_24 to 5.20170922_24.

• POSIX has been upgraded from version 1.65 to 1.65_01.

• Time::HiRes has been upgraded from version 1.9733 to 1.9741.

[GH #15396] <https://github.com/Perl/perl5/issues/15396> [GH #15401]
<https://github.com/Perl/perl5/issues/15401> [GH #15524]
<https://github.com/Perl/perl5/issues/15524> [cpan #120032]
<https://rt.cpan.org/Public/Bug/Display.html?id=120032>

Configuration and Compilation
• When building with GCC 6 and link-time optimization (the -flto option to gcc), Configure was

treating all probed symbols as present on the system, regardless of whether they actually exist.
This has been fixed. [GH #15322] <https://github.com/Perl/perl5/issues/15322>

• Configure now aborts if both -Duselongdouble and -Dusequadmath are requested. [GH
#14944] <https://github.com/Perl/perl5/issues/14944>

• Fixed a bug in which Configure could append -quadmath to the archname even if it was already
present. [GH #15423] <https://github.com/Perl/perl5/issues/15423>

• Clang builds with -DPERL_GLOBAL_STRUCT or -DPERL_GLOBAL_STRUCT_PRIVATE
have been fixed (by disabling Thread Safety Analysis for these configurations).

Platform Support
Platform-Specific Notes

VMS
• configure.com now recognizes the VSI-branded C compiler.

Windows
• Building XS modules with GCC 6 in a 64-bit build of Perl failed due to incorrect mapping of

strtoll and strtoull. This has now been fixed. [GH #16074]
<https://github.com/Perl/perl5/issues/16074> [cpan #121683]
<https://rt.cpan.org/Public/Bug/Display.html?id=121683> [cpan #122353]
<https://rt.cpan.org/Public/Bug/Display.html?id=122353>

perl v5.36.0 2021-04-29 361

PERL5243DELTA(1) Perl Programmers Reference Guide PERL5243DELTA(1)

Selected Bug Fixes
• /@0{0*->@*/*0 and similar contortions used to crash, but no longer do, but merely produce a

syntax error. [GH #15333] <https://github.com/Perl/perl5/issues/15333>

• do or require with an argument which is a reference or typeglob which, when stringified,
contains a null character, started crashing in Perl 5.20, but has now been fixed. [GH #15337]
<https://github.com/Perl/perl5/issues/15337>

• Expressions containing an && or || operator (or their synonyms and and or) were being
compiled incorrectly in some cases. If the left-hand side consisted of either a negated bareword
constant or a negated do {} block containing a constant expression, and the right-hand side
consisted of a negated non-foldable expression, one of the negations was effectively ignored. The
same was true of if and unless statement modifiers, though with the left-hand and right-hand
sides swapped. This long-standing bug has now been fixed. [GH #15285]
<https://github.com/Perl/perl5/issues/15285>

• reset with an argument no longer crashes when encountering stash entries other than globs.
[GH #15314] <https://github.com/Perl/perl5/issues/15314>

• Assignment of hashes to, and deletion of, typeglobs named *:::::: no longer causes crashes.
[GH #15307] <https://github.com/Perl/perl5/issues/15307>

• Assignment variants of any bitwise ops under the bitwise feature would crash if the left-hand
side was an array or hash. [GH #15346] <https://github.com/Perl/perl5/issues/15346>

• socket now leaves the error code returned by the system in $! on failure. [GH #15383]
<https://github.com/Perl/perl5/issues/15383>

• Parsing bad POSIX charclasses no longer leaks memory. [GH #15382]
<https://github.com/Perl/perl5/issues/15382>

• Since Perl 5.20, line numbers have been off by one when perl is invoked with the -x switch. This
has been fixed. [GH #15413] <https://github.com/Perl/perl5/issues/15413>

• Some obscure cases of subroutines and file handles being freed at the same time could result in
crashes, but have been fixed. The crash was introduced in Perl 5.22. [GH #15435]
<https://github.com/Perl/perl5/issues/15435>

• Some regular expression parsing glitches could lead to assertion failures with regular expressions
such as /(?<=/ and /(?<!/. This has now been fixed. [GH #15332]
<https://github.com/Perl/perl5/issues/15332>

• gethostent and similar functions now perform a null check internally, to avoid crashing with
the torsocks library. This was a regression from Perl 5.22. [GH #15478]
<https://github.com/Perl/perl5/issues/15478>

• Mentioning the same constant twice in a row (which is a syntax error) no longer fails an assertion
under debugging builds. This was a regression from Perl 5.20. [GH #15017]
<https://github.com/Perl/perl5/issues/15017>

• In Perl 5.24 fchown was changed not to accept negative one as an argument because in some
platforms that is an error. However, in some other platforms that is an acceptable argument. This
change has been reverted. [GH #15523] <https://github.com/Perl/perl5/issues/15523>.

• @{x followed by a newline where "x" represents a control or non-ASCII character no longer
produces a garbled syntax error message or a crash. [GH #15518]
<https://github.com/Perl/perl5/issues/15518>

• A regression in Perl 5.24 with tr/\N{U+...}/foo/ when the code point was between 128
and 255 has been fixed. [GH #15475] <https://github.com/Perl/perl5/issues/15475>.

• Many issues relating to printf "%a" of hexadecimal floating point were fixed. In addition, the
‘‘subnormals’’ (formerly known as ‘‘denormals’’) floating point numbers are now supported both
with the plain IEEE 754 floating point numbers (64-bit or 128-bit) and the x86 80-bit ‘‘extended
precision’’. Note that subnormal hexadecimal floating point literals will give a warning about
‘‘exponent underflow’’. [GH #15495] <https://github.com/Perl/perl5/issues/15495> [GH #15502]
<https://github.com/Perl/perl5/issues/15502> [GH #15503]
<https://github.com/Perl/perl5/issues/15503> [GH #15504]

perl v5.36.0 2021-04-29 362

PERL5243DELTA(1) Perl Programmers Reference Guide PERL5243DELTA(1)

<https://github.com/Perl/perl5/issues/15504> [GH #15505]
<https://github.com/Perl/perl5/issues/15505> [GH #15510]
<https://github.com/Perl/perl5/issues/15510> [GH #15512]
<https://github.com/Perl/perl5/issues/15512>

• The parser could sometimes crash if a bareword came after evalbytes. [GH #15586]
<https://github.com/Perl/perl5/issues/15586>

• Fixed a place where the regex parser was not setting the syntax error correctly on a syntactically
incorrect pattern. [GH #15565] <https://github.com/Perl/perl5/issues/15565>

• A vulnerability in Perl’s sprintf implementation has been fixed by avoiding a possible memory
wrap. [GH #15970] <https://github.com/Perl/perl5/issues/15970>

Acknowledgements
Perl 5.24.3 represents approximately 2 months of development since Perl 5.24.2 and contains
approximately 3,200 lines of changes across 120 files from 23 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,600 lines
of changes to 56 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.24.3:

Aaron Crane, Craig A. Berry, Dagfinn Ilmari Mannsa°ker, Dan Collins, Daniel Dragan, Dave Cross,
David Mitchell, Eric Herman, Father Chrysostomos, H.Merijn Brand, Hugo van der Sanden, James E
Keenan, Jarkko Hietaniemi, John SJ Anderson, Karl Williamson, Ken Brown, Lukas Mai, Matthew
Horsfall, Stevan Little, Steve Hay, Steven Humphrey, Tony Cook, Yves Orton.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at <https://rt.perl.org/> . There may also be
information at <http://www.perl.org/> , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 363

PERL5244DELTA(1) Perl Programmers Reference Guide PERL5244DELTA(1)

NAME
perl5244delta - what is new for perl v5.24.4

DESCRIPTION
This document describes differences between the 5.24.3 release and the 5.24.4 release.

If you are upgrading from an earlier release such as 5.24.2, first read perl5243delta, which describes
differences between 5.24.2 and 5.24.3.

Security
[CVE-2018-6797] heap-buffer-overflow (WRITE of size 1) in S_regatom (regcomp.c)

A crafted regular expression could cause a heap buffer write overflow, with control over the bytes
written. [GH #16185] <https://github.com/Perl/perl5/issues/16185>

[CVE-2018-6798] Heap-buffer-overflow in Perl_ _byte_dump_string (utf8.c)
Matching a crafted locale dependent regular expression could cause a heap buffer read overflow and
potentially information disclosure. [GH #16143] <https://github.com/Perl/perl5/issues/16143>

[CVE-2018-6913] heap-buffer-overflow in S_pack_rec
pack() could cause a heap buffer write overflow with a large item count. [GH #16098]
<https://github.com/Perl/perl5/issues/16098>

Assertion failure in Perl_ _core_swash_init (utf8.c)
Control characters in a supposed Unicode property name could cause perl to crash. This has been
fixed. [perl #132055] <https://rt.perl.org/Public/Bug/Display.html?id=132055> [perl #132553]
<https://rt.perl.org/Public/Bug/Display.html?id=132553> [perl #132658]
<https://rt.perl.org/Public/Bug/Display.html?id=132658>

Incompatible Changes
There are no changes intentionally incompatible with 5.24.3. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Module::CoreList has been upgraded from version 5.20170922_24 to 5.20180414_24.

Selected Bug Fixes
• The readpipe() built-in function now checks at compile time that it has only one parameter

expression, and puts it in scalar context, thus ensuring that it doesn’t corrupt the stack at runtime.
[GH #2793] <https://github.com/Perl/perl5/issues/2793>

Acknowledgements
Perl 5.24.4 represents approximately 7 months of development since Perl 5.24.3 and contains
approximately 2,400 lines of changes across 49 files from 12 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,300 lines
of changes to 12 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.24.4:

Abigail, Chris ’BinGOs’ Williams, John SJ Anderson, Karen Etheridge, Karl Williamson, Renee
Baecker, Sawyer X, Steve Hay, Todd Rinaldo, Tony Cook, Yves Orton, Zefram.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at <https://rt.perl.org/> . There may also be
information at <http://www.perl.org/> , the Perl Home Page.

perl v5.36.0 2021-04-29 364

PERL5244DELTA(1) Perl Programmers Reference Guide PERL5244DELTA(1)

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 365

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

NAME
perl5260delta - what is new for perl v5.26.0

DESCRIPTION
This document describes the differences between the 5.24.0 release and the 5.26.0 release.

Notice
This release includes three updates with widespread effects:

• "." no longer in @INC

For security reasons, the current directory (".") is no longer included by default at the end of the
module search path (@INC). This may have widespread implications for the building, testing and
installing of modules, and for the execution of scripts. See the section "Removal of the current
directory (".") from @INC" for the full details.

• do may now warn

do now gives a deprecation warning when it fails to load a file which it would have loaded had
"." been in @INC.

• In regular expression patterns, a literal left brace "{" should be escaped

See "Unescaped literal "{" characters in regular expression patterns are no longer permissible".

Core Enhancements
Lexical subroutines are no longer experimental

Using the lexical_subs feature introduced in v5.18 no longer emits a warning. Existing code that
disables the experimental::lexical_subs warning category that the feature previously used
will continue to work. The lexical_subs feature has no effect; all Perl code can use lexical
subroutines, regardless of what feature declarations are in scope.

Indented Here-documents
This adds a new modifier "˜" to here-docs that tells the parser that it should look for
/ˆ\s*$DELIM\n/ as the closing delimiter.

These syntaxes are all supported:

<<˜EOF;
<<˜\EOF;
<<˜'EOF';
<<˜"EOF";
<<˜`EOF`;
<<˜ 'EOF';
<<˜ "EOF";
<<˜ `EOF`;

The "˜" modifier will strip, from each line in the here-doc, the same whitespace that appears before
the delimiter.

Newlines will be copied as-is, and lines that don’t include the proper beginning whitespace will cause
perl to croak.

For example:

if (1) {
print <<˜EOF;

Hello there
EOF

}

prints ‘‘Hello there\n’’ with no leading whitespace.

New regular expression modifier /xx
Specifying two "x" characters to modify a regular expression pattern does everything that a single one
does, but additionally TAB and SPACE characters within a bracketed character class are generally
ignored and can be added to improve readability, like /[ˆ A-Z d-f p-x]/xx. Details are at
‘‘/x and /xx’’ in perlre.

perl v5.36.0 2021-04-29 366

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

@{ˆCAPTURE}, %{ˆCAPTURE}, and %{ˆCAPTURE_ALL}
@{ˆCAPTURE} exposes the capture buffers of the last match as an array. So $1 is
${ˆCAPTURE}[0]. This is a more efficient equivalent to code like
substr($matched_string,$-[0],$+[0]-$-[0]), and you don’t have to keep track of the
$matched_string either. This variable has no single character equivalent. Note that, like the other
regex magic variables, the contents of this variable is dynamic; if you wish to store it beyond the
lifetime of the match you must copy it to another array.

%{ˆCAPTURE} is equivalent to %+ (i.e., named captures). Other than being more self-documenting
there is no difference between the two forms.

%{ˆCAPTURE_ALL} is equivalent to %- (i.e., all named captures). Other than being more self-
documenting there is no difference between the two forms.

Declaring a reference to a variable
As an experimental feature, Perl now allows the referencing operator to come after my(), state(),
our(), or local(). This syntax must be enabled with use feature 'declared_refs' . It
is experimental, and will warn by default unless no warnings
'experimental::refaliasing' is in effect. It is intended mainly for use in assignments to
references. For example:

use experimental 'refaliasing', 'declared_refs';
my \$a = \$b;

See ‘‘Assigning to References’’ in perlref for more details.

Unicode 9.0 is now supported
A list of changes is at <http://www.unicode.org/versions/Unicode9.0.0/>. Modules that are shipped
with core Perl but not maintained by p5p do not necessarily support Unicode 9.0. Unicode::Normalize
does work on 9.0.

Use of \p{script} uses the improved Script_Extensions property
Unicode 6.0 introduced an improved form of the Script (sc) property, and called it Script_Extensions
(scx). Perl now uses this improved version when a property is specified as just \p{script}. This
should make programs more accurate when determining if a character is used in a given script, but
there is a slight chance of breakage for programs that very specifically needed the old behavior. The
meaning of compound forms, like \p{sc=script} are unchanged. See ‘‘Scripts’’ in perlunicode.

Perl can now do default collation in UTF-8 locales on platforms that support it
Some platforms natively do a reasonable job of collating and sorting in UTF-8 locales. Perl now works
with those. For portability and full control, Unicode::Collate is still recommended, but now you may
not need to do anything special to get good-enough results, depending on your application. See
"Category LC_COLLATE: Collation: Text Comparisons and Sorting" in perllocale.

Better locale collation of strings containing embedded NUL characters
In locales that have multi-level character weights, NULs are now ignored at the higher priority ones.
There are still some gotchas in some strings, though. See "Collation of strings containing embedded
NUL characters" in perllocale.

CORE subroutines for hash and array functions callable via reference
The hash and array functions in the CORE namespace (keys, each, values, push, pop, shift,
unshift and splice) can now be called with ampersand syntax (&CORE::keys(\%hash) and
via reference (my $k = \&CORE::keys; $k->(\%hash)). Previously they could only be used
when inlined.

New Hash Function For 64-bit Builds
We have switched to a hybrid hash function to better balance performance for short and long keys.

For short keys, 16 bytes and under, we use an optimised variant of One At A Time Hard, and for longer
keys we use Siphash 1-3. For very long keys this is a big improvement in performance. For shorter
keys there is a modest improvement.

Security
Removal of the current directory (‘‘.’’) from @INC

The perl binary includes a default set of paths in @INC. Historically it has also included the current
directory (".") as the final entry, unless run with taint mode enabled (perl -T). While convenient,

perl v5.36.0 2021-04-29 367

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

this has security implications: for example, where a script attempts to load an optional module when its
current directory is untrusted (such as /tmp), it could load and execute code from under that directory.

Starting with v5.26, "." is always removed by default, not just under tainting. This has major
implications for installing modules and executing scripts.

The following new features have been added to help ameliorate these issues.

• Configure -Udefault_inc_excludes_dot

There is a new Configure option, default_inc_excludes_dot (enabled by default) which
builds a perl executable without "."; unsetting this option using -U reverts perl to the old
behaviour. This may fix your path issues but will reintroduce all the security concerns, so don’t
build a perl executable like this unless you’re really confident that such issues are not a concern in
your environment.

• PERL_USE_UNSAFE_INC

There is a new environment variable recognised by the perl interpreter. If this variable has the
value 1 when the perl interpreter starts up, then "." will be automatically appended to @INC
(except under tainting).

This allows you restore the old perl interpreter behaviour on a case-by-case basis. But note that
this is intended to be a temporary crutch, and this feature will likely be removed in some future
perl version. It is currently set by the cpan utility and Test::Harness to ease installation of
CPAN modules which have not been updated to handle the lack of dot. Once again, don’t use this
unless you are sure that this will not reintroduce any security concerns.

• A new deprecation warning issued by do.

While it is well-known that use and require use @INC to search for the file to load, many
people don’t realise that do "file" also searches @INC if the file is a relative path. With the
removal of ".", a simple do "file.pl" will fail to read in and execute file.pl from the
current directory. Since this is commonly expected behaviour, a new deprecation warning is now
issued whenever do fails to load a file which it otherwise would have found if a dot had been in
@INC.

Here are some things script and module authors may need to do to make their software work in the new
regime.

• Script authors

If the issue is within your own code (rather than within included modules), then you have two
main options. Firstly, if you are confident that your script will only be run within a trusted
directory (under which you expect to find trusted files and modules), then add "." back into the
path; e.g.:

BEGIN {
my $dir = "/some/trusted/directory";
chdir $dir or die "Can't chdir to $dir: $!\n";
safe now
push @INC, '.';

}

use "Foo::Bar"; # may load /some/trusted/directory/Foo/Bar.pm
do "config.pl"; # may load /some/trusted/directory/config.pl

On the other hand, if your script is intended to be run from within untrusted directories (such as
/tmp), then your script suddenly failing to load files may be indicative of a security issue. You
most likely want to replace any relative paths with full paths; for example,

do "foo_config.pl"

might become

do "$ENV{HOME}/foo_config.pl"

If you are absolutely certain that you want your script to load and execute a file from the current

perl v5.36.0 2021-04-29 368

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

directory, then use a ./ prefix; for example:

do "./foo_config.pl"

• Installing and using CPAN modules

If you install a CPAN module using an automatic tool like cpan, then this tool will itself set the
PERL_USE_UNSAFE_INC environment variable while building and testing the module, which
may be sufficient to install a distribution which hasn’t been updated to be dot-aware. If you want
to install such a module manually, then you’ll need to replace the traditional invocation:

perl Makefile.PL && make && make test && make install

with something like

(export PERL_USE_UNSAFE_INC=1; \
perl Makefile.PL && make && make test && make install)

Note that this only helps build and install an unfixed module. It’s possible for the tests to pass
(since they were run under PERL_USE_UNSAFE_INC=1), but for the module itself to fail to
perform correctly in production. In this case, you may have to temporarily modify your script
until a fixed version of the module is released. For example:

use Foo::Bar;
{

local @INC = (@INC, '.');
assuming read_config() needs '.' in @INC
$config = Foo::Bar->read_config();

}

This is only rarely expected to be necessary. Again, if doing this, assess the resultant risks first.

• Module Authors

If you maintain a CPAN distribution, it may need updating to run in a dotless environment.
Although cpan and other such tools will currently set the PERL_USE_UNSAFE_INC during
module build, this is a temporary workaround for the set of modules which rely on "." being in
@INC for installation and testing, and this may mask deeper issues. It could result in a module
which passes tests and installs, but which fails at run time.

During build, test, and install, it will normally be the case that any perl processes will be executing
directly within the root directory of the untarred distribution, or a known subdirectory of that, such
as t/. It may well be that Makefile.PL or t/foo.t will attempt to include local modules and
configuration files using their direct relative filenames, which will now fail.

However, as described above, automatic tools like cpan will (for now) set the
PERL_USE_UNSAFE_INC environment variable, which introduces dot during a build.

This makes it likely that your existing build and test code will work, but this may mask issues with
your code which only manifest when used after install. It is prudent to try and run your build
process with that variable explicitly disabled:

(export PERL_USE_UNSAFE_INC=0; \
perl Makefile.PL && make && make test && make install)

This is more likely to show up any potential problems with your module’s build process, or even
with the module itself. Fixing such issues will ensure both that your module can again be installed
manually, and that it will still build once the PERL_USE_UNSAFE_INC crutch goes away.

When fixing issues in tests due to the removal of dot from @INC, reinsertion of dot into @INC
should be performed with caution, for this too may suppress real errors in your runtime code. You
are encouraged wherever possible to apply the aforementioned approaches with explicit
absolute/relative paths, or to relocate your needed files into a subdirectory and insert that
subdirectory into @INC instead.

If your runtime code has problems under the dotless @INC, then the comments above on how to
fix for script authors will mostly apply here too. Bear in mind though that it is considered bad
form for a module to globally add a dot to @INC, since it introduces both a security risk and hides

perl v5.36.0 2021-04-29 369

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

issues of accidentally requiring dot in @INC, as explained above.

Escaped colons and relative paths in PATH
On Unix systems, Perl treats any relative paths in the PATH environment variable as tainted when
starting a new process. Previously, it was allowing a backslash to escape a colon (unlike the OS),
consequently allowing relative paths to be considered safe if the PATH was set to something like /\:..
The check has been fixed to treat "." as tainted in that example.

New -Di switch is now required for PerlIO debugging output
This is used for debugging of code within PerlIO to avoid recursive calls. Previously this output would
be sent to the file specified by the PERLIO_DEBUG environment variable if perl wasn’t running setuid
and the -T or -t switches hadn’t been parsed yet.

If perl performed output at a point where it hadn’t yet parsed its switches this could result in perl
creating or overwriting the file named by PERLIO_DEBUG even when the -T switch had been
supplied.

Perl now requires the -Di switch to be present before it will produce PerlIO debugging output. By
default this is written to stderr, but can optionally be redirected to a file by setting the
PERLIO_DEBUG environment variable.

If perl is running setuid or the -T switch was supplied, PERLIO_DEBUG is ignored and the debugging
output is sent to stderr as for any other -D switch.

Incompatible Changes
Unescaped literal ‘‘{’’ characters in regular expression patterns are no longer

permissible
You have to now say something like "\{" or "[{]" to specify to match a LEFT CURLY BRACKET;
otherwise, it is a fatal pattern compilation error. This change will allow future extensions to the
language.

These have been deprecated since v5.16, with a deprecation message raised for some uses starting in
v5.22. Unfortunately, the code added to raise the message was buggy and failed to warn in some cases
where it should have. Therefore, enforcement of this ban for these cases is deferred until Perl 5.30, but
the code has been fixed to raise a default-on deprecation message for them in the meantime.

Some uses of literal "{" occur in contexts where we do not foresee the meaning ever being anything
but the literal, such as the very first character in the pattern, or after a "|" meaning alternation. Thus

qr/{fee|{fie/

matches either of the strings {fee or {fie. To avoid forcing unnecessary code changes, these uses
do not need to be escaped, and no warning is raised about them, and there are no current plans to
change this.

But it is always correct to escape "{", and the simple rule to remember is to always do so.

See Unescaped left brace in regex is illegal here.

scalar(%hash) return signature changed
The value returned for scalar(%hash) will no longer show information about the buckets allocated
in the hash. It will simply return the count of used keys. It is thus equivalent to 0+keys(%hash).

A form of backward compatibility is provided via Hash::Util::bucket_ratio() which
provides the same behavior as scalar(%hash) provided in Perl 5.24 and earlier.

keys returned from an lvalue subroutine
keys returned from an lvalue subroutine can no longer be assigned to in list context.

sub foo : lvalue { keys(%INC) }
(foo) = 3; # death
sub bar : lvalue { keys(@_) }
(bar) = 3; # also an error

This makes the lvalue sub case consistent with (keys %hash) = ... and (keys @_) = ...,
which are also errors. [GH #15339] <https://github.com/Perl/perl5/issues/15339>

perl v5.36.0 2021-04-29 370

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

The ${ˆENCODING} facility has been removed
The special behaviour associated with assigning a value to this variable has been removed. As a
consequence, the encoding pragma’s default mode is no longer supported. If you still need to write
your source code in encodings other than UTF-8, use a source filter such as Filter::Encoding on CPAN
or encoding’s Filter option.

POSIX::tmpnam() has been removed
The fundamentally unsafe tmpnam() interface was deprecated in Perl 5.22 and has now been
removed. In its place, you can use, for example, the File::Temp interfaces.

require ::Foo::Bar is now illegal.
Formerly, require ::Foo::Bar would try to read /Foo/Bar.pm. Now any bareword require which
starts with a double colon dies instead.

Literal control character variable names are no longer permissible
A variable name may no longer contain a literal control character under any circumstances. These
previously were allowed in single-character names on ASCII platforms, but have been deprecated there
since Perl 5.20. This affects things like $\cT, where \cT is a literal control (such as a NAK or
NEGATIVE ACKNOWLEDGE character) in the source code.

NBSP is no longer permissible in \N{...}
The name of a character may no longer contain non-breaking spaces. It has been deprecated to do so
since Perl 5.22.

Deprecations
String delimiters that aren’t stand-alone graphemes are now deprecated

For Perl to eventually allow string delimiters to be Unicode grapheme clusters (which look like a single
character, but may be a sequence of several ones), we have to stop allowing a single character delimiter
that isn’t a grapheme by itself. These are unlikely to exist in actual code, as they would typically
display as attached to the character in front of them.

\cX that maps to a printable is no longer deprecated
This means we have no plans to remove this feature. It still raises a warning, but only if syntax
warnings are enabled. The feature was originally intended to be a way to express non-printable
characters that don’t have a mnemonic (\t and \n are mnemonics for two non-printable characters,
but most non-printables don’t have a mnemonic.) But the feature can be used to specify a few printable
characters, though those are more clearly expressed as the printable itself. See
<http://www.nntp.perl.org/group/perl.perl5.porters/2017/02/msg242944.html>.

Performance Enhancements
• A hash in boolean context is now sometimes faster, e.g.

if (!%h) { ... }

This was already special-cased, but some cases were missed (such as grep %$_, @AoH), and
even the ones which weren’t have been improved.

• New Faster Hash Function on 64 bit builds

We use a different hash function for short and long keys. This should improve performance and
security, especially for long keys.

• readline is faster

Reading from a file line-by-line with readline() or <> should now typically be faster due to a
better implementation of the code that searches for the next newline character.

• Assigning one reference to another, e.g. $ref1 = $ref2 has been optimized in some cases.

• Remove some exceptions to creating Copy-on-Write strings. The string buffer growth algorithm
has been slightly altered so that you’re less likely to encounter a string which can’t be COWed.

• Better optimise array and hash assignment: where an array or hash appears in the LHS of a list
assignment, such as (..., @a) = (...);, it’s likely to be considerably faster, especially if it
involves emptying the array/hash. For example, this code runs about a third faster compared to
Perl 5.24.0:

perl v5.36.0 2021-04-29 371

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

my @a;
for my $i (1..10_000_000) {

@a = (1,2,3);
@a = ();

}

• Converting a single-digit string to a number is now substantially faster.

• The split builtin is now slightly faster in many cases: in particular for the two specially-handled
forms

my @a = split ...;
local @a = split ...;

• The rather slow implementation for the experimental subroutine signatures feature has been made
much faster; it is now comparable in speed with the traditional my ($a, $b, @c) = @_.

• Bareword constant strings are now permitted to take part in constant folding. They were originally
exempted from constant folding in August 1999, during the development of Perl 5.6, to ensure that
use strict "subs" would still apply to bareword constants. That has now been
accomplished a different way, so barewords, like other constants, now gain the performance
benefits of constant folding.

This also means that void-context warnings on constant expressions of barewords now report the
folded constant operand, rather than the operation; this matches the behaviour for non-bareword
constants.

Modules and Pragmata
Updated Modules and Pragmata

• IO::Compress has been upgraded from version 2.069 to 2.074.

• Archive::Tar has been upgraded from version 2.04 to 2.24.

• arybase has been upgraded from version 0.11 to 0.12.

• attributes has been upgraded from version 0.27 to 0.29.

The deprecation message for the :unique and :locked attributes now mention that they will
disappear in Perl 5.28.

• B has been upgraded from version 1.62 to 1.68.

• B::Concise has been upgraded from version 0.996 to 0.999.

Its output is now more descriptive for op_private flags.

• B::Debug has been upgraded from version 1.23 to 1.24.

• B::Deparse has been upgraded from version 1.37 to 1.40.

• B::Xref has been upgraded from version 1.05 to 1.06.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• base has been upgraded from version 2.23 to 2.25.

• bignum has been upgraded from version 0.42 to 0.47.

• Carp has been upgraded from version 1.40 to 1.42.

• charnames has been upgraded from version 1.43 to 1.44.

• Compress::Raw::Bzip2 has been upgraded from version 2.069 to 2.074.

• Compress::Raw::Zlib has been upgraded from version 2.069 to 2.074.

• Config::Perl::V has been upgraded from version 0.25 to 0.28.

• CPAN has been upgraded from version 2.11 to 2.18.

• CPAN::Meta has been upgraded from version 2.150005 to 2.150010.

perl v5.36.0 2021-04-29 372

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• Data::Dumper has been upgraded from version 2.160 to 2.167.

The XS implementation now supports Deparse.

• DB_File has been upgraded from version 1.835 to 1.840.

• Devel::Peek has been upgraded from version 1.23 to 1.26.

• Devel::PPPort has been upgraded from version 3.32 to 3.35.

• Devel::SelfStubber has been upgraded from version 1.05 to 1.06.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• diagnostics has been upgraded from version 1.34 to 1.36.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• Digest has been upgraded from version 1.17 to 1.17_01.

• Digest::MD5 has been upgraded from version 2.54 to 2.55.

• Digest::SHA has been upgraded from version 5.95 to 5.96.

• DynaLoader has been upgraded from version 1.38 to 1.42.

• Encode has been upgraded from version 2.80 to 2.88.

• encoding has been upgraded from version 2.17 to 2.19.

This module’s default mode is no longer supported. It now dies when imported, unless the
Filter option is being used.

• encoding::warnings has been upgraded from version 0.12 to 0.13.

This module is no longer supported. It emits a warning to that effect and then does nothing.

• Errno has been upgraded from version 1.25 to 1.28.

It now documents that using %! automatically loads Errno for you.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• ExtUtils::Embed has been upgraded from version 1.33 to 1.34.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• ExtUtils::MakeMaker has been upgraded from version 7.10_01 to 7.24.

• ExtUtils::Miniperl has been upgraded from version 1.05 to 1.06.

• ExtUtils::ParseXS has been upgraded from version 3.31 to 3.34.

• ExtUtils::Typemaps has been upgraded from version 3.31 to 3.34.

• feature has been upgraded from version 1.42 to 1.47.

• File::Copy has been upgraded from version 2.31 to 2.32.

• File::Fetch has been upgraded from version 0.48 to 0.52.

• File::Glob has been upgraded from version 1.26 to 1.28.

It now Issues a deprecation message for File::Glob::glob().

• File::Spec has been upgraded from version 3.63 to 3.67.

• FileHandle has been upgraded from version 2.02 to 2.03.

• Filter::Simple has been upgraded from version 0.92 to 0.93.

It no longer treats no MyFilter immediately following use MyFilter as end-of-file. [GH
#11853] <https://github.com/Perl/perl5/issues/11853>

perl v5.36.0 2021-04-29 373

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• Getopt::Long has been upgraded from version 2.48 to 2.49.

• Getopt::Std has been upgraded from version 1.11 to 1.12.

• Hash::Util has been upgraded from version 0.19 to 0.22.

• HTTP::Tiny has been upgraded from version 0.056 to 0.070.

Internal 599-series errors now include the redirect history.

• I18N::LangTags has been upgraded from version 0.40 to 0.42.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• IO has been upgraded from version 1.36 to 1.38.

• IO::Socket::IP has been upgraded from version 0.37 to 0.38.

• IPC::Cmd has been upgraded from version 0.92 to 0.96.

• IPC::SysV has been upgraded from version 2.06_01 to 2.07.

• JSON::PP has been upgraded from version 2.27300 to 2.27400_02.

• lib has been upgraded from version 0.63 to 0.64.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• List::Util has been upgraded from version 1.42_02 to 1.46_02.

• Locale::Codes has been upgraded from version 3.37 to 3.42.

• Locale::Maketext has been upgraded from version 1.26 to 1.28.

• Locale::Maketext::Simple has been upgraded from version 0.21 to 0.21_01.

• Math::BigInt has been upgraded from version 1.999715 to 1.999806.

• Math::BigInt::FastCalc has been upgraded from version 0.40 to 0.5005.

• Math::BigRat has been upgraded from version 0.260802 to 0.2611.

• Math::Complex has been upgraded from version 1.59 to 1.5901.

• Memoize has been upgraded from version 1.03 to 1.03_01.

• Module::CoreList has been upgraded from version 5.20170420 to 5.20170530.

• Module::Load::Conditional has been upgraded from version 0.64 to 0.68.

• Module::Metadata has been upgraded from version 1.000031 to 1.000033.

• mro has been upgraded from version 1.18 to 1.20.

• Net::Ping has been upgraded from version 2.43 to 2.55.

IPv6 addresses and AF_INET6 sockets are now supported, along with several other
enhancements.

• NEXT has been upgraded from version 0.65 to 0.67.

• Opcode has been upgraded from version 1.34 to 1.39.

• open has been upgraded from version 1.10 to 1.11.

• OS2::Process has been upgraded from version 1.11 to 1.12.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• overload has been upgraded from version 1.26 to 1.28.

Its compilation speed has been improved slightly.

• parent has been upgraded from version 0.234 to 0.236.

perl v5.36.0 2021-04-29 374

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• perl5db.pl has been upgraded from version 1.50 to 1.51.

It now ignores /dev/tty on non-Unix systems. [GH #12244]
<https://github.com/Perl/perl5/issues/12244>

• Perl::OSType has been upgraded from version 1.009 to 1.010.

• perlfaq has been upgraded from version 5.021010 to 5.021011.

• PerlIO has been upgraded from version 1.09 to 1.10.

• PerlIO::encoding has been upgraded from version 0.24 to 0.25.

• PerlIO::scalar has been upgraded from version 0.24 to 0.26.

• Pod::Checker has been upgraded from version 1.60 to 1.73.

• Pod::Functions has been upgraded from version 1.10 to 1.11.

• Pod::Html has been upgraded from version 1.22 to 1.2202.

• Pod::Perldoc has been upgraded from version 3.25_02 to 3.28.

• Pod::Simple has been upgraded from version 3.32 to 3.35.

• Pod::Usage has been upgraded from version 1.68 to 1.69.

• POSIX has been upgraded from version 1.65 to 1.76.

This remedies several defects in making its symbols exportable. [GH #15260]
<https://github.com/Perl/perl5/issues/15260>

The POSIX::tmpnam() interface has been removed, see ‘‘POSIX::tmpnam() has been
removed’’.

The following deprecated functions have been removed:

POSIX::isalnum
POSIX::isalpha
POSIX::iscntrl
POSIX::isdigit
POSIX::isgraph
POSIX::islower
POSIX::isprint
POSIX::ispunct
POSIX::isspace
POSIX::isupper
POSIX::isxdigit
POSIX::tolower
POSIX::toupper

Trying to import POSIX subs that have no real implementations (like POSIX::atend()) now
fails at import time, instead of waiting until runtime.

• re has been upgraded from version 0.32 to 0.34

This adds support for the new /xx regular expression pattern modifier, and a change to the
use re 'strict' experimental feature. When re 'strict' is enabled, a warning now
will be generated for all unescaped uses of the two characters "}" and "]" in regular expression
patterns (outside bracketed character classes) that are taken literally. This brings them more in
line with the ")" character which is always a metacharacter unless escaped. Being a
metacharacter only sometimes, depending on an action at a distance, can lead to silently having
the pattern mean something quite different than was intended, which the re 'strict' mode is
intended to minimize.

• Safe has been upgraded from version 2.39 to 2.40.

• Scalar::Util has been upgraded from version 1.42_02 to 1.46_02.

• Storable has been upgraded from version 2.56 to 2.62.

Fixes [GH #15714] <https://github.com/Perl/perl5/issues/15714>.

perl v5.36.0 2021-04-29 375

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• Symbol has been upgraded from version 1.07 to 1.08.

• Sys::Syslog has been upgraded from version 0.33 to 0.35.

• Term::ANSIColor has been upgraded from version 4.04 to 4.06.

• Term::ReadLine has been upgraded from version 1.15 to 1.16.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• Test has been upgraded from version 1.28 to 1.30.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• Test::Harness has been upgraded from version 3.36 to 3.38.

• Test::Simple has been upgraded from version 1.001014 to 1.302073.

• Thread::Queue has been upgraded from version 3.09 to 3.12.

• Thread::Semaphore has been upgraded from 2.12 to 2.13.

Added the down_timed method.

• threads has been upgraded from version 2.07 to 2.15.

• threads::shared has been upgraded from version 1.51 to 1.56.

• Tie::Hash::NamedCapture has been upgraded from version 0.09 to 0.10.

• Time::HiRes has been upgraded from version 1.9733 to 1.9741.

It now builds on systems with C++11 compilers (such as G++ 6 and Clang++ 3.9).

Now uses clockid_t.

• Time::Local has been upgraded from version 1.2300 to 1.25.

• Unicode::Collate has been upgraded from version 1.14 to 1.19.

• Unicode::UCD has been upgraded from version 0.64 to 0.68.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• version has been upgraded from version 0.9916 to 0.9917.

• VMS::DCLsym has been upgraded from version 1.06 to 1.08.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

• warnings has been upgraded from version 1.36 to 1.37.

• XS::Typemap has been upgraded from version 0.14 to 0.15.

• XSLoader has been upgraded from version 0.21 to 0.27.

Fixed a security hole in which binary files could be loaded from a path outside of @INC.

It now uses 3-arg open() instead of 2-arg open(). [GH #15721]
<https://github.com/Perl/perl5/issues/15721>

Documentation
New Documentation

perldeprecation

This file documents all upcoming deprecations, and some of the deprecations which already have been
removed. The purpose of this documentation is two-fold: document what will disappear, and by which
version, and serve as a guide for people dealing with code which has features that no longer work after
an upgrade of their perl.

Changes to Existing Documentation
We have attempted to update the documentation to reflect the changes listed in this document. If you
find any we have missed, send email to perlbug@perl.org <mailto:perlbug@perl.org>.

perl v5.36.0 2021-04-29 376

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

Additionally, all references to Usenet have been removed, and the following selected changes have
been made:

perlfunc

• Removed obsolete text about defined() on aggregates that should have been deleted earlier,
when the feature was removed.

• Corrected documentation of eval(), and evalbytes().

• Clarified documentation of seek(), tell() and sysseek() emphasizing that positions are in
bytes and not characters. [GH #15438] <https://github.com/Perl/perl5/issues/15438>

• Clarified documentation of sort() concerning the variables $a and $b.

• In split() noted that certain pattern modifiers are legal, and added a caution about its use in
Perls before v5.11.

• Removed obsolete documentation of study(), noting that it is now a no-op.

• Noted that vec() doesn’t work well when the string contains characters whose code points are
above 255.

perlguts

• Added advice on formatted printing of operands of Size_t and SSize_t

perlhack

• Clarify what editor tab stop rules to use, and note that we are migrating away from using tabs,
replacing them with sequences of SPACE characters.

perlhacktips

• Give another reason to use cBOOL to cast an expression to boolean.

• Note that the macros TRUE and FALSE are available to express boolean values.

perlinterp

• perlinterp has been expanded to give a more detailed example of how to hunt around in the parser
for how a given operator is handled.

perllocale

• Some locales aren’t compatible with Perl. Note that these can cause core dumps.

perlmod

• Various clarifications have been added.

perlmodlib

• Updated the site mirror list.

perlobj

• Added a section on calling methods using their fully qualified names.

• Do not discourage manual @ISA.

perlootut

• Mention Moo more.

perlop

• Note that white space must be used for quoting operators if the delimiter is a word character (i.e.,
matches \w).

• Clarify that in regular expression patterns delimited by single quotes, no variable interpolation is
done.

perlre

• The first part was extensively rewritten to incorporate various basic points, that in earlier versions
were mentioned in sort of an appendix on Version 8 regular expressions.

perl v5.36.0 2021-04-29 377

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• Note that it is common to have the /x modifier and forget that this means that "#" has to be
escaped.

perlretut

• Add introductory material.

• Note that a metacharacter occurring in a context where it can’t mean that, silently loses its meta-
ness and matches literally. use re 'strict' can catch some of these.

perlunicode

• Corrected the text about Unicode BYTE ORDER MARK handling.

• Updated the text to correspond with changes in Unicode UTS#18, concerning regular expressions,
and Perl compatibility with what it says.

perlvar

• Document @ISA. It was documented in other places, but not in perlvar.

Diagnostics
New Diagnostics

New Errors

• A signature parameter must start with '$', '@' or '%'

• Bareword in require contains ‘‘%s’’

• Bareword in require maps to empty filename

• Bareword in require maps to disallowed filename ‘‘%s’’

• Bareword in require must not start with a double-colon: ‘‘%s’’

• %s: command not found

(A) You’ve accidentally run your script through bash or another shell instead of Perl. Check the
#! line, or manually feed your script into Perl yourself. The #! line at the top of your file could
look like:

#!/usr/bin/perl

• %s: command not found: %s

(A) You’ve accidentally run your script through zsh or another shell instead of Perl. Check the #!
line, or manually feed your script into Perl yourself. The #! line at the top of your file could look
like:

#!/usr/bin/perl

• The experimental declared_refs feature is not enabled

(F) To declare references to variables, as in my \%x, you must first enable the feature:

no warnings "experimental::declared_refs";
use feature "declared_refs";

See ‘‘Declaring a reference to a variable’’.

• Illegal character following sigil in a subroutine signature

• Indentation on line %d of here-doc doesn’t match delimiter

• Infinite recursion via empty pattern.

Using the empty pattern (which re-executes the last successfully-matched pattern) inside a code
block in another regex, as in /(?{ s!!new! })/, has always previously yielded a segfault. It
now produces this error.

• Malformed UTF-8 string in ‘‘%s’’

• Multiple slurpy parameters not allowed

perl v5.36.0 2021-04-29 378

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• '#' not allowed immediately following a sigil in a subroutine signature

• panic: unknown OA_*: %x

• Unescaped left brace in regex is illegal here

Unescaped left braces are now illegal in some contexts in regular expression patterns. In other
contexts, they are still just deprecated; they will be illegal in Perl 5.30.

• Version control conflict marker

(F) The parser found a line starting with <<<<<<<, >>>>>>>, or =======. These may be left
by a version control system to mark conflicts after a failed merge operation.

New Warnings

• Can’t determine class of operator %s, assuming BASEOP

• Declaring references is experimental

(S experimental::declared_refs) This warning is emitted if you use a reference constructor on the
right-hand side of my(), state(), our(), or local(). Simply suppress the warning if you
want to use the feature, but know that in doing so you are taking the risk of using an experimental
feature which may change or be removed in a future Perl version:

no warnings "experimental::declared_refs";
use feature "declared_refs";
$fooref = my \$foo;

See ‘‘Declaring a reference to a variable’’.

• do ‘‘%s’’ failed, ’.’ is no longer in @INC

Since "." is now removed from @INC by default, do will now trigger a warning recommending
to fix the do statement.

• File::Glob::glob() will disappear in perl 5.30. Use File::Glob::bsd_glob()
instead.

• Unescaped literal ’%c’ in regex; marked by <-- HERE in m/%s/

• Use of unassigned code point or non-standalone grapheme for a delimiter will be a fatal error
starting in Perl 5.30

See ‘‘Deprecations’’

Changes to Existing Diagnostics
• When a require fails, we now do not provide @INC when the require is for a file instead of

a module.

• When @INC is not scanned for a require call, we no longer display @INC to avoid confusion.

• Attribute ‘‘locked’’ is deprecated, and will disappear in Perl 5.28

This existing warning has had the and will disappear text added in this release.

• Attribute ‘‘unique’’ is deprecated, and will disappear in Perl 5.28

This existing warning has had the and will disappear text added in this release.

• Calling POSIX::%s() is deprecated

This warning has been removed, as the deprecated functions have been removed from POSIX.

• Constants from lexical variables potentially modified elsewhere are deprecated. This will not be
allowed in Perl 5.32

This existing warning has had the this will not be allowed text added in this release.

• Deprecated use of my() in false conditional. This will be a fatal error in Perl 5.30

This existing warning has had the this will be a fatal error text added in this release.

perl v5.36.0 2021-04-29 379

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• dump() better written as CORE::dump(). dump() will no longer be available in Perl 5.30

This existing warning has had the no longer be available text added in this release.

• Experimental %s on scalar is now forbidden

This message is now followed by more helpful text. [GH #15291]
<https://github.com/Perl/perl5/issues/15291>

• Experimental ‘‘%s’’ subs not enabled

This warning was been removed, as lexical subs are no longer experimental.

• Having more than one /%c regexp modifier is deprecated

This deprecation warning has been removed, since /xx now has a new meaning.

• %s() is deprecated on :utf8 handles. This will be a fatal error in Perl 5.30 .

where ‘‘%s’’ is one of sysread, recv, syswrite, or send.

This existing warning has had the this will be a fatal error text added in this release.

This warning is now enabled by default, as all deprecated category warnings should be.

• $* is no longer supported. Its use will be fatal in Perl 5.30

This existing warning has had the its use will be fatal text added in this release.

• $# is no longer supported. Its use will be fatal in Perl 5.30

This existing warning has had the its use will be fatal text added in this release.

• Malformed UTF-8 character%s

Details as to the exact problem have been added at the end of this message

• Missing or undefined argument to %s

This warning used to warn about require, even if it was actually do which being executed. It
now gets the operation name right.

• NO-BREAK SPACE in a charnames alias definition is deprecated

This warning has been removed as the behavior is now an error.

• Odd name/value argument for subroutine ’%s’

This warning now includes the name of the offending subroutine.

• Opening dirhandle %s also as a file. This will be a fatal error in Perl 5.28

This existing warning has had the this will be a fatal error text added in this release.

• Opening filehandle %s also as a directory. This will be a fatal error in Perl 5.28

This existing warning has had the this will be a fatal error text added in this release.

• panic: ck_split, type=%u

panic: pp_split, pm=%p, s=%p

These panic errors have been removed.

• Passing malformed UTF-8 to ‘‘%s’’ is deprecated

This warning has been changed to the fatal Malformed UTF-8 string in ‘‘%s’’

• Setting $/ to a reference to %s as a form of slurp is deprecated, treating as undef. This will be
fatal in Perl 5.28

This existing warning has had the this will be fatal text added in this release.

• ${ˆENCODING} is no longer supported. Its use will be fatal in Perl 5.28

This warning used to be: "Setting ${ˆENCODING} is deprecated".

The special action of the variable ${ˆENCODING} was formerly used to implement the
encoding pragma. As of Perl 5.26, rather than being deprecated, assigning to this variable now

perl v5.36.0 2021-04-29 380

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

has no effect except to issue the warning.

• Too few arguments for subroutine ’%s’

This warning now includes the name of the offending subroutine.

• Too many arguments for subroutine ’%s’

This warning now includes the name of the offending subroutine.

• Unescaped left brace in regex is deprecated here (and will be fatal in Perl 5.30), passed through in
regex; marked by <-- HERE in m/%s/

This existing warning has had the here (and will be fatal...) text added in this release.

• Unknown charname ’’ is deprecated. Its use will be fatal in Perl 5.28

This existing warning has had the its use will be fatal text added in this release.

• Use of bare << to mean <<"" is deprecated. Its use will be fatal in Perl 5.28

This existing warning has had the its use will be fatal text added in this release.

• Use of code point 0x%s is deprecated; the permissible max is 0x%s. This will be fatal in Perl 5.28

This existing warning has had the this will be fatal text added in this release.

• Use of comma-less variable list is deprecated. Its use will be fatal in Perl 5.28

This existing warning has had the its use will be fatal text added in this release.

• Use of inherited AUTOLOAD for non-method %s() is deprecated. This will be fatal in Perl 5.28

This existing warning has had the this will be fatal text added in this release.

• Use of strings with code points over 0xFF as arguments to %s operator is deprecated. This will be
a fatal error in Perl 5.28

This existing warning has had the this will be a fatal error text added in this release.

Utility Changes
c2ph and pstruct

• These old utilities have long since superceded by h2xs, and are now gone from the distribution.

Porting/pod_lib.pl
• Removed spurious executable bit.

• Account for the possibility of DOS file endings.

Porting/sync-with-cpan
• Many improvements.

perf/benchmarks
• Tidy file, rename some symbols.

Porting/checkAUTHORS.pl
• Replace obscure character range with \w.

t/porting/regen.t
• Try to be more helpful when tests fail.

utils/h2xs.PL
• Avoid infinite loop for enums.

perlbug
• Long lines in the message body are now wrapped at 900 characters, to stay well within the

1000-character limit imposed by SMTP mail transfer agents. This is particularly likely to be
important for the list of arguments to Configure, which can readily exceed the limit if, for
example, it names several non-default installation paths. This change also adds the first unit tests
for perlbug. [perl #128020] <https://rt.perl.org/Public/Bug/Display.html?id=128020>

Configuration and Compilation
• -Ddefault_inc_excludes_dot has added, and enabled by default.

perl v5.36.0 2021-04-29 381

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• The dtrace build process has further changes [GH #15718]
<https://github.com/Perl/perl5/issues/15718>:

• If the -xnolibs is available, use that so a dtrace perl can be built within a FreeBSD jail.

• On systems that build a dtrace object file (FreeBSD, Solaris, and SystemTap’s dtrace
emulation), copy the input objects to a separate directory and process them there, and use
those objects in the link, since dtrace -G also modifies these objects.

• Add libelf to the build on FreeBSD 10.x, since dtrace adds references to libelf symbols.

• Generate a dummy dtrace_main.o if dtrace -G fails to build it. A default build on Solaris
generates probes from the unused inline functions, while they don’t on FreeBSD, which
causes dtrace -G to fail.

• You can now disable perl’s use of the PERL_HASH_SEED and PERL_PERTURB_KEYS
environment variables by configuring perl with -Accflags=NO_PERL_HASH_ENV.

• You can now disable perl’s use of the PERL_HASH_SEED_DEBUG environment variable by
configuring perl with -Accflags=-DNO_PERL_HASH_SEED_DEBUG.

• Configure now zeroes out the alignment bytes when calculating the bytes for 80-bit NaN and Inf
to make builds more reproducible. [GH #15725] <https://github.com/Perl/perl5/issues/15725>

• Since v5.18, for testing purposes we have included support for building perl with a variety of non-
standard, and non-recommended hash functions. Since we do not recommend the use of these
functions, we have removed them and their corresponding build options. Specifically this includes
the following build options:

PERL_HASH_FUNC_SDBM
PERL_HASH_FUNC_DJB2
PERL_HASH_FUNC_SUPERFAST
PERL_HASH_FUNC_MURMUR3
PERL_HASH_FUNC_ONE_AT_A_TIME
PERL_HASH_FUNC_ONE_AT_A_TIME_OLD
PERL_HASH_FUNC_MURMUR_HASH_64A
PERL_HASH_FUNC_MURMUR_HASH_64B

• Remove ‘‘Warning: perl appears in your path’’

This install warning is more or less obsolete, since most platforms already will have a /usr/bin/perl
or similar provided by the OS.

• Reduce verbosity of make install.man

Previously, two progress messages were emitted for each manpage: one by installman itself, and
one by the function in install_lib.pl that it calls to actually install the file. Disabling the second of
those in each case saves over 750 lines of unhelpful output.

• Cleanup for clang -Weverything support. [GH #15683]
<https://github.com/Perl/perl5/issues/15683>

• Configure: signbit scan was assuming too much, stop assuming negative 0.

• Various compiler warnings have been silenced.

• Several smaller changes have been made to remove impediments to compiling under C++11.

• Builds using USE_PAD_RESET now work again; this configuration had bit-rotted.

• A probe for gai_strerror was added to Configure that checks if the gai_strerror()
routine is available and can be used to translate error codes returned by getaddrinfo() into
human readable strings.

• Configure now aborts if both -Duselongdouble and -Dusequadmath are requested. [GH
#14944] <https://github.com/Perl/perl5/issues/14944>

• Fixed a bug in which Configure could append -quadmath to the archname even if it was already
present. [GH #15423] <https://github.com/Perl/perl5/issues/15423>

perl v5.36.0 2021-04-29 382

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• Clang builds with -DPERL_GLOBAL_STRUCT or -DPERL_GLOBAL_STRUCT_PRIVATE
have been fixed (by disabling Thread Safety Analysis for these configurations).

• make_ext.pl no longer updates a module’s pm_to_blib file when no files require updates. This
could cause dependencies, perlmain.c in particular, to be rebuilt unnecessarily. [GH #15060]
<https://github.com/Perl/perl5/issues/15060>

• The output of perl -V has been reformatted so that each configuration and compile-time option
is now listed one per line, to improve readability.

• Configure now builds miniperl and generate_uudmap if you invoke it with
-Dusecrosscompiler but not -Dtargethost=somehost. This means you can supply
your target platform config.sh, generate the headers and proceed to build your cross-target
perl. [GH #15126] <https://github.com/Perl/perl5/issues/15126>

• Perl built with -Accflags=-DPERL_TRACE_OPS now only dumps the operator counts when
the environment variable PERL_TRACE_OPS is set to a non-zero integer. This allows make
test to pass on such a build.

• When building with GCC 6 and link-time optimization (the -flto option to gcc), Configure was
treating all probed symbols as present on the system, regardless of whether they actually exist.
This has been fixed. [GH #15322] <https://github.com/Perl/perl5/issues/15322>

• The t/test.pl library is used for internal testing of Perl itself, and also copied by several CPAN
modules. Some of those modules must work on older versions of Perl, so t/test.pl must in turn
avoid newer Perl features. Compatibility with Perl 5.8 was inadvertently removed some time ago;
it has now been restored. [GH #15302] <https://github.com/Perl/perl5/issues/15302>

• The build process no longer emits an extra blank line before building each ‘‘simple’’ extension
(those with only *.pm and *.pod files).

Testing
Tests were added and changed to reflect the other additions and changes in this release. Furthermore,
these substantive changes were made:

• A new test script, comp/parser_run.t, has been added that is like comp/parser.t but with test.pl
included so that runperl() and the like are available for use.

• Tests for locales were erroneously using locales incompatible with Perl.

• Some parts of the test suite that try to exhaustively test edge cases in the regex implementation
have been restricted to running for a maximum of five minutes. On slow systems they could
otherwise take several hours, without significantly improving our understanding of the correctness
of the code under test.

• A new internal facility allows analysing the time taken by the individual tests in Perl’s own test
suite; see Porting/harness-timer-report.pl.

• t/re/regexp_nonull.t has been added to test that the regular expression engine can handle scalars
that do not have a null byte just past the end of the string.

• A new test script, t/op/decl-refs.t, has been added to test the new feature ‘‘Declaring a reference
to a variable’’.

• A new test script, t/re/keep_tabs.t has been added to contain tests where \t characters should not
be expanded into spaces.

• A new test script, t/re/anyof.t, has been added to test that the ANYOF nodes generated by bracketed
character classes are as expected.

• There is now more extensive testing of the Unicode-related API macros and functions.

• Several of the longer running API test files have been split into multiple test files so that they can
be run in parallel.

• t/harness now tries really hard not to run tests which are located outside of the Perl source tree.
[GH #14578] <https://github.com/Perl/perl5/issues/14578>

• Prevent debugger tests (lib/perl5db.t) from failing due to the contents of $ENV{PERLDB_OPTS}.
[GH #15782] <https://github.com/Perl/perl5/issues/15782>

perl v5.36.0 2021-04-29 383

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

Platform Support
New Platforms

NetBSD/VAX
Perl now compiles under NetBSD on VAX machines. However, it’s not possible for that platform
to implement floating-point infinities and NaNs compatible with most modern systems, which
implement the IEEE-754 floating point standard. The hexadecimal floating point (0x...p[+-]n
literals, printf %a) is not implemented, either. The make test passes 98% of tests.

• Test fixes and minor updates.

• Account for lack of inf, nan, and -0.0 support.

Platform-Specific Notes
Darwin

• Don’t treat -Dprefix=/usr as special: instead require an extra option
-Ddarwin_distribution to produce the same results.

• OS X El Capitan doesn’t implement the clock_gettime() or clock_getres() APIs;
emulate them as necessary.

• Deprecated syscall(2) on macOS 10.12.

EBCDIC
Several tests have been updated to work (or be skipped) on EBCDIC platforms.

HP-UX
The Net::Ping UDP test is now skipped on HP-UX.

Hurd
The hints for Hurd have been improved, enabling malloc wrap and reporting the GNU libc used
(previously it was an empty string when reported).

VAX
VAX floating point formats are now supported on NetBSD.

VMS
• The path separator for the PERL5LIB and PERLLIB environment entries is now a colon

(":") when running under a Unix shell. There is no change when running under DCL (it’s
still "|").

• configure.com now recognizes the VSI-branded C compiler and no longer recognizes the
‘‘DEC’’-branded C compiler (as there hasn’t been such a thing for 15 or more years).

Windows
• Support for compiling perl on Windows using Microsoft Visual Studio 2015 (containing

Visual C++ 14.0) has been added.

This version of VC++ includes a completely rewritten C run-time library, some of the changes
in which mean that work done to resolve a socket close() bug in perl #120091 and perl
#118059 is not workable in its current state with this version of VC++. Therefore, we have
effectively reverted that bug fix for VS2015 onwards on the basis that being able to build with
VS2015 onwards is more important than keeping the bug fix. We may revisit this in the future
to attempt to fix the bug again in a way that is compatible with VS2015.

These changes do not affect compilation with GCC or with Visual Studio versions up to and
including VS2013, i.e., the bug fix is retained (unchanged) for those compilers.

Note that you may experience compatibility problems if you mix a perl built with GCC or VS
<= VS2013 with XS modules built with VS2015, or if you mix a perl built with VS2015 with
XS modules built with GCC or VS <= VS2013. Some incompatibility may arise because of the
bug fix that has been reverted for VS2015 builds of perl, but there may well be incompatibility
anyway because of the rewritten CRT in VS2015 (e.g., see discussion at
<http://stackoverflow.com/questions/30412951>).

• It now automatically detects GCC versus Visual C and sets the VC version number on Win32.

Linux
Drop support for Linux a.out executable format. Linux has used ELF for over twenty years.

perl v5.36.0 2021-04-29 384

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

OpenBSD 6
OpenBSD 6 still does not support returning pid, gid, or uid with SA_SIGINFO. Make sure to
account for it.

FreeBSD
t/uni/overload.t: Skip hanging test on FreeBSD.

DragonFly BSD
DragonFly BSD now has support for setproctitle(). [GH #15703]
<https://github.com/Perl/perl5/issues/15703>.

Internal Changes
• A new API function sv_setpv_bufsize() allows simultaneously setting the length and the

allocated size of the buffer in an SV, growing the buffer if necessary.

• A new API macro SvPVCLEAR() sets its SV argument to an empty string, like Perl-space $x =
'' , but with several optimisations.

• Several new macros and functions for dealing with Unicode and UTF-8-encoded strings have
been added to the API, as well as some changes in the functionality of existing functions (see
‘‘Unicode Support’’ in perlapi for more details):

• New versions of the API macros like isALPHA_utf8 and toLOWER_utf8 have been
added, each with the suffix _safe, like isSPACE_utf8_safe. These take an extra
parameter, giving an upper limit of how far into the string it is safe to read. Using the old
versions could cause attempts to read beyond the end of the input buffer if the UTF-8 is not
well-formed, and their use now raises a deprecation warning. Details are at ‘‘Character
classification’’ in perlapi.

• Macros like isALPHA_utf8 and toLOWER_utf8 now die if they detect that their input
UTF-8 is malformed. A deprecation warning had been issued since Perl 5.18.

• Several new macros for analysing the validity of utf8 sequences. These are:

UTF8_GOT_ABOVE_31_BIT UTF8_GOT_CONTINUATION UTF8_GOT_EMPTY
UTF8_GOT_LONG UTF8_GOT_NONCHAR UTF8_GOT_NON_CONTINUATION
UTF8_GOT_OVERFLOW UTF8_GOT_SHORT UTF8_GOT_SUPER
UTF8_GOT_SURROGATE UTF8_IS_INVARIANT UTF8_IS_NONCHAR
UTF8_IS_SUPER UTF8_IS_SURROGATE UVCHR_IS_INVARIANT
isUTF8_CHAR_flags isSTRICT_UTF8_CHAR isC9_STRICT_UTF8_CHAR

• Functions that are all extensions of the is_utf8_string_*() functions, that apply
various restrictions to the UTF-8 recognized as valid:

is_strict_utf8_string, is_strict_utf8_string_loc,
is_strict_utf8_string_loclen,

is_c9strict_utf8_string, is_c9strict_utf8_string_loc,
is_c9strict_utf8_string_loclen,

is_utf8_string_flags, is_utf8_string_loc_flags,
is_utf8_string_loclen_flags,

is_utf8_fixed_width_buf_flags,
is_utf8_fixed_width_buf_loc_flags,
is_utf8_fixed_width_buf_loclen_flags.

is_utf8_invariant_string. is_utf8_valid_partial_char.
is_utf8_valid_partial_char_flags.

• The functions utf8n_to_uvchr and its derivatives have had several changes of behaviour.

Calling them, while passing a string length of 0 is now asserted against in DEBUGGING
builds, and otherwise, returns the Unicode REPLACEMENT CHARACTER. If you have
nothing to decode, you shouldn’t call the decode function.

They now return the Unicode REPLACEMENT CHARACTER if called with UTF-8 that has the
overlong malformation and that malformation is allowed by the input parameters. This
malformation is where the UTF-8 looks valid syntactically, but there is a shorter sequence

perl v5.36.0 2021-04-29 385

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

that yields the same code point. This has been forbidden since Unicode version 3.1.

They now accept an input flag to allow the overflow malformation. This malformation is
when the UTF-8 may be syntactically valid, but the code point it represents is not capable of
being represented in the word length on the platform. What ‘‘allowed’’ means, in this case, is
that the function doesn’t return an error, and it advances the parse pointer to beyond the
UTF-8 in question, but it returns the Unicode REPLACEMENT CHARACTER as the value of
the code point (since the real value is not representable).

They no longer abandon searching for other malformations when the first one is encountered.
A call to one of these functions thus can generate multiple diagnostics, instead of just one.

• valid_utf8_to_uvchr() has been added to the API (although it was present in core
earlier). Like utf8_to_uvchr_buf(), but assumes that the next character is well-
formed. Use with caution.

• A new function, utf8n_to_uvchr_error, has been added for use by modules that need
to know the details of UTF-8 malformations beyond pass/fail. Previously, the only ways to
know why a sequence was ill-formed was to capture and parse the generated diagnostics or to
do your own analysis.

• There is now a safer version of utf8_hop(), called utf8_hop_safe(). Unlike
utf8_hop(), utf8_hop_safe() won’t navigate before the beginning or after the end of the
supplied buffer.

• Two new functions, utf8_hop_forward() and utf8_hop_back() are similar to
utf8_hop_safe() but are for when you know which direction you wish to travel.

• Two new macros which return useful utf8 byte sequences:

BOM_UTF8

REPLACEMENT_CHARACTER_UTF8

• Perl is now built with the PERL_OP_PARENT compiler define enabled by default. To disable it,
use the PERL_NO_OP_PARENT compiler define. This flag alters how the op_sibling field is
used in OP structures, and has been available optionally since perl 5.22.

See ‘‘Internal Changes’’ in perl5220delta for more details of what this build option does.

• Three new ops, OP_ARGELEM, OP_ARGDEFELEM, and OP_ARGCHECK have been added. These
are intended principally to implement the individual elements of a subroutine signature, plus any
overall checking required.

• The OP_PUSHRE op has been eliminated and the OP_SPLIT op has been changed from class
LISTOP to PMOP.

Formerly the first child of a split would be a pushre, which would have the split’s regex
attached to it. Now the regex is attached directly to the split op, and the pushre has been
eliminated.

• The op_class() API function has been added. This is like the existing OP_CLASS() macro,
but can more accurately determine what struct an op has been allocated as. For example
OP_CLASS() might return OA_BASEOP_OR_UNOP indicating that ops of this type are usually
allocated as an OP or UNOP; while op_class() will return OPclass_BASEOP or
OPclass_UNOP as appropriate.

• All parts of the internals now agree that the sassign op is a BINOP; previously it was listed as a
BASEOP in regen/opcodes, which meant that several parts of the internals had to be special-cased
to accommodate it. This oddity’s original motivation was to handle code like $x ||= 1; that is
now handled in a simpler way.

• The output format of the op_dump() function (as used by perl -Dx) has changed: it now
displays an ‘‘ASCII-art’’ tree structure, and shows more low-level details about each op, such as
its address and class.

• The PADOFFSET type has changed from being unsigned to signed, and several pad-related
variables such as PL_padix have changed from being of type I32 to type PADOFFSET.

perl v5.36.0 2021-04-29 386

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• The DEBUGGING-mode output for regex compilation and execution has been enhanced.

• Several obscure SV flags have been eliminated, sometimes along with the macros which
manipulate them: SVpbm_VALID, SVpbm_TAIL, SvTAIL_on, SvTAIL_off,
SVrepl_EVAL, SvEVALED.

• An OP op_private flag has been eliminated: OPpRUNTIME. This used to often get set on
PMOP ops, but had become meaningless over time.

Selected Bug Fixes
• Perl no longer panics when switching into some locales on machines with buggy strxfrm()

implementations in their libc. [GH #13768] <https://github.com/Perl/perl5/issues/13768>

• $-{$name} would leak an AV on each access if the regular expression had no named
captures. The same applies to access to any hash tied with Tie::Hash::NamedCapture and all
=> 1. [GH #15882] <https://github.com/Perl/perl5/issues/15882>

• Attempting to use the deprecated variable $# as the object in an indirect object method call could
cause a heap use after free or buffer overflow. [GH #15599]
<https://github.com/Perl/perl5/issues/15599>

• When checking for an indirect object method call, in some rare cases the parser could reallocate
the line buffer but then continue to use pointers to the old buffer. [GH #15585]
<https://github.com/Perl/perl5/issues/15585>

• Supplying a glob as the format argument to formline would cause an assertion failure. [GH
#15862] <https://github.com/Perl/perl5/issues/15862>

• Code like $value1 =˜ qr/.../ ˜˜ $value2 would have the match converted into a
qr// operator, leaving extra elements on the stack to confuse any surrounding expression. [GH
#15859] <https://github.com/Perl/perl5/issues/15859>

• Since v5.24 in some obscure cases, a regex which included code blocks from multiple sources
(e.g., via embedded via qr// objects) could end up with the wrong current pad and crash or give
weird results. [GH #15657] <https://github.com/Perl/perl5/issues/15657>

• Occasionally local()s in a code block within a patterns weren’t being undone when the pattern
matching backtracked over the code block. [GH #15056]
<https://github.com/Perl/perl5/issues/15056>

• Using substr() to modify a magic variable could access freed memory in some cases. [GH
#15871] <https://github.com/Perl/perl5/issues/15871>

• Under use utf8, the entire source code is now checked for being UTF-8 well formed, not just
quoted strings as before. [GH #14973] <https://github.com/Perl/perl5/issues/14973>.

• The range operator ".." on strings now handles its arguments correctly when in the scope of the
unicode_strings feature. The previous behaviour was sufficiently unexpected that we
believe no correct program could have made use of it.

• The split operator did not ensure enough space was allocated for its return value in scalar
context. It could then write a single pointer immediately beyond the end of the memory block
allocated for the stack. [GH #15749] <https://github.com/Perl/perl5/issues/15749>

• Using a large code point with the "W" pack template character with the current output position
aligned at just the right point could cause a write of a single zero byte immediately beyond the end
of an allocated buffer. [GH #15572] <https://github.com/Perl/perl5/issues/15572>

• Supplying a format’s picture argument as part of the format argument list where the picture
specifies modifying the argument could cause an access to the new freed compiled format. [GH
#15566] <https://github.com/Perl/perl5/issues/15566>

• The sort() operator’s built-in numeric comparison function didn’t handle large integers that
weren’t exactly representable by a double. This now uses the same code used to implement the
<=> operator. [GH #15768] <https://github.com/Perl/perl5/issues/15768>

• Fix issues with /(?{ ... <<EOF })/ that broke Method::Signatures. [GH #15779]
<https://github.com/Perl/perl5/issues/15779>

perl v5.36.0 2021-04-29 387

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• Fixed an assertion failure with chop and chomp, which could be triggered by chop(@x =˜
tr/1/1/). [GH #15738] <https://github.com/Perl/perl5/issues/15738>.

• Fixed a comment skipping error in patterns under /x; it could stop skipping a byte early, which
could be in the middle of a UTF-8 character. [GH #15790]
<https://github.com/Perl/perl5/issues/15790>.

• perldb now ignores /dev/tty on non-Unix systems. [GH #12244]
<https://github.com/Perl/perl5/issues/12244>;

• Fix assertion failure for {}->$x when $x isn’t defined. [GH #15791]
<https://github.com/Perl/perl5/issues/15791>.

• Fix an assertion error which could be triggered when a lookahead string in patterns exceeded a
minimum length. [GH #15796] <https://github.com/Perl/perl5/issues/15796>.

• Only warn once per literal number about a misplaced "_". [GH #9989]
<https://github.com/Perl/perl5/issues/9989>.

• The tr/// parse code could be looking at uninitialized data after a perse error. [GH #15624]
<https://github.com/Perl/perl5/issues/15624>.

• In a pattern match, a back-reference (\1) to an unmatched capture could read back beyond the
start of the string being matched. [GH #15634] <https://github.com/Perl/perl5/issues/15634>.

• use re 'strict' is supposed to warn if you use a range (such as /(?[[X-Y]])/)
whose start and end digit aren’t from the same group of 10. It didn’t do that for five groups of
mathematical digits starting at U+1D7E.

• A sub containing a ‘‘forward’’ declaration with the same name (e.g., sub c { sub c; })
could sometimes crash or loop infinitely. [GH #15557]
<https://github.com/Perl/perl5/issues/15557>

• A crash in executing a regex with a non-anchored UTF-8 substring against a target string that also
used UTF-8 has been fixed. [GH #15628] <https://github.com/Perl/perl5/issues/15628>

• Previously, a shebang line like #!perl -i u could be erroneously interpreted as requesting the
-u option. This has been fixed. [GH #15623] <https://github.com/Perl/perl5/issues/15623>

• The regex engine was previously producing incorrect results in some rare situations when
backtracking past an alternation that matches only one thing; this showed up as capture buffers
($1, $2, etc.) erroneously containing data from regex execution paths that weren’t actually
executed for the final match. [GH #15666] <https://github.com/Perl/perl5/issues/15666>

• Certain regexes making use of the experimental regex_sets feature could trigger an assertion
failure. This has been fixed. [GH #15620] <https://github.com/Perl/perl5/issues/15620>

• Invalid assignments to a reference constructor (e.g., \eval=time) could sometimes crash in
addition to giving a syntax error. [GH #14815] <https://github.com/Perl/perl5/issues/14815>

• The parser could sometimes crash if a bareword came after evalbytes. [GH #15586]
<https://github.com/Perl/perl5/issues/15586>

• Autoloading via a method call would warn erroneously (‘‘Use of inherited AUTOLOAD for non-
method’’) if there was a stub present in the package into which the invocant had been blessed.
The warning is no longer emitted in such circumstances. [GH #9094]
<https://github.com/Perl/perl5/issues/9094>

• The use of splice on arrays with non-existent elements could cause other operators to crash.
[GH #15577] <https://github.com/Perl/perl5/issues/15577>

• A possible buffer overrun when a pattern contains a fixed utf8 substring. [GH #15534]
<https://github.com/Perl/perl5/issues/15534>

• Fixed two possible use-after-free bugs in perl’s lexer. [GH #15549]
<https://github.com/Perl/perl5/issues/15549>

• Fixed a crash with s///l where it thought it was dealing with UTF-8 when it wasn’t. [GH
#15543] <https://github.com/Perl/perl5/issues/15543>

perl v5.36.0 2021-04-29 388

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• Fixed a place where the regex parser was not setting the syntax error correctly on a syntactically
incorrect pattern. [GH #15565] <https://github.com/Perl/perl5/issues/15565>

• The &. operator (and the "&" operator, when it treats its arguments as strings) were failing to
append a trailing null byte if at least one string was marked as utf8 internally. Many code paths
(system calls, regexp compilation) still expect there to be a null byte in the string buffer just past
the end of the logical string. An assertion failure was the result. [GH #15606]
<https://github.com/Perl/perl5/issues/15606>

• Avoid a heap-after-use error in the parser when creating an error messge for a syntactically invalid
heredoc. [GH #15527] <https://github.com/Perl/perl5/issues/15527>

• Fix a segfault when run with -DC options on DEBUGGING builds. [GH #15563]
<https://github.com/Perl/perl5/issues/15563>

• Fixed the parser error handling in subroutine attributes for an ’:attr(foo’ that does not have an
ending ’")"’.

• Fix the perl lexer to correctly handle a backslash as the last char in quoted-string context. This
actually fixed two bugs, [GH #15546] <https://github.com/Perl/perl5/issues/15546> and [GH
#15582] <https://github.com/Perl/perl5/issues/15582>.

• In the API function gv_fetchmethod_pvn_flags, rework separator parsing to prevent
possible string overrun with an invalid len argument. [GH #15598]
<https://github.com/Perl/perl5/issues/15598>

• Problems with in-place array sorts: code like @a = sort { ... } @a, where the source and
destination of the sort are the same plain array, are optimised to do less copying around. Two
side-effects of this optimisation were that the contents of @a as seen by sort routines were partially
sorted; and under some circumstances accessing @a during the sort could crash the interpreter.
Both these issues have been fixed, and Sort functions see the original value of @a. [GH #15387]
<https://github.com/Perl/perl5/issues/15387>

• Non-ASCII string delimiters are now reported correctly in error messages for unterminated
strings. [GH #15469] <https://github.com/Perl/perl5/issues/15469>

• pack("p", ...) used to emit its warning (‘‘Attempt to pack pointer to temporary value’’)
erroneously in some cases, but has been fixed.

• @DB::args is now exempt from ‘‘used once’’ warnings. The warnings only occurred under -w,
because warnings.pm itself uses @DB::args multiple times.

• The use of built-in arrays or hash slices in a double-quoted string no longer issues a warning
(‘‘Possible unintended interpolation...’’) if the variable has not been mentioned before. This
affected code like qq|@DB::args| and qq|@SIG{'CHLD', 'HUP'}|. (The special
variables @- and @+ were already exempt from the warning.)

• gethostent and similar functions now perform a null check internally, to avoid crashing with
the torsocks library. This was a regression from v5.22. [GH #15478]
<https://github.com/Perl/perl5/issues/15478>

• defined *{'!'}, defined *{'['}, and defined *{'-'} no longer leak memory if
the typeglob in question has never been accessed before.

• Mentioning the same constant twice in a row (which is a syntax error) no longer fails an assertion
under debugging builds. This was a regression from v5.20. [GH #15017]
<https://github.com/Perl/perl5/issues/15017>

• Many issues relating to printf "%a" of hexadecimal floating point were fixed. In addition, the
‘‘subnormals’’ (formerly known as ‘‘denormals’’) floating point numbers are now supported both
with the plain IEEE 754 floating point numbers (64-bit or 128-bit) and the x86 80-bit ‘‘extended
precision’’. Note that subnormal hexadecimal floating point literals will give a warning about
‘‘exponent underflow’’. [GH #15495] <https://github.com/Perl/perl5/issues/15495> [GH #15503]
<https://github.com/Perl/perl5/issues/15503> [GH #15504]
<https://github.com/Perl/perl5/issues/15504> [GH #15505]
<https://github.com/Perl/perl5/issues/15505> [GH #15510]
<https://github.com/Perl/perl5/issues/15510> [GH #15512]
<https://github.com/Perl/perl5/issues/15512>

perl v5.36.0 2021-04-29 389

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• A regression in v5.24 with tr/\N{U+...}/foo/ when the code point was between 128 and
255 has been fixed. [GH #15475] <https://github.com/Perl/perl5/issues/15475>.

• Use of a string delimiter whose code point is above 2**31 now works correctly on platforms that
allow this. Previously, certain characters, due to truncation, would be confused with other
delimiter characters with special meaning (such as "?" in m?...?), resulting in inconsistent
behaviour. Note that this is non-portable, and is based on Perl’s extension to UTF-8, and is
probably not displayable nor enterable by any editor. [GH #15477]
<https://github.com/Perl/perl5/issues/15477>

• @{x followed by a newline where "x" represents a control or non-ASCII character no longer
produces a garbled syntax error message or a crash. [GH #15518]
<https://github.com/Perl/perl5/issues/15518>

• An assertion failure with %: = 0 has been fixed. [GH #15358]
<https://github.com/Perl/perl5/issues/15358>

• In Perl 5.18, the parsing of "$foo::$bar" was accidentally changed, such that it would be
treated as $foo."::".$bar. The previous behavior, which was to parse it as $foo:: .
$bar, has been restored. [GH #15408] <https://github.com/Perl/perl5/issues/15408>

• Since Perl 5.20, line numbers have been off by one when perl is invoked with the -x switch. This
has been fixed. [GH #15413] <https://github.com/Perl/perl5/issues/15413>

• Vivifying a subroutine stub in a deleted stash (e.g., delete $My::{"Foo::"};
\&My::Foo::foo) no longer crashes. It had begun crashing in Perl 5.18. [GH #15420]
<https://github.com/Perl/perl5/issues/15420>

• Some obscure cases of subroutines and file handles being freed at the same time could result in
crashes, but have been fixed. The crash was introduced in Perl 5.22. [GH #15435]
<https://github.com/Perl/perl5/issues/15435>

• Code that looks for a variable name associated with an uninitialized value could cause an assertion
failure in cases where magic is involved, such as $ISA[0][0]. This has now been fixed. [GH
#15364] <https://github.com/Perl/perl5/issues/15364>

• A crash caused by code generating the warning ‘‘Subroutine STASH::NAME redefined’’ in cases
such as sub P::f{} undef *P::; *P::f =sub{}; has been fixed. In these cases,
where the STASH is missing, the warning will now appear as ‘‘Subroutine NAME redefined’’. [GH
#15368] <https://github.com/Perl/perl5/issues/15368>

• Fixed an assertion triggered by some code that handles deprecated behavior in formats, e.g., in
cases like this:

format STDOUT =
@
0"$x"

[GH #15366] <https://github.com/Perl/perl5/issues/15366>

• A possible divide by zero in string transformation code on Windows has been avoided, fixing a
crash when collating an empty string. [GH #15439] <https://github.com/Perl/perl5/issues/15439>

• Some regular expression parsing glitches could lead to assertion failures with regular expressions
such as /(?<=/ and /(?<!/. This has now been fixed. [GH #15332]
<https://github.com/Perl/perl5/issues/15332>

• until ($x = 1) { ... } and ... until $x = 1 now properly warn when
syntax warnings are enabled. [GH #15138] <https://github.com/Perl/perl5/issues/15138>

• socket() now leaves the error code returned by the system in $! on failure. [GH #15383]
<https://github.com/Perl/perl5/issues/15383>

• Assignment variants of any bitwise ops under the bitwise feature would crash if the left-hand
side was an array or hash. [GH #15346] <https://github.com/Perl/perl5/issues/15346>

• require followed by a single colon (as in foo() ? require : ... is now parsed
correctly as require with implicit $_, rather than require "". [GH #15380]
<https://github.com/Perl/perl5/issues/15380>

perl v5.36.0 2021-04-29 390

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• Scalar keys %hash can now be assigned to consistently in all scalar lvalue contexts. Previously
it worked for some contexts but not others.

• List assignment to vec or substr with an array or hash for its first argument used to result in
crashes or ‘‘Can’t coerce’’ error messages at run time, unlike scalar assignment, which would give
an error at compile time. List assignment now gives a compile-time error, too. [GH #15370]
<https://github.com/Perl/perl5/issues/15370>

• Expressions containing an && or || operator (or their synonyms and and or) were being
compiled incorrectly in some cases. If the left-hand side consisted of either a negated bareword
constant or a negated do {} block containing a constant expression, and the right-hand side
consisted of a negated non-foldable expression, one of the negations was effectively ignored. The
same was true of if and unless statement modifiers, though with the left-hand and right-hand
sides swapped. This long-standing bug has now been fixed. [GH #15285]
<https://github.com/Perl/perl5/issues/15285>

• reset with an argument no longer crashes when encountering stash entries other than globs.
[GH #15314] <https://github.com/Perl/perl5/issues/15314>

• Assignment of hashes to, and deletion of, typeglobs named *:::::: no longer causes crashes.
[GH #15307] <https://github.com/Perl/perl5/issues/15307>

• Perl wasn’t correctly handling true/false values in the LHS of a list assign; specifically the truth
values returned by boolean operators. This could trigger an assertion failure in something like the
following:

for ($x > $y) {
($_, ...) = (...); # here $_ is aliased to a truth value

}

This was a regression from v5.24. [GH #15690] <https://github.com/Perl/perl5/issues/15690>

• Assertion failure with user-defined Unicode-like properties. [GH #15696]
<https://github.com/Perl/perl5/issues/15696>

• Fix error message for unclosed \N{ in a regex. An unclosed \N{ could give the wrong error
message: "\N{NAME} must be resolved by the lexer".

• List assignment in list context where the LHS contained aggregates and where there were not
enough RHS elements, used to skip scalar lvalues. Previously, (($a,$b,@c,$d) = (1)) in
list context returned ($a); now it returns ($a,$b,$d). (($a,$b,$c) = (1)) is
unchanged: it still returns ($a,$b,$c). This can be seen in the following:

sub inc { $_++ for @_ }
inc(($a,$b,@c,$d) = (10))

Formerly, the values of ($a,$b,$d) would be left as (11,undef,undef); now they are
(11,1,1).

• Code like this: /(?{ s!!! })/ could trigger infinite recursion on the C stack (not the normal
perl stack) when the last successful pattern in scope is itself. We avoid the segfault by simply
forbidding the use of the empty pattern when it would resolve to the currently executing pattern.
[GH #15669] <https://github.com/Perl/perl5/issues/15669>

• Avoid reading beyond the end of the line buffer in perl’s lexer when there’s a short UTF-8
character at the end. [GH #15531] <https://github.com/Perl/perl5/issues/15531>

• Alternations in regular expressions were sometimes failing to match a utf8 string against a utf8
alternate. [GH #15680] <https://github.com/Perl/perl5/issues/15680>

• Make do "a\0b" fail silently (and return undef and set $!) instead of throwing an error. [GH
#15676] <https://github.com/Perl/perl5/issues/15676>

• chdir with no argument didn’t ensure that there was stack space available for returning its result.
[GH #15569] <https://github.com/Perl/perl5/issues/15569>

• All error messages related to do now refer to do; some formerly claimed to be from require
instead.

perl v5.36.0 2021-04-29 391

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

• Executing undef $x where $x is tied or magical no longer incorrectly blames the variable for
an uninitialized-value warning encountered by the tied/magical code.

• Code like $x = $x . "a" was incorrectly failing to yield a use of uninitialized value warning
when $x was a lexical variable with an undefined value. That has now been fixed. [GH #15269]
<https://github.com/Perl/perl5/issues/15269>

• undef *_; shift or undef *_; pop inside a subroutine, with no argument to shift or
pop, began crashing in Perl 5.14, but has now been fixed.

• "string$scalar->$*" now correctly prefers concatenation overloading to string
overloading if $scalar->$* returns an overloaded object, bringing it into consistency with
$$scalar.

• /@0{0*->@*/*0 and similar contortions used to crash, but no longer do, but merely produce a
syntax error. [GH #15333] <https://github.com/Perl/perl5/issues/15333>

• do or require with an argument which is a reference or typeglob which, when stringified,
contains a null character, started crashing in Perl 5.20, but has now been fixed. [GH #15337]
<https://github.com/Perl/perl5/issues/15337>

• Improve the error message for a missing tie() package/method. This brings the error messages
in line with the ones used for normal method calls.

• Parsing bad POSIX charclasses no longer leaks memory. [GH #15382]
<https://github.com/Perl/perl5/issues/15382>

Known Problems
• G++ 6 handles subnormal (denormal) floating point values differently than gcc 6 or g++ 5

resulting in ‘‘flush-to-zero’’. The end result is that if you specify very small values using the
hexadecimal floating point format, like 0x1.fffffffffffffp-1022, they become zeros.
[GH #15990] <https://github.com/Perl/perl5/issues/15990>

Errata From Previous Releases
• Fixed issues with recursive regexes. The behavior was fixed in Perl 5.24. [GH #14935]

<https://github.com/Perl/perl5/issues/14935>

Obituary
Jon Portnoy (AVENJ), a prolific Perl author and admired Gentoo community member, has passed away
on August 10, 2016. He will be remembered and missed by all those who he came in contact with, and
enriched with his intellect, wit, and spirit.

It is with great sadness that we also note Kip Hampton’s passing. Probably best known as the author of
the Perl & XML column on XML.com, he was a core contributor to AxKit, an XML server platform that
became an Apache Foundation project. He was a frequent speaker in the early days at OSCON, and
most recently at YAPC::NA in Madison. He was frequently on irc.perl.org as ubu, generally in the
#axkit-dahut community, the group responsible for YAPC::NA Asheville in 2011.

Kip and his constant contributions to the community will be greatly missed.

Acknowledgements
Perl 5.26.0 represents approximately 13 months of development since Perl 5.24.0 and contains
approximately 360,000 lines of changes across 2,600 files from 86 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 230,000
lines of changes to 1,800 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.26.0:

Aaron Crane, Abigail, AEvar Arnfjo
..
r∂- Bjarmason, Alex Vandiver, Andreas Ko

..
nig, Andreas Voegele,

Andrew Fresh, Andy Lester, Aristotle Pagaltzis, Chad Granum, Chase Whitener, Chris ’BinGOs’
Williams, Chris Lamb, Christian Hansen, Christian Millour, Colin Newell, Craig A. Berry, Dagfinn
Ilmari Mannsa°ker, Dan Collins, Daniel Dragan, Dave Cross, Dave Rolsky, David Golden, David H.
Gutteridge, David Mitchell, Dominic Hargreaves, Doug Bell, E. Choroba, Ed Avis, Father
Chrysostomos, Franc,ois Perrad, Hauke D, H.Merijn Brand, Hugo van der Sanden, Ivan Pozdeev, James
E Keenan, James Raspass, Jarkko Hietaniemi, Jerry D. Hedden, Jim Cromie, J. Nick Koston, John
Lightsey, Karen Etheridge, Karl Williamson, Leon Timmermans, Lukas Mai, Matthew Horsfall,

perl v5.36.0 2021-04-29 392

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

Maxwell Carey, Misty De Meo, Neil Bowers, Nicholas Clark, Nicolas R., Niko Tyni, Pali, Paul
Marquess, Peter Avalos, Petr PísaX, Pino Toscano, Rafael Garcia-Suarez, Reini Urban, Renee Baecker,
Ricardo Signes, Richard Levitte, Rick Delaney, Salvador Fandiño, Samuel Thibault, Sawyer X,
Sébastien Aperghis-Tramoni, Sergey Aleynikov, Shlomi Fish, Smylers, Stefan Seifert, Steffen Mu

..
ller,

Stevan Little, Steve Hay, Steven Humphrey, Sullivan Beck, Theo Buehler, Thomas Sibley, Todd
Rinaldo, Tomasz Konojacki, Tony Cook, Unicode Consortium, Yaroslav Kuzmin, Yves Orton, Zefram.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at <https://rt.perl.org/>.
There may also be information at <http://www.perl.org/>, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 393

PERL5261DELTA(1) Perl Programmers Reference Guide PERL5261DELTA(1)

NAME
perl5261delta - what is new for perl v5.26.1

DESCRIPTION
This document describes differences between the 5.26.0 release and the 5.26.1 release.

If you are upgrading from an earlier release such as 5.24.0, first read perl5260delta, which describes
differences between 5.24.0 and 5.26.0.

Security
[CVE-2017-12837] Heap buffer overflow in regular expression compiler

Compiling certain regular expression patterns with the case-insensitive modifier could cause a heap
buffer overflow and crash perl. This has now been fixed. [GH #16021]
<https://github.com/Perl/perl5/issues/16021>

[CVE-2017-12883] Buffer over-read in regular expression parser
For certain types of syntax error in a regular expression pattern, the error message could either contain
the contents of a random, possibly large, chunk of memory, or could crash perl. This has now been
fixed. [GH #16025] <https://github.com/Perl/perl5/issues/16025>

[CVE-2017-12814] $ENV{$key} stack buffer overflow on Windows
A possible stack buffer overflow in the %ENV code on Windows has been fixed by removing the buffer
completely since it was superfluous anyway. [GH #16051]
<https://github.com/Perl/perl5/issues/16051>

Incompatible Changes
There are no changes intentionally incompatible with 5.26.0. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• base has been upgraded from version 2.25 to 2.26.

The effects of dotless @INC on this module have been limited by the introduction of a more
refined and accurate solution for removing '.' from @INC while reducing the false positives.

• charnames has been upgraded from version 1.44 to 1.45.

• Module::CoreList has been upgraded from version 5.20170530 to 5.20170922_26.

Platform Support
Platform-Specific Notes

FreeBSD
• Building with g++ on FreeBSD-11.0 has been fixed. [GH #15984]

<https://github.com/Perl/perl5/issues/15984>

Windows
• Support for compiling perl on Windows using Microsoft Visual Studio 2017 (containing

Visual C++ 14.1) has been added.

• Building XS modules with GCC 6 in a 64-bit build of Perl failed due to incorrect mapping of
strtoll and strtoull. This has now been fixed. [GH #16074]
<https://github.com/Perl/perl5/issues/16074> [cpan #121683]
<https://rt.cpan.org/Public/Bug/Display.html?id=121683> [cpan #122353]
<https://rt.cpan.org/Public/Bug/Display.html?id=122353>

Selected Bug Fixes
• Several built-in functions previously had bugs that could cause them to write to the internal stack

without allocating room for the item being written. In rare situations, this could have led to a
crash. These bugs have now been fixed, and if any similar bugs are introduced in future, they will
be detected automatically in debugging builds. [GH #16076]
<https://github.com/Perl/perl5/issues/16076>

• Using a symbolic ref with postderef syntax as the key in a hash lookup was yielding an assertion
failure on debugging builds. [GH #16029] <https://github.com/Perl/perl5/issues/16029>

perl v5.36.0 2021-04-29 394

PERL5261DELTA(1) Perl Programmers Reference Guide PERL5261DELTA(1)

• List assignment (aassign) could in some rare cases allocate an entry on the mortal stack and
leave the entry uninitialized. [GH #16017] <https://github.com/Perl/perl5/issues/16017>

• Attempting to apply an attribute to an our variable where a function of that name already exists
could result in a NULL pointer being supplied where an SV was expected, crashing perl. [perl
#131597] <https://rt.perl.org/Public/Bug/Display.html?id=131597>

• The code that vivifies a typeglob out of a code ref made some false assumptions that could lead to
a crash in cases such as $::{"A"} = sub {}; \&{"A"}. This has now been fixed. [GH
#15937] <https://github.com/Perl/perl5/issues/15937>

• my_atof2 no longer reads beyond the terminating NUL, which previously occurred if the
decimal point is immediately before the NUL. [GH #16002]
<https://github.com/Perl/perl5/issues/16002>

• Occasional ‘‘Malformed UTF-8 character’’ crashes in s// on utf8 strings have been fixed. [GH
#16019] <https://github.com/Perl/perl5/issues/16019>

• perldoc -f s now finds s///. [GH #15989] <https://github.com/Perl/perl5/issues/15989>

• Some erroneous warnings after utf8 conversion have been fixed. [GH #15958]
<https://github.com/Perl/perl5/issues/15958>

• The jmpenv frame to catch Perl exceptions is set up lazily, and this used to be a bit too lazy. The
catcher is now set up earlier, preventing some possible crashes. [GH #11804]
<https://github.com/Perl/perl5/issues/11804>

• Spurious ‘‘Assuming NOT a POSIX class’’ warnings have been removed. [GH #16001]
<https://github.com/Perl/perl5/issues/16001>

Acknowledgements
Perl 5.26.1 represents approximately 4 months of development since Perl 5.26.0 and contains
approximately 8,900 lines of changes across 85 files from 23 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 990 lines of
changes to 38 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.26.1:

Aaron Crane, Andy Dougherty, Aristotle Pagaltzis, Chris ’BinGOs’ Williams, Craig A. Berry, Dagfinn
Ilmari Mannsa°ker, David Mitchell, E. Choroba, Eric Herman, Father Chrysostomos, Jacques
Germishuys, James E Keenan, John SJ Anderson, Karl Williamson, Ken Brown, Lukas Mai, Matthew
Horsfall, Ricardo Signes, Sawyer X, Steve Hay, Tony Cook, Yves Orton, Zefram.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at <https://rt.perl.org/> .
There may also be information at <http://www.perl.org/> , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perl v5.36.0 2021-04-29 395

PERL5261DELTA(1) Perl Programmers Reference Guide PERL5261DELTA(1)

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 396

PERL5262DELTA(1) Perl Programmers Reference Guide PERL5262DELTA(1)

NAME
perl5262delta - what is new for perl v5.26.2

DESCRIPTION
This document describes differences between the 5.26.1 release and the 5.26.2 release.

If you are upgrading from an earlier release such as 5.26.0, first read perl5261delta, which describes
differences between 5.26.0 and 5.26.1.

Security
[CVE-2018-6797] heap-buffer-overflow (WRITE of size 1) in S_regatom (regcomp.c)

A crafted regular expression could cause a heap buffer write overflow, with control over the bytes
written. [GH #16185] <https://github.com/Perl/perl5/issues/16185>

[CVE-2018-6798] Heap-buffer-overflow in Perl_ _byte_dump_string (utf8.c)
Matching a crafted locale dependent regular expression could cause a heap buffer read overflow and
potentially information disclosure. [GH #16143] <https://github.com/Perl/perl5/issues/16143>

[CVE-2018-6913] heap-buffer-overflow in S_pack_rec
pack() could cause a heap buffer write overflow with a large item count. [GH #16098]
<https://github.com/Perl/perl5/issues/16098>

Assertion failure in Perl_ _core_swash_init (utf8.c)
Control characters in a supposed Unicode property name could cause perl to crash. This has been
fixed. [perl #132055] <https://rt.perl.org/Public/Bug/Display.html?id=132055> [perl #132553]
<https://rt.perl.org/Public/Bug/Display.html?id=132553> [perl #132658]
<https://rt.perl.org/Public/Bug/Display.html?id=132658>

Incompatible Changes
There are no changes intentionally incompatible with 5.26.1. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Module::CoreList has been upgraded from version 5.20170922_26 to 5.20180414_26.

• PerlIO::via has been upgraded from version 0.16 to 0.17.

• Term::ReadLine has been upgraded from version 1.16 to 1.17.

• Unicode::UCD has been upgraded from version 0.68 to 0.69.

Documentation
Changes to Existing Documentation

perluniprops

• This has been updated to note that \p{Word} now includes code points matching the
\p{Join_Control} property. The change to the property was made in Perl 5.18, but not
documented until now. There are currently only two code points that match this property:
U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER).

Platform Support
Platform-Specific Notes

Windows
Visual C++ compiler version detection has been improved to work on non-English language
systems. [GH #16235] <https://github.com/Perl/perl5/issues/16235>

We now set $Config{libpth} correctly for 64-bit builds using Visual C++ versions earlier
than 14.1. [GH #16269] <https://github.com/Perl/perl5/issues/16269>

Selected Bug Fixes
• The readpipe() built-in function now checks at compile time that it has only one parameter

expression, and puts it in scalar context, thus ensuring that it doesn’t corrupt the stack at runtime.
[GH #2793] <https://github.com/Perl/perl5/issues/2793>

• Fixed a use after free bug in pp_list introduced in Perl 5.27.1. [GH #16124]
<https://github.com/Perl/perl5/issues/16124>

perl v5.36.0 2021-04-29 397

PERL5262DELTA(1) Perl Programmers Reference Guide PERL5262DELTA(1)

• Parsing a sub definition could cause a use after free if the sub keyword was followed by
whitespace including newlines (and comments). [GH #16097]
<https://github.com/Perl/perl5/issues/16097>

• The tokenizer now correctly adjusts a parse pointer when skipping whitespace in an
${identifier} construct. [perl #131949]
<https://rt.perl.org/Public/Bug/Display.html?id=131949>

• Accesses to ${ˆLAST_FH} no longer assert after using any of a variety of I/O operations on a
non-glob. [GH #15372] <https://github.com/Perl/perl5/issues/15372>

• sort now performs correct reference counting when aliasing $a and $b, thus avoiding premature
destruction and leakage of scalars if they are re-aliased during execution of the sort comparator.
[GH #11422] <https://github.com/Perl/perl5/issues/11422>

• Some convoluted kinds of regexp no longer cause an arithmetic overflow when compiled. [GH
#16113] <https://github.com/Perl/perl5/issues/16113>

• Fixed a duplicate symbol failure with -flto -mieee-fp builds. pp.c defined _LIB_VERSION
which -lieee already defines. [GH #16086] <https://github.com/Perl/perl5/issues/16086>

• A NULL pointer dereference in the S_regmatch() function has been fixed. [perl #132017]
<https://rt.perl.org/Public/Bug/Display.html?id=132017>

• Failures while compiling code within other constructs, such as with string interpolation and the
right part of s///e now cause compilation to abort earlier.

Previously compilation could continue in order to report other errors, but the failed sub-parse
could leave partly parsed constructs on the parser shift-reduce stack, confusing the parser, leading
to perl crashes. [GH #14739] <https://github.com/Perl/perl5/issues/14739>

Acknowledgements
Perl 5.26.2 represents approximately 7 months of development since Perl 5.26.1 and contains
approximately 3,300 lines of changes across 82 files from 17 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,800 lines
of changes to 36 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.26.2:

Aaron Crane, Abigail, Chris ’BinGOs’ Williams, H.Merijn Brand, James E Keenan, Jarkko Hietaniemi,
John SJ Anderson, Karen Etheridge, Karl Williamson, Lukas Mai, Renee Baecker, Sawyer X, Steve
Hay, Todd Rinaldo, Tony Cook, Yves Orton, Zefram.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at <https://rt.perl.org/> .
There may also be information at <http://www.perl.org/> , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perl v5.36.0 2021-04-29 398

PERL5262DELTA(1) Perl Programmers Reference Guide PERL5262DELTA(1)

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 399

PERL5263DELTA(1) Perl Programmers Reference Guide PERL5263DELTA(1)

NAME
perl5263delta - what is new for perl v5.26.3

DESCRIPTION
This document describes differences between the 5.26.2 release and the 5.26.3 release.

If you are upgrading from an earlier release such as 5.26.1, first read perl5262delta, which describes
differences between 5.26.1 and 5.26.2.

Security
[CVE-2018-12015] Directory traversal in module Archive::Tar

By default, Archive::Tar doesn’t allow extracting files outside the current working directory. However,
this secure extraction mode could be bypassed by putting a symlink and a regular file with the same
name into the tar file.

[GH #16580] <https://github.com/Perl/perl5/issues/16580> [cpan #125523]
<https://rt.cpan.org/Ticket/Display.html?id=125523>

[CVE-2018-18311] Integer overflow leading to buffer overflow and segmentation fault
Integer arithmetic in Perl_my_setenv() could wrap when the combined length of the environment
variable name and value exceeded around 0x7fffffff. This could lead to writing beyond the end of an
allocated buffer with attacker supplied data.

[GH #16560] <https://github.com/Perl/perl5/issues/16560>

[CVE-2018-18312] Heap-buffer-overflow write in S_regatom (regcomp.c)
A crafted regular expression could cause heap-buffer-overflow write during compilation, potentially
allowing arbitrary code execution.

[GH #16649] <https://github.com/Perl/perl5/issues/16649>

[CVE-2018-18313] Heap-buffer-overflow read in S_grok_bslash_N (regcomp.c)
A crafted regular expression could cause heap-buffer-overflow read during compilation, potentially
leading to sensitive information being leaked.

[GH #16554] <https://github.com/Perl/perl5/issues/16554>

[CVE-2018-18314] Heap-buffer-overflow write in S_regatom (regcomp.c)
A crafted regular expression could cause heap-buffer-overflow write during compilation, potentially
allowing arbitrary code execution.

[GH #16041] <https://github.com/Perl/perl5/issues/16041>

Incompatible Changes
There are no changes intentionally incompatible with 5.26.2. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Archive::Tar has been upgraded from version 2.24 to 2.24_01.

• Module::CoreList has been upgraded from version 5.20180414_26 to 5.20181129_26.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• Unexpected ’]’ with no following ’)’ in (?[... in regex; marked by <-- HERE in m/%s/

(F) While parsing an extended character class a ’]’ character was encountered at a point in the
definition where the only legal use of ’]’ is to close the character class definition as part of a ’])’,
you may have forgotten the close paren, or otherwise confused the parser.

• Expecting close paren for nested extended charclass in regex; marked by <-- HERE in m/%s/

(F) While parsing a nested extended character class like:

perl v5.36.0 2021-04-29 400

PERL5263DELTA(1) Perl Programmers Reference Guide PERL5263DELTA(1)

(?[... (?flags:(?[...])) ...])
ˆ

we expected to see a close paren ’)’ (marked by ˆ) but did not.

• Expecting close paren for wrapper for nested extended charclass in regex; marked by <-- HERE
in m/%s/

(F) While parsing a nested extended character class like:

(?[... (?flags:(?[...])) ...])
ˆ

we expected to see a close paren ’)’ (marked by ˆ) but did not.

Changes to Existing Diagnostics
• Syntax error in (?[...]) in regex; marked by <-- HERE in m/%s/

This fatal error message has been slightly expanded (from ‘‘Syntax error in (?[...]) in regex
m/%s/’’) for greater clarity.

Acknowledgements
Perl 5.26.3 represents approximately 8 months of development since Perl 5.26.2 and contains
approximately 4,500 lines of changes across 51 files from 15 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 770 lines of
changes to 10 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.26.3:

Aaron Crane, Abigail, Chris ’BinGOs’ Williams, Dagfinn Ilmari Mannsa°ker, David Mitchell, H.Merijn
Brand, James E Keenan, John SJ Anderson, Karen Etheridge, Karl Williamson, Sawyer X, Steve Hay,
Todd Rinaldo, Tony Cook, Yves Orton.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at <https://rt.perl.org/> .
There may also be information at <http://www.perl.org/> , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 401

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

NAME
perl5280delta - what is new for perl v5.28.0

DESCRIPTION
This document describes differences between the 5.26.0 release and the 5.28.0 release.

If you are upgrading from an earlier release such as 5.24.0, first read perl5260delta, which describes
differences between 5.24.0 and 5.26.0.

Core Enhancements
Unicode 10.0 is supported

A list of changes is at <http://www.unicode.org/versions/Unicode10.0.0>.

delete on key/value hash slices
delete can now be used on key/value hash slices, returning the keys along with the deleted values.
[GH #15982] <https://github.com/Perl/perl5/issues/15982>

Experimentally, there are now alphabetic synonyms for some regular expression assertions

If you find it difficult to remember how to write certain of the pattern assertions, there are now
alphabetic synonyms.

CURRENT NEW SYNONYMS
------ ------------
(?=...) (*pla:...) or (*positive_lookahead:...)
(?!...) (*nla:...) or (*negative_lookahead:...)
(?<=...) (*plb:...) or (*positive_lookbehind:...)
(?<!...) (*nlb:...) or (*negative_lookbehind:...)
(?>...) (*atomic:...)

These are considered experimental, so using any of these will raise (unless turned off) a warning in the
experimental::alpha_assertions category.

Mixed Unicode scripts are now detectable
A mixture of scripts, such as Cyrillic and Latin, in a string is often the sign of a spoofing attack. A new
regular expression construct now allows for easy detection of these. For example, you can say

qr/(*script_run: \d+ \b)/x

And the digits matched will all be from the same set of 10. You won’t get a look-alike digit from a
different script that has a different value than what it appears to be.

Or:

qr/(*sr: \b \w+ \b)/x

makes sure that all the characters come from the same script.

You can also combine script runs with (?>...) (or *atomic:...)).

Instead of writing:

(*sr:(?<...))

you can now run:

(*asr:...)
or
(*atomic_script_run:...)

This is considered experimental, so using it will raise (unless turned off) a warning in the
experimental::script_run category.

See ‘‘Script Runs’’ in perlre.

In-place editing with perl -i is now safer
Previously in-place editing (perl -i) would delete or rename the input file as soon as you started
working on a new file.

Without backups this would result in loss of data if there was an error, such as a full disk, when writing
to the output file.

perl v5.36.0 2021-04-29 402

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

This has changed so that the input file isn’t replaced until the output file has been completely written
and successfully closed.

This works by creating a work file in the same directory, which is renamed over the input file once the
output file is complete.

Incompatibilities:

• Since this renaming needs to only happen once, if you create a thread or child process, that
renaming will only happen in the original thread or process.

• If you change directories while processing a file, and your operating system doesn’t provide the
unlinkat(), renameat() and fchmodat() functions, the final rename step may fail.

[GH #15216] <https://github.com/Perl/perl5/issues/15216>

Initialisation of aggregate state variables
A persistent lexical array or hash variable can now be initialized, by an expression such as state @a
= qw(x y z). Initialization of a list of persistent lexical variables is still not possible.

Full-size inode numbers
On platforms where inode numbers are of a type larger than perl’s native integer numerical types, stat
will preserve the full content of large inode numbers by returning them in the form of strings of
decimal digits. Exact comparison of inode numbers can thus be achieved by comparing with eq rather
than ==. Comparison with ==, and other numerical operations (which are usually meaningless on
inode numbers), work as well as they did before, which is to say they fall back to floating point, and
ultimately operate on a fairly useless rounded inode number if the real inode number is too big for the
floating point format.

The sprintf %j format size modifier is now available with pre-C99 compilers
The actual size used depends on the platform, so remains unportable.

Close-on-exec flag set atomically
When opening a file descriptor, perl now generally opens it with its close-on-exec flag already set, on
platforms that support doing so. This improves thread safety, because it means that an exec initiated
by one thread can no longer cause a file descriptor in the process of being opened by another thread to
be accidentally passed to the executed program.

Additionally, perl now sets the close-on-exec flag more reliably, whether it does so atomically or not.
Most file descriptors were getting the flag set, but some were being missed.

String- and number-specific bitwise ops are no longer experimental
The new string-specific (&. |. ˆ. ˜.) and number-specific (& | ˆ ˜) bitwise operators
introduced in Perl 5.22 that are available within the scope of use feature 'bitwise' are no
longer experimental. Because the number-specific ops are spelled the same way as the existing
operators that choose their behaviour based on their operands, these operators must still be enabled via
the ‘‘bitwise’’ feature, in either of these two ways:

use feature "bitwise";

use v5.28; # "bitwise" now included

They are also now enabled by the -E command-line switch.

The ‘‘bitwise’’ feature no longer emits a warning. Existing code that disables the
‘‘experimental::bitwise’’ warning category that the feature previously used will continue to work.

One caveat that module authors ought to be aware of is that the numeric operators now pass a fifth
TRUE argument to overload methods. Any methods that check the number of operands may croak if
they do not expect so many. XS authors in particular should be aware that this:

SV *
bitop_handler (lobj, robj, swap)

may need to be changed to this:

SV *
bitop_handler (lobj, robj, swap, ...)

perl v5.36.0 2021-04-29 403

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

Locales are now thread-safe on systems that support them
These systems include Windows starting with Visual Studio 2005, and in POSIX 2008 systems.

The implication is that you are now free to use locales and change them in a threaded environment.
Your changes affect only your thread. See ‘‘Multi-threaded operation’’ in perllocale

New read-only predefined variable ${ˆSAFE_LOCALES}
This variable is 1 if the Perl interpreter is operating in an environment where it is safe to use and
change locales (see perllocale.) This variable is true when the perl is unthreaded, or compiled in a
platform that supports thread-safe locale operation (see previous item).

Security
[CVE-2017-12837] Heap buffer overflow in regular expression compiler

Compiling certain regular expression patterns with the case-insensitive modifier could cause a heap
buffer overflow and crash perl. This has now been fixed. [GH #16021]
<https://github.com/Perl/perl5/issues/16021>

[CVE-2017-12883] Buffer over-read in regular expression parser
For certain types of syntax error in a regular expression pattern, the error message could either contain
the contents of a random, possibly large, chunk of memory, or could crash perl. This has now been
fixed. [GH #16025] <https://github.com/Perl/perl5/issues/16025>

[CVE-2017-12814] $ENV{$key} stack buffer overflow on Windows
A possible stack buffer overflow in the %ENV code on Windows has been fixed by removing the buffer
completely since it was superfluous anyway. [GH #16051]
<https://github.com/Perl/perl5/issues/16051>

Default Hash Function Change
Perl 5.28.0 retires various older hash functions which are not viewed as sufficiently secure for use in
Perl. We now support four general purpose hash functions, Siphash (2-4 and 1-3 variants), and
Zaphod32, and StadtX hash. In addition we support SBOX32 (a form of tabular hashing) for hashing
short strings, in conjunction with any of the other hash functions provided.

By default Perl is configured to support SBOX hashing of strings up to 24 characters, in conjunction
with StadtX hashing on 64 bit builds, and Zaphod32 hashing for 32 bit builds.

You may control these settings with the following options to Configure:

-DPERL_HASH_FUNC_SIPHASH
-DPERL_HASH_FUNC_SIPHASH13
-DPERL_HASH_FUNC_STADTX
-DPERL_HASH_FUNC_ZAPHOD32

To disable SBOX hashing you can use

-DPERL_HASH_USE_SBOX32_ALSO=0

And to set the maximum length to use SBOX32 hashing on with:

-DSBOX32_MAX_LEN=16

The maximum length allowed is 256. There probably isn’t much point in setting it higher than the
default.

Incompatible Changes
Subroutine attribute and signature order

The experimental subroutine signatures feature has been changed so that subroutine attributes must
now come before the signature rather than after. This is because attributes like :lvalue can affect the
compilation of code within the signature, for example:

sub f :lvalue ($a = do { $x = "abc"; return substr($x,0,1)}) { ...}

Note that this the second time they have been flipped:

sub f :lvalue ($a, $b) { ... }; # 5.20; 5.28 onwards
sub f ($a, $b) :lvalue { ... }; # 5.22 - 5.26

Comma-less variable lists in formats are no longer allowed
Omitting the commas between variables passed to formats is no longer allowed. This has been
deprecated since Perl 5.000.

perl v5.36.0 2021-04-29 404

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

The :locked and :unique attributes have been removed
These have been no-ops and deprecated since Perl 5.12 and 5.10, respectively.

\N{} with nothing between the braces is now illegal
This has been deprecated since Perl 5.24.

Opening the same symbol as both a file and directory handle is no longer allowed
Using open() and opendir() to associate both a filehandle and a dirhandle to the same symbol
(glob or scalar) has been deprecated since Perl 5.10.

Use of bare << to mean <<‘‘’’ is no longer allowed
Use of a bare terminator has been deprecated since Perl 5.000.

Setting $/ to a reference to a non-positive integer no longer allowed
This used to work like setting it to undef, but has been deprecated since Perl 5.20.

Unicode code points with values exceeding IV_MAX are now fatal
This was deprecated since Perl 5.24.

The B::OP::terse method has been removed
Use B::Concise::b_terse instead.

Use of inherited AUTOLOAD for non-methods is no longer allowed
This was deprecated in Perl 5.004.

Use of strings with code points over 0xFF is not allowed for bitwise string operators
Code points over 0xFF do not make sense for bitwise operators and such an operation will now croak,
except for a few remaining cases. See perldeprecation.

This was deprecated in Perl 5.24.

Setting ${ˆENCODING} to a defined value is now illegal
This has been deprecated since Perl 5.22 and a no-op since Perl 5.26.

Backslash no longer escapes colon in PATH for the -S switch
Previously the -S switch incorrectly treated backslash (‘‘\’’) as an escape for colon when traversing the
PATH environment variable. [GH #15584] <https://github.com/Perl/perl5/issues/15584>

the -DH (DEBUG_H) misfeature has been removed
On a perl built with debugging support, the H flag to the -D debugging option has been removed. This
was supposed to dump hash values, but has been broken for many years.

Yada-yada is now strictly a statement
By the time of its initial stable release in Perl 5.12, the ... (yada-yada) operator was explicitly
intended to serve as a statement, not an expression. However, the original implementation was
confused on this point, leading to inconsistent parsing. The operator was accidentally accepted in a few
situations where it did not serve as a complete statement, such as

... . "foo";

... if $a < $b;

The parsing has now been made consistent, permitting yada-yada only as a statement. Affected code
can use do{...} to put a yada-yada into an arbitrary expression context.

Sort algorithm can no longer be specified
Since Perl 5.8, the sort pragma has had subpragmata _mergesort, _quicksort, and _qsort that
can be used to specify which algorithm perl should use to implement the sort builtin. This was always
considered a dubious feature that might not last, hence the underscore spellings, and they were
documented as not being portable beyond Perl 5.8. These subpragmata have now been deleted, and any
attempt to use them is an error. The sort pragma otherwise remains, and the algorithm-neutral stable
subpragma can be used to control sorting behaviour. [GH #13234]
<https://github.com/Perl/perl5/issues/13234>

Over-radix digits in floating point literals
Octal and binary floating point literals used to permit any hexadecimal digit to appear after the radix
point. The digits are now restricted to those appropriate for the radix, as digits before the radix point
always were.

perl v5.36.0 2021-04-29 405

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

Return type of unpackstring()
The return types of the C API functions unpackstring() and unpack_str() have changed from
I32 to SSize_t, in order to accommodate datasets of more than two billion items.

Deprecations
Use of vec on strings with code points above 0xFF is deprecated

Such strings are represented internally in UTF-8, and vec is a bit-oriented operation that will likely
give unexpected results on those strings.

Some uses of unescaped ‘‘{’’ in regexes are no longer fatal
Perl 5.26.0 fatalized some uses of an unescaped left brace, but an exception was made at the last
minute, specifically crafted to be a minimal change to allow GNU Autoconf to work. That tool is
heavily depended upon, and continues to use the deprecated usage. Its use of an unescaped left brace is
one where we have no intention of repurposing "{" to be something other than itself.

That exception is now generalized to include various other such cases where the "{" will not be
repurposed.

Note that these uses continue to raise a deprecation message.

Use of unescaped ‘‘{’’ immediately after a ‘‘(’’ in regular expression patterns is
deprecated
Using unescaped left braces is officially deprecated everywhere, but it is not enforced in contexts where
their use does not interfere with expected extensions to the language. A deprecation is added in this
release when the brace appears immediately after an opening parenthesis. Before this, even if the brace
was part of a legal quantifier, it was not interpreted as such, but as the literal characters, unlike other
quantifiers that follow a "(" which are considered errors. Now, their use will raise a deprecation
message, unless turned off.

Assignment to $[will be fatal in Perl 5.30
Assigning a non-zero value to $[has been deprecated since Perl 5.12, but was never given a deadline
for removal. This has now been scheduled for Perl 5.30.

hostname() won’t accept arguments in Perl 5.32
Passing arguments to Sys::Hostname::hostname() was already deprecated, but didn’t have a
removal date. This has now been scheduled for Perl 5.32. [GH #14662]
<https://github.com/Perl/perl5/issues/14662>

Module removals
The following modules will be removed from the core distribution in a future release, and will at that
time need to be installed from CPAN. Distributions on CPAN which require these modules will need to
list them as prerequisites.

The core versions of these modules will now issue "deprecated"-category warnings to alert you to
this fact. To silence these deprecation warnings, install the modules in question from CPAN.

Note that these are (with rare exceptions) fine modules that you are encouraged to continue to use.
Their disinclusion from core primarily hinges on their necessity to bootstrapping a fully functional,
CPAN-capable Perl installation, not usually on concerns over their design.

B::Debug
Locale::Codes and its associated Country, Currency and Language modules

Performance Enhancements
• The start up overhead for creating regular expression patterns with Unicode properties

(\p{...}) has been greatly reduced in most cases.

• Many string concatenation expressions are now considerably faster, due to the introduction
internally of a multiconcat opcode which combines multiple concatenations, and optionally a
= or .=, into a single action. For example, apart from retrieving $s, $a and $b, this whole
expression is now handled as a single op:

$s .= "a=$a b=$b\n"

As a special case, if the LHS of an assignment is a lexical variable or my $s, the op itself handles
retrieving the lexical variable, which is faster.

In general, the more the expression includes a mix of constant strings and variable expressions, the

perl v5.36.0 2021-04-29 406

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

longer the expression, and the more it mixes together non-utf8 and utf8 strings, the more marked
the performance improvement. For example on a x86_64 system, this code has been
benchmarked running four times faster:

my $s;
my $a = "ab\x{100}cde";
my $b = "fghij";
my $c = "\x{101}klmn";

for my $i (1..10_000_000) {
$s = "\x{100}wxyz";
$s .= "foo=$a bar=$b baz=$c";

}

In addition, sprintf expressions which have a constant format containing only %s and %%
format elements, and which have a fixed number of arguments, are now also optimised into a
multiconcat op.

• The ref() builtin is now much faster in boolean context, since it no longer bothers to construct a
temporary string like Foo=ARRAY(0x134af48).

• keys() in void and scalar contexts is now more efficient.

• The common idiom of comparing the result of index() with -1 is now specifically optimised, e.g.

if (index(...) != -1) { ... }

• for() loops and similar constructs are now more efficient in most cases.

• File::Glob has been modified to remove unnecessary backtracking and recursion, thanks to Russ
Cox. See <https://research.swtch.com/glob> for more details.

• The XS-level SvTRUE() API function is now more efficient.

• Various integer-returning ops are now more efficient in scalar/boolean context.

• Slightly improved performance when parsing stash names. [GH #15689]
<https://github.com/Perl/perl5/issues/15689>

• Calls to require for an already loaded module are now slightly faster. [GH #16175]
<https://github.com/Perl/perl5/issues/16175>

• The performance of pattern matching [[:ascii:]] and [[:ˆascii:]] has been improved
significantly except on EBCDIC platforms.

• Various optimizations have been applied to matching regular expression patterns, so under the
right circumstances, significant performance gains may be noticed. But in an application with
many varied patterns, little overall improvement likely will be seen.

• Other optimizations have been applied to UTF-8 handling, but these are not typically a major
factor in most applications.

Modules and Pragmata
Key highlights in this release across several modules:

Removal of use vars
The usage of use vars has been discouraged since the introduction of our in Perl 5.6.0. Where
possible the usage of this pragma has now been removed from the Perl source code.

This had a slight effect (for the better) on the output of WARNING_BITS in B::Deparse.

Use of DynaLoader changed to XSLoader in many modules
XSLoader is more modern, and most modules already require perl 5.6 or greater, so no functionality is
lost by switching. In some cases, we have also made changes to the local implementation that may not
be reflected in the version on CPAN due to a desire to maintain more backwards compatibility.

Updated Modules and Pragmata
• Archive::Tar has been upgraded from version 2.24 to 2.30.

This update also handled CVE-2018-12015: directory traversal vulnerability. [cpan #125523]
<https://rt.cpan.org/Ticket/Display.html?id=125523>

perl v5.36.0 2021-04-29 407

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

• arybase has been upgraded from version 0.12 to 0.15.

• Attribute::Handlers has been upgraded from version 0.99 to 1.01.

• attributes has been upgraded from version 0.29 to 0.33.

• B has been upgraded from version 1.68 to 1.74.

• B::Concise has been upgraded from version 0.999 to 1.003.

• B::Debug has been upgraded from version 1.24 to 1.26.

NOTE: B::Debug is deprecated and may be removed from a future version of Perl.

• B::Deparse has been upgraded from version 1.40 to 1.48.

It includes many bug fixes, and in particular, it now deparses variable attributes correctly:

my $x :foo; # used to deparse as
'attributes'->import('main', \$x, 'foo'), my $x;

• base has been upgraded from version 2.25 to 2.27.

• bignum has been upgraded from version 0.47 to 0.49.

• blib has been upgraded from version 1.06 to 1.07.

• bytes has been upgraded from version 1.05 to 1.06.

• Carp has been upgraded from version 1.42 to 1.50.

If a package on the call stack contains a constant named ISA, Carp no longer throws a ‘‘Not a
GLOB reference’’ error.

Carp, when generating stack traces, now attempts to work around longstanding bugs resulting
from Perl’s non-reference-counted stack. [GH #9282] <https://github.com/Perl/perl5/issues/9282>

Carp has been modified to avoid assuming that objects cannot be overloaded without the overload
module loaded (this can happen with objects created by XS modules). Previously, infinite
recursion would result if an XS-defined overload method itself called Carp. [GH #16407]
<https://github.com/Perl/perl5/issues/16407>

Carp now avoids using overload::StrVal, partly because older versions of overload
(included with perl 5.14 and earlier) load Scalar::Util at run time, which will fail if Carp has been
invoked after a syntax error.

• charnames has been upgraded from version 1.44 to 1.45.

• Compress::Raw::Zlib has been upgraded from version 2.074 to 2.076.

This addresses a security vulnerability in older versions of the ’zlib’ library (which is bundled
with Compress-Raw-Zlib).

• Config::Extensions has been upgraded from version 0.01 to 0.02.

• Config::Perl::V has been upgraded from version 0.28 to 0.29.

• CPAN has been upgraded from version 2.18 to 2.20.

• Data::Dumper has been upgraded from version 2.167 to 2.170.

Quoting of glob names now obeys the Useqq option [GH #13274]
<https://github.com/Perl/perl5/issues/13274>.

Attempts to set an option to undef through a combined getter/setter method are no longer
mistaken for getter calls [GH #12135] <https://github.com/Perl/perl5/issues/12135>.

• Devel::Peek has been upgraded from version 1.26 to 1.27.

• Devel::PPPort has been upgraded from version 3.35 to 3.40.

Devel::PPPort has moved from cpan-first to perl-first maintenance

Primary responsibility for the code in Devel::PPPort has moved into core perl. In a practical sense
there should be no change except that hopefully it will stay more up to date with changes made to
symbols in perl, rather than needing to be updated after the fact.

perl v5.36.0 2021-04-29 408

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

• Digest::SHA has been upgraded from version 5.96 to 6.01.

• DirHandle has been upgraded from version 1.04 to 1.05.

• DynaLoader has been upgraded from version 1.42 to 1.45.

Its documentation now shows the use of _ _PACKAGE_ _ and direct object syntax [GH #16190]
<https://github.com/Perl/perl5/issues/16190>.

• Encode has been upgraded from version 2.88 to 2.97.

• encoding has been upgraded from version 2.19 to 2.22.

• Errno has been upgraded from version 1.28 to 1.29.

• experimental has been upgraded from version 0.016 to 0.019.

• Exporter has been upgraded from version 5.72 to 5.73.

• ExtUtils::CBuilder has been upgraded from version 0.280225 to 0.280230.

• ExtUtils::Constant has been upgraded from version 0.23 to 0.25.

• ExtUtils::Embed has been upgraded from version 1.34 to 1.35.

• ExtUtils::Install has been upgraded from version 2.04 to 2.14.

• ExtUtils::MakeMaker has been upgraded from version 7.24 to 7.34.

• ExtUtils::Miniperl has been upgraded from version 1.06 to 1.08.

• ExtUtils::ParseXS has been upgraded from version 3.34 to 3.39.

• ExtUtils::Typemaps has been upgraded from version 3.34 to 3.38.

• ExtUtils::XSSymSet has been upgraded from version 1.3 to 1.4.

• feature has been upgraded from version 1.47 to 1.52.

• fields has been upgraded from version 2.23 to 2.24.

• File::Copy has been upgraded from version 2.32 to 2.33.

It will now use the sub-second precision variant of utime() supplied by Time::HiRes where
available. [GH #16225] <https://github.com/Perl/perl5/issues/16225>.

• File::Fetch has been upgraded from version 0.52 to 0.56.

• File::Glob has been upgraded from version 1.28 to 1.31.

• File::Path has been upgraded from version 2.12_01 to 2.15.

• File::Spec and Cwd have been upgraded from version 3.67 to 3.74.

• File::stat has been upgraded from version 1.07 to 1.08.

• FileCache has been upgraded from version 1.09 to 1.10.

• Filter::Simple has been upgraded from version 0.93 to 0.95.

• Filter::Util::Call has been upgraded from version 1.55 to 1.58.

• GDBM_File has been upgraded from version 1.15 to 1.17.

Its documentation now explains that each and delete don’t mix in hashes tied to this module
[GH #12894] <https://github.com/Perl/perl5/issues/12894>.

It will now retry opening with an acceptable block size if asking gdbm to default the block size
failed [GH #13232] <https://github.com/Perl/perl5/issues/13232>.

• Getopt::Long has been upgraded from version 2.49 to 2.5.

• Hash::Util::FieldHash has been upgraded from version 1.19 to 1.20.

• I18N::Langinfo has been upgraded from version 0.13 to 0.17.

This module is now available on all platforms, emulating the system nl_langinfo (3) on systems
that lack it. Some caveats apply, as detailed in its documentation, the most severe being that,
except for MS Windows, the CODESET item is not implemented on those systems, always
returning "".

perl v5.36.0 2021-04-29 409

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

It now sets the UTF-8 flag in its returned scalar if the string contains legal non-ASCII UTF-8, and
the locale is UTF-8 [GH #15131] <https://github.com/Perl/perl5/issues/15131>.

This update also fixes a bug in which the underlying locale was ignored for the RADIXCHAR
(always was returned as a dot) and the THOUSEP (always empty). Now the locale-appropriate
values are returned.

• I18N::LangTags has been upgraded from version 0.42 to 0.43.

• if has been upgraded from version 0.0606 to 0.0608.

• IO has been upgraded from version 1.38 to 1.39.

• IO::Socket::IP has been upgraded from version 0.38 to 0.39.

• IPC::Cmd has been upgraded from version 0.96 to 1.00.

• JSON::PP has been upgraded from version 2.27400_02 to 2.97001.

• The libnet distribution has been upgraded from version 3.10 to 3.11.

• List::Util has been upgraded from version 1.46_02 to 1.49.

• Locale::Codes has been upgraded from version 3.42 to 3.56.

NOTE: Locale::Codes scheduled to be removed from core in Perl 5.30.

• Locale::Maketext has been upgraded from version 1.28 to 1.29.

• Math::BigInt has been upgraded from version 1.999806 to 1.999811.

• Math::BigInt::FastCalc has been upgraded from version 0.5005 to 0.5006.

• Math::BigRat has been upgraded from version 0.2611 to 0.2613.

• Module::CoreList has been upgraded from version 5.20170530 to 5.20180622.

• mro has been upgraded from version 1.20 to 1.22.

• Net::Ping has been upgraded from version 2.55 to 2.62.

• NEXT has been upgraded from version 0.67 to 0.67_01.

• ODBM_File has been upgraded from version 1.14 to 1.15.

• Opcode has been upgraded from version 1.39 to 1.43.

• overload has been upgraded from version 1.28 to 1.30.

• PerlIO::encoding has been upgraded from version 0.25 to 0.26.

• PerlIO::scalar has been upgraded from version 0.26 to 0.29.

• PerlIO::via has been upgraded from version 0.16 to 0.17.

• Pod::Functions has been upgraded from version 1.11 to 1.13.

• Pod::Html has been upgraded from version 1.2202 to 1.24.

A title for the HTML document will now be automatically generated by default from a ‘‘NAME’’
section in the POD document, as it used to be before the module was rewritten to use
Pod::Simple::XHTML to do the core of its job [GH #11954]
<https://github.com/Perl/perl5/issues/11954>.

• Pod::Perldoc has been upgraded from version 3.28 to 3.2801.

• The podlators distribution has been upgraded from version 4.09 to 4.10.

Man page references and function names now follow the Linux man page formatting standards,
instead of the Solaris standard.

• POSIX has been upgraded from version 1.76 to 1.84.

Some more cautions were added about using locale-specific functions in threaded applications.

• re has been upgraded from version 0.34 to 0.36.

perl v5.36.0 2021-04-29 410

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

• Scalar::Util has been upgraded from version 1.46_02 to 1.50.

• SelfLoader has been upgraded from version 1.23 to 1.25.

• Socket has been upgraded from version 2.020_03 to 2.027.

• sort has been upgraded from version 2.02 to 2.04.

• Storable has been upgraded from version 2.62 to 3.08.

• Sub::Util has been upgraded from version 1.48 to 1.49.

• subs has been upgraded from version 1.02 to 1.03.

• Sys::Hostname has been upgraded from version 1.20 to 1.22.

• Term::ReadLine has been upgraded from version 1.16 to 1.17.

• Test has been upgraded from version 1.30 to 1.31.

• Test::Harness has been upgraded from version 3.38 to 3.42.

• Test::Simple has been upgraded from version 1.302073 to 1.302133.

• threads has been upgraded from version 2.15 to 2.22.

The documentation now better describes the problems that arise when returning values from
threads, and no longer warns about creating threads in BEGIN blocks. [GH #11563]
<https://github.com/Perl/perl5/issues/11563>

• threads::shared has been upgraded from version 1.56 to 1.58.

• Tie::Array has been upgraded from version 1.06 to 1.07.

• Tie::StdHandle has been upgraded from version 4.4 to 4.5.

• Time::gmtime has been upgraded from version 1.03 to 1.04.

• Time::HiRes has been upgraded from version 1.9741 to 1.9759.

• Time::localtime has been upgraded from version 1.02 to 1.03.

• Time::Piece has been upgraded from version 1.31 to 1.3204.

• Unicode::Collate has been upgraded from version 1.19 to 1.25.

• Unicode::Normalize has been upgraded from version 1.25 to 1.26.

• Unicode::UCD has been upgraded from version 0.68 to 0.70.

The function num now accepts an optional parameter to help in diagnosing error returns.

• User::grent has been upgraded from version 1.01 to 1.02.

• User::pwent has been upgraded from version 1.00 to 1.01.

• utf8 has been upgraded from version 1.19 to 1.21.

• vars has been upgraded from version 1.03 to 1.04.

• version has been upgraded from version 0.9917 to 0.9923.

• VMS::DCLsym has been upgraded from version 1.08 to 1.09.

• VMS::Stdio has been upgraded from version 2.41 to 2.44.

• warnings has been upgraded from version 1.37 to 1.42.

It now includes new functions with names ending in _at_level, allowing callers to specify the
exact call frame. [GH #16257] <https://github.com/Perl/perl5/issues/16257>

• XS::Typemap has been upgraded from version 0.15 to 0.16.

• XSLoader has been upgraded from version 0.27 to 0.30.

Its documentation now shows the use of _ _PACKAGE_ _, and direct object syntax for example
DynaLoader usage [GH #16190] <https://github.com/Perl/perl5/issues/16190>.

Platforms that use mod2fname to edit the names of loadable libraries now look for bootstrap
(.bs) files under the correct, non-edited name.

perl v5.36.0 2021-04-29 411

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

Removed Modules and Pragmata
• The VMS::stdio compatibility shim has been removed.

Documentation
Changes to Existing Documentation

We have attempted to update the documentation to reflect the changes listed in this document. If you
find any we have missed, send email to perlbug@perl.org <mailto:perlbug@perl.org>.

Additionally, the following selected changes have been made:

perlapi

• The API functions perl_parse(), perl_run(), and perl_destruct() are now
documented comprehensively, where previously the only documentation was a reference to the
perlembed tutorial.

• The documentation of newGIVENOP() has been belatedly updated to account for the removal of
lexical $_.

• The API functions newCONSTSUB() and newCONSTSUB_flags() are documented much
more comprehensively than before.

perldata

• The section ‘‘Truth and Falsehood’’ in perlsyn has been moved into perldata.

perldebguts

• The description of the conditions under which DB::sub() will be called has been clarified. [GH
#16055] <https://github.com/Perl/perl5/issues/16055>

perldiag

• ‘‘Variable length lookbehind not implemented in regex m/%s/’’ in perldiag

This now gives more ideas as to workarounds to the issue that was introduced in Perl 5.18 (but not
documented explicitly in its perldelta) for the fact that some Unicode /i rules cause a few
sequences such as

(?<!st)

to be considered variable length, and hence disallowed.

• ‘‘Use of state $_ is experimental’’ in perldiag

This entry has been removed, as the experimental support of this construct was removed in perl
5.24.0.

• The diagnostic Initialization of state variables in list context
currently forbidden has changed to Initialization of state variables in
list currently forbidden, because list-context initialization of single aggregate state
variables is now permitted.

perlembed

• The examples in perlembed have been made more portable in the way they exit, and the example
that gets an exit code from the embedded Perl interpreter now gets it from the right place. The
examples that pass a constructed argv to Perl now show the mandatory null argv[argc].

• An example in perlembed used the string value of ERRSV as a format string when calling croak().
If that string contains format codes such as %s this could crash the program.

This has been changed to a call to croak_sv().

An alternative could have been to supply a trivial format string:

croak("%s", SvPV_nolen(ERRSV));

or as a special case for ERRSV simply:

croak(NULL);

perlfunc

perl v5.36.0 2021-04-29 412

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

• There is now a note that warnings generated by built-in functions are documented in perldiag and
warnings. [GH #12642] <https://github.com/Perl/perl5/issues/12642>

• The documentation for the exists operator no longer says that autovivification behaviour ‘‘may
be fixed in a future release’’. We’ve determined that we’re not going to change the default
behaviour. [GH #15231] <https://github.com/Perl/perl5/issues/15231>

• A couple of small details in the documentation for the bless operator have been clarified. [GH
#14684] <https://github.com/Perl/perl5/issues/14684>

• The description of @INC hooks in the documentation for require has been corrected to say that
filter subroutines receive a useless first argument. [GH #12569]
<https://github.com/Perl/perl5/issues/12569>

• The documentation of ref has been rewritten for clarity.

• The documentation of use now explains what syntactically qualifies as a version number for its
module version checking feature.

• The documentation of warn has been updated to reflect that since Perl 5.14 it has treated complex
exception objects in a manner equivalent to die. [GH #13641]
<https://github.com/Perl/perl5/issues/13641>

• The documentation of die and warn has been revised for clarity.

• The documentation of each has been improved, with a slightly more explicit description of the
sharing of iterator state, and with caveats regarding the fragility of while-each loops. [GH #16334]
<https://github.com/Perl/perl5/issues/16334>

• Clarification to require was added to explain the differences between

require Foo::Bar;
require "Foo/Bar.pm";

perlgit

• The precise rules for identifying smoke-me branches are now stated.

perlguts

• The section on reference counting in perlguts has been heavily revised, to describe references in
the way a programmer needs to think about them rather than in terms of the physical data
structures.

• Improve documentation related to UTF-8 multibytes.

perlintern

• The internal functions newXS_len_flags() and newATTRSUB_x() are now documented.

perlobj

• The documentation about DESTROY methods has been corrected, updated, and revised, especially
in regard to how they interact with exceptions. [GH #14083]
<https://github.com/Perl/perl5/issues/14083>

perlop

• The description of the x operator in perlop has been clarified. [GH #16253]
<https://github.com/Perl/perl5/issues/16253>

• perlop has been updated to note that qw’s whitespace rules differ from that of split’s in that
only ASCII whitespace is used.

• The general explanation of operator precedence and associativity has been corrected and clarified.
[GH #15153] <https://github.com/Perl/perl5/issues/15153>

• The documentation for the \ referencing operator now explains the unusual context that it supplies
to its operand. [GH #15932] <https://github.com/Perl/perl5/issues/15932>

perlrequick

perl v5.36.0 2021-04-29 413

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

• Clarifications on metacharacters and character classes

perlretut

• Clarify metacharacters.

perlrun

• Clarify the differences between -M and -m. [GH #15998]
<https://github.com/Perl/perl5/issues/15998>

perlsec

• The documentation about set-id scripts has been updated and revised. [GH #10289]
<https://github.com/Perl/perl5/issues/10289>

• A section about using sudo to run Perl scripts has been added.

perlsyn

• The section ‘‘Truth and Falsehood’’ in perlsyn has been removed from that document, where it
didn’t belong, and merged into the existing paragraph on the same topic in perldata.

• The means to disambiguate between code blocks and hash constructors, already documented in
perlref, are now documented in perlsyn too. [GH #15918]
<https://github.com/Perl/perl5/issues/15918>

perluniprops

• perluniprops has been updated to note that \p{Word} now includes code points matching the
\p{Join_Control} property. The change to the property was made in Perl 5.18, but not
documented until now. There are currently only two code points that match this property U+200C
(ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER).

• For each binary table or property, the documentation now includes which characters in the range
\x00-\xFF it matches, as well as a list of the first few ranges of code points matched above that.

perlvar

• The entry for $+ in perlvar has been expanded upon to describe handling of multiply-named
capturing groups.

perlfunc, perlop, perlsyn

• In various places, improve the documentation of the special cases in the condition expression of a
while loop, such as implicit defined and assignment to $_. [GH #16334]
<https://github.com/Perl/perl5/issues/16334>

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• Can’t ‘‘goto’’ into a ‘‘given’’ block

(F) A ‘‘goto’’ statement was executed to jump into the middle of a given block. You can’t get
there from here. See ‘‘goto’’ in perlfunc.

• Can’t ‘‘goto’’ into a binary or list expression

Use of goto to jump into the parameter of a binary or list operator has been prohibited, to prevent
crashes and stack corruption. [GH #15914] <https://github.com/Perl/perl5/issues/15914>

You may only enter the first argument of an operator that takes a fixed number of arguments, since
this is a case that will not cause stack corruption. [GH #16415]
<https://github.com/Perl/perl5/issues/16415>

New Warnings

• Old package separator used in string

(W syntax) You used the old package separator, ‘‘’’’, in a variable named inside a double-quoted

perl v5.36.0 2021-04-29 414

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

string; e.g., "In $name's house". This is equivalent to "In $name::s house". If you
meant the former, put a backslash before the apostrophe ("In $name\'s house").

• ‘‘Locale ’%s’ contains (at least) the following characters which have unexpected meanings: %s
The Perl program will use the expected meanings’’ in perldiag

Changes to Existing Diagnostics
• A false-positive warning that was issued when using a numerically-quantified sub-pattern in a

recursive regex has been silenced. [GH #16106] <https://github.com/Perl/perl5/issues/16106>

• The warning about useless use of a concatenation operator in void context is now generated for
expressions with multiple concatenations, such as $a.$b.$c, which used to mistakenly not
warn. [GH #3990] <https://github.com/Perl/perl5/issues/3990>

• Warnings that a variable or subroutine ‘‘masks earlier declaration in same ...’’, or that an our
variable has been redeclared, have been moved to a new warnings category ‘‘shadow’’. Previously
they were in category ‘‘misc’’.

• The deprecation warning from Sys::Hostname::hostname() saying that it doesn’t accept
arguments now states the Perl version in which the warning will be upgraded to an error. [GH
#14662] <https://github.com/Perl/perl5/issues/14662>

• The perldiag entry for the error regarding a set-id script has been expanded to make clear that the
error is reporting a specific security vulnerability, and to advise how to fix it.

• The Unable to flush stdout error message was missing a trailing newline. [debian
#875361]

Utility Changes
perlbug

• --help and --version options have been added.

Configuration and Compilation
• C89 requirement

Perl has been documented as requiring a C89 compiler to build since October 1998. A variety of
simplifications have now been made to Perl’s internals to rely on the features specified by the C89
standard. We believe that this internal change hasn’t altered the set of platforms that Perl builds
on, but please report a bug if Perl now has new problems building on your platform.

• On GCC, -Werror=pointer-arith is now enabled by default, disallowing arithmetic on
void and function pointers.

• Where an HTML version of the documentation is installed, the HTML documents now use relative
links to refer to each other. Links from the index page of perlipc to the individual section
documents are now correct. [GH #11941] <https://github.com/Perl/perl5/issues/11941>

• lib/unicore/mktables now correctly canonicalizes the names of the dependencies stored in the files
it generates.

regen/mk_invlists.pl, unlike the other regen/*.pl scripts, used $0 to name itself in the dependencies
stored in the files it generates. It now uses a literal so that the path stored in the generated files
doesn’t depend on how regen/mk_invlists.pl is invoked.

This lack of canonical names could cause test failures in t/porting/regen.t. [GH #16446]
<https://github.com/Perl/perl5/issues/16446>

• New probes

HAS_BUILTIN_ADD_OVERFLOW
HAS_BUILTIN_MUL_OVERFLOW
HAS_BUILTIN_SUB_OVERFLOW
HAS_THREAD_SAFE_NL_LANGINFO_L
HAS_LOCALECONV_L
HAS_MBRLEN
HAS_MBRTOWC
HAS_MEMRCHR

perl v5.36.0 2021-04-29 415

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

HAS_NANOSLEEP
HAS_STRNLEN
HAS_STRTOLD_L
I_WCHAR

Testing
• Testing of the XS-APItest directory is now done in parallel, where applicable.

• Perl now includes a default .travis.yml file for Travis CI testing on github mirrors. [GH #14558]
<https://github.com/Perl/perl5/issues/14558>

• The watchdog timer count in re/pat_psycho.t can now be overridden.

This test can take a long time to run, so there is a timer to keep this in check (currently, 5 minutes).
This commit adds checking the environment variable PERL_TEST_TIME_OUT_FACTOR; if set,
the time out setting is multiplied by its value.

• harness no longer waits for 30 seconds when running t/io/openpid.t. [GH #13535]
<https://github.com/Perl/perl5/issues/13535> [GH #16420]
<https://github.com/Perl/perl5/issues/16420>

Packaging
For the past few years we have released perl using three different archive formats: bzip (.bz2), LZMA2
(.xz) and gzip (.gz). Since xz compresses better and decompresses faster, and gzip is more
compatible and uses less memory, we have dropped the .bz2 archive format with this release. (If this
poses a problem, do let us know; see ‘‘Reporting Bugs’’, below.)

Platform Support
Discontinued Platforms

PowerUX / Power MAX OS
Compiler hints and other support for these apparently long-defunct platforms has been removed.

Platform-Specific Notes
CentOS

Compilation on CentOS 5 is now fixed.

Cygwin
A build with the quadmath library can now be done on Cygwin.

Darwin
Perl now correctly uses reentrant functions, like asctime_r, on versions of Darwin that have
support for them.

FreeBSD
FreeBSD’s /usr/share/mk/sys.mk specifies -O2 for architectures other than ARM and MIPS. By
default, perl is now compiled with the same optimization levels.

VMS
Several fix-ups for configure.com, marking function VMS has (or doesn’t have).

CRTL features can now be set by embedders before invoking Perl by using the
decc$feature_set and decc$feature_set_value functions. Previously any attempt
to set features after image initialization were ignored.

Windows
• Support for compiling perl on Windows using Microsoft Visual Studio 2017 (containing

Visual C++ 14.1) has been added.

• Visual C++ compiler version detection has been improved to work on non-English language
systems.

• We now set $Config{libpth} correctly for 64-bit builds using Visual C++ versions
earlier than 14.1.

Internal Changes
• A new optimisation phase has been added to the compiler, optimize_optree(), which does a

top-down scan of a complete optree just before the peephole optimiser is run. This phase is not
currently hookable.

perl v5.36.0 2021-04-29 416

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

• An OP_MULTICONCAT op has been added. At optimize_optree() time, a chain of
OP_CONCAT and OP_CONST ops, together optionally with an OP_STRINGIFY and/or
OP_SASSIGN, are combined into a single OP_MULTICONCAT op. The op is of type
UNOP_AUX, and the aux array contains the argument count, plus a pointer to a constant string and
a set of segment lengths. For example with

my $x = "foo=$foo, bar=$bar\n";

the constant string would be "foo=, bar=\n" and the segment lengths would be (4,6,1). If the
string contains characters such as \x80, whose representation changes under utf8, two sets of
strings plus lengths are precomputed and stored.

• Direct access to PL_keyword_plugin is not safe in the presence of multithreading. A new
wrap_keyword_plugin function has been added to allow XS modules to safely define custom
keywords even when loaded from a thread, analogous to PL_check / wrap_op_checker.

• The PL_statbuf interpreter variable has been removed.

• The deprecated function to_utf8_case(), accessible from XS code, has been removed.

• A new function is_utf8_invariant_string_loc() has been added that is like
is_utf8_invariant_string() but takes an extra pointer parameter into which is stored
the location of the first variant character, if any are found.

• A new function, Perl_langinfo() has been added. It is an (almost) drop-in replacement for
the system nl_langinfo(3), but works on platforms that lack that; as well as being more
thread-safe, and hiding some gotchas with locale handling from the caller. Code that uses this,
needn’t use localeconv(3) (and be affected by the gotchas) to find the decimal point,
thousands separator, or currency symbol. See ‘‘Perl_langinfo’’ in perlapi.

• A new API function sv_rvunweaken() has been added to complement sv_rvweaken().
The implementation was taken from ‘‘unweaken’’ in Scalar::Util.

• A new flag, SORTf_UNSTABLE, has been added. This will allow a future commit to make
mergesort unstable when the user specifies Xno sort stableX, since it has been decided that
mergesort should remain stable by default.

• XS modules can now automatically get reentrant versions of system functions on threaded perls.

By adding

#define PERL_REENTRANT

near the beginning of an XS file, it will be compiled so that whatever reentrant functions perl
knows about on that system will automatically and invisibly be used instead of the plain, non-
reentrant versions. For example, if you write getpwnam() in your code, on a system that has
getpwnam_r() all calls to the former will be translated invisibly into the latter. This does not
happen except on threaded perls, as they aren’t needed otherwise. Be aware that which functions
have reentrant versions varies from system to system.

• The PERL_NO_OP_PARENT build define is no longer supported, which means that perl is now
always built with PERL_OP_PARENT enabled.

• The format and content of the non-utf8 transliteration table attached to the op_pv field of
OP_TRANS/OP_TRANSR ops has changed. It’s now a struct OPtrans_map.

• A new compiler #define, dTHX_DEBUGGING. has been added. This is useful for XS or C code
that only need the thread context because their debugging statements that get compiled only under
-DDEBUGGING need one.

• A new API function ‘‘Perl_setlocale’’ in perlapi has been added.

• ‘‘sync_locale’’ in perlapi has been revised to return a boolean as to whether the system was using
the global locale or not.

• A new kind of magic scalar, called a ‘‘nonelem’’ scalar, has been introduced. It is stored in an
array to denote a non-existent element, whenever such an element is accessed in a potential lvalue
context. It replaces the existing ‘‘defelem’’ (deferred element) magic wherever this is possible,
being significantly more efficient. This means that
some_sub($sparse_array[$nonelem]) no longer has to create a new magic defelem

perl v5.36.0 2021-04-29 417

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

scalar each time, as long as the element is within the array.

It partially fixes the rare bug of deferred elements getting out of synch with their arrays when the
array is shifted or unshifted. [GH #16364] <https://github.com/Perl/perl5/issues/16364>

Selected Bug Fixes
• List assignment (aassign) could in some rare cases allocate an entry on the mortals stack and

leave the entry uninitialized, leading to possible crashes. [GH #16017]
<https://github.com/Perl/perl5/issues/16017>

• Attempting to apply an attribute to an our variable where a function of that name already exists
could result in a NULL pointer being supplied where an SV was expected, crashing perl. [perl
#131597] <https://rt.perl.org/Ticket/Display.html?id=131597>

• split ' ' now correctly handles the argument being split when in the scope of the
unicode_strings feature. Previously, when a string using the single-byte internal
representation contained characters that are whitespace by Unicode rules but not by ASCII rules, it
treated those characters as part of fields rather than as field separators. [GH #15904]
<https://github.com/Perl/perl5/issues/15904>

• Several built-in functions previously had bugs that could cause them to write to the internal stack
without allocating room for the item being written. In rare situations, this could have led to a
crash. These bugs have now been fixed, and if any similar bugs are introduced in future, they will
be detected automatically in debugging builds.

These internal stack usage checks introduced are also done by the entersub operator when
calling XSUBs. This means we can report which XSUB failed to allocate enough stack space.
[GH #16126] <https://github.com/Perl/perl5/issues/16126>

• Using a symbolic ref with postderef syntax as the key in a hash lookup was yielding an assertion
failure on debugging builds. [GH #16029] <https://github.com/Perl/perl5/issues/16029>

• Array and hash variables whose names begin with a caret now admit indexing inside their curlies
when interpolated into strings, as in "${ˆCAPTURE[0]}" to index @{ˆCAPTURE}. [GH
#16050] <https://github.com/Perl/perl5/issues/16050>

• Fetching the name of a glob that was previously UTF-8 but wasn’t any longer would return that
name flagged as UTF-8. [GH #15971] <https://github.com/Perl/perl5/issues/15971>

• The perl sprintf() function (via the underlying C function
Perl_sv_vcatpvfn_flags()) has been heavily reworked to fix many minor bugs, including
the integer wrapping of large width and precision specifiers and potential buffer overruns. It has
also been made faster in many cases.

• Exiting from an eval, whether normally or via an exception, now always frees temporary values
(possibly calling destructors) before setting $@. For example:

sub DESTROY { eval { die "died in DESTROY"; } }
eval { bless []; };
$@ used to be equal to "died in DESTROY" here; it's now "".

• Fixed a duplicate symbol failure with -flto -mieee-fp builds. pp.c defined
_LIB_VERSION which -lieee already defines. [GH #16086]
<https://github.com/Perl/perl5/issues/16086>

• The tokenizer no longer consumes the exponent part of a floating point number if it’s incomplete.
[GH #16073] <https://github.com/Perl/perl5/issues/16073>

• On non-threaded builds, for m/$null/ where $null is an empty string is no longer treated as if
the /o flag was present when the previous matching match operator included the /o flag. The
rewriting used to implement this behavior could confuse the interpreter. This matches the
behaviour of threaded builds. [GH #14668] <https://github.com/Perl/perl5/issues/14668>

• Parsing a sub definition could cause a use after free if the sub keyword was followed by
whitespace including newlines (and comments.) [GH #16097]
<https://github.com/Perl/perl5/issues/16097>

perl v5.36.0 2021-04-29 418

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

• The tokenizer now correctly adjusts a parse pointer when skipping whitespace in a
${identifier} construct. [perl #131949]
<https://rt.perl.org/Public/Bug/Display.html?id=131949>

• Accesses to ${ˆLAST_FH} no longer assert after using any of a variety of I/O operations on a
non-glob. [GH #15372] <https://github.com/Perl/perl5/issues/15372>

• The XS-level Copy(), Move(), Zero() macros and their variants now assert if the pointers
supplied are NULL. ISO C considers supplying NULL pointers to the functions these macros are
built upon as undefined behaviour even when their count parameters are zero. Based on these
assertions and the original bug report three macro calls were made conditional. [GH #16079]
<https://github.com/Perl/perl5/issues/16079> [GH #16112]
<https://github.com/Perl/perl5/issues/16112>

• Only the = operator is permitted for defining defaults for parameters in subroutine signatures.
Previously other assignment operators, e.g. +=, were also accidentally permitted. [GH #16084]
<https://github.com/Perl/perl5/issues/16084>

• Package names are now always included in :prototype warnings [perl #131833]
<https://rt.perl.org/Public/Bug/Display.html?id=131833>

• The je_old_stack_hwm field, previously only found in the jmpenv structure on debugging
builds, has been added to non-debug builds as well. This fixes an issue with some CPAN modules
caused by the size of this structure varying between debugging and non-debugging builds. [GH
#16122] <https://github.com/Perl/perl5/issues/16122>

• The arguments to the ninstr() macro are now correctly parenthesized.

• A NULL pointer dereference in the S_regmatch() function has been fixed. [perl #132017]
<https://rt.perl.org/Public/Bug/Display.html?id=132017>

• Calling exec PROGRAM LIST with an empty LIST has been fixed. This should call execvp()
with an empty argv array (containing only the terminating NULL pointer), but was instead just
returning false (and not setting $!). [GH #16075] <https://github.com/Perl/perl5/issues/16075>

• The gv_fetchmeth_sv C function stopped working properly in Perl 5.22 when fetching a
constant with a UTF-8 name if that constant subroutine was stored in the stash as a simple scalar
reference, rather than a full typeglob. This has been corrected.

• Single-letter debugger commands followed by an argument which starts with punctuation (e.g.
p$ˆV and x@ARGV) now work again. They had been wrongly requiring a space between the
command and the argument. [GH #13342] <https://github.com/Perl/perl5/issues/13342>

• splice now throws an exception (‘‘Modification of a read-only value attempted’’) when modifying
a read-only array. Until now it had been silently modifying the array. The new behaviour is
consistent with the behaviour of push and unshift. [GH #15923]
<https://github.com/Perl/perl5/issues/15923>

• stat(), lstat(), and file test operators now fail if given a filename containing a nul character,
in the same way that open() already fails.

• stat(), lstat(), and file test operators now reliably set $! when failing due to being applied
to a closed or otherwise invalid file handle.

• File test operators for Unix permission bits that don’t exist on a particular platform, such as -k
(sticky bit) on Windows, now check that the file being tested exists before returning the blanket
false result, and yield the appropriate errors if the argument doesn’t refer to a file.

• Fixed a ’read before buffer’ overrun when parsing a range starting with \N{} at the beginning of
the character set for the transliteration operator. [GH #16189]
<https://github.com/Perl/perl5/issues/16189>

• Fixed a leaked scalar when parsing an empty \N{} at compile-time. [GH #16189]
<https://github.com/Perl/perl5/issues/16189>

• Calling do $path on a directory or block device now yields a meaningful error code in $!. [GH
#14841] <https://github.com/Perl/perl5/issues/14841>

perl v5.36.0 2021-04-29 419

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

• Regexp substitution using an overloaded replacement value that provides a tainted stringification
now correctly taints the resulting string. [GH #12495]
<https://github.com/Perl/perl5/issues/12495>

• Lexical sub declarations in do blocks such as do { my sub lex; 123 } could corrupt the
stack, erasing items already on the stack in the enclosing statement. This has been fixed. [GH
#16243] <https://github.com/Perl/perl5/issues/16243>

• pack and unpack can now handle repeat counts and lengths that exceed two billion. [GH
#13179] <https://github.com/Perl/perl5/issues/13179>

• Digits past the radix point in octal and binary floating point literals now have the correct weight on
platforms where a floating point significand doesn’t fit into an integer type.

• The canonical truth value no longer has a spurious special meaning as a callable subroutine. It
used to be a magic placeholder for a missing import or unimport method, but is now treated
like any other string 1. [GH #14902] <https://github.com/Perl/perl5/issues/14902>

• system now reduces its arguments to strings in the parent process, so any effects of stringifying
them (such as overload methods being called or warnings being emitted) are visible in the way the
program expects. [GH #13561] <https://github.com/Perl/perl5/issues/13561>

• The readpipe() built-in function now checks at compile time that it has only one parameter
expression, and puts it in scalar context, thus ensuring that it doesn’t corrupt the stack at runtime.
[GH #2793] <https://github.com/Perl/perl5/issues/2793>

• sort now performs correct reference counting when aliasing $a and $b, thus avoiding premature
destruction and leakage of scalars if they are re-aliased during execution of the sort comparator.
[GH #11422] <https://github.com/Perl/perl5/issues/11422>

• reverse with no operand, reversing $_ by default, is no longer in danger of corrupting the
stack. [GH #16291] <https://github.com/Perl/perl5/issues/16291>

• exec, system, et al are no longer liable to have their argument lists corrupted by reentrant calls
and by magic such as tied scalars. [GH #15660] <https://github.com/Perl/perl5/issues/15660>

• Perl’s own malloc no longer gets confused by attempts to allocate more than a gigabyte on a
64-bit platform. [GH #13273] <https://github.com/Perl/perl5/issues/13273>

• Stacked file test operators in a sort comparator expression no longer cause a crash. [GH #15626]
<https://github.com/Perl/perl5/issues/15626>

• An identity tr/// transformation on a reference is no longer mistaken for that reference for the
purposes of deciding whether it can be assigned to. [GH #15812]
<https://github.com/Perl/perl5/issues/15812>

• Lengthy hexadecimal, octal, or binary floating point literals no longer cause undefined behaviour
when parsing digits that are of such low significance that they can’t affect the floating point value.
[GH #16114] <https://github.com/Perl/perl5/issues/16114>

• open $$scalarref... and similar invocations no longer leak the file handle. [GH #12593]
<https://github.com/Perl/perl5/issues/12593>

• Some convoluted kinds of regexp no longer cause an arithmetic overflow when compiled. [GH
#16113] <https://github.com/Perl/perl5/issues/16113>

• The default typemap, by avoiding newGVgen, now no longer leaks when XSUBs return file
handles (PerlIO * or FILE *). [GH #12593] <https://github.com/Perl/perl5/issues/12593>

• Creating a BEGIN block as an XS subroutine with a prototype no longer crashes because of the
early freeing of the subroutine.

• The printf format specifier %.0f no longer rounds incorrectly [GH #9125]
<https://github.com/Perl/perl5/issues/9125>, and now shows the correct sign for a negative zero.

• Fixed an issue where the error Scalar value @arrayname[0] better written as
$arrayname would give an error Cannot printf Inf with 'c' when arrayname starts
with Inf. [GH #16335] <https://github.com/Perl/perl5/issues/16335>

perl v5.36.0 2021-04-29 420

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

• The Perl implementation of getcwd() in Cwd in the PathTools distribution now behaves the
same as XS implementation on errors: it returns an error, and sets $!. [GH #16338]
<https://github.com/Perl/perl5/issues/16338>

• Vivify array elements when putting them on the stack. Fixes [GH #5310]
<https://github.com/Perl/perl5/issues/5310> (reported in April 2002).

• Fixed parsing of braced subscript after parens. Fixes [GH #4688]
<https://github.com/Perl/perl5/issues/4688> (reported in December 2001).

• tr/non_utf8/long_non_utf8/c could give the wrong results when the length of the
replacement character list was greater than 0x7fff.

• tr/non_utf8/non_utf8/cd failed to add the implied \x{100}-\x{7fffffff} to the
search character list.

• Compilation failures within ‘‘perl-within-perl’’ constructs, such as with string interpolation and
the right part of s///e, now cause compilation to abort earlier.

Previously compilation could continue in order to report other errors, but the failed sub-parse
could leave partly parsed constructs on the parser shift-reduce stack, confusing the parser, leading
to perl crashes. [GH #14739] <https://github.com/Perl/perl5/issues/14739>

• On threaded perls where the decimal point (radix) character is not a dot, it has been possible for a
race to occur between threads when one needs to use the real radix character (such as with
sprintf). This has now been fixed by use of a mutex on systems without thread-safe locales,
and the problem just doesn’t come up on those with thread-safe locales.

• Errors while compiling a regex character class could sometime trigger an assertion failure. [GH
#16172] <https://github.com/Perl/perl5/issues/16172>

Acknowledgements
Perl 5.28.0 represents approximately 13 months of development since Perl 5.26.0 and contains
approximately 730,000 lines of changes across 2,200 files from 77 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 580,000
lines of changes to 1,300 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.28.0:

Aaron Crane, Abigail, AEvar Arnfjo
..
r∂- Bjarmason, Alberto Simões, Alexandr Savca, Andrew Fresh,

Andy Dougherty, Andy Lester, Aristotle Pagaltzis, Ask Bjo/ rn Hansen, Chris ’BinGOs’ Williams, Craig
A. Berry, Dagfinn Ilmari Mannsa°ker, Dan Collins, Daniel Dragan, David Cantrell, David Mitchell,
Dmitry Ulanov, Dominic Hargreaves, E. Choroba, Eric Herman, Eugen Konkov, Father Chrysostomos,
Gene Sullivan, George Hartzell, Graham Knop, Harald Jo

..
rg, H.Merijn Brand, Hugo van der Sanden,

Jacques Germishuys, James E Keenan, Jarkko Hietaniemi, Jerry D. Hedden, J. Nick Koston, John
Lightsey, John Peacock, John P. Linderman, John SJ Anderson, Karen Etheridge, Karl Williamson, Ken
Brown, Ken Cotterill, Leon Timmermans, Lukas Mai, Marco Fontani, Marc-Philip Werner, Matthew
Horsfall, Neil Bowers, Nicholas Clark, Nicolas R., Niko Tyni, Pali, Paul Marquess, Peter John Acklam,
Reini Urban, Renee Baecker, Ricardo Signes, Robin Barker, Sawyer X, Scott Lanning, Sergey
Aleynikov, Shirakata Kentaro, Shoichi Kaji, Slaven Rezic, Smylers, Steffen Mu

..
ller, Steve Hay, Sullivan

Beck, Thomas Sibley, Todd Rinaldo, Tomasz Konojacki, Tom Hukins, Tom Wyant, Tony Cook, Vitali
Peil, Yves Orton, Zefram.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at <https://rt.perl.org/> .
There may also be information at <http://www.perl.org/> , the Perl Home Page.

perl v5.36.0 2021-04-29 421

PERL5280DELTA(1) Perl Programmers Reference Guide PERL5280DELTA(1)

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 422

PERL5281DELTA(1) Perl Programmers Reference Guide PERL5281DELTA(1)

NAME
perl5281delta - what is new for perl v5.28.1

DESCRIPTION
This document describes differences between the 5.28.0 release and the 5.28.1 release.

If you are upgrading from an earlier release such as 5.26.0, first read perl5280delta, which describes
differences between 5.26.0 and 5.28.0.

Security
[CVE-2018-18311] Integer overflow leading to buffer overflow and segmentation fault

Integer arithmetic in Perl_my_setenv() could wrap when the combined length of the environment
variable name and value exceeded around 0x7fffffff. This could lead to writing beyond the end of an
allocated buffer with attacker supplied data.

[GH #16560] <https://github.com/Perl/perl5/issues/16560>

[CVE-2018-18312] Heap-buffer-overflow write in S_regatom (regcomp.c)
A crafted regular expression could cause heap-buffer-overflow write during compilation, potentially
allowing arbitrary code execution.

[GH #16649] <https://github.com/Perl/perl5/issues/16649>

Incompatible Changes
There are no changes intentionally incompatible with 5.28.0. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Module::CoreList has been upgraded from version 5.20180622 to 5.20181129_28.

Selected Bug Fixes
• Perl 5.28 introduced an index() optimization when comparing to -1 (or indirectly, e.g. >= 0).

When this optimization was triggered inside a when clause it caused a warning (‘‘Argument %s
isn’t numeric in smart match’’). This has now been fixed. [GH #16626]
<https://github.com/Perl/perl5/issues/16626>

• Matching of decimal digits in script runs, introduced in Perl 5.28, had a bug that led to
"1\N{THAI DIGIT FIVE}" matching /ˆ(*sr:\d+)$/ when it should not. This has now
been fixed.

• The new in-place editing code no longer leaks directory handles. [GH #16602]
<https://github.com/Perl/perl5/issues/16602>

Acknowledgements
Perl 5.28.1 represents approximately 5 months of development since Perl 5.28.0 and contains
approximately 6,100 lines of changes across 44 files from 12 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 700 lines of
changes to 12 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.28.1:

Aaron Crane, Abigail, Chris ’BinGOs’ Williams, Dagfinn Ilmari Mannsa°ker, David Mitchell, James E
Keenan, John SJ Anderson, Karen Etheridge, Karl Williamson, Sawyer X, Steve Hay, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at <https://rt.perl.org/> .
There may also be information at <http://www.perl.org/> , the Perl Home Page.

perl v5.36.0 2021-04-29 423

PERL5281DELTA(1) Perl Programmers Reference Guide PERL5281DELTA(1)

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 424

PERL5282DELTA(1) Perl Programmers Reference Guide PERL5282DELTA(1)

NAME
perl5282delta - what is new for perl v5.28.2

DESCRIPTION
This document describes differences between the 5.28.1 release and the 5.28.2 release.

If you are upgrading from an earlier release such as 5.28.0, first read perl5281delta, which describes
differences between 5.28.0 and 5.28.1.

Incompatible Changes
Any set of digits in the Common script are legal in a script run of another script

There are several sets of digits in the Common script. [0-9] is the most familiar. But there are also
[\x{FF10}-\x{FF19}] (FULLWIDTH DIGIT ZERO - FULLWIDTH DIGIT NINE), and several sets
for use in mathematical notation, such as the MATHEMATICAL DOUBLE-STRUCK DIGITs. Any of
these sets should be able to appear in script runs of, say, Greek. But the previous design overlooked all
but the ASCII digits [0-9], so the design was flawed. This has been fixed, so is both a bug fix and an
incompatibility.

All digits in a run still have to come from the same set of ten digits.

[GH #16704] <https://github.com/Perl/perl5/issues/16704>

Modules and Pragmata
Updated Modules and Pragmata

• Module::CoreList has been upgraded from version 5.20181129_28 to 5.20190419.

• PerlIO::scalar has been upgraded from version 0.29 to 0.30.

• Storable has been upgraded from version 3.08 to 3.08_01.

Platform Support
Platform-Specific Notes

Windows
The Windows Server 2003 SP1 Platform SDK build, with its early x64 compiler and tools, was
accidentally broken in Perl 5.27.9. This has now been fixed.

Mac OS X
Perl’s build and testing process on Mac OS X for -Duseshrplib builds is now compatible with
Mac OS X System Integrity Protection (SIP).

SIP prevents binaries in /bin (and a few other places) being passed the DYLD_LIBRARY_PATH
environment variable. For our purposes this prevents DYLD_LIBRARY_PATH from being passed
to the shell, which prevents that variable being passed to the testing or build process, so running
perl couldn’t find libperl.dylib.

To work around that, the initial build of the perl executable expects to find libperl.dylib in the
build directory, and the library path is then adjusted during installation to point to the installed
library.

[GH #15057] <https://github.com/Perl/perl5/issues/15057>

Selected Bug Fixes
• If an in-place edit is still in progress during global destruction and the process exit code (as stored

in $?) is zero, perl will now treat the in-place edit as successful, replacing the input file with any
output produced.

This allows code like:

perl -i -ne 'print "Foo"; last'

to replace the input file, while code like:

perl -i -ne 'print "Foo"; die'

will not. Partly resolves [perl #133659].

[GH #16748] <https://github.com/Perl/perl5/issues/16748>

perl v5.36.0 2021-04-29 425

PERL5282DELTA(1) Perl Programmers Reference Guide PERL5282DELTA(1)

• A regression in Perl 5.28 caused the following code to fail

close(STDIN); open(CHILD, "|wc -l")'

because the child’s stdin would be closed on exec. This has now been fixed.

• pack "u", "invalid uuencoding" now properly NUL terminates the zero-length SV
produced.

[GH #16343] <https://github.com/Perl/perl5/issues/16343>

• Failing to compile a format now aborts compilation. Like other errors in sub-parses this could
leave the parser in a strange state, possibly crashing perl if compilation continued.

[GH #16169] <https://github.com/Perl/perl5/issues/16169>

• See ‘‘Any set of digits in the Common script are legal in a script run of another script’’.

Acknowledgements
Perl 5.28.2 represents approximately 4 months of development since Perl 5.28.1 and contains
approximately 2,500 lines of changes across 75 files from 13 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,200 lines
of changes to 29 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.28.2:

Aaron Crane, Abigail, Andy Dougherty, David Mitchell, Karen Etheridge, Karl Williamson, Leon
Timmermans, Nicolas R., Sawyer X, Steve Hay, Tina Mu

..
ller, Tony Cook, Zak B. Elep.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at <https://rt.perl.org/> .
There may also be information at <http://www.perl.org/> , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 426

PERL5283DELTA(1) Perl Programmers Reference Guide PERL5283DELTA(1)

NAME
perl5283delta - what is new for perl v5.28.3

DESCRIPTION
This document describes differences between the 5.28.2 release and the 5.28.3 release.

If you are upgrading from an earlier release such as 5.28.1, first read perl5282delta, which describes
differences between 5.28.1 and 5.28.2.

Security
[CVE-2020-10543] Buffer overflow caused by a crafted regular expression

A signed size_t integer overflow in the storage space calculations for nested regular expression
quantifiers could cause a heap buffer overflow in Perl’s regular expression compiler that overwrites
memory allocated after the regular expression storage space with attacker supplied data.

The target system needs a sufficient amount of memory to allocate partial expansions of the nested
quantifiers prior to the overflow occurring. This requirement is unlikely to be met on 64-bit systems.

Discovered by: ManhND of The Tarantula Team, VinCSS (a member of Vingroup).

[CVE-2020-10878] Integer overflow via malformed bytecode produced by a crafted regular
expression
Integer overflows in the calculation of offsets between instructions for the regular expression engine
could cause corruption of the intermediate language state of a compiled regular expression. An
attacker could abuse this behaviour to insert instructions into the compiled form of a Perl regular
expression.

Discovered by: Hugo van der Sanden and Slaven Rezic.

[CVE-2020-12723] Buffer overflow caused by a crafted regular expression
Recursive calls to S_study_chunk() by Perl’s regular expression compiler to optimize the
intermediate language representation of a regular expression could cause corruption of the intermediate
language state of a compiled regular expression.

Discovered by: Sergey Aleynikov.

Additional Note
An application written in Perl would only be vulnerable to any of the above flaws if it evaluates regular
expressions supplied by the attacker. Evaluating regular expressions in this fashion is known to be
dangerous since the regular expression engine does not protect against denial of service attacks in this
usage scenario.

Incompatible Changes
There are no changes intentionally incompatible with Perl 5.28.2. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Module::CoreList has been upgraded from version 5.20190419 to 5.20200601_28.

Testing
Tests were added and changed to reflect the other additions and changes in this release.

Acknowledgements
Perl 5.28.3 represents approximately 13 months of development since Perl 5.28.2 and contains
approximately 3,100 lines of changes across 48 files from 16 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,700 lines
of changes to 9 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.28.3:

Chris ’BinGOs’ Williams, Dan Book, Hugo van der Sanden, James E Keenan, John Lightsey, Karen
Etheridge, Karl Williamson, Matthew Horsfall, Max Maischein, Nicolas R., Renee Baecker, Sawyer X,
Steve Hay, Tom Hukins, Tony Cook, Zak B. Elep.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who

perl v5.36.0 2020-12-28 427

PERL5283DELTA(1) Perl Programmers Reference Guide PERL5283DELTA(1)

reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at
<https://github.com/Perl/perl5/issues>. There may also be information at <https://www.perl.org/>, the
Perl Home Page.

If you believe you have an unreported bug, please open an issue at
<https://github.com/Perl/perl5/issues>. Be sure to trim your bug down to a tiny but sufficient test case.

If the bug you are reporting has security implications which make it inappropriate to send to a public
issue tracker, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for details
of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2020-12-28 428

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

NAME
perl5300delta - what is new for perl v5.30.0

DESCRIPTION
This document describes differences between the 5.28.0 release and the 5.30.0 release.

If you are upgrading from an earlier release such as 5.26.0, first read perl5280delta, which describes
differences between 5.26.0 and 5.28.0.

Notice
sv_utf8_(downgrade|decode) are no longer marked as experimental. [GH #16822]
<https://github.com/Perl/perl5/issues/16822>.

Core Enhancements
Limited variable length lookbehind in regular expression pattern matching is now

experimentally supported
Using a lookbehind assertion (like (?<=foo?) or (?<!ba{1,9}r) previously would generate an
error and refuse to compile. Now it compiles (if the maximum lookbehind is at most 255 characters),
but raises a warning in the new experimental::vlb warnings category. This is to caution you that
the precise behavior is subject to change based on feedback from use in the field.

See ‘‘(?<=pattern)’’ in perlre and ‘‘(?<!pattern)’’ in perlre.

The upper limit ‘‘n’’ specifiable in a regular expression quantifier of the form ‘‘{m,n}’’
has been doubled to 65534
The meaning of an unbounded upper quantifier "{m,}" remains unchanged. It matches 2**31 - 1
times on most platforms, and more on ones where a C language short variable is more than 4 bytes
long.

Unicode 12.1 is supported
Because of a change in Unicode release cycles, Perl jumps from Unicode 10.0 in Perl 5.28 to Unicode
12.1 in Perl 5.30.

For details on the Unicode changes, see <https://www.unicode.org/versions/Unicode11.0.0/> for 11.0;
<https://www.unicode.org/versions/Unicode12.0.0/> for 12.0; and
<https://www.unicode.org/versions/Unicode12.1.0/> for 12.1. (Unicode 12.1 differs from 12.0 only in
the addition of a single character, that for the new Japanese era name.)

The Word_Break property, as in past Perl releases, remains tailored to behave more in line with
expectations of Perl users. This means that sequential runs of horizontal white space characters are not
broken apart, but kept as a single run. Unicode 11 changed from past versions to be more in line with
Perl, but it left several white space characters as causing breaks: TAB, NO BREAK SPACE, and FIGURE
SPACE (U+2007). We have decided to continue to use the previous Perl tailoring with regards to these.

Wildcards in Unicode property value specifications are now partially supported
You can now do something like this in a regular expression pattern

qr! \p{nv= /(?x) \A [0-5] \z / }!

which matches all Unicode code points whose numeric value is between 0 and 5 inclusive. So, it could
match the Thai or Bengali digits whose numeric values are 0, 1, 2, 3, 4, or 5.

This marks another step in implementing the regular expression features the Unicode Consortium
suggests.

Most properties are supported, with the remainder planned for 5.32. Details are in ‘‘Wildcards in
Property Values’’ in perlunicode.

qr’\N{name}’ is now supported
Previously it was an error to evaluate a named character \N{...} within a single quoted regular
expression pattern (whose evaluation is deferred from the normal place). This restriction is now
removed.

Turkic UTF-8 locales are now seamlessly supported
Turkic languages have different casing rules than other languages for the characters "i" and "I". The
uppercase of "i" is LATIN CAPITAL LETTER I WITH DOT ABOVE (U+0130); and the lowercase of
"I" is LATIN SMALL LETTER DOTLESS I (U+0131). Unicode furnishes alternate casing rules for use
with Turkic languages. Previously, Perl ignored these, but now, it uses them when it detects that it is

perl v5.36.0 2021-07-25 429

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

operating under a Turkic UTF-8 locale.

It is now possible to compile perl to always use thread-safe locale operations.
Previously, these calls were only used when the perl was compiled to be multi-threaded. To always
enable them, add

-Accflags='-DUSE_THREAD_SAFE_LOCALE'

to your Configure flags.

Eliminate opASSIGN macro usage from core
This macro is still defined but no longer used in core

-Drv now means something on -DDEBUGGING builds
Now, adding the verbose flag (-Dv) to the -Dr flag turns on all possible regular expression debugging.

Incompatible Changes
Assigning non-zero to $[is fatal

Setting $[to a non-zero value has been deprecated since Perl 5.12 and now throws a fatal error. See
"Assigning non-zero to $[is fatal" in perldeprecation.

Delimiters must now be graphemes
See ‘‘Use of unassigned code point or non-standalone grapheme for a delimiter.’’ in perldeprecation

Some formerly deprecated uses of an unescaped left brace ‘‘{’’ in regular expression
patterns are now illegal
But to avoid breaking code unnecessarily, most instances that issued a deprecation warning, remain
legal and now have a non-deprecation warning raised. See ‘‘Unescaped left braces in regular
expressions’’ in perldeprecation.

Previously deprecated sysread()/syswrite() on :utf8 handles is now fatal
Calling sysread(), syswrite(), send() or recv() on a :utf8 handle, whether applied explicitly or
implicitly, is now fatal. This was deprecated in perl 5.24.

There were two problems with calling these functions on :utf8 handles:

• All four functions only paid attention to the :utf8 flag. Other layers were completely ignored,
so a handle with :encoding(UTF-16LE) layer would be treated as UTF-8. Other layers, such
as compression are completely ignored with or without the :utf8 flag.

• sysread() and recv() would read from the handle, skipping any validation by the layers, and do no
validation of their own. This could lead to invalidly encoded perl scalars.

[GH #14839] <https://github.com/Perl/perl5/issues/14839>.

my() in false conditional prohibited
Declarations such as my $x if 0 are no longer permitted.

[GH #16702] <https://github.com/Perl/perl5/issues/16702>.

Fatalize $* and $#
These special variables, long deprecated, now throw exceptions when used.

[GH #16718] <https://github.com/Perl/perl5/issues/16718>.

Fatalize unqualified use of dump()
The dump() function, long discouraged, may no longer be used unless it is fully qualified, i.e.,
CORE::dump().

[GH #16719] <https://github.com/Perl/perl5/issues/16719>.

Remove File::Glob::glob()
The File::Glob::glob() function, long deprecated, has been removed and now throws an
exception which advises use of File::Glob::bsd_glob() instead.

[GH #16721] <https://github.com/Perl/perl5/issues/16721>.

pack() no longer can return malformed UTF-8
It croaks if it would otherwise return a UTF-8 string that contains malformed UTF-8. This protects
against potential security threats. This is considered a bug fix as well. [GH #16035]
<https://github.com/Perl/perl5/issues/16035>.

perl v5.36.0 2021-07-25 430

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

Any set of digits in the Common script are legal in a script run of another script
There are several sets of digits in the Common script. [0-9] is the most familiar. But there are also
[\x{FF10}-\x{FF19}] (FULLWIDTH DIGIT ZERO - FULLWIDTH DIGIT NINE), and several sets
for use in mathematical notation, such as the MATHEMATICAL DOUBLE-STRUCK DIGITs. Any of
these sets should be able to appear in script runs of, say, Greek. But the design of 5.30 overlooked all
but the ASCII digits [0-9], so the design was flawed. This has been fixed, so is both a bug fix and an
incompatibility. [GH #16704] <https://github.com/Perl/perl5/issues/16704>.

All digits in a run still have to come from the same set of ten digits.

JSON::PP enables allow_nonref by default
As JSON::XS 4.0 changed its policy and enabled allow_nonref by default, JSON::PP also enabled
allow_nonref by default.

Deprecations
In XS code, use of various macros dealing with UTF-8.

This deprecation was scheduled to become fatal in 5.30, but has been delayed to 5.32 due to problems
that showed up with some CPAN modules. For details of what’s affected, see perldeprecation.

Performance Enhancements
• Translating from UTF-8 into the code point it represents now is done via a deterministic finite

automaton, speeding it up. As a typical example, ord("\x7fff") now requires 12% fewer
instructions than before. The performance of checking that a sequence of bytes is valid UTF-8 is
similarly improved, again by using a DFA.

• Eliminate recursion from finalize_op(). [GH #11866]
<https://github.com/Perl/perl5/issues/11866>.

• A handful of small optimizations related to character folding and character classes in regular
expressions.

• Optimization of IV to UV conversions. [GH #16761]
<https://github.com/Perl/perl5/issues/16761>.

• Speed up of the integer stringification algorithm by processing two digits at a time instead of one.
[GH #16769] <https://github.com/Perl/perl5/issues/16769>.

• Improvements based on LGTM analysis and recommendation.
(<https://lgtm.com/projects/g/Perl/perl5/alerts/?mode=tree>). [GH #16765]
<https://github.com/Perl/perl5/issues/16765>. [GH #16773]
<https://github.com/Perl/perl5/issues/16773>.

• Code optimizations in regcomp.c, regcomp.h, regexec.c.

• Regular expression pattern matching of things like qr/[ˆa]/ is significantly sped up, where a is
any ASCII character. Other classes can get this speed up, but which ones is complicated and
depends on the underlying bit patterns of those characters, so differs between ASCII and EBCDIC
platforms, but all case pairs, like qr/[Gg]/ are included, as is [ˆ01].

Modules and Pragmata
Updated Modules and Pragmata

• Archive::Tar has been upgraded from version 2.30 to 2.32.

• B has been upgraded from version 1.74 to 1.76.

• B::Concise has been upgraded from version 1.003 to 1.004.

• B::Deparse has been upgraded from version 1.48 to 1.49.

• bignum has been upgraded from version 0.49 to 0.51.

• bytes has been upgraded from version 1.06 to 1.07.

• Carp has been upgraded from version 1.38 to 1.50

• Compress::Raw::Bzip2 has been upgraded from version 2.074 to 2.084.

• Compress::Raw::Zlib has been upgraded from version 2.076 to 2.084.

perl v5.36.0 2021-07-25 431

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

• Config::Extensions has been upgraded from version 0.02 to 0.03.

• Config::Perl::V. has been upgraded from version 0.29 to 0.32. This was due to a new configuration
variable that has influence on binary compatibility: USE_THREAD_SAFE_LOCALE.

• CPAN has been upgraded from version 2.20 to 2.22.

• Data::Dumper has been upgraded from version 2.170 to 2.174

Data::Dumper now avoids leaking when croaking.

• DB_File has been upgraded from version 1.840 to 1.843.

• deprecate has been upgraded from version 0.03 to 0.04.

• Devel::Peek has been upgraded from version 1.27 to 1.28.

• Devel::PPPort has been upgraded from version 3.40 to 3.52.

• Digest::SHA has been upgraded from version 6.01 to 6.02.

• Encode has been upgraded from version 2.97 to 3.01.

• Errno has been upgraded from version 1.29 to 1.30.

• experimental has been upgraded from version 0.019 to 0.020.

• ExtUtils::CBuilder has been upgraded from version 0.280230 to 0.280231.

• ExtUtils::Manifest has been upgraded from version 1.70 to 1.72.

• ExtUtils::Miniperl has been upgraded from version 1.08 to 1.09.

• ExtUtils::ParseXS has been upgraded from version 3.39 to 3.40. OUTLIST parameters are no
longer incorrectly included in the automatically generated function prototype. [GH #16746]
<https://github.com/Perl/perl5/issues/16746>.

• feature has been upgraded from version 1.52 to 1.54.

• File::Copy has been upgraded from version 2.33 to 2.34.

• File::Find has been upgraded from version 1.34 to 1.36.

$File::Find::dont_use_nlink now defaults to 1 on all platforms. [GH #16759]
<https://github.com/Perl/perl5/issues/16759>.

Variables $Is_Win32 and $Is_VMS are being initialized.

• File::Glob has been upgraded from version 1.31 to 1.32.

• File::Path has been upgraded from version 2.15 to 2.16.

• File::Spec has been upgraded from version 3.74 to 3.78.

Silence Cwd warning on Android builds if targetsh is not defined.

• File::Temp has been upgraded from version 0.2304 to 0.2309.

• Filter::Util::Call has been upgraded from version 1.58 to 1.59.

• GDBM_File has been upgraded from version 1.17 to 1.18.

• HTTP::Tiny has been upgraded from version 0.070 to 0.076.

• I18N::Langinfo has been upgraded from version 0.17 to 0.18.

• IO has been upgraded from version 1.39 to 1.40.

• IO-Compress has been upgraded from version 2.074 to 2.084.

Adds support for IO::Uncompress::Zstd and IO::Uncompress::UnLzip.

The BinModeIn and BinModeOut options are now no-ops. ALL files will be read/written in
binmode.

• IPC::Cmd has been upgraded from version 1.00 to 1.02.

• JSON::PP has been upgraded from version 2.97001 to 4.02.

JSON::PP as JSON::XS 4.0 enables allow_nonref by default.

perl v5.36.0 2021-07-25 432

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

• lib has been upgraded from version 0.64 to 0.65.

• Locale::Codes has been upgraded from version 3.56 to 3.57.

• Math::BigInt has been upgraded from version 1.999811 to 1.999816.

bnok() now supports the full Kronenburg extension. [cpan #95628]
<https://rt.cpan.org/Ticket/Display.html?id=95628>.

• Math::BigInt::FastCalc has been upgraded from version 0.5006 to 0.5008.

• Math::BigRat has been upgraded from version 0.2613 to 0.2614.

• Module::CoreList has been upgraded from version 5.20180622 to 5.20190520.

Changes to B::Op_private and Config

• Module::Load has been upgraded from version 0.32 to 0.34.

• Module::Metadata has been upgraded from version 1.000033 to 1.000036.

Properly clean up temporary directories after testing.

• NDBM_File has been upgraded from version 1.14 to 1.15.

• Net::Ping has been upgraded from version 2.62 to 2.71.

• ODBM_File has been upgraded from version 1.15 to 1.16.

• PathTools has been upgraded from version 3.74 to 3.78.

• parent has been upgraded from version 0.236 to 0.237.

• perl5db.pl has been upgraded from version 1.54 to 1.55.

Debugging threaded code no longer deadlocks in DB::sub nor DB::lsub.

• perlfaq has been upgraded from version 5.021011 to 5.20190126.

• PerlIO::encoding has been upgraded from version 0.26 to 0.27.

Warnings enabled by setting the WARN_ON_ERR flag in $PerlIO::encoding::fallback
are now only produced if warnings are enabled with use warnings "utf8"; or setting $ˆW.

• PerlIO::scalar has been upgraded from version 0.29 to 0.30.

• podlators has been upgraded from version 4.10 to 4.11.

• POSIX has been upgraded from version 1.84 to 1.88.

• re has been upgraded from version 0.36 to 0.37.

• SDBM_File has been upgraded from version 1.14 to 1.15.

• sigtrap has been upgraded from version 1.08 to 1.09.

• Storable has been upgraded from version 3.08 to 3.15.

Storable no longer probes for recursion limits at build time. [GH #16780]
<https://github.com/Perl/perl5/issues/16780> and others.

Metasploit exploit code was included to test for CVE-2015-1592 detection, this caused anti-virus
detections on at least one AV suite. The exploit code has been removed and replaced with a simple
functional test. [GH #16778] <https://github.com/Perl/perl5/issues/16778>

• Test::Simple has been upgraded from version 1.302133 to 1.302162.

• Thread::Queue has been upgraded from version 3.12 to 3.13.

• threads::shared has been upgraded from version 1.58 to 1.60.

Added support for extra tracing of locking, this requires a -DDEBUGGING and extra compilation
flags.

• Time::HiRes has been upgraded from version 1.9759 to 1.9760.

• Time::Local has been upgraded from version 1.25 to 1.28.

perl v5.36.0 2021-07-25 433

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

• Time::Piece has been upgraded from version 1.3204 to 1.33.

• Unicode::Collate has been upgraded from version 1.25 to 1.27.

• Unicode::UCD has been upgraded from version 0.70 to 0.72.

• User::grent has been upgraded from version 1.02 to 1.03.

• utf8 has been upgraded from version 1.21 to 1.22.

• vars has been upgraded from version 1.04 to 1.05.

vars.pm no longer disables non-vars strict when checking if strict vars is enabled. [GH #15851]
<https://github.com/Perl/perl5/issues/15851>.

• version has been upgraded from version 0.9923 to 0.9924.

• warnings has been upgraded from version 1.42 to 1.44.

• XS::APItest has been upgraded from version 0.98 to 1.00.

• XS::Typemap has been upgraded from version 0.16 to 0.17.

Removed Modules and Pragmata
The following modules will be removed from the core distribution in a future release, and will at that
time need to be installed from CPAN. Distributions on CPAN which require these modules will need to
list them as prerequisites.

The core versions of these modules will now issue "deprecated"-category warnings to alert you to
this fact. To silence these deprecation warnings, install the modules in question from CPAN.

Note that these are (with rare exceptions) fine modules that you are encouraged to continue to use.
Their disinclusion from core primarily hinges on their necessity to bootstrapping a fully functional,
CPAN-capable Perl installation, not usually on concerns over their design.

• B::Debug is no longer distributed with the core distribution. It continues to be available on CPAN
as B::Debug <https://metacpan.org/pod/B::Debug>.

• Locale::Codes has been removed at the request of its author. It continues to be available on CPAN
as Locale::Codes <https://metacpan.org/pod/Locale::Codes> [GH #16660]
<https://github.com/Perl/perl5/issues/16660>.

Documentation
Changes to Existing Documentation

We have attempted to update the documentation to reflect the changes listed in this document. If you
find any we have missed, send email to perlbug@perl.org <mailto:perlbug@perl.org>.

perlapi

• AvFILL() was wrongly listed as deprecated. This has been corrected. [GH #16586]
<https://github.com/Perl/perl5/issues/16586>

perlop

• We no longer have null (empty line) here doc terminators, so perlop should not refer to them.

• The behaviour of tr when the delimiter is an apostrophe has been clarified. In particular, hyphens
aren’t special, and \x{} isn’t interpolated. [GH #15853]
<https://github.com/Perl/perl5/issues/15853>

perlreapi, perlvar

• Improve docs for lastparen, lastcloseparen.

perlfunc

• The entry for ‘‘-X’’ in perlfunc has been clarified to indicate that symbolic links are followed for
most tests.

• Clarification of behaviour of reset EXPR.

• Try to clarify that ref(qr/xx/) returns Regexp rather than REGEXP and why. [GH #16801]
<https://github.com/Perl/perl5/issues/16801>.

perlreref

perl v5.36.0 2021-07-25 434

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

• Clarification of the syntax of /(?(cond)yes)/.

perllocale

• There are actually two slightly different types of UTF-8 locales: one for Turkic languages and one
for everything else. Starting in Perl v5.30, Perl seamlessly handles both types.

perlrecharclass

• Added a note for the ::xdigit:: character class.

perlvar

• More specific documentation of paragraph mode. [GH #16787]
<https://github.com/Perl/perl5/issues/16787>.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

Changes to Existing Diagnostics
• As noted under ‘‘Incompatible Changes’’ above, the deprecation warning ‘‘Unescaped left brace

in regex is deprecated here (and will be fatal in Perl 5.30), passed through in regex; marked by
<-- HERE in m/%s/’’ has been changed to the non-deprecation warning ‘‘Unescaped left brace in
regex is passed through in regex; marked by <-- HERE in m/%s/’’.

• Specifying \o{} without anything between the braces now yields the fatal error message ‘‘Empty
\o{}’’. Previously it was ‘‘Number with no digits’’. This means the same wording is used for this
kind of error as with similar constructs such as \p{}.

• Within the scope of the experimental feature use re 'strict' , specifying \x{} without
anything between the braces now yields the fatal error message ‘‘Empty \x{}’’. Previously it was
‘‘Number with no digits’’. This means the same wording is used for this kind of error as with
similar constructs such as \p{}. It is legal, though not wise to have an empty \x outside of re
'strict' ; it silently generates a NUL character.

• Type of arg %d to %s must be %s (not %s)

Attempts to push, pop, etc on a hash or glob now produce this message rather than complaining
that they no longer work on scalars. [GH #15774] <https://github.com/Perl/perl5/issues/15774>.

• Prototype not terminated

The file and line number is now reported for this error. [GH #16697]
<https://github.com/Perl/perl5/issues/16697>

• Under -Dr (or use re 'Debug') the compiled regex engine program is displayed. It used to
use two different spellings for infinity, INFINITY, and INFTY. It now uses the latter exclusively,
as that spelling has been around the longest.

Utility Changes
xsubpp

• The generated prototype (with PROTOTYPES: ENABLE) would include OUTLIST parameters,
but these aren’t arguments to the perl function. This has been rectified. [GH #16746]
<https://github.com/Perl/perl5/issues/16746>.

Configuration and Compilation
• Normally the thread-safe locale functions are used only on threaded builds. It is now possible to

force their use on unthreaded builds on systems that have them available, by including the
-Accflags='-DUSE_THREAD_SAFE_LOCALE' option to Configure.

• Improve detection of memrchr, strlcat, and strlcpy

• Improve Configure detection of memmem(). [GH #16807]
<https://github.com/Perl/perl5/issues/16807>.

• Multiple improvements and fixes for -DPERL_GLOBAL_STRUCT build option.

• Fix -DPERL_GLOBAL_STRUCT_PRIVATE build option.

perl v5.36.0 2021-07-25 435

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

Testing
• t/lib/croak/op [GH #15774] <https://github.com/Perl/perl5/issues/15774>.

separate error for push, etc. on hash/glob.

• t/op/svleak.t [GH #16749] <https://github.com/Perl/perl5/issues/16749>.

Add test for goto &sub in overload leaking.

• Split t/re/fold_grind.t into multiple test files.

• Fix intermittent tests which failed due to race conditions which surface during parallel testing.
[GH #16795] <https://github.com/Perl/perl5/issues/16795>.

• Thoroughly test paragraph mode, using a new test file, t/io/paragraph_mode.t. [GH #16787]
<https://github.com/Perl/perl5/issues/16787>.

• Some tests in t/io/eintr.t caused the process to hang on pre-16 Darwin. These tests are skipped for
those version of Darwin.

Platform Support
Platform-Specific Notes

HP-UX 11.11
An obscure problem in pack() when compiling with HP C-ANSI-C has been fixed by disabling
optimizations in pp_pack.c.

Mac OS X
Perl’s build and testing process on Mac OS X for -Duseshrplib builds is now compatible with
Mac OS X System Integrity Protection (SIP).

SIP prevents binaries in /bin (and a few other places) being passed the DYLD_LIBRARY_PATH
environment variable. For our purposes this prevents DYLD_LIBRARY_PATH from being passed
to the shell, which prevents that variable being passed to the testing or build process, so running
perl couldn’t find libperl.dylib.

To work around that, the initial build of the perl executable expects to find libperl.dylib in the
build directory, and the library path is then adjusted during installation to point to the installed
library.

[GH #15057] <https://github.com/Perl/perl5/issues/15057>.

Minix3
Some support for Minix3 has been re-added.

Cygwin
Cygwin doesn’t make cuserid visible.

Win32 Mingw
C99 math functions are now available.

Windows
• The USE_CPLUSPLUS build option which has long been available in win32/Makefile (for

nmake) and win32/makefile.mk (for dmake) is now also available in win32/GNUmakefile
(for gmake).

• The nmake makefile no longer defaults to Visual C++ 6.0 (a very old version which is
unlikely to be widely used today). As a result, it is now a requirement to specify the
CCTYPE since there is no obvious choice of which modern version to default to instead.
Failure to specify CCTYPE will result in an error being output and the build will stop.

(The dmake and gmake makefiles will automatically detect which compiler is being used, so
do not require CCTYPE to be set. This feature has not yet been added to the nmake
makefile.)

• sleep() with warnings enabled for a USE_IMP_SYS build no longer warns about the
sleep timeout being too large. [GH #16631] <https://github.com/Perl/perl5/issues/16631>.

• Support for compiling perl on Windows using Microsoft Visual Studio 2019 (containing
Visual C++ 14.2) has been added.

perl v5.36.0 2021-07-25 436

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

• socket() now sets $! if the protocol, address family and socket type combination is not
found. [GH #16849] <https://github.com/Perl/perl5/issues/16849>.

• The Windows Server 2003 SP1 Platform SDK build, with its early x64 compiler and tools,
was accidentally broken in Perl 5.27.9. This has now been fixed.

Internal Changes
• The sizing pass has been eliminated from the regular expression compiler. An extra pass may

instead be needed in some cases to count the number of parenthetical capture groups.

• A new function "my_strtod" in perlapi or its synonym, Strtod(), is now available with the same
signature as the libc strtod(). It provides strotod() equivalent behavior on all platforms, using the
best available precision, depending on platform capabilities and Configure options, while handling
locale-related issues, such as if the radix character should be a dot or comma.

• Added newSVsv_nomg() to copy a SV without processing get magic on the source. [GH
#16461] <https://github.com/Perl/perl5/issues/16461>.

• It is now forbidden to malloc more than PTRDIFF_T_MAX bytes. Much code (including C
optimizers) assumes that all data structures will not be larger than this, so this catches such
attempts before overflow happens.

• Two new regnodes have been introduced EXACT_ONLY8, and EXACTFU_ONLY8. They’re
equivalent to EXACT and EXACTFU, except that they contain a code point which requires UTF-8
to represent/match. Hence, if the target string isn’t UTF-8, we know it can’t possibly match,
without needing to try.

• print_bytes_for_locale() is now defined if DEBUGGING, Prior, it didn’t get defined
unless LC_COLLATE was defined on the platform.

Selected Bug Fixes
• Compilation under -DPERL_MEM_LOG and -DNO_LOCALE have been fixed.

• Perl 5.28 introduced an index() optimization when comparing to -1 (or indirectly, e.g. >= 0).
When this optimization was triggered inside a when clause it caused a warning (‘‘Argument %s
isn’t numeric in smart match’’). This has now been fixed. [GH #16626]
<https://github.com/Perl/perl5/issues/16626>

• The new in-place editing code no longer leaks directory handles. [GH #16602]
<https://github.com/Perl/perl5/issues/16602>.

• Warnings produced from constant folding operations on overloaded values no longer produce
spurious ‘‘Use of uninitialized value’’ warnings. [GH #16349]
<https://github.com/Perl/perl5/issues/16349>.

• Fix for ‘‘mutator not seen in (lex = ...) .= ...’’ [GH #16655]
<https://github.com/Perl/perl5/issues/16655>.

• pack "u", "invalid uuencoding" now properly NUL terminates the zero-length SV
produced. [GH #16343] <https://github.com/Perl/perl5/issues/16343>.

• Improve the debugging output for calloc() calls with -Dm. [GH #16653]
<https://github.com/Perl/perl5/issues/16653>.

• Regexp script runs were failing to permit ASCII digits in some cases. [GH #16704]
<https://github.com/Perl/perl5/issues/16704>.

• On Unix-like systems supporting a platform-specific technique for determining $ˆX, Perl failed to
fall back to the generic technique when the platform-specific one fails (for example, a Linux
system with /proc not mounted). This was a regression in Perl 5.28.0. [GH #16715]
<https://github.com/Perl/perl5/issues/16715>.

• SDBM_File is now more robust with corrupt database files. The improvements do not make
SDBM files suitable as an interchange format. [GH #16164]
<https://github.com/Perl/perl5/issues/16164>.

• binmode($fh); or binmode($fh, ':raw'); now properly removes the :utf8 flag
from the default :crlf I/O layer on Win32. [GH #16730]
<https://github.com/Perl/perl5/issues/16730>.

perl v5.36.0 2021-07-25 437

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

• The experimental reference aliasing feature was misinterpreting array and hash slice assignment as
being localised, e.g.

\(@a[3,5,7]) = \(....);

was being interpreted as:

local \(@a[3,5,7]) = \(....);

[GH #16701] <https://github.com/Perl/perl5/issues/16701>.

• sort SUBNAME within an eval EXPR when EXPR was UTF-8 upgraded could panic if the
SUBNAME was non-ASCII. [GH #16979] <https://github.com/Perl/perl5/issues/16979>.

• Correctly handle realloc() modifying errno on success so that the modification isn’t visible to
the perl user, since realloc() is called implicitly by the interpreter. This modification is permitted
by the C standard, but has only been observed on FreeBSD 13.0-CURRENT. [GH #16907]
<https://github.com/Perl/perl5/issues/16907>.

• Perl now exposes POSIX getcwd as Internals::getcwd() if available. This is intended
for use by Cwd.pm during bootstrapping and may be removed or changed without notice. This
fixes some bootstrapping issues while building perl in a directory where some ancestor directory
isn’t readable. [GH #16903] <https://github.com/Perl/perl5/issues/16903>.

• pack() no longer can return malformed UTF-8. It croaks if it would otherwise return a UTF-8
string that contains malformed UTF-8. This protects against potential security threats. [GH
#16035] <https://github.com/Perl/perl5/issues/16035>.

• See ‘‘Any set of digits in the Common script are legal in a script run of another script’’.

• Regular expression matching no longer leaves stale UTF-8 length magic when updating $ˆR. This
could result in length($ˆR) returning an incorrect value.

• Reduce recursion on ops [GH #11866] <https://github.com/Perl/perl5/issues/11866>.

This can prevent stack overflow when processing extremely deep op trees.

• Avoid leak in multiconcat with overloading. [GH #16823]
<https://github.com/Perl/perl5/issues/16823>.

• The handling of user-defined \p{} properties (see ‘‘User-Defined Character Properties’’ in
perlunicode) has been rewritten to be in C (instead of Perl). This speeds things up, but in the
process several inconsistencies and bug fixes are made.

1. A few error messages have minor wording changes. This is essentially because the new way
is integrated into the regex error handling mechanism that marks the position in the input at
which the error occurred. That was not possible previously. The messages now also contain
additional back-trace-like information in case the error occurs deep in nested calls.

2. A user-defined property is implemented as a perl subroutine with certain highly constrained
naming conventions. It was documented previously that the sub would be in the current
package if the package was unspecified. This turned out not to be true in all cases, but now it
is.

3. All recursive calls are treated as infinite recursion. Previously they would cause the
interpreter to panic. Now, they cause the regex pattern to fail to compile.

4. Similarly, any other error likely would lead to a panic; now to just the pattern failing to
compile.

5. The old mechanism did not detect illegal ranges in the definition of the property. Now, the
range max must not be smaller than the range min. Otherwise, the pattern fails to compile.

6. The intention was to have each sub called only once during the lifetime of the program, so
that a property’s definition is immutable. This was relaxed so that it could be called once for
all /i compilations, and potentially a second time for non-/i (the sub is passed a parameter
indicating which). However, in practice there were instances when this was broken, and
multiple calls were possible. Those have been fixed. Now (besides the /i,non-/i cases) the
only way a sub can be called multiple times is if some component of it has not been defined
yet. For example, suppose we have sub IsA() whose definition is known at compile time, and

perl v5.36.0 2021-07-25 438

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

it in turn calls isB() whose definition is not yet known. isA() will be called each time a
pattern it appears in is compiled. If isA() also calls isC() and that definition is known, isC()
will be called just once.

7. There were some races and very long hangs should one thread be compiling the same
property as another simultaneously. These have now been fixed.

• Fixed a failure to match properly.

An EXACTFish regnode has a finite length it can hold for the string being matched. If that length
is exceeded, a second node is used for the next segment of the string, for as many regnodes as are
needed. Care has to be taken where to break the string, in order to deal multi-character folds in
Unicode correctly. If we want to break a string at a place which could potentially be in the middle
of a multi-character fold, we back off one (or more) characters, leaving a shorter EXACTFish
regnode. This backing off mechanism contained an off-by-one error. [GH #16806]
<https://github.com/Perl/perl5/issues/16806>.

• A bare eof call with no previous file handle now returns true. [GH #16786]
<https://github.com/Perl/perl5/issues/16786>

• Failing to compile a format now aborts compilation. Like other errors in sub-parses this could
leave the parser in a strange state, possibly crashing perl if compilation continued. [GH #16169]
<https://github.com/Perl/perl5/issues/16169>

• If an in-place edit is still in progress during global destruction and the process exit code (as stored
in $?) is zero, perl will now treat the in-place edit as successful, replacing the input file with any
output produced.

This allows code like:

perl -i -ne 'print "Foo"; last'

to replace the input file, while code like:

perl -i -ne 'print "Foo"; die'

will not. Partly resolves [GH #16748] <https://github.com/Perl/perl5/issues/16748>.

• A regression in 5.28 caused the following code to fail

close(STDIN); open(CHILD, "|wc -l")'

because the child’s stdin would be closed on exec. This has now been fixed.

• Fixed an issue where compiling a regexp containing both compile-time and run-time code blocks
could lead to trying to compile something which is invalid syntax.

• Fixed build failures with -DNO_LOCALE_NUMERIC and -DNO_LOCALE_COLLATE. [GH
#16771] <https://github.com/Perl/perl5/issues/16771>.

• Prevent the tests in ext/B/t/strict.t from being skipped. [GH #16783]
<https://github.com/Perl/perl5/issues/16783>.

• /di nodes ending or beginning in s are now EXACTF. We do not want two EXACTFU to be
joined together during optimization, and to form a ss, sS, Ss or SS sequence; they are the only
multi-character sequences which may match differently under /ui and /di.

Acknowledgements
Perl 5.30.0 represents approximately 11 months of development since Perl 5.28.0 and contains
approximately 620,000 lines of changes across 1,300 files from 58 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 510,000
lines of changes to 750 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.30.0:

Aaron Crane, Abigail, Alberto Simões, Alexandr Savca, Andreas Ko
..
nig, Andy Dougherty, Aristotle

Pagaltzis, Brian Greenfield, Chad Granum, Chris ’BinGOs’ Williams, Craig A. Berry, Dagfinn Ilmari
Mannsa°ker, Dan Book, Dan Dedrick, Daniel Dragan, Dan Kogai, David Cantrell, David Mitchell,
Dominic Hargreaves, E. Choroba, Ed J, Eugen Konkov, Franc,ois Perrad, Graham Knop, Hauke D,

perl v5.36.0 2021-07-25 439

PERL5300DELTA(1) Perl Programmers Reference Guide PERL5300DELTA(1)

H.Merijn Brand, Hugo van der Sanden, Jakub Wilk, James Clarke, James E Keenan, Jerry D. Hedden,
Jim Cromie, John SJ Anderson, Karen Etheridge, Karl Williamson, Leon Timmermans, Matthias
Bethke, Nicholas Clark, Nicolas R., Niko Tyni, Pali, Petr PísaX, Phil Pearl (Lobbes), Richard Leach,
Ryan Voots, Sawyer X, Shlomi Fish, Sisyphus, Slaven Rezic, Steve Hay, Sullivan Beck, Tina Mu

..
ller,

Tomasz Konojacki, Tom Wyant, Tony Cook, Unicode Consortium, Yves Orton, Zak B. Elep.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of most of the (very much appreciated) contributors
who reported issues to the Perl bug tracker. Noteworthy in this release were the large number of bug
fixes made possible by Sergey Aleynikov’s high quality perlbug reports for issues he discovered by
fuzzing with AFL.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at <https://rt.perl.org/>.
There may also be information at <http://www.perl.org/>, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-07-25 440

PERL5301DELTA(1) Perl Programmers Reference Guide PERL5301DELTA(1)

NAME
perl5301delta - what is new for perl v5.30.1

DESCRIPTION
This document describes differences between the 5.30.0 release and the 5.30.1 release.

If you are upgrading from an earlier release such as 5.28.0, first read perl5300delta, which describes
differences between 5.28.0 and 5.30.0.

Incompatible Changes
There are no changes intentionally incompatible with 5.30.1. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Module::CoreList has been upgraded from version 5.20190522 to 5.20191110.

Documentation
Changes to Existing Documentation

We have attempted to update the documentation to reflect the changes listed in this document. If you
find any we have missed, send email to perlbug@perl.org <mailto:perlbug@perl.org>.

Additionally, documentation has been updated to reference GitHub as the new canonical repository and
to describe the new GitHub pull request workflow.

Configuration and Compilation
• The ECHO macro is now defined. This is used in a dtrace rule that was originally changed for

FreeBSD, and the FreeBSD make apparently predefines it. The Solaris make does not predefine
ECHO which broke this rule on Solaris. [perl #17057]
<https://github.com/perl/perl5/issues/17057>

Testing
Tests were added and changed to reflect the other additions and changes in this release.

Platform Support
Platform-Specific Notes

Win32
The locale tests could crash on Win32 due to a Windows bug, and separately due to the CRT
throwing an exception if the locale name wasn’t validly encoded in the current code page.

For the second we now decode the locale name ourselves, and always decode it as UTF-8.

[perl #16922] <https://github.com/perl/perl5/issues/16922>

Selected Bug Fixes
• Setting $) now properly sets supplementary group ids, if you have the necessary privileges. [perl

#17031] <https://github.com/perl/perl5/issues/17031>

• readline @foo now evaluates @foo in scalar context. Previously, it would be evaluated in
list context, and since readline() pops only one argument from the stack, the stack could
underflow, or be left with unexpected values on it. [perl #16929]
<https://github.com/perl/perl5/issues/16929>

• sv_gets() now recovers better if the target SV is modified by a signal handler. [perl #16960]
<https://github.com/perl/perl5/issues/16960>

• Matching a non-SVf_UTF8 string against a regular expression containing Unicode literals could
leak an SV on each match attempt. [perl #17140] <https://github.com/perl/perl5/issues/17140>

• sprintf("%.*a", -10000, $x) would cause a buffer overflow due to mishandling of the
negative precision value. [perl #16942] <https://github.com/perl/perl5/issues/16942>

• scalar() on a reference could cause an erroneous assertion failure during compilation. [perl
#16969] <https://github.com/perl/perl5/issues/16969>

Acknowledgements
Perl 5.30.1 represents approximately 6 months of development since Perl 5.30.0 and contains
approximately 4,700 lines of changes across 67 files from 14 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 910 lines of

perl v5.36.0 2021-04-29 441

PERL5301DELTA(1) Perl Programmers Reference Guide PERL5301DELTA(1)

changes to 20 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.30.1:

Chris ’BinGOs’ Williams, Dan Book, David Mitchell, Hugo van der Sanden, James E Keenan, Karen
Etheridge, Karl Williamson, Manuel Mausz, Max Maischein, Nicolas R., Sawyer X, Steve Hay, Tom
Hukins, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at <https://rt.perl.org/>.
There may also be information at <http://www.perl.org/>, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it inappropriate to send to a publicly
archived mailing list, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for
details of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 442

PERL5302DELTA(1) Perl Programmers Reference Guide PERL5302DELTA(1)

NAME
perl5302delta - what is new for perl v5.30.2

DESCRIPTION
This document describes differences between the 5.30.1 release and the 5.30.2 release.

If you are upgrading from an earlier release such as 5.30.0, first read perl5301delta, which describes
differences between 5.30.0 and 5.30.1.

Incompatible Changes
There are no changes intentionally incompatible with 5.30.0. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Compress::Raw::Bzip2 has been upgraded from version 2.084 to 2.089.

• Module::CoreList has been upgraded from version 5.20191110 to 5.20200314.

Documentation
Changes to Existing Documentation

We have attempted to update the documentation to reflect the changes listed in this document. If you
find any we have missed, send email to <https://github.com/Perl/perl5/issues>.

Configuration and Compilation
• GCC 10 is now supported by Configure.

Testing
Tests were added and changed to reflect the other additions and changes in this release.

Platform Support
Platform-Specific Notes

Windows
The MYMALLOC (PERL_MALLOC) build on Windows has been fixed.

Selected Bug Fixes
• printf() or sprintf() with the %n format no longer cause a panic on debugging builds, or report an

incorrectly cached length value when producing SVfUTF8 flagged strings.

[GH #17221 <https://github.com/Perl/perl5/issues/17221>]

• A memory leak in regular expression patterns has been fixed.

[GH #17218 <https://github.com/Perl/perl5/issues/17218>]

• A read beyond buffer in grok_infnan has been fixed.

[GH #17370 <https://github.com/Perl/perl5/issues/17370>]

• An assertion failure in the regular expression engine has been fixed.

[GH #17372 <https://github.com/Perl/perl5/issues/17372>]

• (?{...}) eval groups in regular expressions no longer unintentionally trigger ‘‘EVAL without
pos change exceeded limit in regex’’.

[GH #17490 <https://github.com/Perl/perl5/issues/17490>]

Acknowledgements
Perl 5.30.2 represents approximately 4 months of development since Perl 5.30.1 and contains
approximately 2,100 lines of changes across 110 files from 15 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 920 lines of
changes to 30 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.30.2:

Chris ’BinGOs’ Williams, Dan Book, David Mitchell, Hugo van der Sanden, Karen Etheridge, Karl
Williamson, Matthew Horsfall, Nicolas R., Petr PísaX, Renee Baecker, Sawyer X, Steve Hay, Tomasz
Konojacki, Tony Cook, Yves Orton.

The list above is almost certainly incomplete as it is automatically generated from version control

perl v5.36.0 2020-03-19 443

PERL5302DELTA(1) Perl Programmers Reference Guide PERL5302DELTA(1)

history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at <https://rt.perl.org/>.
There may also be information at <http://www.perl.org/>, the Perl Home Page.

If you believe you have an unreported bug, please open an issue at
<https://github.com/Perl/perl5/issues>. Be sure to trim your bug down to a tiny but sufficient test case.

If the bug you are reporting has security implications which make it inappropriate to send to a public
issue tracker, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for details
of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2020-03-19 444

PERL5303DELTA(1) Perl Programmers Reference Guide PERL5303DELTA(1)

NAME
perl5303delta - what is new for perl v5.30.3

DESCRIPTION
This document describes differences between the 5.30.2 release and the 5.30.3 release.

If you are upgrading from an earlier release such as 5.30.1, first read perl5302delta, which describes
differences between 5.30.1 and 5.30.2.

Security
[CVE-2020-10543] Buffer overflow caused by a crafted regular expression

A signed size_t integer overflow in the storage space calculations for nested regular expression
quantifiers could cause a heap buffer overflow in Perl’s regular expression compiler that overwrites
memory allocated after the regular expression storage space with attacker supplied data.

The target system needs a sufficient amount of memory to allocate partial expansions of the nested
quantifiers prior to the overflow occurring. This requirement is unlikely to be met on 64-bit systems.

Discovered by: ManhND of The Tarantula Team, VinCSS (a member of Vingroup).

[CVE-2020-10878] Integer overflow via malformed bytecode produced by a crafted regular
expression
Integer overflows in the calculation of offsets between instructions for the regular expression engine
could cause corruption of the intermediate language state of a compiled regular expression. An
attacker could abuse this behaviour to insert instructions into the compiled form of a Perl regular
expression.

Discovered by: Hugo van der Sanden and Slaven Rezic.

[CVE-2020-12723] Buffer overflow caused by a crafted regular expression
Recursive calls to S_study_chunk() by Perl’s regular expression compiler to optimize the
intermediate language representation of a regular expression could cause corruption of the intermediate
language state of a compiled regular expression.

Discovered by: Sergey Aleynikov.

Additional Note
An application written in Perl would only be vulnerable to any of the above flaws if it evaluates regular
expressions supplied by the attacker. Evaluating regular expressions in this fashion is known to be
dangerous since the regular expression engine does not protect against denial of service attacks in this
usage scenario.

Incompatible Changes
There are no changes intentionally incompatible with Perl 5.30.2. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Module::CoreList has been upgraded from version 5.20200314 to 5.20200601_30.

Testing
Tests were added and changed to reflect the other additions and changes in this release.

Acknowledgements
Perl 5.30.3 represents approximately 3 months of development since Perl 5.30.2 and contains
approximately 1,100 lines of changes across 42 files from 7 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 350 lines of
changes to 8 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.30.3:

Chris ’BinGOs’ Williams, Hugo van der Sanden, John Lightsey, Karl Williamson, Nicolas R., Sawyer
X, Steve Hay.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

perl v5.36.0 2020-06-30 445

PERL5303DELTA(1) Perl Programmers Reference Guide PERL5303DELTA(1)

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at
<https://github.com/Perl/perl5/issues>. There may also be information at <https://www.perl.org/>, the
Perl Home Page.

If you believe you have an unreported bug, please open an issue at
<https://github.com/Perl/perl5/issues>. Be sure to trim your bug down to a tiny but sufficient test case.

If the bug you are reporting has security implications which make it inappropriate to send to a public
issue tracker, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for details
of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2020-06-30 446

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

NAME
perl5320delta - what is new for perl v5.32.0

DESCRIPTION
This document describes differences between the 5.30.0 release and the 5.32.0 release.

If you are upgrading from an earlier release such as 5.28.0, first read perl5300delta, which describes
differences between 5.28.0 and 5.30.0.

Core Enhancements
The isa Operator

A new experimental infix operator called isa tests whether a given object is an instance of a given
class or a class derived from it:

if($obj isa Package::Name) { ... }

For more detail see ‘‘Class Instance Operator’’ in perlop.

Unicode 13.0 is supported
See <https://www.unicode.org/versions/Unicode13.0.0/> for details.

Chained comparisons capability
Some comparison operators, as their associativity, chain with some operators of the same precedence
(but never with operators of different precedence).

if ($x < $y <= $z) {...}

behaves exactly like:

if ($x < $y && $y <= $z) {...}

(assuming that "$y" is as simple a scalar as it looks.)

You can read more about this in perlop under ‘‘Operator Precedence and Associativity’’ in perlop.

New Unicode properties Identifier_Status and Identifier_Type supported
Unicode has revised its regular expression requirements:
<https://www.unicode.org/reports/tr18/tr18-21.html>. As part of that they are wanting more properties
to be exposed, ones that aren’t part of the strict UCD (Unicode character database). These two are used
for examining inputs for security purposes. Details on their usage is at
<https://www.unicode.org/reports/tr39/>.

It is now possible to write qr/\p{Name=...}/, or qr!\p{na=/(SMILING|GRINNING)
FACE/}!
The Unicode Name property is now accessible in regular expression patterns, as an alternative to
\N{...}. A comparison of the two methods is given in ‘‘Comparison of \N{...} and \p{name=...}’’ in
perlunicode.

The second example above shows that wildcard subpatterns are also usable in this property. See
‘‘Wildcards in Property Values’’ in perlunicode.

Improvement of POSIX::mblen(), mbtowc, and wctomb
The POSIX::mblen(), mbtowc, and wctomb functions now work on shift state locales and are
thread-safe on C99 and above compilers when executed on a platform that has locale thread-safety; the
length parameters are now optional.

These functions are always executed under the current C language locale. (See perllocale.) Most
locales are stateless, but a few, notably the very rarely encountered ISO 2022, maintain a state between
calls to these functions. Previously the state was cleared on every call, but now the state is not reset
unless the appropriate parameter is undef.

On threaded perls, the C99 functions mbrlen (3), mbrtowc (3), and wcrtomb (3), when available, are
substituted for the plain functions. This makes these functions thread-safe when executing on a locale
thread-safe platform.

The string length parameters in mblen and mbtowc are now optional; useful only if you wish to
restrict the length parsed in the source string to less than the actual length.

Alpha assertions are no longer experimental
See ‘‘(*pla:pattern)’’ in perlre, ‘‘(*plb:pattern)’’ in perlre, ‘‘(*nla:pattern)’’ in perlre>, and
‘‘(*nlb:pattern)’’ in perlre. Use of these no longer generates a warning; existing code that disables the

perl v5.36.0 2021-04-29 447

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

warning category experimental::alpha_assertions will continue to work without any
changes needed. Enabling the category has no effect.

Script runs are no longer experimental
See ‘‘Script Runs’’ in perlre. Use of these no longer generates a warning; existing code that disables the
warning category experimental::script_run will continue to work without any changes
needed. Enabling the category has no effect.

Feature checks are now faster
Previously feature checks in the parser required a hash lookup when features were set outside of a
feature bundle, this has been optimized to a bit mask check. [GH #17229
<https://github.com/Perl/perl5/issues/17229>]

Perl is now developed on GitHub
Perl is now developed on GitHub. You can find us at <https://github.com/Perl/perl5>.

Non-security bugs should now be reported via GitHub. Security issues should continue to be reported
as documented in perlsec.

Compiled patterns can now be dumped before optimization
This is primarily useful for tracking down bugs in the regular expression compiler. This dump happens
on -DDEBUGGING perls, if you specify -Drv on the command line; or on any perl if the pattern is
compiled within the scope of use re qw(Debug DUMP_PRE_OPTIMIZE) or
use re qw(Debug COMPILE EXTRA). (All but the second case display other information as
well.)

Security
[CVE-2020-10543] Buffer overflow caused by a crafted regular expression

A signed size_t integer overflow in the storage space calculations for nested regular expression
quantifiers could cause a heap buffer overflow in Perl’s regular expression compiler that overwrites
memory allocated after the regular expression storage space with attacker supplied data.

The target system needs a sufficient amount of memory to allocate partial expansions of the nested
quantifiers prior to the overflow occurring. This requirement is unlikely to be met on 64-bit systems.

Discovered by: ManhND of The Tarantula Team, VinCSS (a member of Vingroup).

[CVE-2020-10878] Integer overflow via malformed bytecode produced by a crafted regular
expression
Integer overflows in the calculation of offsets between instructions for the regular expression engine
could cause corruption of the intermediate language state of a compiled regular expression. An
attacker could abuse this behaviour to insert instructions into the compiled form of a Perl regular
expression.

Discovered by: Hugo van der Sanden and Slaven Rezic.

[CVE-2020-12723] Buffer overflow caused by a crafted regular expression
Recursive calls to S_study_chunk() by Perl’s regular expression compiler to optimize the
intermediate language representation of a regular expression could cause corruption of the intermediate
language state of a compiled regular expression.

Discovered by: Sergey Aleynikov.

Additional Note
An application written in Perl would only be vulnerable to any of the above flaws if it evaluates regular
expressions supplied by the attacker. Evaluating regular expressions in this fashion is known to be
dangerous since the regular expression engine does not protect against denial of service attacks in this
usage scenario.

Incompatible Changes
Certain pattern matching features are now prohibited in compiling Unicode property value

wildcard subpatterns
These few features are either inappropriate or interfere with the algorithm used to accomplish this task.
The complete list is in ‘‘Wildcards in Property Values’’ in perlunicode.

Unused functions POSIX::mbstowcs and POSIX::wcstombs are removed
These functions could never have worked due to a defective interface specification. There is clearly no
demand for them, given that no one has ever complained in the many years the functions were claimed

perl v5.36.0 2021-04-29 448

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

to be available, hence so-called ‘‘support’’ for them is now dropped.

A bug fix for (?[...]) may have caused some patterns to no longer compile
See ‘‘Selected Bug Fixes’’. The heuristics previously used may have let some constructs compile
(perhaps not with the programmer’s intended effect) that should have been errors. None are known, but
it is possible that some erroneous constructs no longer compile.

\p{user-defined} properties now always override official Unicode ones
Previously, if and only if a user-defined property was declared prior to the compilation of the regular
expression pattern that contains it, its definition was used instead of any official Unicode property with
the same name. Now, it always overrides the official property. This change could break existing code
that relied (likely unwittingly) on the previous behavior. Without this fix, if Unicode released a new
version with a new property that happens to have the same name as the one you had long been using,
your program would break when you upgraded to a perl that used that new Unicode version. See
‘‘User-Defined Character Properties’’ in perlunicode. [GH #17205
<https://github.com/Perl/perl5/issues/17205>]

Modifiable variables are no longer permitted in constants
Code like:

my $var;
$sub = sub () { $var };

where $var is referenced elsewhere in some sort of modifiable context now produces an exception
when the sub is defined.

This error can be avoided by adding a return to the sub definition:

$sub = sub () { return $var };

This has been deprecated since Perl 5.22. [GH #17020] <https://github.com/Perl/perl5/issues/17020>

Use of vec on strings with code points above 0xFF is forbidden
Such strings are represented internally in UTF-8, and vec is a bit-oriented operation that will likely
give unexpected results on those strings. This was deprecated in perl 5.28.0.

Use of code points over 0xFF in string bitwise operators
Some uses of these were already illegal after a previous deprecation cycle. The remaining uses are now
prohibited, having been deprecated in perl 5.28.0. See perldeprecation.

Sys::Hostname::hostname() does not accept arguments
This usage was deprecated in perl 5.28.0 and is now fatal.

Plain ‘‘0’’ string now treated as a number for range operator
Previously a range "0" .. "-1" would produce a range of numeric strings from ‘‘0’’ through ‘‘99’’;
this now produces an empty list, just as 0 .. -1 does. This also means that "0" .. "9" now
produces a list of integers, where previously it would produce a list of strings.

This was due to a special case that treated strings starting with ‘‘0’’ as strings so ranges like "00" ..
"03" produced "00", "01", "02", "03", but didn’t specially handle the string "0". [GH
#16770] <https://github.com/Perl/perl5/issues/16770>

\K now disallowed in look-ahead and look-behind assertions
This was disallowed because it causes unexpected behaviour, and no-one could define what the desired
behaviour should be. [GH #14638] <https://github.com/Perl/perl5/issues/14638>

Performance Enhancements
• my_strnlen has been sped up for systems that don’t have their own strnlen implementation.

• grok_bin_oct_hex (and so, grok_bin, grok_oct, and grok_hex) have been sped up.

• grok_number_flags has been sped up.

• sort is now noticeably faster in cases such as sort {$a <=> $b} or sort {$b <=>
$a}. [GH #17608 <https://github.com/Perl/perl5/pull/17608>]

Modules and Pragmata
Updated Modules and Pragmata

perl v5.36.0 2021-04-29 449

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• Archive::Tar has been upgraded from version 2.32 to 2.36.

• autodie has been upgraded from version 2.29 to 2.32.

• B has been upgraded from version 1.76 to 1.80.

• B::Deparse has been upgraded from version 1.49 to 1.54.

• Benchmark has been upgraded from version 1.22 to 1.23.

• charnames has been upgraded from version 1.45 to 1.48.

• Class::Struct has been upgraded from version 0.65 to 0.66.

• Compress::Raw::Bzip2 has been upgraded from version 2.084 to 2.093.

• Compress::Raw::Zlib has been upgraded from version 2.084 to 2.093.

• CPAN has been upgraded from version 2.22 to 2.27.

• DB_File has been upgraded from version 1.843 to 1.853.

• Devel::PPPort has been upgraded from version 3.52 to 3.57.

The test files generated on Win32 are now identical to when they are generated on POSIX-like
systems.

• diagnostics has been upgraded from version 1.36 to 1.37.

• Digest::MD5 has been upgraded from version 2.55 to 2.55_01.

• Dumpvalue has been upgraded from version 1.18 to 1.21.

Previously, when dumping elements of an array and encountering an undefined value, the string
printed would have been empty array. This has been changed to what was apparently
originally intended: empty slot.

• DynaLoader has been upgraded from version 1.45 to 1.47.

• Encode has been upgraded from version 3.01 to 3.06.

• encoding has been upgraded from version 2.22 to 3.00.

• English has been upgraded from version 1.10 to 1.11.

• Exporter has been upgraded from version 5.73 to 5.74.

• ExtUtils::CBuilder has been upgraded from version 0.280231 to 0.280234.

• ExtUtils::MakeMaker has been upgraded from version 7.34 to 7.44.

• feature has been upgraded from version 1.54 to 1.58.

A new indirect feature has been added, which is enabled by default but allows turning off
indirect object syntax.

• File::Find has been upgraded from version 1.36 to 1.37.

On Win32, the tests no longer require either a file in the drive root directory, or a writable root
directory.

• File::Glob has been upgraded from version 1.32 to 1.33.

• File::stat has been upgraded from version 1.08 to 1.09.

• Filter::Simple has been upgraded from version 0.95 to 0.96.

• Getopt::Long has been upgraded from version 2.5 to 2.51.

• Hash::Util has been upgraded from version 0.22 to 0.23.

The Synopsis has been updated as the example code stopped working with newer perls. [GH
#17399 <https://github.com/Perl/perl5/issues/17399>]

• I18N::Langinfo has been upgraded from version 0.18 to 0.19.

• I18N::LangTags has been upgraded from version 0.43 to 0.44.

Document the IGNORE_WIN32_LOCALE environment variable.

perl v5.36.0 2021-04-29 450

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• IO has been upgraded from version 1.40 to 1.43.

IO::Socket no longer caches a zero protocol value, since this indicates that the implementation
will select a protocol. This means that on platforms that don’t implement SO_PROTOCOL for a
given socket type the protocol method may return undef.

The supplied TO is now always honoured on calls to the send() method. [GH #16891]
<https://github.com/Perl/perl5/issues/16891>

• IO-Compress has been upgraded from version 2.084 to 2.093.

• IPC::Cmd has been upgraded from version 1.02 to 1.04.

• IPC::Open3 has been upgraded from version 1.20 to 1.21.

• JSON::PP has been upgraded from version 4.02 to 4.04.

• Math::BigInt has been upgraded from version 1.999816 to 1.999818.

• Math::BigInt::FastCalc has been upgraded from version 0.5008 to 0.5009.

• Module::CoreList has been upgraded from version 5.20190522 to 5.20200620.

• Module::Load::Conditional has been upgraded from version 0.68 to 0.70.

• Module::Metadata has been upgraded from version 1.000036 to 1.000037.

• mro has been upgraded from version 1.22 to 1.23.

• Net::Ping has been upgraded from version 2.71 to 2.72.

• Opcode has been upgraded from version 1.43 to 1.47.

• open has been upgraded from version 1.11 to 1.12.

• overload has been upgraded from version 1.30 to 1.31.

• parent has been upgraded from version 0.237 to 0.238.

• perlfaq has been upgraded from version 5.20190126 to 5.20200523.

• PerlIO has been upgraded from version 1.10 to 1.11.

• PerlIO::encoding has been upgraded from version 0.27 to 0.28.

• PerlIO::via has been upgraded from version 0.17 to 0.18.

• Pod::Html has been upgraded from version 1.24 to 1.25.

• Pod::Simple has been upgraded from version 3.35 to 3.40.

• podlators has been upgraded from version 4.11 to 4.14.

• POSIX has been upgraded from version 1.88 to 1.94.

• re has been upgraded from version 0.37 to 0.40.

• Safe has been upgraded from version 2.40 to 2.41.

• Scalar::Util has been upgraded from version 1.50 to 1.55.

• SelfLoader has been upgraded from version 1.25 to 1.26.

• Socket has been upgraded from version 2.027 to 2.029.

• Storable has been upgraded from version 3.15 to 3.21.

Use of note() from Test::More is now optional in tests. This works around a circular
dependency with Test::More when installing on very old perls from CPAN.

Vstring magic strings over 2GB are now disallowed.

Regular expressions objects weren’t properly counted for object id purposes on retrieve. This
would corrupt the resulting structure, or cause a runtime error in some cases. [GH #17037]
<https://github.com/Perl/perl5/issues/17037>

• Sys::Hostname has been upgraded from version 1.22 to 1.23.

perl v5.36.0 2021-04-29 451

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• Sys::Syslog has been upgraded from version 0.35 to 0.36.

• Term::ANSIColor has been upgraded from version 4.06 to 5.01.

• Test::Simple has been upgraded from version 1.302162 to 1.302175.

• Thread has been upgraded from version 3.04 to 3.05.

• Thread::Queue has been upgraded from version 3.13 to 3.14.

• threads has been upgraded from version 2.22 to 2.25.

• threads::shared has been upgraded from version 1.60 to 1.61.

• Tie::File has been upgraded from version 1.02 to 1.06.

• Tie::Hash::NamedCapture has been upgraded from version 0.10 to 0.13.

• Tie::Scalar has been upgraded from version 1.04 to 1.05.

• Tie::StdHandle has been upgraded from version 4.5 to 4.6.

• Time::HiRes has been upgraded from version 1.9760 to 1.9764.

Removed obsolete code such as support for pre-5.6 perl and classic MacOS. [GH #17096]
<https://github.com/Perl/perl5/issues/17096>

• Time::Piece has been upgraded from version 1.33 to 1.3401.

• Unicode::Normalize has been upgraded from version 1.26 to 1.27.

• Unicode::UCD has been upgraded from version 0.72 to 0.75.

• VMS::Stdio has been upgraded from version 2.44 to 2.45.

• warnings has been upgraded from version 1.44 to 1.47.

• Win32 has been upgraded from version 0.52 to 0.53.

• Win32API::File has been upgraded from version 0.1203 to 0.1203_01.

• XS::APItest has been upgraded from version 1.00 to 1.09.

Removed Modules and Pragmata
• Pod::Parser has been removed from the core distribution. It still is available for download from

CPAN. This resolves [#13194 <https://github.com/Perl/perl5/issues/13194>].

Documentation
Changes to Existing Documentation

We have attempted to update the documentation to reflect the changes listed in this document. If you
find any we have missed, open an issue at <https://github.com/Perl/perl5/issues>.

Additionally, the following selected changes have been made:

perldebguts

• Simplify a few regnode definitions

Update BOUND and NBOUND definitions.

• Add ANYOFHs regnode

This node is like ANYOFHb, but is used when more than one leading byte is the same in all the
matched code points.

ANYOFHb is used to avoid having to convert from UTF-8 to code point for something that won’t
match. It checks that the first byte in the UTF-8 encoded target is the desired one, thus ruling out
most of the possible code points.

perlapi

• sv_2pvbyte updated to mention it will croak if the SV cannot be downgraded.

• sv_setpvn updated to mention that the UTF-8 flag will not be changed by this function, and a
terminating NUL byte is guaranteed.

perl v5.36.0 2021-04-29 452

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• Documentation for PL_phase has been added.

• The documentation for grok_bin, grok_oct, and grok_hex has been updated and clarified.

perldiag

• Add documentation for experimental ’isa’ operator

(S experimental::isa) This warning is emitted if you use the (isa) operator. This operator is
currently experimental and its behaviour may change in future releases of Perl.

perlfunc

caller
Like _ _FILE_ _ and _ _LINE_ _, the filename and line number returned here may be altered by
the mechanism described at ‘‘Plain Old Comments (Not!)’’ in perlsyn.

_ _FILE_ _
It can be altered by the mechanism described at ‘‘Plain Old Comments (Not!)’’ in perlsyn.

_ _LINE_ _
It can be altered by the mechanism described at ‘‘Plain Old Comments (Not!)’’ in perlsyn.

return
Now mentions that you cannot return from do BLOCK.

open
The open() section had been renovated significantly.

perlguts

• No longer suggesting using perl’s malloc. Modern system malloc is assumed to be much
better than perl’s implementation now.

• Documentation about embed.fnc flags has been removed. embed.fnc now has sufficient comments
within it. Anyone changing that file will see those comments first, so entries here are now
redundant.

• Updated documentation for UTF8f

• Added missing =for apidoc lines

perlhacktips

• The differences between Perl strings and C strings are now detailed.

perlintro

• The documentation for the repetition operator x have been clarified. [GH #17335
<https://github.com/Perl/perl5/issues/17335>]

perlipc

• The documentation surrounding open and handle usage has been modernized to prefer 3-arg
open and lexical variables instead of barewords.

• Various updates and fixes including making all examples strict-safe and replacing -w with use
warnings.

perlop

• ’isa’ operator is experimental

This is an experimental feature and is available when enabled by use feature 'isa' . It
emits a warning in the experimental::isa category.

perlpod

• Details of the various stacks within the perl interpreter are now explained here.

• Advice has been added regarding the usage of Z<>.

perlport

perl v5.36.0 2021-04-29 453

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• Update timegm example to use the correct year format 1970 instead of 70. [GH #16431
<https://github.com/Perl/perl5/issues/16431>]

perlreref

• Fix some typos.

perlvar

• Now recommends stringifying $] and comparing it numerically.

perlapi, perlintern

• Documentation has been added for several functions that were lacking it before.

perlxs

• Suggest using libffi for simple library bindings via CPAN modules like FFI::Platypus or
FFI::Raw.

POSIX

• setlocale warning about threaded builds updated to note it does not apply on Perl 5.28.X and
later.

• Posix::SigSet->new(...) updated to state it throws an error if any of the supplied signals
cannot be added to the set.

Additionally, the following selected changes have been made:

Updating of links

• Links to the now defunct <https://search.cpan.org> site now point at the equivalent
<https://metacpan.org> URL. [GH #17393 <https://github.com/Perl/perl5/issues/17393>]

• The man page for ExtUtils::XSSymSet is now only installed on VMS, which is the only platform
the module is installed on. [GH #17424 <https://github.com/Perl/perl5/issues/17424>]

• URLs have been changed to https:// and stale links have been updated.

Where applicable, the URLs in the documentation have been moved from using the http://
protocol to https://. This also affects the location of the bug tracker at <https://rt.perl.org>.

• Some links to OS/2 libraries, Address Sanitizer and other system tools had gone stale. These have
been updated with working links.

• Some links to old email addresses on perl5-porters had gone stale. These have been updated with
working links.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• Expecting interpolated extended charclass in regex; marked by <-- HERE in m/%s/

This is a replacement for several error messages listed under ‘‘Changes to Existing Diagnostics’’.

• No digits found for %s literal

(F) No hexadecimal digits were found following 0x or no binary digits were found following 0b.

New Warnings

• Code point 0x%X is not Unicode, and not portable

This is actually not a new message, but it is now output when the warnings category portable
is enabled.

When raised during regular expression pattern compilation, the warning has extra text added at the
end marking where precisely in the pattern it occurred.

perl v5.36.0 2021-04-29 454

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• Non-hex character ’%c’ terminates \x early. Resolved as ‘‘%s’’

This replaces a warning that was much less specific, and which gave false information. This new
warning parallels the similar already-existing one raised for \o{}.

Changes to Existing Diagnostics
• Character following ‘‘\c’’ must be printable ASCII

...now has extra text added at the end, when raised during regular expression pattern compilation,
marking where precisely in the pattern it occurred.

• Use ‘‘%s’’ instead of ‘‘%s’’

...now has extra text added at the end, when raised during regular expression pattern compilation,
marking where precisely in the pattern it occurred.

• Sequence ‘‘\c{’’ invalid

...now has extra text added at the end, when raised during regular expression pattern compilation,
marking where precisely in the pattern it occurred.

• ‘‘\c%c’’ is more clearly written simply as ‘‘%s’’

...now has extra text added at the end, when raised during regular expression pattern compilation,
marking where precisely in the pattern it occurred.

• Non-octal character ’%c’ terminates \o early. Resolved as ‘‘%s’’

...now includes the phrase ‘‘terminates \o early’’, and has extra text added at the end, when raised
during regular expression pattern compilation, marking where precisely in the pattern it occurred.
In some instances the text of the resolution has been clarified.

• ’%s’ resolved to ’\o{%s}%d’

As of Perl 5.32, this message is no longer generated. Instead, ‘‘Non-octal character ’%c’
terminates \o early. Resolved as ’’%s"" in perldiag is used instead.

• Use of code point 0x%s is not allowed; the permissible max is 0x%X

Some instances of this message previously output the hex digits A, B, C, D, E, and F in lower case.
Now they are all consistently upper case.

• The following three diagnostics have been removed, and replaced by Expecting
interpolated extended charclass in regex; marked by <-- HERE in
m/%s/ : Expecting close paren for nested extended charclass in
regex; marked by <-- HERE in m/%s/, Expecting close paren for
wrapper for nested extended charclass in regex; marked by <--
HERE in m/%s/, and Expecting '(?flags:(?[...' in regex; marked by
<-- HERE in m/%s/.

• The Code point 0x%X is not Unicode, and not portable warning removed the
line Code points above 0xFFFF_FFFF require larger than a 32 bit
word. as code points that large are no longer legal on 32-bit platforms.

• Can’t use global %s in %s

This error message has been slightly reformatted from the original Can't use global %s
in "%s", and in particular misleading error messages like Can't use global $_ in
"my" are now rendered as Can't use global $_ in subroutine signature.

• Constants from lexical variables potentially modified elsewhere are no longer permitted

This error message replaces the former Constants from lexical variables
potentially modified elsewhere are deprecated. This will not be
allowed in Perl 5.32 to reflect the fact that this previously deprecated usage has now
been transformed into an exception. The message’s classification has also been updated from D
(deprecated) to F (fatal).

See also ‘‘Incompatible Changes’’.

perl v5.36.0 2021-04-29 455

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• \N{} here is restricted to one character is now emitted in the same
circumstances where previously \N{} in inverted character class or as a
range end-point is restricted to one character was.

This is due to new circumstances having been added in Perl 5.30 that weren’t covered by the
earlier wording.

Utility Changes
perlbug

• The bug tracker homepage URL now points to GitHub.

streamzip
• This is a new utility, included as part of an IO::Compress::Base upgrade.

streamzip creates a zip file from stdin. The program will read data from stdin, compress it into a
zip container and, by default, write a streamed zip file to stdout.

Configuration and Compilation
Configure

• For clang++, add #include <stdlib.h> to Configure’s probes for futimes, strtoll,
strtoul, strtoull, strtouq, otherwise the probes would fail to compile.

• Use a compile and run test for lchown to satisfy clang++ which should more reliably detect it.

• For C++ compilers, add #include <stdio.h> to Configure’s probes for getpgrp and
setpgrp as they use printf and C++ compilers may fail compilation instead of just warning.

• Check if the compiler can handle inline attribute.

• Check for character data alignment.

• Configure now correctly handles gcc-10. Previously it was interpreting it as gcc-1 and turned on
-fpcc-struct-return.

• Perl now no longer probes for d_u32align, defaulting to define on all platforms. This check
was error-prone when it was done, which was on 32-bit platforms only. [GH #16680]
<https://github.com/Perl/perl5/issues/16680>

• Documentation and hints for building perl on Z/OS (native EBCDIC) have been updated. This is
still a work in progress.

• A new probe for malloc_usable_size has been added.

• Improvements in Configure to detection in C++ and clang++. Work ongoing by Andy Dougherty.
[GH #17033] <https://github.com/Perl/perl5/issues/17033>

• autodoc.pl

This tool that regenerates perlintern and perlapi has been overhauled significantly, restoring
consistency in flags used in embed.fnc and Devel::PPPort and allowing removal of many
redundant =for apidoc entries in code.

• The ECHO macro is now defined. This is used in a dtrace rule that was originally changed for
FreeBSD, and the FreeBSD make apparently predefines it. The Solaris make does not predefine
ECHO which broke this rule on Solaris. [GH #17057]
<https://github.com/Perl/perl5/issues/17057>

• Bison versions 3.1 through 3.4 are now supported.

Testing
Tests were added and changed to reflect the other additions and changes in this release. Furthermore,
these significant changes were made:

• t/run/switches.t no longer uses (and re-uses) the tmpinplace/ directory under t/. This may prevent
spurious failures. [GH #17424 <https://github.com/Perl/perl5/issues/17424>]

• Various bugs in POSIX::mbtowc were fixed. Potential races with other threads are now
avoided, and previously the returned wide character could well be garbage.

• Various bugs in POSIX::wctomb were fixed. Potential races with other threads are now
avoided, and previously it would segfault if the string parameter was shared or hadn’t been pre-
allocated with a string of sufficient length to hold the result.

perl v5.36.0 2021-04-29 456

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• Certain test output of scalars containing control characters and Unicode has been fixed on
EBCDIC.

• t/charset_tools.pl: Avoid some work on ASCII platforms.

• t/re/regexp.t: Speed up many regex tests on ASCII platform

• t/re/pat.t: Skip tests that don’t work on EBCDIC.

Platform Support
Discontinued Platforms

Windows CE
Support for building perl on Windows CE has now been removed.

Platform-Specific Notes
Linux

cc will be used to populate plibpth if cc is clang. [GH #17043]
<https://github.com/Perl/perl5/issues/17043>

NetBSD 8.0
Fix compilation of Perl on NetBSD 8.0 with g++. [GH #17381
<https://github.com/Perl/perl5/issues/17381>]

Windows
• The configuration for ccflags and optimize are now separate, as with POSIX platforms.

[GH #17156 <https://github.com/Perl/perl5/issues/17156>]

• Support for building perl with Visual C++ 6.0 has now been removed.

• The locale tests could crash on Win32 due to a Windows bug, and separately due to the CRT
throwing an exception if the locale name wasn’t validly encoded in the current code page.

For the second we now decode the locale name ourselves, and always decode it as UTF-8.
[GH #16922] <https://github.com/Perl/perl5/issues/16922>

• t/op/magic.t could fail if environment variables starting with FOO already existed.

• MYMALLOC (PERL_MALLOC) build has been fixed.

Solaris
• Configure will now find recent versions of the Oracle Developer Studio compiler, which

are found under /opt/developerstudio*.

• Configure now uses the detected types for gethostby* functions, allowing Perl to once
again compile on certain configurations of Solaris.

VMS
• With the release of the patch kit C99 V2.0, VSI has provided support for a number of

previously-missing C99 features. On systems with that patch kit installed, Perl’s
configuration process will now detect the presence of the header stdint.h and the
following functions: fpclassify, isblank, isless, llrint, llrintl, llround,
llroundl, nearbyint, round, scalbn, and scalbnl.

• -Duse64bitint is now the default on VMS.

z/OS
Perl 5.32 has been tested on z/OS 2.4, with the following caveats:

• Only static builds (the default) build reliably

• When using locales, z/OS does not handle the LC_MESSAGES category properly, so when
compiling perl, you should add the following to your Configure options

./Configure <other options> -Accflags=-DNO_LOCALE_MESSAGES

• z/OS does not support locales with threads, so when compiling a threaded perl, you should
add the following to your Configure options

./Configure <other Configure options> -Accflags=-DNO_LOCALE

perl v5.36.0 2021-04-29 457

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• Some CPAN modules that are shipped with perl fail at least one of their self-tests. These are:
Archive::Tar, Config::Perl::V, CPAN::Meta, CPAN::Meta::YAML, Digest::MD5,
Digest::SHA, Encode, ExtUtils::MakeMaker, ExtUtils::Manifest, HTTP::Tiny, IO::Compress,
IPC::Cmd, JSON::PP, libnet, MIME::Base64, Module::Metadata, PerlIO::via-QuotedPrint,
Pod::Checker, podlators, Pod::Simple, Socket, and Test::Harness.

The causes of the failures range from the self-test itself is flawed, and the module actually
works fine, up to the module doesn’t work at all on EBCDIC platforms.

Internal Changes
• savepvn’s len parameter is now a Size_t instead of an I32 since we can handle longer strings

than 31 bits.

• The lexer (Perl_yylex() in toke.c) was previously a single 4100-line function, relying heavily
on goto and a lot of widely-scoped local variables to do its work. It has now been pulled apart
into a few dozen smaller static functions; the largest remaining chunk
(yyl_word_or_keyword()) is a little over 900 lines, and consists of a single switch
statement, all of whose case groups are independent. This should be much easier to understand
and maintain.

• The OS-level signal handlers and type (Sighandler_t) used by the perl core were declared as
having three parameters, but the OS was always told to call them with one argument. This has
been fixed by declaring them to have one parameter. See the merge commit
v5.31.5-346-g116e19abbf for full details.

• The code that handles tr/// has been extensively revised, fixing various bugs, especially when
the source and/or replacement strings contain characters whose code points are above 255. Some
of the bugs were undocumented, one being that under some circumstances (but not all) with /s,
the squeezing was done based on the source, rather than the replacement. A documented bug that
got fixed was [GH #14777] <https://github.com/Perl/perl5/issues/14777>.

• A new macro for XS writers dealing with UTF-8-encoded Unicode strings has been created
"UTF8_CHK_SKIP" in perlapi that is safer in the face of malformed UTF-8 input than
"UTF8_SKIP" in perlapi (but not as safe as "UTF8_SAFE_SKIP" in perlapi). It won’t read past
a NUL character. It has been backported in Devel::PPPort 3.55 and later.

• Added the PL_curstackinfo->si_cxsubix field. This records the stack index of the most
recently pushed sub/format/eval context. It is set and restored automatically by cx_pushsub(),
cx_popsub() etc., but would need to be manually managed if you do any unusual manipulation
of the context stack.

• Various macros dealing with character type classification and changing case where the input is
encoded in UTF-8 now require an extra parameter to prevent potential reads beyond the end of the
buffer. Use of these has generated a deprecation warning since Perl 5.26. Details are in ‘‘In XS
code, use of various macros dealing with UTF-8.’’ in perldeprecation

• A new parser function parse_subsignature() allows a keyword plugin to parse a subroutine
signature while use feature 'signatures' is in effect. This allows custom keywords to
implement semantics similar to regular sub declarations that include signatures. [GH #16261]
<https://github.com/Perl/perl5/issues/16261>

• Since on some platforms we need to hold a mutex when temporarily switching locales, new
macros (STORE_LC_NUMERIC_SET_TO_NEEDED_IN,
WITH_LC_NUMERIC_SET_TO_NEEDED and WITH_LC_NUMERIC_SET_TO_NEEDED_IN)
have been added to make it easier to do this safely and efficiently as part of [GH #17034]
<https://github.com/Perl/perl5/issues/17034>.

• The memory bookkeeping overhead for allocating an OP structure has been reduced by 8 bytes per
OP on 64-bit systems.

• eval_pv() no longer stringifies the exception when [GH
#17035]|https://github.com/Perl/perl5/issues/17035]

• The PERL_DESTRUCT_LEVEL environment variable was formerly only honoured on perl binaries
built with DEBUGGING support. It is now checked on all perl builds. Its normal use is to force
perl to individually free every block of memory which it has allocated before exiting, which is

perl v5.36.0 2021-04-29 458

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

useful when using automated leak detection tools such as valgrind.

• The API eval_sv() now accepts a G_RETHROW flag. If this flag is set and an exception is thrown
while compiling or executing the supplied code, it will be rethrown, and eval_sv() will not return.
[GH #17036] <https://github.com/Perl/perl5/issues/17036>

• As part of the fix for [GH #1537] <https://github.com/Perl/perl5/issues/1537> perl_parse() now
returns non-zero if exit (0) is called in a BEGIN, UNITCHECK or CHECK block.

• Most functions which recursively walked an op tree during compilation have been made non-
recursive. This avoids SEGVs from stack overflow when the op tree is deeply nested, such as $n
== 1 ? "one" : $n == 2 ? "two" : (especially in code which is auto-
generated).

This is particularly noticeable where the code is compiled within a separate thread, as threads tend
to have small stacks by default.

Selected Bug Fixes
• Previously ‘‘require’’ in perlfunc would only treat the special built-in SV &PL_sv_undef as a

value in %INC as if a previous require has failed, treating other undefined SVs as if the
previous require has succeeded. This could cause unexpected success from require e.g., on
local %INC = %INC;. This has been fixed. [GH #17428
<https://github.com/Perl/perl5/issues/17428>]

• (?{...}) eval groups in regular expressions no longer unintentionally trigger ‘‘EVAL without
pos change exceeded limit in regex’’ [GH #17490 <https://github.com/Perl/perl5/issues/17490>].

• (?[...]) extended bracketed character classes do not wrongly raise an error on some cases
where a previously-compiled such class is interpolated into another. The heuristics previously
used have been replaced by a reliable method, and hence the diagnostics generated have changed.
See ‘‘Diagnostics’’.

• The debug display (say by specifying -Dr or use re (with appropriate options) of compiled
Unicode property wildcard subpatterns no longer has extraneous output.

• Fix an assertion failure in the regular expression engine. [GH #17372
<https://github.com/Perl/perl5/issues/17372>]

• Fix coredump in pp_hot.c after B::UNOP_AUX::aux_list(). [GH #17301
<https://github.com/Perl/perl5/issues/17301>]

• Loading IO is now threadsafe. [GH #14816 <https://github.com/Perl/perl5/issues/14816>]

• \p{user-defined} overrides official Unicode [GH #17025
<https://github.com/Perl/perl5/issues/17025>]

Prior to this patch, the override was only sometimes in effect.

• Properly handle filled /il regnodes and multi-char folds

• Compilation error during make minitest [GH #17293
<https://github.com/Perl/perl5/issues/17293>]

• Move the implementation of %-, %+ into core.

• Read beyond buffer in grok_inf_nan [GH #17370
<https://github.com/Perl/perl5/issues/17370>]

• Workaround glibc bug with LC_MESSAGES [GH #17081
<https://github.com/Perl/perl5/issues/17081>]

• printf() or sprintf() with the %n format could cause a panic on debugging builds, or
report an incorrectly cached length value when producing SVfUTF8 flagged strings. [GH #17221
<https://github.com/Perl/perl5/issues/17221>]

• The tokenizer has been extensively refactored. [GH #17241
<https://github.com/Perl/perl5/issues/17241>] [GH #17189
<https://github.com/Perl/perl5/issues/17189>]

perl v5.36.0 2021-04-29 459

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• use strict "subs" is now enforced for bareword constants optimized into a
multiconcat operator. [GH #17254 <https://github.com/Perl/perl5/issues/17254>]

• A memory leak in regular expression patterns has been fixed. [GH #17218
<https://github.com/Perl/perl5/issues/17218>]

• Perl no longer treats strings starting with ‘‘0x’’ or ‘‘0b’’ as hex or binary numbers respectively
when converting a string to a number. This reverts a change in behaviour inadvertently introduced
in perl 5.30.0 intended to improve precision when converting a string to a floating point number.
[GH #17062] <https://github.com/Perl/perl5/issues/17062>

• Matching a non-SVf_UTF8 string against a regular expression containing unicode literals could
leak a SV on each match attempt. [GH #17140] <https://github.com/Perl/perl5/issues/17140>

• Overloads for octal and binary floating point literals were always passed a string with a 0x prefix
instead of the appropriate 0 or [GH
#14791]|https://github.com/Perl/perl5/issues/14791]

• $@ = 100; die; now correctly propagates the 100 as an exception instead of ignoring it. [GH
#17098] <https://github.com/Perl/perl5/issues/17098>

• [GH #17108]|https://github.com/Perl/perl5/issues/17108]

• Exceptions thrown while $@ is read-only could result in infinite recursion as perl tried to update
$@, which throws another exception, resulting in a stack overflow. Perl now replaces $@ with a
copy if it’s not a simple writable SV. [GH #17083] <https://github.com/Perl/perl5/issues/17083>

• Setting $) now properly sets supplementary group ids if you have the necessary privileges. [GH
#17031] <https://github.com/Perl/perl5/issues/17031>

• close() on a pipe now preemptively clears the PerlIO object from the IO SV. This prevents a second
attempt to close the already closed PerlIO object if a signal handler calls die() or exit() while
close() is waiting for the child process to complete. [GH #13929]
<https://github.com/Perl/perl5/issues/13929>

• sprintf("%.*a", -10000, $x) would cause a buffer overflow due to mishandling of the
negative precision value. [GH #16942] <https://github.com/Perl/perl5/issues/16942>

• scalar() on a reference could cause an erroneous assertion failure during compilation. [GH
#16969] <https://github.com/Perl/perl5/issues/16969>

• %{ˆCAPTURE_ALL} is now an alias to %- as documented, rather than incorrectly an alias for
[GH #16105]|https://github.com/Perl/perl5/issues/16105]

• %{ˆCAPTURE} didn’t work if @{ˆCAPTURE} was mentioned first. Similarly for
%{ˆCAPTURE_ALL} and @{ˆCAPTURE_ALL}, though [GH
#17045]|https://github.com/Perl/perl5/issues/17045]

• Extraordinarily large (over 2GB) floating point format widths could cause an integer overflow in
the underlying call to snprintf(), resulting in an assertion. Formatted floating point widths are now
limited to the range of int, the return value of snprintf(). [#16881
<https://github.com/Perl/perl5/issues/16881>]

• Parsing the following constructs within a sub-parse (such as with "${code here}" or
s/.../code here/e) has changed to match how they’re parsed normally:

• print $fh ... no longer produces a syntax error.

• Code like s/.../ ${time} /e now properly produces an ‘‘Ambiguous use of ${time}
resolved to $time at ...’’ warning when warnings are enabled.

• @x {"a"} (with the space) in a sub-parse now properly produces a ‘‘better written as’’
warning when warnings are enabled.

• Attributes can now be used in a sub-parse. [GH #16847]
<https://github.com/Perl/perl5/issues/16847>

• Incomplete hex and binary literals like 0x and 0b are now treated as if the x or b is part of the
next token. [#17010 <https://github.com/Perl/perl5/issues/17010>]

perl v5.36.0 2021-04-29 460

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

• A spurious) in a subparse, such as in s/.../code here/e or "...${code here}", no
longer confuses the parser.

Previously a subparse was bracketed with generated (and) tokens, so a spurious) would close
the construct without doing the normal subparse clean up, confusing the parser and possible
causing an assertion failure.

Such constructs are now surrounded by artificial tokens that can’t be included in the source. [GH
#15814] <https://github.com/Perl/perl5/issues/15814>

• Reference assignment of a sub, such as \&foo = \&bar;, silently did nothing in the [GH
#16987]|https://github.com/Perl/perl5/issues/16987]

• sv_gets() now recovers better if the target SV is modified by a signal handler. [GH #16960]
<https://github.com/Perl/perl5/issues/16960>

• readline @foo now evaluates @foo in scalar context. Previously it would be evaluated in list
context, and since readline() pops only one argument from the stack, the stack could underflow, or
be left with unexpected values on the stack. [GH #16929]
<https://github.com/Perl/perl5/issues/16929>

• Parsing incomplete hex or binary literals was changed in 5.31.1 to treat such a literal as just the 0,
leaving the following x or b to be parsed as part of the next token. This could lead to some silent
changes in behaviour, so now incomplete hex or binary literals produce a fatal error. [GH #17010]
<https://github.com/Perl/perl5/issues/17010>

• eval_pv()’s croak_on_error flag will now throw even if the exception is a false overloaded value.
[GH #17036] <https://github.com/Perl/perl5/issues/17036>

• INIT blocks and the program itself are no longer run if exit (0) is called within a BEGIN,
UNITCHECK or CHECK block. [GH #1537] <https://github.com/Perl/perl5/issues/1537>

• open my $fh, ">>+", undef now opens the temporary file in append mode: writes will
seek to the end of file before writing. [GH #17058] <https://github.com/Perl/perl5/issues/17058>

• Fixed a SEGV when searching for the source of an uninitialized value warning on an op whose
subtree includes an OP_MULTIDEREF. [GH #17088] <https://github.com/Perl/perl5/issues/17088>

Obituary
Jeff Goff (JGOFF or DrForr), an integral part of the Perl and Raku communities and a dear friend to all
of us, has passed away on March 13th, 2020. DrForr was a prominent member of the communities,
attending and speaking at countless events, contributing to numerous projects, and assisting and helping
in any way he could.

His passing leaves a hole in our hearts and in our communities and he will be sorely missed.

Acknowledgements
Perl 5.32.0 represents approximately 13 months of development since Perl 5.30.0 and contains
approximately 220,000 lines of changes across 1,800 files from 89 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 140,000
lines of changes to 880 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.32.0:

Aaron Crane, Alberto Simões, Alexandr Savca, Andreas Ko
..
nig, Andrew Fresh, Andy Dougherty, Ask

Bjo/rn Hansen, Atsushi Sugawara, Bernhard M. Wiedemann, brian d foy, Bryan Stenson, Chad Granum,
Chase Whitener, Chris ’BinGOs’ Williams, Craig A. Berry, Dagfinn Ilmari Mannsa°ker, Dan Book,
Daniel Dragan, Dan Kogai, Dave Cross, Dave Rolsky, David Cantrell, David Mitchell, Dominic
Hargreaves, E. Choroba, Felipe Gasper, Florian Weimer, Graham Knop, Ha°kon Haegland, Hauke D,
H.Merijn Brand, Hugo van der Sanden, Ichinose Shogo, James E Keenan, Jason McIntosh, Jerome
Duval, Johan Vromans, John Lightsey, John Paul Adrian Glaubitz, Kang-min Liu, Karen Etheridge,
Karl Williamson, Leon Timmermans, Manuel Mausz, Marc Green, Matthew Horsfall, Matt Turner,
Max Maischein, Michael Haardt, Nicholas Clark, Nicolas R., Niko Tyni, Pali, Paul Evans, Paul
Johnson, Paul Marquess, Peter Eisentraut, Peter John Acklam, Peter Oliver, Petr PísaX, Renee Baecker,
Ricardo Signes, Richard Leach, Russ Allbery, Samuel Smith, Santtu Ojanpera

..
, Sawyer X, Sergey

Aleynikov, Sergiy Borodych, Shirakata Kentaro, Shlomi Fish, Sisyphus, Slaven Rezic, Smylers, Stefan

perl v5.36.0 2021-04-29 461

PERL5320DELTA(1) Perl Programmers Reference Guide PERL5320DELTA(1)

Seifert, Steve Hay, Steve Peters, Svyatoslav, Thibault Duponchelle, Todd Rinaldo, Tomasz Konojacki,
Tom Hukins, Tony Cook, Unicode Consortium, VanL, Vickenty Fesunov, Vitali Peil, Yves Orton,
Zefram.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at
<https://github.com/Perl/perl5/issues>. There may also be information at <http://www.perl.org/>, the
Perl Home Page.

If you believe you have an unreported bug, please open an issue at
<https://github.com/Perl/perl5/issues>. Be sure to trim your bug down to a tiny but sufficient test case.

If the bug you are reporting has security implications which make it inappropriate to send to a public
issue tracker, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for details
of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 462

PERL5321DELTA(1) Perl Programmers Reference Guide PERL5321DELTA(1)

NAME
perl5321delta - what is new for perl v5.32.1

DESCRIPTION
This document describes differences between the 5.32.0 release and the 5.32.1 release.

If you are upgrading from an earlier release such as 5.30.0, first read perl5320delta, which describes
differences between 5.30.0 and 5.32.0.

Incompatible Changes
There are no changes intentionally incompatible with Perl 5.32.0. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• Data::Dumper has been upgraded from version 2.174 to 2.174_01.

A number of memory leaks have been fixed.

• DynaLoader has been upgraded from version 1.47 to 1.47_01.

• Module::CoreList has been upgraded from version 5.20200620 to 5.20210123.

• Opcode has been upgraded from version 1.47 to 1.48.

A warning has been added about evaluating untrusted code with the perl interpreter.

• Safe has been upgraded from version 2.41 to 2.41_01.

A warning has been added about evaluating untrusted code with the perl interpreter.

Documentation
New Documentation

perlgov

Documentation of the newly formed rules of governance for Perl.

perlsecpolicy

Documentation of how the Perl security team operates and how the team evaluates new security
reports.

Changes to Existing Documentation
We have attempted to update the documentation to reflect the changes listed in this document. If you
find any we have missed, open an issue at <https://github.com/Perl/perl5/issues>.

Additionally, the following selected changes have been made:

perlop

• Document range op behaviour change.

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

Changes to Existing Diagnostics
• \K not permitted in lookahead/lookbehind in regex; marked by <-- HERE in m/%s/

This error was incorrectly produced in some cases involving nested lookarounds. This has been
fixed.

[GH #18123 <https://github.com/Perl/perl5/issues/18123>]

Configuration and Compilation
• Newer 64-bit versions of the Intel C/C++ compiler are now recognized and have the correct flags

set.

• We now trap SIGBUS when Configure checks for va_copy.

On several systems the attempt to determine if we need va_copy or similar results in a SIGBUS
instead of the expected SIGSEGV, which previously caused a core dump.

[GH #18148 <https://github.com/Perl/perl5/issues/18148>]

perl v5.36.0 2021-04-29 463

PERL5321DELTA(1) Perl Programmers Reference Guide PERL5321DELTA(1)

Testing
Tests were added and changed to reflect the other additions and changes in this release.

Platform Support
Platform-Specific Notes

MacOS (Darwin)
The hints file for darwin has been updated to handle future macOS versions beyond 10. Perl can
now be built on macOS Big Sur.

[GH #17946 <https://github.com/Perl/perl5/issues/17946>, GH #18406
<https://github.com/Perl/perl5/issues/18406>]

Minix
Build errors on Minix have been fixed.

[GH #17908 <https://github.com/Perl/perl5/issues/17908>]

Selected Bug Fixes
• Some list assignments involving undef on the left-hand side were over-optimized and produced

incorrect results.

[GH #16685 <https://github.com/Perl/perl5/issues/16685>, GH #17816
<https://github.com/Perl/perl5/issues/17816>]

• Fixed a bug in which some regexps with recursive subpatterns matched incorrectly.

[GH #18096 <https://github.com/Perl/perl5/issues/18096>]

• Fixed a deadlock that hung the build when Perl is compiled for debugging memory problems and
has PERL_MEM_LOG enabled.

[GH #18341 <https://github.com/Perl/perl5/issues/18341>]

• Fixed a crash in the use of chained comparison operators when run under ‘‘no warnings
’uninitialized’’’.

[GH #17917 <https://github.com/Perl/perl5/issues/17917>, GH #18380
<https://github.com/Perl/perl5/issues/18380>]

• Exceptions thrown from destructors during global destruction are no longer swallowed.

[GH #18063 <https://github.com/Perl/perl5/issues/18063>]

Acknowledgements
Perl 5.32.1 represents approximately 7 months of development since Perl 5.32.0 and contains
approximately 7,000 lines of changes across 80 files from 23 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,300 lines
of changes to 23 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.32.1:

Adam Hartley, Andy Dougherty, Dagfinn Ilmari Mannsa°ker, Dan Book, David Mitchell, Graham Knop,
Graham Ollis, Hauke D, H.Merijn Brand, Hugo van der Sanden, John Lightsey, Karen Etheridge, Karl
Williamson, Leon Timmermans, Max Maischein, Nicolas R., Ricardo Signes, Richard Leach, Sawyer
X, Sevan Janiyan, Steve Hay, Tom Hukins, Tony Cook.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at
<https://github.com/Perl/perl5/issues>. There may also be information at <http://www.perl.org/>, the

perl v5.36.0 2021-04-29 464

PERL5321DELTA(1) Perl Programmers Reference Guide PERL5321DELTA(1)

Perl Home Page.

If you believe you have an unreported bug, please open an issue at
<https://github.com/Perl/perl5/issues>. Be sure to trim your bug down to a tiny but sufficient test case.

If the bug you are reporting has security implications which make it inappropriate to send to a public
issue tracker, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for details
of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-04-29 465

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

NAME
perl5340delta - what is new for perl v5.34.0

DESCRIPTION
This document describes differences between the 5.32.0 release and the 5.34.0 release.

If you are upgrading from an earlier release such as 5.30.0, first read perl5320delta, which describes
differences between 5.30.0 and 5.32.0.

Core Enhancements
Experimental Try/Catch Syntax

An initial experimental attempt at providing try/catch notation has been added.

use feature 'try';

try {
a_function();

}
catch ($e) {

warn "An error occurred: $e";
}

For more information, see ‘‘Try Catch Exception Handling’’ in perlsyn.

qr/{,n}/ is now accepted
An empty lower bound is now accepted for regular expression quantifiers, like m/x{,3}/ meaning
m/x{0,3}/

Blanks freely allowed within but adjacent to curly braces
(in double-quotish contexts and regular expression patterns)

This means you can write things like \x{ FFFC } if you like. This applies to all such constructs,
namely \b{}, \g{}, \k{}, \N{}, \o{}, and \x{}; as well as the regular expression quantifier
{m,n}. \p{} and \P{} retain their already-existing, even looser, rules mandated by the Unicode
standard (see ‘‘Properties accessible through \p{} and \P{}’’ in perluniprops).

This ability is in effect regardless of the presence of the /x regular expression pattern modifier.

Additionally, the comma in a regular expression braced quantifier may have blanks (tabs or spaces)
before and/or after the comma, like qr/a{ 5, 7 }/.

New octal syntax 0oddddd
It is now possible to specify octal literals with 0o prefixes, as in 0o123_456, parallel to the existing
construct to specify hexadecimal literal 0xddddd and binary literal 0bddddd. Also, the builtin
oct() function now accepts this new syntax.

See ‘‘Scalar value constructors’’ in perldata and ‘‘oct EXPR’’ in perlfunc.

Performance Enhancements
• Fix a memory leak in RegEx [GH #18604 <https://github.com/Perl/perl5/issues/18604>]

Modules and Pragmata
New Modules and Pragmata

• ExtUtils::PL2Bat 0.004 has been added to the Perl core.

This module is a generalization of the pl2bat script. It being a script has led to at least two forks
of this code; this module will unify them under one implementation with tests.

Updated Modules and Pragmata
• Archive::Tar has been upgraded from version 2.36 to 2.38.

• autodie has been upgraded from version 2.32 to 2.34.

• B has been upgraded from version 1.80 to 1.82.

• B::Deparse has been upgraded from version 1.54 to 1.56.

• bytes has been upgraded from version 1.07 to 1.08.

perl v5.36.0 2021-06-12 466

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

• Carp has been upgraded from version 1.50 to 1.52.

• Compress::Raw::Bzip2 has been upgraded from version 2.093 to 2.101.

• Compress::Raw::Zlib has been upgraded from version 2.093 to 2.101.

• Config::Perl::V has been upgraded from version 0.32 to 0.33.

• CPAN has been upgraded from version 2.27 to 2.28.

• Data::Dumper has been upgraded from version 2.174 to 2.179.

• DB has been upgraded from version 1.58 to 1.59.

• DB_File has been upgraded from version 1.853 to 1.855.

• Devel::Peek has been upgraded from version 1.28 to 1.30.

• Devel::PPPort has been upgraded from version 3.57 to 3.62.

New PERL_VERSION_* comparison macros are now available.

ppport.h --api-info no longer includes non-API info unless that is the only match

• Digest has been upgraded from version 1.17_01 to 1.19.

• Digest::MD5 has been upgraded from version 2.55_01 to 2.58.

• DynaLoader has been upgraded from version 1.47 to 1.50.

• Encode has been upgraded from version 3.06 to 3.08.

• Env has been upgraded from version 1.04 to 1.05.

• Errno has been upgraded from version 1.30 to 1.33.

• experimental has been upgraded from version 0.020 to 0.024.

• Exporter has been upgraded from version 5.74 to 5.76.

• ExtUtils::CBuilder has been upgraded from version 0.280234 to 0.280236.

• ExtUtils::Install has been upgraded from version 2.14 to 2.20.

• ExtUtils::MakeMaker has been upgraded from version 7.44 to 7.62.

• ExtUtils::Manifest has been upgraded from version 1.72 to 1.73.

• ExtUtils::Miniperl has been upgraded from version 1.09 to 1.10.

• ExtUtils::ParseXS has been upgraded from version 3.40 to 3.43.

• ExtUtils::Typemaps has been upgraded from version 3.38 to 3.43.

• Fcntl has been upgraded from version 1.13 to 1.14.

• feature has been upgraded from version 1.58 to 1.64.

Added the default enabled bareword_filehandles feature.

A new multidimensional feature has been added, which is enabled by default but allows turning
off multi-dimensional array emulation.

• File::Copy has been upgraded from version 2.34 to 2.35.

• File::Fetch has been upgraded from version 0.56 to 1.00.

• File::Find has been upgraded from version 1.37 to 1.39.

• File::Path has been upgraded from version 2.16 to 2.18.

• File::Spec has been upgraded from version 3.78 to 3.80.

• File::Temp has been upgraded from version 0.2309 to 0.2311.

• Filter::Util::Call has been upgraded from version 1.59 to 1.60.

• FindBin has been upgraded from version 1.51 to 1.52.

• GDBM_File has been upgraded from version 1.18 to 1.19.

New functions and compatibility for newer versions of GDBM. [GH #18435

perl v5.36.0 2021-06-12 467

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

<https://github.com/Perl/perl5/pull/18435>]

• Getopt::Long has been upgraded from version 2.51 to 2.52.

• Getopt::Std has been upgraded from version 1.12 to 1.13.

• Hash::Util has been upgraded from version 0.23 to 0.25.

• Hash::Util::FieldHash has been upgraded from version 1.20 to 1.21.

• I18N::LangTags has been upgraded from version 0.44 to 0.45.

• if has been upgraded from version 0.0608 to 0.0609.

• IO has been upgraded from version 1.43 to 1.46.

IO::Socket now stores error messages in $IO::Socket::errstr, in addition to in $@.

The error method now reports the error state for both the input and output streams for sockets
and character devices. Similarly clearerr now clears the error state for both streams.

A spurious error reported for regular file handles has been fixed in IO::Handle. [GH #18019
<https://github.com/Perl/perl5/issues/18019>]

• IO-Compress has been upgraded from version 2.093 to 2.102.

bin/zipdetails version 2.02

• IO::Socket::IP has been upgraded from version 0.39 to 0.41.

• IO::Zlib has been upgraded from version 1.10 to 1.11.

• IPC::SysV has been upgraded from version 2.07 to 2.09.

• JSON::PP has been upgraded from version 4.04 to 4.06.

• The libnet distribution has been upgraded from version 3.11 to 3.13.

• locale has been upgraded from version 1.09 to 1.10.

• Math::Complex has been upgraded from version 1.5901 to 1.5902.

• MIME::Base64 has been upgraded from version 3.15 to 3.16.

• Module::CoreList has been upgraded from version 5.20200620 to 5.20210520.

• Module::Load has been upgraded from version 0.34 to 0.36.

• Module::Load::Conditional has been upgraded from version 0.70 to 0.74.

• mro has been upgraded from version 1.23 to 1.25_001.

• Net::Ping has been upgraded from version 2.72 to 2.74.

• NEXT has been upgraded from version 0.67_01 to 0.68.

• ODBM_File has been upgraded from version 1.16 to 1.17.

• Opcode has been upgraded from version 1.47 to 1.50.

• overload has been upgraded from version 1.31 to 1.33.

• perlfaq has been upgraded from version 5.20200523 to 5.20210411.

• PerlIO::encoding has been upgraded from version 0.28 to 0.30.

• PerlIO::mmap has been upgraded from version 0.016 to 0.017.

• PerlIO::scalar has been upgraded from version 0.30 to 0.31.

• PerlIO::via::QuotedPrint has been upgraded from version 0.08 to 0.09.

• Pod::Checker has been upgraded from version 1.73 to 1.74.

• Pod::Html has been upgraded from version 1.25 to 1.27.

• Pod::Simple has been upgraded from version 3.40 to 3.42.

• Pod::Usage has been upgraded from version 1.69 to 2.01.

perl v5.36.0 2021-06-12 468

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

• POSIX has been upgraded from version 1.94 to 1.97.

POSIX::signbit() behaviour has been improved. [GH #18441
<https://github.com/Perl/perl5/pull/18441>]

Documentation for asctime clarifies that the result is always in English. (Use strftime for a
localized result.)

• re has been upgraded from version 0.40 to 0.41.

(See under ‘‘Internal Changes’’ for more information.)

• Safe has been upgraded from version 2.41 to 2.43.

• Socket has been upgraded from version 2.029 to 2.031.

• Storable has been upgraded from version 3.21 to 3.23.

• strict has been upgraded from version 1.11 to 1.12.

• subs has been upgraded from version 1.03 to 1.04.

• Symbol has been upgraded from version 1.08 to 1.09.

• Test::Harness has been upgraded from version 3.42 to 3.43.

• Test::Simple has been upgraded from version 1.302175 to 1.302183.

• Text::Balanced has been upgraded from version 2.03 to 2.04.

• threads has been upgraded from version 2.25 to 2.26.

• threads::shared has been upgraded from version 1.61 to 1.62.

• Tie::RefHash has been upgraded from version 1.39 to 1.40.

• Time::HiRes has been upgraded from version 1.9764 to 1.9767.

• Time::Local has been upgraded from version 1.28 to 1.30.

• Unicode::Collate has been upgraded from version 1.27 to 1.29.

• Unicode::Normalize has been upgraded from version 1.27 to 1.28.

• utf8 has been upgraded from version 1.22 to 1.24.

• version has been upgraded from version 0.9924 to 0.9928.

• warnings has been upgraded from version 1.47 to 1.51.

• Win32 has been upgraded from version 0.53 to 0.57.

Fix calling convention for PFNRegGetValueA.

Added Win32::IsSymlinkCreationAllowed(),
Win32::IsDeveloperModeEnabled(), and Win32::GetProcessPrivileges().

Removed old code for versions before Windows 2000.

• XS::APItest has been upgraded from version 1.09 to 1.16.

• XS::Typemap has been upgraded from version 0.17 to 0.18.

Documentation
New Documentation

perldocstyle

This document is a guide for the authorship and maintenance of the documentation that ships with Perl.

perlgov

This document describes the goals, scope, system, and rules for Perl’s new governance model.

Other pod files, most notably perlpolicy, were amended to reflect its adoption.

Changes to Existing Documentation
We have attempted to update the documentation to reflect the changes listed in this document. If you
find any we have missed, open an issue at <https://github.com/Perl/perl5/issues>.

Additionally, the following selected changes have been made:

perl v5.36.0 2021-06-12 469

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

• perlapi, perlguts, perlxs, and perlxstut now prefer SvPVbyte over SvPV.

• References to Pumpking have been replaced with a more accurate term or Steering Council
where appropriate.

• The Perl Steering Council is now the fallback contact for security issues.

perlapi

• Efforts continue in improving the presentation of this document, and to document more API
elements.

perlcommunity

• The freenode IRC URL has been updated.

perldebguts

• Corrected the description of the scalar ${"_<$filename"} variables.

perldiag

• Now documents additional examples of ‘‘not imported’’ warnings.

perlfaq

• The Perl FAQ was updated to CPAN version 5.20201107 with minor improvements.

perlfunc

• my() and state() now explicitly warn the reader that lexical variables should typically not be
redeclared within the same scope or statement. [GH #18389
<https://github.com/Perl/perl5/issues/18389>]

• The localtime entry has been improved and now also states that the result of the function is always
in English.

• msgsnd() documented a length field included in the packed MSG parameter to msgsnd(), but
there was no such field. MSG contains only the type and the message content.

• Better explanation of what happens when sleep is called with a zero or negative value.

• Simplify the split() documentation by removing the join()s from the examples [GH #18676
<https://github.com/Perl/perl5/issues/18676>]

perlgit

• document how to create a remote-tracking branch for every PR

• document how to get a PR as a local branch

perlguts

• perlguts now explains in greater detail the need to consult SvUTF8 when calling SvPV (or
variants). A new ‘‘How do I pass a Perl string to a C library?’’ section in the same document
discusses when to use which style of macro to read an SV’s string value.

• Corrected my_rpeep example in perlguts.

• A section has been added on the formatted printing of special sizes.

perlop

• The <> and <<>> operators are commonly referred to as the diamond and double diamond
operators respectively, but that wasn’t mentioned previously in their documentation.

• Document range op behavior change.

perlpacktut

• Incorrect variables used in an example have been fixed.

perlsyn

• Document that caller() does not see try{} blocks

perl v5.36.0 2021-06-12 470

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

• A new example shows how a lexical my variable can be declared during the initialization of a for
loop.

perlunifaq

• Fix description of what Perl does with unencoded strings

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• Bareword filehandle ‘‘%s’’ not allowed under ’no feature ‘‘bareword_filehandles’’’

This accompanies the new bareword_filehandles feature.

• Multidimensional hash lookup is disabled

This accompanies the new multidimensional feature.

New Warnings

• Wide character in setenv key (encoding to utf8)

Attempts to put wide characters into environment variable keys via %ENV now provoke this
warning.

Changes to Existing Diagnostics
• Error %s in expansion of %s

An error was encountered in handling a user-defined property (‘‘User-Defined Character
Properties’’ in perlunicode). These are programmer written subroutines, hence subject to errors
that may prevent them from compiling or running.

• Infinite recursion in user-defined property

A user-defined property (‘‘User-Defined Character Properties’’ in perlunicode) can depend on the
definitions of other user-defined properties. If the chain of dependencies leads back to this
property, infinite recursion would occur, were it not for the check that raised this error.

• Timeout waiting for another thread to define \p{%s}

The first time a user-defined property (‘‘User-Defined Character Properties’’ in perlunicode) is
used, its definition is looked up and converted into an internal form for more efficient handling in
subsequent uses. There could be a race if two or more threads tried to do this processing nearly
simultaneously.

• Unknown user-defined property name \p{%s}

You specified to use a property within the \p{...} which was a syntactically valid user-defined
property, but no definition was found for it

• Too few arguments for subroutine ’%s’ (got %d; expected %d)

Subroutine argument-count mismatch errors now include the number of given and expected
arguments.

• Too many arguments for subroutine ’%s’ (got %d; expected %d)

Subroutine argument-count mismatch errors now include the number of given and expected
arguments.

• Lost precision when %s %f by 1

This warning was only issued for positive too-large values when incrementing, and only for
negative ones when decrementing. It is now issued for both positive or negative too-large values.
[GH #18333 <https://github.com/Perl/perl5/issues/18333>]

• \K not permitted in lookahead/lookbehind in regex; marked by <-- HERE in m/%s/

This error was incorrectly produced in some cases involving nested lookarounds. This has been
fixed. [GH #18123 <https://github.com/Perl/perl5/issues/18123>]

perl v5.36.0 2021-06-12 471

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

• Use of uninitialized value%s

This warning may now include the array or hash index when the uninitialized value is the result of
an element not found. This will only happen if the index is a simple non-magical variable.

Utility Changes
perl5db.pl (the debugger)

• New option: HistItemMinLength

This option controls the minimum length a command must be to get stored in history.
Traditionally, this has been fixed at 2. Changes to the debugger are often perilous, and new bugs
should be reported so the debugger can be debugged.

• Fix to i and l commands

The i $var and l $var commands work again with lexical variables.

Configuration and Compilation
• Prevented incpath to spill into libpth

• Use realpath if available. (This might catch more duplicate paths.)

• Only include real existing paths.

• Filter inc paths out of libpth.

• stadtx hash support has been removed

stadtx support has been entirely removed. Previously, it could be requested with
PERL_HASH_FUNC_STADTX, and was default in 64-bit builds. It has been replaced with
SipHash. SipHash has been more rigorously reviewed than stadtx.

• Configure

A new probe checks for buggy libc implementations of the gcvt/qgcvt functions. [GH #18170
<https://github.com/Perl/perl5/issues/18170>]

• -Dusedefaultstrict

Perl can now be built with strict on by default (using the configuration option
-Dusedefaultstrict.

These strict defaults do not apply when perl is run via -e or -E.

This setting provides a diagnostic mechanism intended for development purposes only and is thus
undefined by default.

• The minimum supported Bison version is now 2.4, and the maximum is 3.7.

• Newer 64-bit versions of the Intel C/C++ compiler are now recognised and have the correct flags
set.

• We now trap SIGBUS when Configure checks for va_copy.

On several systems the attempt to determine if we need va_copy or similar results in a SIGBUS
instead of the expected SIGSEGV, which previously caused a core dump.

[GH #18148 <https://github.com/Perl/perl5/issues/18148>]

Testing
Tests were added and changed to reflect the other additions and changes in this release. Furthermore,
these significant changes were made:

• Split Config-dependent tests in t/opbasic/arith.t to t/op/arith2.t

• t/re/opt.t was added, providing a test harness for regexp optimization. [GH #18213
<https://github.com/Perl/perl5/pull/18213>]

• A workaround for CPAN distributions needing dot in @INC has been removed [GH #18394
<https://github.com/Perl/perl5/pull/18394>]. All distributions that previously required the
workaround have now been adapted.

perl v5.36.0 2021-06-12 472

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

• When testing in parallel on many-core platforms, you can now cause the test suite to finish
somewhat earlier, but with less logical ordering of the tests, by setting

PERL_TEST_HARNESS_ASAP=1

while running the test suite.

Platform Support
New Platforms

9front
Allow building Perl on i386 9front systems (a fork of plan9).

Updated Platforms
Plan9

Improve support for Plan9 on i386 platforms.

MacOS (Darwin)
The hints file for darwin has been updated to handle future MacOS versions beyond 10. [GH
#17946 <https://github.com/Perl/perl5/issues/17946>]

Discontinued Platforms
Symbian

Support code relating to Symbian has been removed. Symbian was an operating system for
mobile devices. The port was last updated in July 2009, and the platform itself in October 2012.

Platform-Specific Notes
DragonFlyBSD

Tests were updated to workaround DragonFlyBSD bugs in tc*() functions
<https://bugs.dragonflybsd.org/issues/3252> and ctime updates
<https://bugs.dragonflybsd.org/issues/3251>.

Mac OS X
A number of system libraries no longer exist as actual files on Big Sur, even though dlopen will
pretend they do, so now we fall back to dlopen if a library file can not be found. [GH #18407
<https://github.com/Perl/perl5/issues/18407>]

Windows
Reading non-ASCII characters from the console when its codepage was set to 65001 (UTF-8) was
broken due to a bug in Windows. A workaround for this problem has been implemented. [GH
#18701 <https://github.com/Perl/perl5/issues/18701>]

Building with mingw.org compilers (version 3.4.5 or later) using mingw runtime versions < 3.22
now works again. This was broken in Perl 5.31.4.

Building with mingw.org compilers (version 3.4.5 or later) using mingw runtime versions >= 3.21
now works (for compilers up to version 5.3.0).

Makefile.mk, and thus support for dmake, has been removed. It is still possible to build Perl on
Windows using nmake (Makefile) and GNU make (GNUmakefile). [GH #18511
<https://github.com/Perl/perl5/pull/18511>]

perl can now be built with USE_QUADMATH on MS Windows using (32-bit and 64-bit)
mingw-w64 ports of gcc. [GH #18465 <https://github.com/Perl/perl5/pull/18465>]

The pl2bat.pl utility now needs to use ExtUtils::PL2Bat. This could cause failures in
parallel builds.

Windows now supports symlink() and readlink(), and lstat() is no longer an alias for stat(). [GH
#18005 <https://github.com/Perl/perl5/issues/18005>].

Unlike POSIX systems, creating a symbolic link on Windows requires either elevated privileges or
Windows 10 1703 or later with Developer Mode enabled.

stat(), including stat FILEHANDLE, and lstat() now uses our own implementation that
populates the device dev and inode numbers ino returned rather than always returning zero. The
number of links nlink field is now always populated.

${ˆWIN32_SLOPPY_STAT} previously controlled whether the nlink field was populated

perl v5.36.0 2021-06-12 473

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

requiring a separate Windows API call to fetch, since nlink and the other information required
for stat() is now retrieved in a single API call.

The -r and -w operators now return true for the STDIN, STDOUT and STDERR handles.
Unfortunately it still won’t return true for duplicates of those handles. [GH #8502
<https://github.com/Perl/perl5/issues/8502>].

The times returned by stat() and lstat() are no longer incorrect across Daylight Savings Time
adjustments. [GH #6080 <https://github.com/Perl/perl5/issues/6080>].

-x on a filehandle should now match -x on the corresponding filename on Vista or later. [GH
#4145 <https://github.com/Perl/perl5/issues/4145>].

-e '"' no longer incorrectly returns true. [GH #12431
<https://github.com/Perl/perl5/issues/12431>].

The same manifest is now used for Visual C++ and gcc builds.

Previously, MSVC builds were using the /manifestdependency flag instead of embedding
perlexe.manifest, which caused issues such as GetVersionEx() returning the wrong version
number on Windows 10.

z/OS
The locale categories LC_SYNTAX and LC_TOD are now recognized. Perl doesn’t do anything
with these, except it now allows you to specify them. They are included in LC_ALL.

Internal Changes
• Corrected handling of double and long double parameters for perl’s implementation of formatted

output for -Dusequadmath builds.

This applies to PerlIO_printf(), croak(), warn(), sv_catpvf() and their variants.

Previously in quadmath builds, code like:

PerlIO_printf(PerlIO_stderr(), "%g", somedouble);

or

PerlIO_printf(PerlIO_stderr(), "%Lg", somelongdouble);

would erroneously throw an exception ‘‘panic: quadmath invalid format ...’’, since the code added
for quadmath builds assumed NVs were the only floating point format passed into these functions.

This code would also process the standard C long double specifier L as if it expected an NV
(_ _float128 for quadmath builds), resulting in undefined behaviour.

These functions now correctly accept doubles, long doubles and NVs.

• Previously the right operand of bitwise shift operators (shift amount) was implicitly cast from IV
to int, but it might lead wrong results if IV does not fit in int.

And also, shifting INT_MIN bits used to yield the shiftee unchanged (treated as 0-bit shift instead
of negative shift).

• A set of cop_hints_exists_{pv,pvn,pvs,sv} functions was added, to support checking
for the existence of keys in the hints hash of a specific cop without needing to create a mortal copy
of said value.

• An aid has been added for using the DEBUG macros when debugging XS or C code. The
comments in perl.h describe DEBUG_PRE_STMTS and DEBUG_POST_STMTS. which you can
#define to do things like save and restore errno, in case the DEBUG calls are interfering with
that, or to display timestamps, or which thread it’s coming from, or the location of the call, or
whatever. You can make a quick hack to help you track something down without having to edit
individual DEBUG calls.

• Make REFCOUNTED_HE_EXISTS available outside of core

• All SvTRUE-ish functions now evaluate their arguments exactly once. In 5.32, plain "SvTRUE"
in perlapi was changed to do that; now the rest do as well.

perl v5.36.0 2021-06-12 474

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

• Unicode is now a first class citizen when considering the pattern /A*B/ where A and B are
arbitrary. The pattern matching code tries to make a tight loop to match the span of A’s. The logic
of this was now really updated with support for UTF-8.

• The re module has a new function optimization, which can return a hashref of optimization
data discovered about a compiled regexp.

• The PERL_GLOBAL_STRUCT compilation option has been removed, and with it the need or the
dVAR macro. dVAR remains defined as a no-op outside PERL_CORE for backwards compatiblity
with XS modules.

• A new savestack type SAVEt_HINTS_HH has been added, which neatens the previous behaviour
of SAVEt_HINTS. On previous versions the types and values pushed to the save stack would
depend on whether the hints included the HINT_LOCALIZE_HH bit, which complicates external
code that inspects the save stack. The new version uses a different savestack type to indicate the
difference.

• A new API function ‘‘av_count’’ in perlapi has been added which gives a clearly named way to
find how many elements are in an array.

Selected Bug Fixes
• Setting %ENV now properly handles upgraded strings in the key. Previously Perl sent the SV’s

internal PV directly to the OS; now it will handle keys as it has handled values since 5.18: attempt
to downgrade the string first; if that fails then warn and use the utf8 form.

• Fix a memory leak in regcomp.c [GH #18604 <https://github.com/Perl/perl5/issues/18604>]

• pack/unpack format ’D’ now works on all systems that could support it

Previously if NV == long double, now it is supported on all platforms that have long
doubles. In particular that means it is now also supported on quadmath platforms.

• Skip trying to constant fold an incomplete op tree [GH #18380
<https://github.com/Perl/perl5/issues/18380>]

Constant folding of chained comparison op trees could fail under certain conditions, causing perl
to crash. As a quick fix, constant folding is now skipped for such op trees. This also addresses [GH
#17917 <https://github.com/Perl/perl5/issues/17917>].

• %g formatting broken on Ubuntu-18.04, NVSIZE == 8 [GH #18170
<https://github.com/Perl/perl5/issues/18170>]

Buggy libc implementations of the gcvt and qgcvt functions caused (s)printf to
incorrectly truncate %g formatted numbers. A new Configure probe now checks for this, with the
result that the libc sprintf will be used in place of gcvt and qgcvt.

Tests added as part of this fix also revealed related problems in some Windows builds. The
makefiles for MINGW builds on Windows have thus been adjusted to use
USE_MINGW_ANSI_STDIO by default, ensuring that they also provide correct (s)printf
formatting of numbers.

• op.c: croak on my $_ when use utf8 is in effect [GH #18449
<https://github.com/Perl/perl5/issues/18449>]

The lexical topic feature experiment was removed in Perl v5.24 and declaring my $_ became a
compile time error. However, it was previously still possible to make this declaration if use
utf8 was in effect.

• regexec.c: Fix assertion failure [GH #18451 <https://github.com/Perl/perl5/issues/18451>]

Fuzzing triggered an assertion failure in the regexp engine when too many characters were copied
into a buffer.

• semctl(), msgctl(), and shmctl() now properly reset the UTF-8 flag on the ARG parameter if it’s
modified for IPC_STAT or GETALL operations.

• semctl(), msgctl(), and shmctl() now attempt to downgrade the ARG parameter if its
value is being used as input to IPC_SET or SETALL calls. A failed downgrade will thrown an
exception.

perl v5.36.0 2021-06-12 475

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

• In cases where semctl(), msgctl() or shmctl() would treat the ARG parameter as a
pointer, an undefined value no longer generates a warning. In most such calls the pointer isn’t
used anyway and this allows you to supply undef for a value not used by the underlying
function.

• semop() now downgrades the OPSTRING parameter, msgsnd() now downgrades the MSG
parameter and shmwrite now downgrades the STRING parameter to treat them as bytes.
Previously they would be left upgraded, providing a corrupted structure to the underlying function
call.

• msgrcv() now properly resets the UTF-8 flag the VAR parameter when it is modified. Previously
the UTF-8 flag could be left on, resulting in a possibly corrupt result in VAR.

• Magic is now called correctly for stacked file test operators. [GH #18293
<https://github.com/Perl/perl5/issues/18293>]

• The @ary = split(...) optimization no longer switches in the target array as the value
stack. [GH #18232 <https://github.com/Perl/perl5/issues/18232>] Also see discussion at
<https://github.com/Perl/perl5/pull/18014#issuecomment-671299506>.

• Fixed a bug in which some regexps with recursive subpatterns matched incorrectly.

[GH #18096 <https://github.com/Perl/perl5/issues/18096>]

• On Win32, waitpid(-1, WNOHANG) could sometimes have a very large timeout. [GH
#16529 <https://github.com/Perl/perl5/issues/16529>]

• MARK and hence items are now correctly initialized in BOOT XSUBs.

• Some list assignments involving undef on the left-hand side were over-optimized and produced
incorrect results. [GH #16685 <https://github.com/Perl/perl5/issues/16685>], [GH #17816
<https://github.com/Perl/perl5/issues/17816>]

Known Problems
None

Errata From Previous Releases
None

Obituary
Kent Fredric (KENTNL) passed away in February 2021. A native of New Zealand and a self-described
‘‘huge geek,’’ Kent was the author or maintainer of 178 CPAN distributions, the Perl maintainer for the
Gentoo Linux distribution and a contributor to the Perl core distribution. He is mourned by his family,
friends and open source software communities worldwide.

Acknowledgements
Perl 5.34.0 represents approximately 11 months of development since Perl 5.32.0 and contains
approximately 280,000 lines of changes across 2,100 files from 78 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 150,000
lines of changes to 1,300 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.34.0:

Aaron Crane, Adam Hartley, Andy Dougherty, Ben Cornett, Branislav Zahradník, brian d foy, Chris
’BinGOs’ Williams, Christian Walde (Mithaldu), Craig A. Berry, Dagfinn Ilmari Mannsa°ker, Dan
Book, Daniel Bo

..
hmer, Daniel Lau

..
gt, Dan Kogai, David Cantrell, David Mitchell, Dominic Hamon, E.

Choroba, Ed J, Eric Herman, Eric Lindblad, Eugene Alvin Villar, Felipe Gasper, Giovanni Tataranni,
Graham Knop, Graham Ollis, Hauke D, H.Merijn Brand, Hugo van der Sanden, Ichinose Shogo, Ivan
Baidakou, Jae Bradley, James E Keenan, Jason McIntosh, jkahrman, John Karr, John Lightsey, Kang-
min Liu, Karen Etheridge, Karl Williamson, Keith Thompson, Leon Timmermans, Marc Reisner,
Marcus Holland-Moritz, Max Maischein, Michael G Schwern, Nicholas Clark, Nicolas R., Paul Evans,
Petr PísaX, raiph, Renee Baecker, Ricardo Signes, Richard Leach, Romano, Ryan Voots, Samanta
Navarro, Samuel Thibault, Sawyer X, Scott Baker, Sergey Poznyakoff, Sevan Janiyan, Shirakata
Kentaro, Shlomi Fish, Sisyphus, Sizhe Zhao, Steve Hay, TAKAI Kousuke, Thibault Duponchelle, Todd
Rinaldo, Tomasz Konojacki, Tom Hukins, Tom Stellard, Tony Cook, vividsnow, Yves Orton, Zakariyya
Mughal, XXXXXX XXXXXXXX.

perl v5.36.0 2021-06-12 476

PERL5340DELTA(1) Perl Programmers Reference Guide PERL5340DELTA(1)

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at
<https://github.com/Perl/perl5/issues>. There may also be information at <http://www.perl.org/>, the
Perl Home Page.

If you believe you have an unreported bug, please open an issue at
<https://github.com/Perl/perl5/issues>. Be sure to trim your bug down to a tiny but sufficient test case.

If the bug you are reporting has security implications which make it inappropriate to send to a public
issue tracker, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for details
of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2021-06-12 477

PERL5341DELTA(1) Perl Programmers Reference Guide PERL5341DELTA(1)

NAME
perl5341delta - what is new for perl v5.34.1

DESCRIPTION
This document describes differences between the 5.34.0 release and the 5.34.1 release.

If you are upgrading from an earlier release such as 5.33.0, first read perl5340delta, which describes
differences between 5.33.0 and 5.34.0.

Incompatible Changes
There are no changes intentionally incompatible with 5.34.0. If any exist, they are bugs, and we
request that you submit a report. See ‘‘Reporting Bugs’’ below.

Modules and Pragmata
Updated Modules and Pragmata

• B::Deparse has been upgraded from version 1.56 to 1.57.

• Encode has been upgraded from version 3.08 to 3.08_01.

• GDBM_File has been upgraded from version 1.19 to 1.19_01.

• Module::CoreList has been upgraded from version 5.20210520 to 5.20220313.

• perl5db.pl has been upgraded from version 1.60 to 1.60_01.

Testing
Tests were added and changed to reflect the other additions and changes in this release.

Platform-Specific Notes
Windows

• Support for compiling perl on Windows using Microsoft Visual Studio 2022 (containing
Visual C++ 14.3) has been added.

Selected Bug Fixes
• B::Deparse now correctly handles try/catch blocks with more complex scopes. [GH #18874

<https://github.com/Perl/perl5/issues/18874>]

• try/catch now correctly returns the last evaluated expression when the catch block has more than
one statement. [GH #18855 <https://github.com/Perl/perl5/issues/18855>]

Acknowledgements
Perl 5.34.1 represents approximately 10 months of development since Perl 5.34.0 and contains
approximately 4,600 lines of changes across 60 files from 23 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 1,100 lines
of changes to 18 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.34.1:

Andrew Fresh, Atsushi Sugawara, Chris ’BinGOs’ Williams, Dan Book, Hugo van der Sanden, James
E Keenan, Karen Etheridge, Leon Timmermans, Matthew Horsfall, Max Maischein, Michiel Beijen,
Neil Bowers, Nicolas R., Paul Evans, Renee Baecker, Ricardo Signes, Richard Leach, Sawyer X,
Sergey Poznyakoff, Steve Hay, Tomasz Konojacki, Tony Cook, Yves Orton.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please see the AUTHORS file in the Perl
source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at
<https://github.com/Perl/perl5/issues>. There may also be information at <http://www.perl.org/>, the
Perl Home Page.

If you believe you have an unreported bug, please open an issue at

perl v5.36.0 2022-04-17 478

PERL5341DELTA(1) Perl Programmers Reference Guide PERL5341DELTA(1)

<https://github.com/Perl/perl5/issues>. Be sure to trim your bug down to a tiny but sufficient test case.

If the bug you are reporting has security implications which make it inappropriate to send to a public
issue tracker, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for details
of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2022-04-17 479

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

NAME
perldelta - what is new for perl v5.36.0

DESCRIPTION
This document describes differences between the 5.34.0 release and the 5.36.0 release.

Core Enhancements
use v5.36

As always, use v5.36 turns on the feature bundle for that version of Perl.

The 5.36 bundle enables the signatures feature. Introduced in Perl version 5.20.0, and modified
several times since, the subroutine signatures feature is now no longer considered experimental. It is
now considered a stable language feature and no longer prints a warning.

use v5.36;

sub add ($x, $y) {
return $x + $y;

}

Despite this, certain elements of signatured subroutines remain experimental; see below.

The 5.36 bundle enables the isa feature. Introduced in Perl version 5.32.0, this operator has remained
unchanged since then. The operator is now considered a stable language feature. For more detail see
‘‘Class Instance Operator’’ in perlop.

The 5.36 bundle also disables the features indirect, and multidimensional. These will forbid,
respectively: the use of ‘‘indirect’’ method calls (like $x = new Class;); the use of a list
expression as a hash key to simulate sparse multidimensional arrays. The specifics of these changes
can be found in feature, but the short version is: this is a bit like having more use strict turned on,
disabling features that cause more trouble than they’re worth.

Furthermore, use v5.36 will also enable warnings as if you’d written use warnings.

Finally, with this release, the experimental switch feature, present in every feature bundle since they
were introduced in v5.10, has been removed from the v5.36 bundle. If you want to use it (against our
advice), you’ll have to enable it explicitly.

-g command-line flag
A new command-line flag, -g, is available. It is a simpler alias for -0777.

For more information, see ‘‘-g’’ in perlrun.

Unicode 14.0 is supported
See <https://www.unicode.org/versions/Unicode14.0.0/> for details.

regex sets are no longer considered experimental
Prior to this release, the regex sets feature (officially named ‘‘Extended Bracketed Character Classes’’)
was considered experimental. Introduced in Perl version 5.18.0, and modified several times since, this
is now considered a stable language feature and its use no longer prints a warning. See ‘‘Extended
Bracketed Character Classes’’ in perlrecharclass.

Variable length lookbehind is mostly no longer considered experimental
Prior to this release, any form of variable length lookbehind was considered experimental. With this
release the experimental status has been reduced to cover only lookbehind that contains capturing
parenthesis. This is because it is not clear if

"aaz"=˜/(?=z)(?<=(a|aa))/

should match and leave $1 equaling ‘‘a’’ or ‘‘aa’’. Currently it will match the longest possible
alternative, ‘‘aa’’. While we are confident that the overall construct will now match only when it
should, we are not confident that we will keep the current ‘‘longest match’’ behavior.

SIGFPE no longer deferred
Floating-point exceptions are now delivered immediately, in the same way as other ‘‘fault’’-like signals
such as SIGSEGV. This means one has at least a chance to catch such a signal with a $SIG{FPE}
handler, e.g. so that die can report the line in perl that triggered it.

perl v5.36.0 2022-05-25 480

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

Stable boolean tracking
The ‘‘true’’ and ‘‘false’’ boolean values, often accessed by constructions like !!0 and !!1, as well as
being returned from many core functions and operators, now remember their boolean nature even
through assignment into variables. The new function is_bool() in builtin can check whether a value
has boolean nature.

This is likely to be useful when interoperating with other languages or data-type serialisation, among
other places.

iterating over multiple values at a time (experimental)
You can now iterate over multiple values at a time by specifying a list of lexicals within parentheses.
For example,

for my ($key, $value) (%hash) { ... }
for my ($left, $right, $gripping) (@moties) { ... }

Prior to perl v5.36, attempting to specify a list after for my was a syntax error.

This feature is currently experimental and will cause a warning of category
experimental::for_list. For more detail see ‘‘Compound Statements’’ in perlsyn. See also
‘‘builtin::indexed’’ in this document, which is a handy companion to n-at-a-time foreach.

builtin functions (experimental)
A new core module builtin has been added, which provides documentation for new always-present
functions that are built into the interpreter.

say "Reference type of arrays is ", builtin::reftype([]);

It also provides a lexical import mechanism for providing short name versions of these functions.

use builtin 'reftype';
say "Reference type of arrays is ", reftype([]);

This builtin function mechanism and the functions it provides are all currently experimental. We
expect that builtin itself will cease to be experimental in the near future, but that individual
functions in it may become stable on an ongoing basis. Other functions will be added to builtin
over time.

For details, see builtin, but here’s a summary of builtin functions in v5.36:

builtin::trim
This function treats its argument as a string, returning the result of removing all white space at its
beginning and ending.

builtin::indexed
This function returns a list twice as big as its argument list, where each item is preceded by its
index within that list. This is primarily useful for using the new foreach syntax with multiple
iterator variables to iterate over an array or list, while also tracking the index of each item:

use builtin 'indexed';

foreach my ($index, $val) (indexed @array) {
...

}

builtin::true, builtin::false, builtin::is_bool
true and false return boolean true and false values. Perl is still perl, and doesn’t have strict
typing of booleans, but these values will be known to have been created as booleans. is_bool
will tell you whether a value was known to have been created as a boolean.

builtin::weaken, builtin::unweaken, builtin::is_weak
These functions will, respectively: weaken a reference; strengthen a reference; and return whether
a reference is weak. (A weak reference is not counted for garbage collection purposes. See
perlref.) These can take the place of some similar routines in Scalar::Util.

builtin::blessed, builtin::refaddr, builtin::reftype
These functions provide more data about references (or non-references, actually!) and can take the
place of similar routines found in Scalar::Util.

perl v5.36.0 2022-05-25 481

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

builtin::ceil, builtin::floor
ceil returns the smallest integer greater than or equal to its argument. floor returns the largest
integer less than or equal to its argument. These can take the place of similar routines found in
POSIX.

defer blocks (experimental)
This release adds support for defer blocks, which are blocks of code prefixed by the defer modifier.
They provide a section of code which runs at a later time, during scope exit.

In brief, when a defer block is reached at runtime, its body is set aside to be run when the enclosing
scope is exited. It is unlike a UNITCHECK (among other reasons) in that if the block containing the
defer block is exited before the block is reached, it will not be run.

defer blocks can be used to take the place of ‘‘scope guard’’ objects where an object is passed a code
block to be run by its destructor.

For more information, see ‘‘defer blocks’’ in perlsyn.

try/catch can now have a finally block (experimental)
The experimental try/catch syntax has been extended to support an optional third block introduced
by the finally keyword.

try {
attempt();
print "Success\n";

}
catch ($e) {

print "Failure\n";
}
finally {

print "This happens regardless\n";
}

This provides code which runs at the end of the try/catch construct, even if aborted by an exception
or control-flow keyword. They are similar to defer blocks.

For more information, see ‘‘Try Catch Exception Handling’’ in perlsyn.

non-ASCII delimiters for quote-like operators (experimental)
Perl traditionally has allowed just four pairs of string/pattern delimiters: () { } [] and < >, all in
the ASCII range. Unicode has hundreds more possibilities, and using this feature enables many of
them. When enabled, you can say qrX X for example, or use utf8; qXstringX. See ‘‘The
’extra_paired_delimiters’ feature’’ in feature for details.

@_ is now experimental within signatured subs
Even though subroutine signatures are now stable, use of the legacy arguments array (@_) with a
subroutine that has a signature remains experimental, with its own warning category. Silencing the
experimental::signatures warning category is not sufficient to dismiss this. The new
warning is emitted with the category name
experimental::args_array_with_signatures.

Any subroutine that has a signature and tries to make use of the defaults argument array or an element
thereof (@_ or $_[INDEX]), either explicitly or implicitly (such as shift or pop with no argument)
will provoke a warning at compile-time:

use v5.36;

sub f ($x, $y = 123) {
say "The first argument is $_[0]";

}

Use of @_ in array element with signatured subroutine is experimental
at file.pl line 4.

The behaviour of code which attempts to do this is no longer specified, and may be subject to change in
a future version.

perl v5.36.0 2022-05-25 482

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

Incompatible Changes
A physically empty sort is now a compile-time error

@a = sort @empty; # unaffected
@a = sort; # now a compile-time error
@a = sort (); # also a compile-time error

A bare sort used to be a weird way to create an empty list; now it croaks at compile time. This change
is intended to free up some of the syntax space for possible future enhancements to sort.

Deprecations
use VERSION (where VERSION is below v5.11) after use v5.11 is deprecated

When in the scope of use v5.11 or later, a use vX line where X is lower than v5.11 will now issue
a warning:

Downgrading a use VERSION declaration to below v5.11 is deprecated

For example:

use v5.14;
say "The say statement is permitted";
use v5.8; # This will print a warning
print "We must use print\n";

This is because the Perl team plans to change the behavior in this case. Since Perl v5.12 (and parts of
v5.11), strict is enabled unless it had previously been disabled. In other words:

no strict;
use v5.12; # will not enable strict, because "no strict" preceded it
$x = 1; # permitted, despite no "my" declaration

In the future, this behavior will be eliminated and use VERSION will always enable strict for
versions v5.12 and later.

Code which wishes to mix versions in this manner should use lexical scoping with block syntax to
ensure that the differently versioned regions remain lexically isolated.

{
use v5.14;
say "The say statement is permitted";

}

{
use v5.8; # No warning is emitted
print "We must use print\n";

}

Of course, this is probably not something you ever need to do! If the first block compiles, it means
you’re using perl v5.14.0 or later.

Performance Enhancements
• We now probe for compiler support for C11 thread local storage, and where available use this for

‘‘implicit context’’ for XS extensions making API calls for a threaded Perl build. This requires
fewer function calls at the C level than POSIX thread specific storage. We continue to use the the
pthreads approach if the C11 approach is not available.

Configure run with the defaults will build an unthreaded Perl (which is slightly faster), but most
operating systems ship a threaded Perl.

• Perl can now be configured to no longer allocate keys for large hashes from the shared string table.

The same internal datatype (PVHV) is used for all of

• Symbol tables

• Objects (by default)

• Associative arrays

The shared string table was originally added to improve performance for blessed hashes used as
objects, because every object instance has the same keys, so it is an optimisation to share memory

perl v5.36.0 2022-05-25 483

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

between them. It also makes sense for symbol tables, where derived classes will have the same
keys (typically method names), and the OP trees built for method calls can also share memory. The
shared string table behaves roughly like a cache for hash keys.

But for hashes actually used as associative arrays - mapping keys to values - typically the keys
are not re-used in other hashes. For example, ‘‘seen’’ hashes are keyed by object IDs (or
addresses), and logically these keys won’t repeat in other hashes.

Storing these ‘‘used just once’’ keys in the shared string table increases CPU and RAM use for no
gain. For such keys the shared string table behaves as a cache with a 0% hit rate. Storing all the
keys there increases the total size of the shared string table, as well as increasing the number of
times it is resized as it grows. Worse - in any environment that has ‘‘copy on write’’ memory for
child process (such as a pre-forking server), the memory pages used for the shared string table
rapidly need to be copied as the child process manipulates hashes. Hence if most of the shared
string table is such that keys are used only in one place, there is no benefit from re-use within the
perl interpreter, but a high cost due to more pages for the OS to copy.

The perl interpreter can now be Configured to disable shared hash keys for ‘‘large’’ hashes (that
are neither objects nor symbol tables). To do so, add
-Accflags='-DPERL_USE_UNSHARED_KEYS_IN_LARGE_HASHES' to your Configure
options. ‘‘Large’’ is a heuristic — currently the heuristic is that sharing is disabled when adding
a key to a hash triggers allocation of more storage, and the hash has more than 42 keys.

This might cause slightly increased memory usage for programs that create (unblessed) data
structures that contain multiple large hashes that share the same keys. But generally our testing
suggests that for the specific cases described it is a win, and other code is unaffected.

• In certain scenarios, creation of new scalars is now noticeably faster.

For example, the following code is now executing ˜30% faster:

$str = "A" x 64;
for (0..1_000_000) {

@svs = split //, $str
}

(You can read more about this one in [perl #19414] <https://github.com/Perl/perl5/pull/19414>.)

Modules and Pragmata
Updated Modules and Pragmata

• Archive::Tar has been upgraded from version 2.38 to 2.40.

• Attribute::Handlers has been upgraded from version 1.01 to 1.02.

• attributes has been upgraded from version 0.33 to 0.34.

• B has been upgraded from version 1.82 to 1.83.

• B::Concise has been upgraded from version 1.004 to 1.006.

• B::Deparse has been upgraded from version 1.56 to 1.64.

• bignum has been upgraded from version 0.51 to 0.65.

• charnames has been upgraded from version 1.48 to 1.50.

• Compress::Raw::Bzip2 has been upgraded from version 2.101 to 2.103.

• Compress::Raw::Zlib has been upgraded from version 2.101 to 2.105.

• CPAN has been upgraded from version 2.28 to 2.33.

• Data::Dumper has been upgraded from version 2.179 to 2.184.

• DB_File has been upgraded from version 1.855 to 1.857.

• Devel::Peek has been upgraded from version 1.30 to 1.32.

• Devel::PPPort has been upgraded from version 3.62 to 3.68.

perl v5.36.0 2022-05-25 484

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

• diagnostics has been upgraded from version 1.37 to 1.39.

• Digest has been upgraded from version 1.19 to 1.20.

• DynaLoader has been upgraded from version 1.50 to 1.52.

• Encode has been upgraded from version 3.08 to 3.17.

• Errno has been upgraded from version 1.33 to 1.36.

• experimental has been upgraded from version 0.024 to 0.028.

• Exporter has been upgraded from version 5.76 to 5.77.

• ExtUtils::MakeMaker has been upgraded from version 7.62 to 7.64.

• ExtUtils::Miniperl has been upgraded from version 1.10 to 1.11.

• ExtUtils::ParseXS has been upgraded from version 3.43 to 3.45.

• ExtUtils::Typemaps has been upgraded from version 3.43 to 3.45.

• Fcntl has been upgraded from version 1.14 to 1.15.

• feature has been upgraded from version 1.64 to 1.72.

• File::Compare has been upgraded from version 1.1006 to 1.1007.

• File::Copy has been upgraded from version 2.35 to 2.39.

• File::Fetch has been upgraded from version 1.00 to 1.04.

• File::Find has been upgraded from version 1.39 to 1.40.

• File::Glob has been upgraded from version 1.33 to 1.37.

• File::Spec has been upgraded from version 3.80 to 3.84.

• File::stat has been upgraded from version 1.09 to 1.12.

• FindBin has been upgraded from version 1.52 to 1.53.

• GDBM_File has been upgraded from version 1.19 to 1.23.

• Hash::Util has been upgraded from version 0.25 to 0.28.

• Hash::Util::FieldHash has been upgraded from version 1.21 to 1.26.

• HTTP::Tiny has been upgraded from version 0.076 to 0.080.

• I18N::Langinfo has been upgraded from version 0.19 to 0.21.

• if has been upgraded from version 0.0609 to 0.0610.

• IO has been upgraded from version 1.46 to 1.50.

• IO-Compress has been upgraded from version 2.102 to 2.106.

• IPC::Open3 has been upgraded from version 1.21 to 1.22.

• JSON::PP has been upgraded from version 4.06 to 4.07.

• libnet has been upgraded from version 3.13 to 3.14.

• Locale::Maketext has been upgraded from version 1.29 to 1.31.

• Math::BigInt has been upgraded from version 1.999818 to 1.999830.

• Math::BigInt::FastCalc has been upgraded from version 0.5009 to 0.5012.

• Math::BigRat has been upgraded from version 0.2614 to 0.2621.

• Module::CoreList has been upgraded from version 5.20210520 to 5.20220520.

• mro has been upgraded from version 1.25_001 to 1.26.

• NEXT has been upgraded from version 0.68 to 0.69.

• Opcode has been upgraded from version 1.50 to 1.57.

• open has been upgraded from version 1.12 to 1.13.

perl v5.36.0 2022-05-25 485

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

• overload has been upgraded from version 1.33 to 1.35.

• perlfaq has been upgraded from version 5.20210411 to 5.20210520.

• PerlIO has been upgraded from version 1.11 to 1.12.

• Pod::Functions has been upgraded from version 1.13 to 1.14.

• Pod::Html has been upgraded from version 1.27 to 1.33.

• Pod::Simple has been upgraded from version 3.42 to 3.43.

• POSIX has been upgraded from version 1.97 to 2.03.

• re has been upgraded from version 0.41 to 0.43.

• Scalar::Util has been upgraded from version 1.55 to 1.62.

• sigtrap has been upgraded from version 1.09 to 1.10.

• Socket has been upgraded from version 2.031 to 2.033.

• sort has been upgraded from version 2.04 to 2.05.

• Storable has been upgraded from version 3.23 to 3.26.

• Sys::Hostname has been upgraded from version 1.23 to 1.24.

• Test::Harness has been upgraded from version 3.43 to 3.44.

• Test::Simple has been upgraded from version 1.302183 to 1.302190.

• Text::ParseWords has been upgraded from version 3.30 to 3.31.

• Text::Tabs has been upgraded from version 2013.0523 to 2021.0814.

• Text::Wrap has been upgraded from version 2013.0523 to 2021.0814.

• threads has been upgraded from version 2.26 to 2.27.

• threads::shared has been upgraded from version 1.62 to 1.64.

• Tie::Handle has been upgraded from version 4.2 to 4.3.

• Tie::Hash has been upgraded from version 1.05 to 1.06.

• Tie::Scalar has been upgraded from version 1.05 to 1.06.

• Tie::SubstrHash has been upgraded from version 1.00 to 1.01.

• Time::HiRes has been upgraded from version 1.9767 to 1.9770.

• Unicode::Collate has been upgraded from version 1.29 to 1.31.

• Unicode::Normalize has been upgraded from version 1.28 to 1.31.

• Unicode::UCD has been upgraded from version 0.75 to 0.78.

• UNIVERSAL has been upgraded from version 1.13 to 1.14.

• version has been upgraded from version 0.9928 to 0.9929.

• VMS::Filespec has been upgraded from version 1.12 to 1.13.

• VMS::Stdio has been upgraded from version 2.45 to 2.46.

• warnings has been upgraded from version 1.51 to 1.58.

• Win32 has been upgraded from version 0.57 to 0.59.

• XS::APItest has been upgraded from version 1.16 to 1.22.

• XS::Typemap has been upgraded from version 0.18 to 0.19.

• XSLoader has been upgraded from version 0.30 to 0.31.

Documentation
New Documentation

Porting/vote_admin_guide.pod

This document provides the process for administering an election or vote within the Perl Core Team.

perl v5.36.0 2022-05-25 486

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

Changes to Existing Documentation
We have attempted to update the documentation to reflect the changes listed in this document. If you
find any we have missed, open an issue at <https://github.com/Perl/perl5/issues>.

Additionally, the following selected changes have been made:

perlapi

• This has been cleaned up some, and more than 80% of the (previously many) undocumented
functions have now either been documented or deemed to have been inappropriately marked as
API.

As always, Patches Welcome!

perldeprecation

• notes the new location for functions moved from Pod::Html to Pod::Html::Util that are no longer
intended to be used outside of core.

perlexperiment

• notes the :win32 IO pseudolayer is removed (this happened in 5.35.2).

perlgov

• The election process has been finetuned to allow the vote to be skipped if there are no more
candidates than open seats.

• A special election is now allowed to be postponed for up to twelve weeks, for example until a
normal election.

perlop

• now notes that an invocant only needs to be an object or class name for method calls, not for
subroutine references.

perlre

• Updated to discourage the use of the /d regexp modifier.

perlrun

• -? is now a synonym for -h

• -g is now a synonym for -0777

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• Can’t ‘‘%s’’ out of a ‘‘defer’’ block

(F) An attempt was made to jump out of the scope of a defer block by using a control-flow
statement such as return, goto or a loop control. This is not permitted.

• Can’t modify %s in %s (for scalar assignment to undef)

Attempting to perform a scalar assignment to undef, for example via undef = $foo;,
previously triggered a fatal runtime error with the message "Modification of a read-only value
attempted.‘‘ It is more helpful to detect such attempted assignments prior to runtime, so they are
now compile time errors, resulting in the message ’’Can’t modify undef operator in scalar
assignment".

• panic: newFORLOOP, %s

The parser failed an internal consistency check while trying to parse a foreach loop.

New Warnings

• Built-in function ’%s’ is experimental

A call is being made to a function in the builtin:: namespace, which is currently
experimental.

perl v5.36.0 2022-05-25 487

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

• defer is experimental

The defer block modifier is experimental. If you want to use the feature, disable the warning
with no warnings 'experimental::defer' , but know that in doing so you are taking
the risk that your code may break in a future Perl version.

• Downgrading a use VERSION declaration to below v5.11 is deprecated

This warning is emitted on a use VERSION statement that requests a version below v5.11 (when
the effects of use strict would be disabled), after a previous declaration of one having a
larger number (which would have enabled these effects)

• for my (...) is experimental

This warning is emitted if you use for to iterate multiple values at a time. This syntax is currently
experimental and its behaviour may change in future releases of Perl.

• Implicit use of @_ in %s with signatured subroutine is experimental

An expression that implicitly involves the @_ arguments array was found in a subroutine that uses
a signature.

• Use of @_ in %s with signatured subroutine is experimental

An expression involving the @_ arguments array was found in a subroutine that uses a signature.

• Wide character in $0

Attempts to put wide characters into the program name ($0) now provoke this warning.

Changes to Existing Diagnostics
• ’/’ does not take a repeat count in %s

This warning used to not include the in %s.

• Subroutine %s redefined

Localized subroutine redefinitions no longer trigger this warning.

• unexpected constant lvalue entersub entry via type/targ %d:%d" now has a panic prefix

This makes it consistent with other checks of internal consistency when compiling a subroutine.

• Useless use of sort in scalar context is now in the new scalar category.

When sort is used in scalar context, it provokes a warning that doing this is not useful. This
warning used to be in the void category. A new category for warnings about scalar context has
now been added, called scalar.

• Removed a number of diagnostics

Many diagnostics that have been removed from the perl core across many years have now also
been removed from the documentation.

Configuration and Compilation
• The Perl C source code now uses some C99 features, which we have verified are supported by all

compilers we target. This means that Perl’s headers now contain some code that is legal in C99 but
not C89.

This may cause problems for some XS modules that unconditionally add
-Werror=declaration-after-statement to their C compiler flags if compiling with
gcc or clang. Earlier versions of Perl support long obsolete compilers that are strict in rejecting
certain C99 features, particularly mixed declarations and code, and hence it makes sense for XS
module authors to audit that their code does not violate this. However, doing this is now only
possible on these earlier versions of Perl, hence these modules need to be changed to only add this
flag for <$] < 5.035005>.

• The makedepend step is now run in parallel by using make

When using MAKEFLAGS=-j8, this significantly reduces the time required for:

sh ./makedepend MAKE=make cflags

perl v5.36.0 2022-05-25 488

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

• Configure now tests whether #include <xlocale.h> is required to use the POSIX 1003
thread-safe locale functions or some related extensions. This prevents problems where a non-
public xlocale.h is removed in a library update, or xlocale.h isn’t intended for public use. (github
#18936 <https://github.com/Perl/perl5/pull/18936>)

Testing
Tests were added and changed to reflect the other additions and changes in this release.

Platform Support
Windows

• Support for old MSVC++ (pre-VC12) has been removed

These did not support C99 and hence can no longer be used to compile perl.

• Support for compiling perl on Windows using Microsoft Visual Studio 2022 (containing Visual
C++ 14.3) has been added.

• The :win32 IO layer has been removed. This experimental replacement for the :unix layer never
reached maturity in its nearly two decades of existence.

VMS
keys %ENV on VMS returns consistent results

On VMS entries in the %ENV hash are loaded from the OS environment on first access, hence the
first iteration of %ENV requires the entire environment to be scanned to find all possible keys. This
initialisation had always been done correctly for full iteration, but previously was not happening
for %ENV in scalar context, meaning that scalar %ENV would return 0 if called before any
other %ENV access, or would only return the count of keys accessed if there had been no iteration.

These bugs are now fixed - %ENV and keys %ENV in scalar context now return the correct result
- the count of all keys in the environment.

Discontinued Platforms
AT&T UWIN

UWIN is a UNIX compatibility layer for Windows. It was last released in 2012 and has been
superseded by Cygwin these days.

DOS/DJGPP
DJGPP is a port of the GNU toolchain to 32-bit x86 systems running DOS. The last known attempt
to build Perl on it was on 5.20, which only got as far as building miniperl.

NetWare
Support code for Novell NetWare has been removed. NetWare was a server operating system by
Novell. The port was last updated in July 2002, and the platform itself in May 2009.

Unrelated changes accidentally broke the build for the NetWare port in September 2009, and in 12
years no-one has reported this.

Platform-Specific Notes
z/OS

This update enables us to build EBCDIC static/dynamic and 31-bit/64-bit addressing mode Perl.
The number of tests that pass is consistent with the baseline before these updates.

These changes also provide the base support to be able to provide ASCII static/dynamic and
31-bit/64-bit addressing mode Perl.

The z/OS (previously called OS/390) README was updated to describe ASCII and EBCDIC builds.

Internal Changes
• Since the removal of PERL_OBJECT in Perl 5.8, PERL_IMPLICIT_CONTEXT and MULTIPLICITY

have been synonymous and they were being used interchangeably. To simplify the code, all
instances of PERL_IMPLICIT_CONTEXT have been replaced with MULTIPLICITY.

PERL_IMPLICIT_CONTEXT will remain defined for compatibility with XS modules.

• The API constant formerly named G_ARRAY, indicating list context, has now been renamed to a
more accurate G_LIST. A compatibilty macro G_ARRAY has been added to allow existing code
to work unaffected. New code should be written using the new constant instead. This is
supported by Devel::PPPort version 3.63.

perl v5.36.0 2022-05-25 489

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

• Macros have been added to perl.h to facilitate version comparisons: PERL_GCC_VERSION_GE,
PERL_GCC_VERSION_GT, PERL_GCC_VERSION_LE and PERL_GCC_VERSION_LT.

Inline functions have been added to embed.h to determine the position of the least significant 1 bit
in a word: lsbit_pos32 and lsbit_pos64.

• Perl_ptr_table_clear has been deleted. This has been marked as deprecated since v5.14.0
(released in 2011), and is not used by any code on CPAN.

• Added new boolean macros and functions. See ‘‘Stable boolean tracking’’ for related information
and perlapi for documentation.

• sv_setbool

• sv_setbool_mg

• SvIsBOOL

• Added 4 missing functions for dealing with RVs:

• sv_setrv_noinc

• sv_setrv_noinc_mg

• sv_setrv_inc

• sv_setrv_inc_mg

• xs_handshake()’s two failure modes now provide distinct messages.

• Memory for hash iterator state (struct xpvhv_aux) is now allocated as part of the hash body,
instead of as part of the block of memory allocated for the main hash array.

• A new phase_name() interface provides access to the name for each interpreter phase (i.e.,
PL_phase value).

• The pack behavior of U has changed for EBCDIC.

• New equality-test functions sv_numeq and sv_streq have been added, along with
..._flags-suffixed variants. These expose a simple and consistent API to perform numerical
or string comparison which is aware of operator overloading.

• Reading the string form of an integer value no longer sets the flag SVf_POK. The string form is
still cached internally, and still re-read directly by the macros SvPV(sv) etc (inline, without
calling a C function). XS code that already calls the APIs to get values will not be affected by this
change. XS code that accesses flags directly instead of using API calls to express its intent might
break, but such code likely is already buggy if passed some other values, such as floating point
values or objects with string overloading.

This small change permits code (such as JSON serializers) to reliably determine between

• a value that was initially written as an integer, but then read as a string

my $answer = 42;
print "The answer is $answer\n";

• that same value that was initially written as a string, but then read as an integer

my $answer = "42";
print "That doesn't look right\n"

unless $answer == 6 * 9;

For the first case (originally written as an integer), we now have:

use Devel::Peek;
my $answer = 42;
Dump ($answer);
my $void = "$answer";
print STDERR "\n";
Dump($answer)

perl v5.36.0 2022-05-25 490

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

SV = IV(0x562538925778) at 0x562538925788
REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 42

SV = PVIV(0x5625389263c0) at 0x562538925788
REFCNT = 1
FLAGS = (IOK,pIOK,pPOK)
IV = 42
PV = 0x562538919b50 "42"\0
CUR = 2
LEN = 10

For the second (originally written as a string), we now have:

use Devel::Peek;
my $answer = "42";
Dump ($answer);
my $void = $answer == 6 * 9;
print STDERR "\n";
Dump($answer)'

SV = PV(0x5586ffe9bfb0) at 0x5586ffec0788
REFCNT = 1
FLAGS = (POK,IsCOW,pPOK)
PV = 0x5586ffee7fd0 "42"\0
CUR = 2
LEN = 10
COW_REFCNT = 1

SV = PVIV(0x5586ffec13c0) at 0x5586ffec0788
REFCNT = 1
FLAGS = (IOK,POK,IsCOW,pIOK,pPOK)
IV = 42
PV = 0x5586ffee7fd0 "42"\0
CUR = 2
LEN = 10
COW_REFCNT = 1

(One can’t rely on the presence or absence of the flag SVf_IsCOW to determine the history of
operations on a scalar.)

Previously both cases would be indistinguishable, with all 4 flags set:

SV = PVIV(0x55d4d62edaf0) at 0x55d4d62f0930
REFCNT = 1
FLAGS = (IOK,POK,pIOK,pPOK)
IV = 42
PV = 0x55d4d62e1740 "42"\0
CUR = 2
LEN = 10

(and possibly SVf_IsCOW, but not always)

This now means that if XS code really needs to determine which form a value was first written as,
it should implement logic roughly

perl v5.36.0 2022-05-25 491

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

if (flags & SVf_IOK|SVf_NOK) && !(flags & SVf_POK)
serialize as number

else if (flags & SVf_POK)
serialize as string

else
the existing guesswork ...

Note that this doesn’t cover ‘‘dualvars’’ - scalars that report different values when asked for their
string form or number form (such as $!). Most serialization formats cannot represent such
duplicity.

The existing guesswork remains because as well as dualvars, values might be undef, references,
overloaded references, typeglobs and other things that Perl itself can represent but do not map
one-to-one into external formats, so need some amount of approximation or encapsulation.

• sv_dump (and Devel::PeekXs Dump function) now escapes high-bit octets in the PV as hex rather
than octal. Since most folks understand hex more readily than octal, this should make these dumps
a bit more legible. This does not affect any other diagnostic interfaces like pv_display.

Selected Bug Fixes
• utime() now correctly sets errno/$! when called on a closed handle.

• The flags on the OPTVAL parameter to setsockopt() were previously checked before magic was
called, possibly treating a numeric value as a packed buffer or vice versa. It also ignored the
UTF-8 flag, potentially treating the internal representation of an upgraded SV as the bytes to
supply to the setsockopt() system call. (github #18660
<https://github.com/Perl/perl5/issues/18660>)

• Only set IOKp, not IOK on $) and $(. This was issue #18955
<https://github.com/Perl/perl5/issues/18955>: This will prevent serializers from serializing these
variables as numbers (which loses the additional groups). This restores behaviour from 5.16

• Use of the mktables debugging facility would cause perl to croak since v5.31.10; this problem
has now been fixed.

• makedepend logic is now compatible with BSD make (fixes GH #19046
<https://github.com/Perl/perl5/issues/19046>).

• Calling untie on a tied hash that is partway through iteration now frees the iteration state
immediately.

Iterating a tied hash causes perl to store a copy of the current hash key to track the iteration state,
with this stored copy passed as the second parameter to NEXTKEY. This internal state is freed
immediately when tie hash iteration completes, or if the hash is destroyed, but due to an
implementation oversight, it was not freed if the hash was untied. In that case, the internal copy of
the key would persist until the earliest of

1. tie was called again on the same hash

2. The (now untied) hash was iterated (ie passed to any of keys, values or each)

3. The hash was destroyed.

This inconsistency is now fixed - the internal state is now freed immediately by untie.

As the precise timing of this behaviour can be observed with pure Perl code (the timing of
DESTROY on objects returned from FIRSTKEY and NEXTKEY) it’s just possible that some code
is sensitive to it.

• The Internals::getcwd() function added for bootstrapping miniperl in perl 5.30.0 is now
only available in miniperl. [github #19122]

• Setting a breakpoint on a BEGIN or equivalently a use statement could cause a memory write to a
freed dbstate op. [GH #19198 <https://github.com/Perl/perl5/issues/19198>]

• When bareword filehandles are disabled, the parser was interpreting any bareword as a filehandle,
even when immediatey followed by parens.

perl v5.36.0 2022-05-25 492

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

Errata From Previous Releases
• perl5300delta mistakenly identified a CVE whose correct identification is CVE-2015-1592.

Obituaries
Raun ‘‘Spider’’ Boardman (SPIDB on CPAN), author of at least 66 commits to the Perl 5 core
distribution between 1996 and 2002, passed away May 24, 2021 from complications of COVID. He
will be missed.

David H. Adler (DHA) passed away on November 16, 2021. In 1997, David co-founded NY.pm, the
first Perl user group, and in 1998 co-founded Perl Mongers to help establish other user groups across
the globe. He was a frequent attendee at Perl conferences in both North America and Europe and well
known for his role in organizing Bad Movie Night celebrations at those conferences. He also
contributed to the work of the Perl Foundation, including administering the White Camel awards for
community service. He will be missed.

Acknowledgements
Perl 5.36.0 represents approximately a year of development since Perl 5.34.0 and contains
approximately 250,000 lines of changes across 2,000 files from 82 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 190,000
lines of changes to 1,300 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.36.0:

Alyssa Ross, Andrew Fresh, Aristotle Pagaltzis, Asher Mancinelli, Atsushi Sugawara, Ben Cornett,
Bernd, Biswapriyo Nath, Brad Barden, Bram, Branislav Zahradník, brian d foy, Chad Granum, Chris
’BinGOs’ Williams, Christian Walde (Mithaldu), Christopher Yeleighton, Craig A. Berry, cuishuang,
Curtis Poe, Dagfinn Ilmari Mannsa°ker, Dan Book, Daniel Lau

..
gt, Dan Jacobson, Dan Kogai, Dave

Cross, Dave Lambley, David Cantrell, David Golden, David Marshall, David Mitchell, E. Choroba,
Eugen Konkov, Felipe Gasper, Franc,ois Perrad, Graham Knop, H.Merijn Brand, Hugo van der Sanden,
Ilya Sashcheka, Ivan Panchenko, Jakub Wilk, James E Keenan, James Raspass, Karen Etheridge, Karl
Williamson, Leam Hall, Leon Timmermans, Magnus Woldrich, Matthew Horsfall, Max Maischein,
Michael G Schwern, Michiel Beijen, Mike Fulton, Neil Bowers, Nicholas Clark, Nicolas R, Niyas Sait,
Olaf Alders, Paul Evans, Paul Marquess, Petar-Kaleychev, Pete Houston, Renee Baecker, Ricardo
Signes, Richard Leach, Robert Rothenberg, Sawyer X, Scott Baker, Sergey Poznyakoff, Sergey
Zhmylove, Sisyphus, Slaven Rezic, Steve Hay, Sven Kirmess, TAKAI Kousuke, Thibault Duponchelle,
Todd Rinaldo, Tomasz Konojacki, Tomoyuki Sadahiro, Tony Cook, Unicode Consortium, Yves Orton,
XXXXXX XXXXXXXX.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at
<https://github.com/Perl/perl5/issues>. There may also be information at <http://www.perl.org/>, the
Perl Home Page.

If you believe you have an unreported bug, please open an issue at
<https://github.com/Perl/perl5/issues>. Be sure to trim your bug down to a tiny but sufficient test case.

If the bug you are reporting has security implications which make it inappropriate to send to a public
issue tracker, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for details
of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

perl v5.36.0 2022-05-25 493

PERL5360DELTA(1) Perl Programmers Reference Guide PERL5360DELTA(1)

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2022-05-25 494

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

NAME
perl561delta - what’s new for perl v5.6.1

DESCRIPTION
This document describes differences between the 5.005 release and the 5.6.1 release.

Summary of changes between 5.6.0 and 5.6.1
This section contains a summary of the changes between the 5.6.0 release and the 5.6.1 release. More
details about the changes mentioned here may be found in the Changes files that accompany the Perl
source distribution. See perlhack for pointers to online resources where you can inspect the individual
patches described by these changes.

Security Issues
suidperl will not run /bin/mail anymore, because some platforms have a /bin/mail that is vulnerable to
buffer overflow attacks.

Note that suidperl is neither built nor installed by default in any recent version of perl. Use of suidperl
is highly discouraged. If you think you need it, try alternatives such as sudo first. See
http://www.courtesan.com/sudo/ .

Core bug fixes
This is not an exhaustive list. It is intended to cover only the significant user-visible changes.

UNIVERSAL::isa()
A bug in the caching mechanism used by UNIVERSAL::isa() that affected base.pm has been
fixed. The bug has existed since the 5.005 releases, but wasn’t tickled by base.pm in those
releases.

Memory leaks
Various cases of memory leaks and attempts to access uninitialized memory have been cured. See
‘‘Known Problems’’ below for further issues.

Numeric conversions
Numeric conversions did not recognize changes in the string value properly in certain
circumstances.

In other situations, large unsigned numbers (those above 2**31) could sometimes lose their
unsignedness, causing bogus results in arithmetic operations.

Integer modulus on large unsigned integers sometimes returned incorrect values.

Perl 5.6.0 generated ‘‘not a number’’ warnings on certain conversions where previous versions
didn’t.

These problems have all been rectified.

Infinity is now recognized as a number.

qw(a\\b)
In Perl 5.6.0, qw(a\\b) produced a string with two backslashes instead of one, in a departure from
the behavior in previous versions. The older behavior has been reinstated.

caller()
caller() could cause core dumps in certain situations. Carp was sometimes affected by this
problem.

Bugs in regular expressions
Pattern matches on overloaded values are now handled correctly.

Perl 5.6.0 parsed m/\x{ab}/ incorrectly, leading to spurious warnings. This has been corrected.

The RE engine found in Perl 5.6.0 accidentally pessimised certain kinds of simple pattern matches.
These are now handled better.

Regular expression debug output (whether through use re 'debug' or via -Dr) now looks
better.

Multi-line matches like "a\nxb\n" =˜ /(?!\A)x/m were flawed. The bug has been fixed.

Use of $& could trigger a core dump under some situations. This is now avoided.

perl v5.36.0 2019-02-18 495

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Match variables $1 et al., weren’t being unset when a pattern match was backtracking, and the
anomaly showed up inside /...(?{ ... }).../ etc. These variables are now tracked
correctly.

pos() did not return the correct value within s///ge in earlier versions. This is now handled
correctly.

‘‘slurp’’ mode
readline() on files opened in ‘‘slurp’’ mode could return an extra "" at the end in certain situations.
This has been corrected.

Autovivification of symbolic references to special variables
Autovivification of symbolic references of special variables described in perlvar (as in ${$num})
was accidentally disabled. This works again now.

Lexical warnings
Lexical warnings now propagate correctly into eval "...".

use warnings qw(FATAL all) did not work as intended. This has been corrected.

Lexical warnings could leak into other scopes in some situations. This is now fixed.

warnings::enabled() now reports the state of $ˆW correctly if the caller isn’t using lexical
warnings.

Spurious warnings and errors
Perl 5.6.0 could emit spurious warnings about redefinition of dl_error() when statically building
extensions into perl. This has been corrected.

‘‘our’’ variables could result in bogus ‘‘Variable will not stay shared’’ warnings. This is now
fixed.

‘‘our’’ variables of the same name declared in two sibling blocks resulted in bogus warnings about
‘‘redeclaration’’ of the variables. The problem has been corrected.

glob()
Compatibility of the builtin glob() with old csh-based glob has been improved with the addition of
GLOB_ALPHASORT option. See File::Glob.

File::Glob::glob() has been renamed to File::Glob::bsd_glob() because the name clashes with
the builtin glob(). The older name is still available for compatibility, but is deprecated.

Spurious syntax errors generated in certain situations, when glob() caused File::Glob to be loaded
for the first time, have been fixed.

Tainting
Some cases of inconsistent taint propagation (such as within hash values) have been fixed.

The tainting behavior of sprintf() has been rationalized. It does not taint the result of floating
point formats anymore, making the behavior consistent with that of string interpolation.

sort()
Arguments to sort() weren’t being provided the right wantarray() context. The comparison block
is now run in scalar context, and the arguments to be sorted are always provided list context.

sort() is also fully reentrant, in the sense that the sort function can itself call sort(). This did not
work reliably in previous releases.

#line directives
#line directives now work correctly when they appear at the very beginning of eval "...".

Subroutine prototypes
The (\&) prototype now works properly.

map()
map() could get pathologically slow when the result list it generates is larger than the source list.
The performance has been improved for common scenarios.

perl v5.36.0 2019-02-18 496

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Debugger
Debugger exit code now reflects the script exit code.

Condition "0" in breakpoints is now treated correctly.

The d command now checks the line number.

$. is no longer corrupted by the debugger.

All debugger output now correctly goes to the socket if RemotePort is set.

PERL5OPT
PERL5OPT can be set to more than one switch group. Previously, it used to be limited to one
group of options only.

chop()
chop(@list) in list context returned the characters chopped in reverse order. This has been
reversed to be in the right order.

Unicode support
Unicode support has seen a large number of incremental improvements, but continues to be highly
experimental. It is not expected to be fully supported in the 5.6.x maintenance releases.

substr(), join(), repeat(), reverse(), quotemeta() and string concatenation were all handling
Unicode strings incorrectly in Perl 5.6.0. This has been corrected.

Support for tr///CU and tr///UC etc., have been removed since we realized the interface is
broken. For similar functionality, see ‘‘pack’’ in perlfunc.

The Unicode Character Database has been updated to version 3.0.1 with additions made available
to the public as of August 30, 2000.

The Unicode character classes \p{Blank} and \p{SpacePerl} have been added. ‘‘Blank’’ is like C
isblank(), that is, it contains only ‘‘horizontal whitespace’’ (the space character is, the newline
isn’t), and the ‘‘SpacePerl’’ is the Unicode equivalent of \s (\p{Space} isn’t, since that includes
the vertical tabulator character, whereas \s doesn’t.)

If you are experimenting with Unicode support in perl, the development versions of Perl may have
more to offer. In particular, I/O layers are now available in the development track, but not in the
maintenance track, primarily to do backward compatibility issues. Unicode support is also
evolving rapidly on a daily basis in the development track — the maintenance track only reflects
the most conservative of these changes.

64-bit support
Support for 64-bit platforms has been improved, but continues to be experimental. The level of
support varies greatly among platforms.

Compiler
The B Compiler and its various backends have had many incremental improvements, but they
continue to remain highly experimental. Use in production environments is discouraged.

The perlcc tool has been rewritten so that the user interface is much more like that of a C compiler.

The perlbc tools has been removed. Use perlcc -B instead.

Lvalue subroutines
There have been various bugfixes to support lvalue subroutines better. However, the feature still
remains experimental.

IO::Socket
IO::Socket::INET failed to open the specified port if the service name was not known. It now
correctly uses the supplied port number as is.

File::Find
File::Find now chdir()s correctly when chasing symbolic links.

xsubpp
xsubpp now tolerates embedded POD sections.

perl v5.36.0 2019-02-18 497

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

no Module;
no Module; does not produce an error even if Module does not have an unimport() method.
This parallels the behavior of use vis-a-vis import.

Tests
A large number of tests have been added.

Core features
untie() will now call an UNTIE() hook if it exists. See perltie for details.

The -DT command line switch outputs copious tokenizing information. See perlrun.

Arrays are now always interpolated in double-quotish strings. Previously, "foo@bar.com" used to
be a fatal error at compile time, if an array @bar was not used or declared. This transitional behavior
was intended to help migrate perl4 code, and is deemed to be no longer useful. See ‘‘Arrays now
always interpolate into double-quoted strings’’.

keys(), each(), pop(), push(), shift(), splice() and unshift() can all be overridden now.

my _ _PACKAGE_ _ $obj now does the expected thing.

Configuration issues
On some systems (IRIX and Solaris among them) the system malloc is demonstrably better. While the
defaults haven’t been changed in order to retain binary compatibility with earlier releases, you may be
better off building perl with Configure -Uusemymalloc ... as discussed in the INSTALL file.

Configure has been enhanced in various ways:

• Minimizes use of temporary files.

• By default, does not link perl with libraries not used by it, such as the various dbm libraries.
SunOS 4.x hints preserve behavior on that platform.

• Support for pdp11-style memory models has been removed due to obsolescence.

• Building outside the source tree is supported on systems that have symbolic links. This is done by
running

sh /path/to/source/Configure -Dmksymlinks ...
make all test install

in a directory other than the perl source directory. See INSTALL.

• Configure -S can be run non-interactively.

Documentation
README.aix, README.solaris and README.macos have been added. README.posix-bc has been
renamed to README.bs2000. These are installed as perlaix, perlsolaris, perlmacos, and perlbs2000
respectively.

The following pod documents are brand new:

perlclib Internal replacements for standard C library functions
perldebtut Perl debugging tutorial
perlebcdic Considerations for running Perl on EBCDIC platforms
perlnewmod Perl modules: preparing a new module for distribution
perlrequick Perl regular expressions quick start
perlretut Perl regular expressions tutorial
perlutil utilities packaged with the Perl distribution

The INSTALL file has been expanded to cover various issues, such as 64-bit support.

A longer list of contributors has been added to the source distribution. See the file AUTHORS.

Numerous other changes have been made to the included documentation and FAQs.

Bundled modules
The following modules have been added.

B::Concise
Walks Perl syntax tree, printing concise info about ops. See B::Concise.

perl v5.36.0 2019-02-18 498

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

File::Temp
Returns name and handle of a temporary file safely. See File::Temp.

Pod::LaTeX
Converts Pod data to formatted LaTeX. See Pod::LaTeX.

Pod::Text::Overstrike
Converts POD data to formatted overstrike text. See Pod::Text::Overstrike.

The following modules have been upgraded.

CGI
CGI v2.752 is now included.

CPAN
CPAN v1.59_54 is now included.

Class::Struct
Various bugfixes have been added.

DB_File
DB_File v1.75 supports newer Berkeley DB versions, among other improvements.

Devel::Peek
Devel::Peek has been enhanced to support dumping of memory statistics, when perl is built with
the included malloc().

File::Find
File::Find now supports pre and post-processing of the files in order to sort() them, etc.

Getopt::Long
Getopt::Long v2.25 is included.

IO::Poll
Various bug fixes have been included.

IPC::Open3
IPC::Open3 allows use of numeric file descriptors.

Math::BigFloat
The fmod() function supports modulus operations. Various bug fixes have also been included.

Math::Complex
Math::Complex handles inf, NaN etc., better.

Net::Ping
ping() could fail on odd number of data bytes, and when the echo service isn’t running. This has
been corrected.

Opcode
A memory leak has been fixed.

Pod::Parser
Version 1.13 of the Pod::Parser suite is included.

Pod::Text
Pod::Text and related modules have been upgraded to the versions in podlators suite v2.08.

SDBM_File
On dosish platforms, some keys went missing because of lack of support for files with ‘‘holes’’. A
workaround for the problem has been added.

Sys::Syslog
Various bug fixes have been included.

Tie::RefHash
Now supports Tie::RefHash::Nestable to automagically tie hashref values.

Tie::SubstrHash
Various bug fixes have been included.

perl v5.36.0 2019-02-18 499

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Platform-specific improvements
The following new ports are now available.

NCR MP-RAS
NonStop-UX

Perl now builds under Amdahl UTS.

Perl has also been verified to build under Amiga OS.

Support for EPOC has been much improved. See README.epoc.

Building perl with -Duseithreads or -Duse5005threads now works under HP-UX 10.20 (previously it
only worked under 10.30 or later). You will need a thread library package installed. See
README.hpux.

Long doubles should now work under Linux.

Mac OS Classic is now supported in the mainstream source package. See README.macos.

Support for MPE/iX has been updated. See README.mpeix.

Support for OS/2 has been improved. See os2/Changes and README.os2.

Dynamic loading on z/OS (formerly OS/390) has been improved. See README.os390.

Support for VMS has seen many incremental improvements, including better support for operators like
backticks and system(), and better %ENV handling. See README.vms and perlvms.

Support for Stratus VOS has been improved. See vos/Changes and README.vos.

Support for Windows has been improved.

• fork() emulation has been improved in various ways, but still continues to be experimental. See
perlfork for known bugs and caveats.

• %SIG has been enabled under USE_ITHREADS, but its use is completely unsupported under all
configurations.

• Borland C++ v5.5 is now a supported compiler that can build Perl. However, the generated binaries
continue to be incompatible with those generated by the other supported compilers (GCC and
Visual C++).

• Non-blocking waits for child processes (or pseudo-processes) are supported via
waitpid($pid, &POSIX::WNOHANG).

• A memory leak in accept() has been fixed.

• wait(), waitpid() and backticks now return the correct exit status under Windows 9x.

• Trailing new %ENV entries weren’t propagated to child processes. This is now fixed.

• Current directory entries in %ENV are now correctly propagated to child processes.

• Duping socket handles with open(F, ‘‘>&MYSOCK’’) now works under Windows 9x.

• The makefiles now provide a single switch to bulk-enable all the features enabled in ActiveState
ActivePerl (a popular binary distribution).

• Win32::GetCwd() correctly returns C:\ instead of C: when at the drive root. Other bugs in
chdir() and Cwd::cwd() have also been fixed.

• fork() correctly returns undef and sets EAGAIN when it runs out of pseudo-process handles.

• ExtUtils::MakeMaker now uses $ENV{LIB} to search for libraries.

• UNC path handling is better when perl is built to support fork().

• A handle leak in socket handling has been fixed.

• send() works from within a pseudo-process.

Unless specifically qualified otherwise, the remainder of this document covers changes between the
5.005 and 5.6.0 releases.

perl v5.36.0 2019-02-18 500

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Core Enhancements
Interpreter cloning, threads, and concurrency

Perl 5.6.0 introduces the beginnings of support for running multiple interpreters concurrently in
different threads. In conjunction with the perl_clone() API call, which can be used to selectively
duplicate the state of any given interpreter, it is possible to compile a piece of code once in an
interpreter, clone that interpreter one or more times, and run all the resulting interpreters in distinct
threads.

On the Windows platform, this feature is used to emulate fork() at the interpreter level. See perlfork
for details about that.

This feature is still in evolution. It is eventually meant to be used to selectively clone a subroutine and
data reachable from that subroutine in a separate interpreter and run the cloned subroutine in a separate
thread. Since there is no shared data between the interpreters, little or no locking will be needed
(unless parts of the symbol table are explicitly shared). This is obviously intended to be an easy-to-use
replacement for the existing threads support.

Support for cloning interpreters and interpreter concurrency can be enabled using the -Dusethreads
Configure option (see win32/Makefile for how to enable it on Windows.) The resulting perl executable
will be functionally identical to one that was built with -Dmultiplicity, but the perl_clone() API call
will only be available in the former.

-Dusethreads enables the cpp macro USE_ITHREADS by default, which in turn enables Perl source
code changes that provide a clear separation between the op tree and the data it operates with. The
former is immutable, and can therefore be shared between an interpreter and all of its clones, while the
latter is considered local to each interpreter, and is therefore copied for each clone.

Note that building Perl with the -Dusemultiplicity Configure option is adequate if you wish to run
multiple independent interpreters concurrently in different threads. -Dusethreads only provides the
additional functionality of the perl_clone() API call and other support for running cloned interpreters
concurrently.

NOTE: This is an experimental feature. Implementation details are
subject to change.

Lexically scoped warning categories
You can now control the granularity of warnings emitted by perl at a finer level using the use
warnings pragma. warnings and perllexwarn have copious documentation on this feature.

Unicode and UTF-8 support
Perl now uses UTF-8 as its internal representation for character strings. The utf8 and bytes
pragmas are used to control this support in the current lexical scope. See perlunicode, utf8 and bytes
for more information.

This feature is expected to evolve quickly to support some form of I/O disciplines that can be used to
specify the kind of input and output data (bytes or characters). Until that happens, additional modules
from CPAN will be needed to complete the toolkit for dealing with Unicode.

NOTE: This should be considered an experimental feature. Implementation
details are subject to change.

Support for interpolating named characters
The new \N escape interpolates named characters within strings. For example, "Hi! \N{WHITE
SMILING FACE}" evaluates to a string with a Unicode smiley face at the end.

‘‘our’’ declarations
An ‘‘our’’ declaration introduces a value that can be best understood as a lexically scoped symbolic
alias to a global variable in the package that was current where the variable was declared. This is
mostly useful as an alternative to the vars pragma, but also provides the opportunity to introduce
typing and other attributes for such variables. See ‘‘our’’ in perlfunc.

Support for strings represented as a vector of ordinals
Literals of the form v1.2.3.4 are now parsed as a string composed of characters with the specified
ordinals. This is an alternative, more readable way to construct (possibly Unicode) strings instead of
interpolating characters, as in "\x{1}\x{2}\x{3}\x{4}". The leading v may be omitted if there
are more than two ordinals, so 1.2.3 is parsed the same as v1.2.3.

perl v5.36.0 2019-02-18 501

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Strings written in this form are also useful to represent version ‘‘numbers’’. It is easy to compare such
version ‘‘numbers’’ (which are really just plain strings) using any of the usual string comparison
operators eq, ne, lt, gt, etc., or perform bitwise string operations on them using |, &, etc.

In conjunction with the new $ˆV magic variable (which contains the perl version as a string), such
literals can be used as a readable way to check if you’re running a particular version of Perl:

this will parse in older versions of Perl also
if ($ˆV and $ˆV gt v5.6.0) {

new features supported
}

require and use also have some special magic to support such literals. They will be interpreted as a
version rather than as a module name:

require v5.6.0; # croak if $ˆV lt v5.6.0
use v5.6.0; # same, but croaks at compile-time

Alternatively, the v may be omitted if there is more than one dot:

require 5.6.0;
use 5.6.0;

Also, sprintf and printf support the Perl-specific format flag %v to print ordinals of characters in
arbitrary strings:

printf "v%vd", $ˆV; # prints current version, such as "v5.5.650"
printf "%*vX", ":", $addr; # formats IPv6 address
printf "%*vb", " ", $bits; # displays bitstring

See ‘‘Scalar value constructors’’ in perldata for additional information.

Improved Perl version numbering system
Beginning with Perl version 5.6.0, the version number convention has been changed to a ‘‘dotted
integer’’ scheme that is more commonly found in open source projects.

Maintenance versions of v5.6.0 will be released as v5.6.1, v5.6.2 etc. The next development series
following v5.6.0 will be numbered v5.7.x, beginning with v5.7.0, and the next major production release
following v5.6.0 will be v5.8.0.

The English module now sets $PERL_VERSION to $ˆV (a string value) rather than $] (a numeric
value). (This is a potential incompatibility. Send us a report via perlbug if you are affected by this.)

The v1.2.3 syntax is also now legal in Perl. See ‘‘Support for strings represented as a vector of
ordinals’’ for more on that.

To cope with the new versioning system’s use of at least three significant digits for each version
component, the method used for incrementing the subversion number has also changed slightly. We
assume that versions older than v5.6.0 have been incrementing the subversion component in multiples
of 10. Versions after v5.6.0 will increment them by 1. Thus, using the new notation, 5.005_03 is the
‘‘same’’ as v5.5.30, and the first maintenance version following v5.6.0 will be v5.6.1 (which should be
read as being equivalent to a floating point value of 5.006_001 in the older format, stored in $]).

New syntax for declaring subroutine attributes
Formerly, if you wanted to mark a subroutine as being a method call or as requiring an automatic lock()
when it is entered, you had to declare that with a use attrs pragma in the body of the subroutine.
That can now be accomplished with declaration syntax, like this:

sub mymethod : locked method;
...
sub mymethod : locked method {

...
}

sub othermethod :locked :method;
...
sub othermethod :locked :method {

...

perl v5.36.0 2019-02-18 502

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

}

(Note how only the first : is mandatory, and whitespace surrounding the : is optional.)

AutoSplit.pm and SelfLoader.pm have been updated to keep the attributes with the stubs they provide.
See attributes.

File and directory handles can be autovivified
Similar to how constructs such as $x->[0] autovivify a reference, handle constructors (open(),
opendir(), pipe(), socketpair(), sysopen(), socket(), and accept()) now autovivify a file or directory
handle if the handle passed to them is an uninitialized scalar variable. This allows the constructs such
as open(my $fh, ...) and open(local $fh,...) to be used to create filehandles that will
conveniently be closed automatically when the scope ends, provided there are no other references to
them. This largely eliminates the need for typeglobs when opening filehandles that must be passed
around, as in the following example:

sub myopen {
open my $fh, "@_"

or die "Can't open '@_': $!";
return $fh;

}

{
my $f = myopen("</etc/motd");
print <$f>;
$f implicitly closed here

}

open() with more than two arguments
If open() is passed three arguments instead of two, the second argument is used as the mode and the
third argument is taken to be the file name. This is primarily useful for protecting against unintended
magic behavior of the traditional two-argument form. See ‘‘open’’ in perlfunc.

64-bit support
Any platform that has 64-bit integers either

(1) natively as longs or ints
(2) via special compiler flags
(3) using long long or int64_t

is able to use ‘‘quads’’ (64-bit integers) as follows:

• constants (decimal, hexadecimal, octal, binary) in the code

• arguments to oct() and hex()

• arguments to print(), printf() and sprintf() (flag prefixes ll, L, q)

• printed as such

• pack() and unpack() ‘‘q’’ and ‘‘Q’’ formats

• in basic arithmetics: + - * / % (NOTE: operating close to the limits of the integer values may
produce surprising results)

• in bit arithmetics: & | ˆ ˜ << >> (NOTE: these used to be forced to be 32 bits wide but now operate
on the full native width.)

• vec()

Note that unless you have the case (a) you will have to configure and compile Perl using the
-Duse64bitint Configure flag.

NOTE: The Configure flags -Duselonglong and -Duse64bits have been
deprecated. Use -Duse64bitint instead.

There are actually two modes of 64-bitness: the first one is achieved using Configure -Duse64bitint
and the second one using Configure -Duse64bitall. The difference is that the first one is minimal and
the second one maximal. The first works in more places than the second.

The use64bitint does only as much as is required to get 64-bit integers into Perl (this may mean,

perl v5.36.0 2019-02-18 503

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

for example, using ‘‘long longs’’) while your memory may still be limited to 2 gigabytes (because your
pointers could still be 32-bit). Note that the name 64bitint does not imply that your C compiler
will be using 64-bit ints (it might, but it doesn’t have to): the use64bitint means that you will be
able to have 64 bits wide scalar values.

The use64bitall goes all the way by attempting to switch also integers (if it can), longs (and
pointers) to being 64-bit. This may create an even more binary incompatible Perl than -Duse64bitint:
the resulting executable may not run at all in a 32-bit box, or you may have to
reboot/reconfigure/rebuild your operating system to be 64-bit aware.

Natively 64-bit systems like Alpha and Cray need neither -Duse64bitint nor -Duse64bitall.

Last but not least: note that due to Perl’s habit of always using floating point numbers, the quads are
still not true integers. When quads overflow their limits (0...18_446_744_073_709_551_615 unsigned,
-9_223_372_036_854_775_808...9_223_372_036_854_775_807 signed), they are silently promoted to
floating point numbers, after which they will start losing precision (in their lower digits).

NOTE: 64-bit support is still experimental on most platforms.
Existing support only covers the LP64 data model. In particular, the
LLP64 data model is not yet supported. 64-bit libraries and system
APIs on many platforms have not stabilized--your mileage may vary.

Large file support
If you have filesystems that support ‘‘large files’’ (files larger than 2 gigabytes), you may now also be
able to create and access them from Perl.

NOTE: The default action is to enable large file support, if
available on the platform.

If the large file support is on, and you have a Fcntl constant O_LARGEFILE, the O_LARGEFILE is
automatically added to the flags of sysopen().

Beware that unless your filesystem also supports ‘‘sparse files’’ seeking to umpteen petabytes may be
inadvisable.

Note that in addition to requiring a proper file system to do large files you may also need to adjust your
per-process (or your per-system, or per-process-group, or per-user-group) maximum filesize limits
before running Perl scripts that try to handle large files, especially if you intend to write such files.

Finally, in addition to your process/process group maximum filesize limits, you may have quota limits
on your filesystems that stop you (your user id or your user group id) from using large files.

Adjusting your process/user/group/file system/operating system limits is outside the scope of Perl core
language. For process limits, you may try increasing the limits using your shell’s limits/limit/ulimit
command before running Perl. The BSD::Resource extension (not included with the standard Perl
distribution) may also be of use, it offers the getrlimit/setrlimit interface that can be used to adjust
process resource usage limits, including the maximum filesize limit.

Long doubles
In some systems you may be able to use long doubles to enhance the range and precision of your
double precision floating point numbers (that is, Perl’s numbers). Use Configure -Duselongdouble to
enable this support (if it is available).

‘‘more bits’’
You can ‘‘Configure -Dusemorebits’’ to turn on both the 64-bit support and the long double support.

Enhanced support for sort() subroutines
Perl subroutines with a prototype of ($$), and XSUBs in general, can now be used as sort
subroutines. In either case, the two elements to be compared are passed as normal parameters in @_.
See ‘‘sort’’ in perlfunc.

For unprototyped sort subroutines, the historical behavior of passing the elements to be compared as
the global variables $a and $b remains unchanged.

sort $coderef @foo allowed
sort() did not accept a subroutine reference as the comparison function in earlier versions. This is now
permitted.

perl v5.36.0 2019-02-18 504

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

File globbing implemented internally
Perl now uses the File::Glob implementation of the glob() operator automatically. This avoids using an
external csh process and the problems associated with it.

NOTE: This is currently an experimental feature. Interfaces and
implementation are subject to change.

Support for CHECK blocks
In addition to BEGIN, INIT, END, DESTROY and AUTOLOAD, subroutines named CHECK are now
special. These are queued up during compilation and behave similar to END blocks, except they are
called at the end of compilation rather than at the end of execution. They cannot be called directly.

POSIX character class syntax [: :] supported
For example to match alphabetic characters use /[[:alpha:]]/. See perlre for details.

Better pseudo-random number generator
In 5.005_0x and earlier, perl’s rand() function used the C library rand (3) function. As of 5.005_52,
Configure tests for drand48(), random(), and rand() (in that order) and picks the first one it finds.

These changes should result in better random numbers from rand().

Improved qw// operator
The qw// operator is now evaluated at compile time into a true list instead of being replaced with a run
time call to split(). This removes the confusing misbehaviour of qw// in scalar context, which
had inherited that behaviour from split().

Thus:

$foo = ($bar) = qw(a b c); print "$foo|$bar\n";

now correctly prints ‘‘3|a’’, instead of ‘‘2|a’’.

Better worst-case behavior of hashes
Small changes in the hashing algorithm have been implemented in order to improve the distribution of
lower order bits in the hashed value. This is expected to yield better performance on keys that are
repeated sequences.

pack() format ’Z’ supported
The new format type ’Z’ is useful for packing and unpacking null-terminated strings. See ‘‘pack’’ in
perlfunc.

pack() format modifier ’!’ supported
The new format type modifier ’!’ is useful for packing and unpacking native shorts, ints, and longs.
See ‘‘pack’’ in perlfunc.

pack() and unpack() support counted strings
The template character ’/’ can be used to specify a counted string type to be packed or unpacked. See
‘‘pack’’ in perlfunc.

Comments in pack() templates
The ’#’ character in a template introduces a comment up to end of the line. This facilitates
documentation of pack() templates.

Weak references
In previous versions of Perl, you couldn’t cache objects so as to allow them to be deleted if the last
reference from outside the cache is deleted. The reference in the cache would hold a reference count
on the object and the objects would never be destroyed.

Another familiar problem is with circular references. When an object references itself, its reference
count would never go down to zero, and it would not get destroyed until the program is about to exit.

Weak references solve this by allowing you to ‘‘weaken’’ any reference, that is, make it not count
towards the reference count. When the last non-weak reference to an object is deleted, the object is
destroyed and all the weak references to the object are automatically undef-ed.

To use this feature, you need the Devel::WeakRef package from CPAN, which contains additional
documentation.

NOTE: This is an experimental feature. Details are subject to change.

perl v5.36.0 2019-02-18 505

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Binary numbers supported
Binary numbers are now supported as literals, in s?printf formats, and oct():

$answer = 0b101010;
printf "The answer is: %b\n", oct("0b101010");

Lvalue subroutines
Subroutines can now return modifiable lvalues. See ‘‘Lvalue subroutines’’ in perlsub.

NOTE: This is an experimental feature. Details are subject to change.

Some arrows may be omitted in calls through references
Perl now allows the arrow to be omitted in many constructs involving subroutine calls through
references. For example, $foo[10]->('foo') may now be written $foo[10]('foo'). This is
rather similar to how the arrow may be omitted from $foo[10]->{'foo'}. Note however, that the
arrow is still required for foo(10)->('bar').

Boolean assignment operators are legal lvalues
Constructs such as ($a ||= 2) += 1 are now allowed.

exists() is supported on subroutine names
The exists() builtin now works on subroutine names. A subroutine is considered to exist if it has been
declared (even if implicitly). See ‘‘exists’’ in perlfunc for examples.

exists() and delete() are supported on array elements
The exists() and delete() builtins now work on simple arrays as well. The behavior is similar to that on
hash elements.

exists() can be used to check whether an array element has been initialized. This avoids autovivifying
array elements that don’t exist. If the array is tied, the EXISTS() method in the corresponding tied
package will be invoked.

delete() may be used to remove an element from the array and return it. The array element at that
position returns to its uninitialized state, so that testing for the same element with exists() will return
false. If the element happens to be the one at the end, the size of the array also shrinks up to the highest
element that tests true for exists(), or 0 if none such is found. If the array is tied, the DELETE()
method in the corresponding tied package will be invoked.

See ‘‘exists’’ in perlfunc and ‘‘delete’’ in perlfunc for examples.

Pseudo-hashes work better
Dereferencing some types of reference values in a pseudo-hash, such as $ph->{foo}[1], was
accidentally disallowed. This has been corrected.

When applied to a pseudo-hash element, exists() now reports whether the specified value exists, not
merely if the key is valid.

delete() now works on pseudo-hashes. When given a pseudo-hash element or slice it deletes the values
corresponding to the keys (but not the keys themselves). See ‘‘Pseudo-hashes: Using an array as a
hash’’ in perlref.

Pseudo-hash slices with constant keys are now optimized to array lookups at compile-time.

List assignments to pseudo-hash slices are now supported.

The fields pragma now provides ways to create pseudo-hashes, via fields::new() and
fields::phash(). See fields.

NOTE: The pseudo-hash data type continues to be experimental.
Limiting oneself to the interface elements provided by the
fields pragma will provide protection from any future changes.

Automatic flushing of output buffers
fork(), exec(), system(), qx//, and pipe open()s now flush buffers of all files opened for output when
the operation was attempted. This mostly eliminates confusing buffering mishaps suffered by users
unaware of how Perl internally handles I/O.

This is not supported on some platforms like Solaris where a suitably correct implementation of
fflush(NULL) isn’t available.

perl v5.36.0 2019-02-18 506

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Better diagnostics on meaningless filehandle operations
Constructs such as open(<FH>) and close(<FH>) are compile time errors. Attempting to read
from filehandles that were opened only for writing will now produce warnings (just as writing to read-
only filehandles does).

Where possible, buffered data discarded from duped input filehandle
open(NEW, "<&OLD") now attempts to discard any data that was previously read and buffered in
OLD before duping the handle. On platforms where doing this is allowed, the next read operation on
NEW will return the same data as the corresponding operation on OLD. Formerly, it would have
returned the data from the start of the following disk block instead.

eof() has the same old magic as <>
eof() would return true if no attempt to read from <> had yet been made. eof() has been changed
to have a little magic of its own, it now opens the <> files.

binmode() can be used to set :crlf and :raw modes
binmode() now accepts a second argument that specifies a discipline for the handle in question. The
two pseudo-disciplines ‘‘:raw’’ and ‘‘:crlf’’ are currently supported on DOS-derivative platforms. See
‘‘binmode’’ in perlfunc and open.

-T filetest recognizes UTF-8 encoded files as ‘‘text’’
The algorithm used for the -T filetest has been enhanced to correctly identify UTF-8 content as ‘‘text’’.

system(), backticks and pipe open now reflect exec() failure
On Unix and similar platforms, system(), qx() and open(FOO, ‘‘cmd |’’) etc., are implemented via
fork() and exec(). When the underlying exec() fails, earlier versions did not report the error properly,
since the exec() happened to be in a different process.

The child process now communicates with the parent about the error in launching the external
command, which allows these constructs to return with their usual error value and set $!.

Improved diagnostics
Line numbers are no longer suppressed (under most likely circumstances) during the global destruction
phase.

Diagnostics emitted from code running in threads other than the main thread are now accompanied by
the thread ID.

Embedded null characters in diagnostics now actually show up. They used to truncate the message in
prior versions.

$foo::a and $foo::b are now exempt from ‘‘possible typo’’ warnings only if sort() is encountered
in package foo.

Unrecognized alphabetic escapes encountered when parsing quote constructs now generate a warning,
since they may take on new semantics in later versions of Perl.

Many diagnostics now report the internal operation in which the warning was provoked, like so:

Use of uninitialized value in concatenation (.) at (eval 1) line 1.
Use of uninitialized value in print at (eval 1) line 1.

Diagnostics that occur within eval may also report the file and line number where the eval is located, in
addition to the eval sequence number and the line number within the evaluated text itself. For example:

Not enough arguments for scalar at (eval 4)[newlib/perl5db.pl:1411] line 2, at EOF

Diagnostics follow STDERR
Diagnostic output now goes to whichever file the STDERR handle is pointing at, instead of always
going to the underlying C runtime library’s stderr.

More consistent close-on-exec behavior
On systems that support a close-on-exec flag on filehandles, the flag is now set for any handles created
by pipe(), socketpair(), socket(), and accept(), if that is warranted by the value of $ˆF that may be in
effect. Earlier versions neglected to set the flag for handles created with these operators. See ‘‘pipe’’ in
perlfunc, ‘‘socketpair’’ in perlfunc, ‘‘socket’’ in perlfunc, ‘‘accept’’ in perlfunc, and ‘‘$ˆF’’ in perlvar.

perl v5.36.0 2019-02-18 507

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

syswrite() ease-of-use
The length argument of syswrite() has become optional.

Better syntax checks on parenthesized unary operators
Expressions such as:

print defined(&foo,&bar,&baz);
print uc("foo","bar","baz");
undef($foo,&bar);

used to be accidentally allowed in earlier versions, and produced unpredictable behaviour. Some
produced ancillary warnings when used in this way; others silently did the wrong thing.

The parenthesized forms of most unary operators that expect a single argument now ensure that they
are not called with more than one argument, making the cases shown above syntax errors. The usual
behaviour of:

print defined &foo, &bar, &baz;
print uc "foo", "bar", "baz";
undef $foo, &bar;

remains unchanged. See perlop.

Bit operators support full native integer width
The bit operators (& | ˆ ˜ << >>) now operate on the full native integral width (the exact size of which is
available in $Config{ivsize}). For example, if your platform is either natively 64-bit or if Perl has
been configured to use 64-bit integers, these operations apply to 8 bytes (as opposed to 4 bytes on
32-bit platforms). For portability, be sure to mask off the excess bits in the result of unary ˜, e.g., ˜$x
& 0xffffffff.

Improved security features
More potentially unsafe operations taint their results for improved security.

The passwd and shell fields returned by the getpwent(), getpwnam(), and getpwuid() are now
tainted, because the user can affect their own encrypted password and login shell.

The variable modified by shmread(), and messages returned by msgrcv() (and its object-oriented
interface IPC::SysV::Msg::rcv) are also tainted, because other untrusted processes can modify
messages and shared memory segments for their own nefarious purposes.

More functional bareword prototype (*)
Bareword prototypes have been rationalized to enable them to be used to override builtins that accept
barewords and interpret them in a special way, such as require or do.

Arguments prototyped as * will now be visible within the subroutine as either a simple scalar or as a
reference to a typeglob. See ‘‘Prototypes’’ in perlsub.

require and do may be overridden
require and do 'file' operations may be overridden locally by importing subroutines of the
same name into the current package (or globally by importing them into the CORE::GLOBAL::
namespace). Overriding require will also affect use, provided the override is visible at compile-
time. See ‘‘Overriding Built-in Functions’’ in perlsub.

$ˆX variables may now have names longer than one character
Formerly, $ˆX was synonymous with ${‘‘\cX’’}, but $ˆXY was a syntax error. Now variable names
that begin with a control character may be arbitrarily long. However, for compatibility reasons, these
variables must be written with explicit braces, as ${ˆXY} for example. ${ˆXYZ} is synonymous with
${‘‘\cXYZ’’}. Variable names with more than one control character, such as ${ˆXYˆZ}, are illegal.

The old syntax has not changed. As before, ‘ˆX’ may be either a literal control-X character or the two-
character sequence ‘caret’ plus ‘X’. When braces are omitted, the variable name stops after the control
character. Thus "$ˆXYZ" continues to be synonymous with $ˆX . "YZ" as before.

As before, lexical variables may not have names beginning with control characters. As before,
variables whose names begin with a control character are always forced to be in package ‘main’. All
such variables are reserved for future extensions, except those that begin with ˆ_, which may be used
by user programs and are guaranteed not to acquire special meaning in any future version of Perl.

perl v5.36.0 2019-02-18 508

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

New variable $ˆC reflects -c switch
$ˆC has a boolean value that reflects whether perl is being run in compile-only mode (i.e. via the -c
switch). Since BEGIN blocks are executed under such conditions, this variable enables perl code to
determine whether actions that make sense only during normal running are warranted. See perlvar.

New variable $ˆV contains Perl version as a string
$ˆV contains the Perl version number as a string composed of characters whose ordinals match the
version numbers, i.e. v5.6.0. This may be used in string comparisons.

See Support for strings represented as a vector of ordinals for an example.

Optional Y2K warnings
If Perl is built with the cpp macro PERL_Y2KWARN defined, it emits optional warnings when
concatenating the number 19 with another number.

This behavior must be specifically enabled when running Configure. See INSTALL and README.Y2K.

Arrays now always interpolate into double-quoted strings
In double-quoted strings, arrays now interpolate, no matter what. The behavior in earlier versions of
perl 5 was that arrays would interpolate into strings if the array had been mentioned before the string
was compiled, and otherwise Perl would raise a fatal compile-time error. In versions 5.000 through
5.003, the error was

Literal @example now requires backslash

In versions 5.004_01 through 5.6.0, the error was

In string, @example now must be written as \@example

The idea here was to get people into the habit of writing "fred\@example.com" when they
wanted a literal @ sign, just as they have always written "Give me back my \$5" when they
wanted a literal $ sign.

Starting with 5.6.1, when Perl now sees an @ sign in a double-quoted string, it always attempts to
interpolate an array, regardless of whether or not the array has been used or declared already. The fatal
error has been downgraded to an optional warning:

Possible unintended interpolation of @example in string

This warns you that "fred@example.com" is going to turn into fred.com if you don’t backslash
the @. See http://perl.plover.com/at-error.html for more details about the history here.

@- and @+ provide starting/ending offsets of regex submatches
The new magic variables @- and @+ provide the starting and ending offsets, respectively, of $&, $1,
$2, etc. See perlvar for details.

Modules and Pragmata
Modules

attributes
While used internally by Perl as a pragma, this module also provides a way to fetch subroutine and
variable attributes. See attributes.

B The Perl Compiler suite has been extensively reworked for this release. More of the standard Perl
test suite passes when run under the Compiler, but there is still a significant way to go to achieve
production quality compiled executables.

NOTE: The Compiler suite remains highly experimental. The
generated code may not be correct, even when it manages to execute
without errors.

Benchmark
Overall, Benchmark results exhibit lower average error and better timing accuracy.

You can now run tests for n seconds instead of guessing the right number of tests to run: e.g.,
timethese(-5, ...) will run each code for at least 5 CPU seconds. Zero as the ‘‘number of
repetitions’’ means ‘‘for at least 3 CPU seconds’’. The output format has also changed. For
example:

use Benchmark;$x=3;timethese(-5,{a=>sub{$x*$x},b=>sub{$x**2}})

perl v5.36.0 2019-02-18 509

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

will now output something like this:

Benchmark: running a, b, each for at least 5 CPU seconds...
a: 5 wallclock secs (5.77 usr + 0.00 sys = 5.77 CPU) @ 200551.91/s (n=1156516)
b: 4 wallclock secs (5.00 usr + 0.02 sys = 5.02 CPU) @ 159605.18/s (n=800686)

New features: ‘‘each for at least N CPU seconds...’’, ‘‘wallclock secs’’, and the ‘‘@
operations/CPU second (n=operations)’’.

timethese() now returns a reference to a hash of Benchmark objects containing the test results,
keyed on the names of the tests.

timethis() now returns the iterations field in the Benchmark result object instead of 0.

timethese(), timethis(), and the new cmpthese() (see below) can also take a format specifier of
’none’ to suppress output.

A new function countit() is just like timeit() except that it takes a TIME instead of a COUNT.

A new function cmpthese() prints a chart comparing the results of each test returned from a
timethese() call. For each possible pair of tests, the percentage speed difference (iters/sec or
seconds/iter) is shown.

For other details, see Benchmark.

ByteLoader
The ByteLoader is a dedicated extension to generate and run Perl bytecode. See ByteLoader.

constant
References can now be used.

The new version also allows a leading underscore in constant names, but disallows a double
leading underscore (as in ‘‘_ _LINE_ _’’). Some other names are disallowed or warned against,
including BEGIN, END, etc. Some names which were forced into main:: used to fail silently in
some cases; now they’re fatal (outside of main::) and an optional warning (inside of main::). The
ability to detect whether a constant had been set with a given name has been added.

See constant.

charnames
This pragma implements the \N string escape. See charnames.

Data::Dumper
A Maxdepth setting can be specified to avoid venturing too deeply into deep data structures. See
Data::Dumper.

The XSUB implementation of Dump() is now automatically called if the Useqq setting is not in
use.

Dumping qr// objects works correctly.

DB DB is an experimental module that exposes a clean abstraction to Perl’s debugging API.

DB_File
DB_File can now be built with Berkeley DB versions 1, 2 or 3. See ext/DB_File/Changes.

Devel::DProf
Devel::DProf, a Perl source code profiler has been added. See Devel::DProf and dprofpp.

Devel::Peek
The Devel::Peek module provides access to the internal representation of Perl variables and data.
It is a data debugging tool for the XS programmer.

Dumpvalue
The Dumpvalue module provides screen dumps of Perl data.

DynaLoader
DynaLoader now supports a dl_unload_file() function on platforms that support unloading shared
objects using dlclose().

Perl can also optionally arrange to unload all extension shared objects loaded by Perl. To enable

perl v5.36.0 2019-02-18 510

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

this, build Perl with the Configure option -Accflags=-DDL_UNLOAD_ALL_AT_EXIT. (This
maybe useful if you are using Apache with mod_perl.)

English
$PERL_VERSION now stands for $ˆV (a string value) rather than for $] (a numeric value).

Env
Env now supports accessing environment variables like PATH as array variables.

Fcntl
More Fcntl constants added: F_SETLK64, F_SETLKW64, O_LARGEFILE for large file (more
than 4GB) access (NOTE: the O_LARGEFILE is automatically added to sysopen() flags if large
file support has been configured, as is the default), Free/Net/OpenBSD locking behaviour flags
F_FLOCK, F_POSIX, Linux F_SHLCK, and O_ACCMODE: the combined mask of
O_RDONLY, O_WRONLY, and O_RDWR. The seek()/sysseek() constants SEEK_SET,
SEEK_CUR, and SEEK_END are available via the :seek tag. The chmod()/stat() S_IF* constants
and S_IS* functions are available via the :mode tag.

File::Compare
A compare_text() function has been added, which allows custom comparison functions. See
File::Compare.

File::Find
File::Find now works correctly when the wanted() function is either autoloaded or is a symbolic
reference.

A bug that caused File::Find to lose track of the working directory when pruning top-level
directories has been fixed.

File::Find now also supports several other options to control its behavior. It can follow symbolic
links if the follow option is specified. Enabling the no_chdir option will make File::Find
skip changing the current directory when walking directories. The untaint flag can be useful
when running with taint checks enabled.

See File::Find.

File::Glob
This extension implements BSD-style file globbing. By default, it will also be used for the
internal implementation of the glob() operator. See File::Glob.

File::Spec
New methods have been added to the File::Spec module: devnull() returns the name of the null
device (/dev/null on Unix) and tmpdir() the name of the temp directory (normally /tmp on Unix).
There are now also methods to convert between absolute and relative filenames: abs2rel() and
rel2abs(). For compatibility with operating systems that specify volume names in file paths, the
splitpath(), splitdir(), and catdir() methods have been added.

File::Spec::Functions
The new File::Spec::Functions modules provides a function interface to the File::Spec module.
Allows shorthand

$fullname = catfile($dir1, $dir2, $file);

instead of

$fullname = File::Spec->catfile($dir1, $dir2, $file);

Getopt::Long
Getopt::Long licensing has changed to allow the Perl Artistic License as well as the GPL. It used
to be GPL only, which got in the way of non-GPL applications that wanted to use Getopt::Long.

Getopt::Long encourages the use of Pod::Usage to produce help messages. For example:

perl v5.36.0 2019-02-18 511

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

use Getopt::Long;
use Pod::Usage;
my $man = 0;
my $help = 0;
GetOptions('help|?' => \$help, man => \$man) or pod2usage(2);
pod2usage(1) if $help;
pod2usage(-exitstatus => 0, -verbose => 2) if $man;

_ _END_ _

=head1 NAME

sample - Using Getopt::Long and Pod::Usage

=head1 SYNOPSIS

sample [options] [file ...]

Options:
-help brief help message
-man full documentation

=head1 OPTIONS

=over 8

=item B<-help>

Print a brief help message and exits.

=item B<-man>

Prints the manual page and exits.

=back

=head1 DESCRIPTION

B<This program> will read the given input file(s) and do something
useful with the contents thereof.

=cut

See Pod::Usage for details.

A bug that prevented the non-option call-back <> from being specified as the first argument has
been fixed.

To specify the characters < and > as option starters, use ><. Note, however, that changing option
starters is strongly deprecated.

IO write() and syswrite() will now accept a single-argument form of the call, for consistency with
Perl’s syswrite().

You can now create a TCP-based IO::Socket::INET without forcing a connect attempt. This
allows you to configure its options (like making it non-blocking) and then call connect()
manually.

A bug that prevented the IO::Socket::protocol() accessor from ever returning the correct value
has been corrected.

IO::Socket::connect now uses non-blocking IO instead of alarm() to do connect timeouts.

perl v5.36.0 2019-02-18 512

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

IO::Socket::accept now uses select() instead of alarm() for doing timeouts.

IO::Socket::INET->new now sets $! correctly on failure. $@ is still set for backwards
compatibility.

JPL Java Perl Lingo is now distributed with Perl. See jpl/README for more information.

lib use lib now weeds out any trailing duplicate entries. no lib removes all named entries.

Math::BigInt
The bitwise operations <<, >>, &, |, and ˜ are now supported on bigints.

Math::Complex
The accessor methods Re, Im, arg, abs, rho, and theta can now also act as mutators (accessor
$z->Re(), mutator $z->Re (3)).

The class method display_format and the corresponding object method
display_format, in addition to accepting just one argument, now can also accept a parameter
hash. Recognized keys of a parameter hash are "style", which corresponds to the old one
parameter case, and two new parameters: "format", which is a printf()-style format string
(defaults usually to "%.15g", you can revert to the default by setting the format string to undef)
used for both parts of a complex number, and "polar_pretty_print" (defaults to true),
which controls whether an attempt is made to try to recognize small multiples and rationals of pi
(2pi, pi/2) at the argument (angle) of a polar complex number.

The potentially disruptive change is that in list context both methods now return the parameter
hash, instead of only the value of the "style" parameter.

Math::Trig
A little bit of radial trigonometry (cylindrical and spherical), radial coordinate conversions, and
the great circle distance were added.

Pod::Parser, Pod::InputObjects
Pod::Parser is a base class for parsing and selecting sections of pod documentation from an input
stream. This module takes care of identifying pod paragraphs and commands in the input and
hands off the parsed paragraphs and commands to user-defined methods which are free to interpret
or translate them as they see fit.

Pod::InputObjects defines some input objects needed by Pod::Parser, and for advanced users of
Pod::Parser that need more about a command besides its name and text.

As of release 5.6.0 of Perl, Pod::Parser is now the officially sanctioned ‘‘base parser code’’
recommended for use by all pod2xxx translators. Pod::Text (pod2text) and Pod::Man (pod2man)
have already been converted to use Pod::Parser and efforts to convert Pod::HTML (pod2html) are
already underway. For any questions or comments about pod parsing and translating issues and
utilities, please use the pod-people@perl.org mailing list.

For further information, please see Pod::Parser and Pod::InputObjects.

Pod::Checker, podchecker
This utility checks pod files for correct syntax, according to perlpod. Obvious errors are flagged
as such, while warnings are printed for mistakes that can be handled gracefully. The checklist is
not complete yet. See Pod::Checker.

Pod::ParseUtils, Pod::Find
These modules provide a set of gizmos that are useful mainly for pod translators. Pod::Find
traverses directory structures and returns found pod files, along with their canonical names (like
File::Spec::Unix). Pod::ParseUtils contains Pod::List (useful for storing pod list
information), Pod::Hyperlink (for parsing the contents of L<> sequences) and Pod::Cache (for
caching information about pod files, e.g., link nodes).

Pod::Select, podselect
Pod::Select is a subclass of Pod::Parser which provides a function named ‘‘podselect()’’ to filter
out user-specified sections of raw pod documentation from an input stream. podselect is a script
that provides access to Pod::Select from other scripts to be used as a filter. See Pod::Select.

perl v5.36.0 2019-02-18 513

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Pod::Usage, pod2usage
Pod::Usage provides the function ‘‘pod2usage()’’ to print usage messages for a Perl script based
on its embedded pod documentation. The pod2usage() function is generally useful to all script
authors since it lets them write and maintain a single source (the pods) for documentation, thus
removing the need to create and maintain redundant usage message text consisting of information
already in the pods.

There is also a pod2usage script which can be used from other kinds of scripts to print usage
messages from pods (even for non-Perl scripts with pods embedded in comments).

For details and examples, please see Pod::Usage.

Pod::Text and Pod::Man
Pod::Text has been rewritten to use Pod::Parser. While pod2text() is still available for backwards
compatibility, the module now has a new preferred interface. See Pod::Text for the details. The
new Pod::Text module is easily subclassed for tweaks to the output, and two such subclasses
(Pod::Text::Termcap for man-page-style bold and underlining using termcap information, and
Pod::Text::Color for markup with ANSI color sequences) are now standard.

pod2man has been turned into a module, Pod::Man, which also uses Pod::Parser. In the process,
several outstanding bugs related to quotes in section headers, quoting of code escapes, and nested
lists have been fixed. pod2man is now a wrapper script around this module.

SDBM_File
An EXISTS method has been added to this module (and sdbm_exists() has been added to the
underlying sdbm library), so one can now call exists on an SDBM_File tied hash and get the
correct result, rather than a runtime error.

A bug that may have caused data loss when more than one disk block happens to be read from the
database in a single FETCH() has been fixed.

Sys::Syslog
Sys::Syslog now uses XSUBs to access facilities from syslog.h so it no longer requires syslog.ph
to exist.

Sys::Hostname
Sys::Hostname now uses XSUBs to call the C library’s gethostname() or uname() if they exist.

Term::ANSIColor
Term::ANSIColor is a very simple module to provide easy and readable access to the ANSI color
and highlighting escape sequences, supported by most ANSI terminal emulators. It is now
included standard.

Time::Local
The timelocal() and timegm() functions used to silently return bogus results when the date fell
outside the machine’s integer range. They now consistently croak() if the date falls in an
unsupported range.

Win32
The error return value in list context has been changed for all functions that return a list of values.
Previously these functions returned a list with a single element undef if an error occurred. Now
these functions return the empty list in these situations. This applies to the following functions:

Win32::FsType
Win32::GetOSVersion

The remaining functions are unchanged and continue to return undef on error even in list
context.

The Win32::SetLastError(ERROR) function has been added as a complement to the
Win32::GetLastError() function.

The new Win32::GetFullPathName(FILENAME) returns the full absolute pathname for FILENAME
in scalar context. In list context it returns a two-element list containing the fully qualified
directory name and the filename. See Win32.

perl v5.36.0 2019-02-18 514

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

XSLoader
The XSLoader extension is a simpler alternative to DynaLoader. See XSLoader.

DBM Filters
A new feature called ‘‘DBM Filters’’ has been added to all the DBM modules--DB_File,
GDBM_File, NDBM_File, ODBM_File, and SDBM_File. DBM Filters add four new methods to
each DBM module:

filter_store_key
filter_store_value
filter_fetch_key
filter_fetch_value

These can be used to filter key-value pairs before the pairs are written to the database or just after
they are read from the database. See perldbmfilter for further information.

Pragmata
use attrs is now obsolete, and is only provided for backward-compatibility. It’s been replaced by
the sub : attributes syntax. See ‘‘Subroutine Attributes’’ in perlsub and attributes.

Lexical warnings pragma, use warnings;, to control optional warnings. See perllexwarn.

use filetest to control the behaviour of filetests (-r -w ...). Currently only one subpragma
implemented, ‘‘use filetest ’access’;’’, that uses access (2) or equivalent to check permissions instead of
using stat (2) as usual. This matters in filesystems where there are ACLs (access control lists): the
stat (2) might lie, but access (2) knows better.

The open pragma can be used to specify default disciplines for handle constructors (e.g. open()) and
for qx//. The two pseudo-disciplines :raw and :crlf are currently supported on DOS-derivative
platforms (i.e. where binmode is not a no-op). See also ‘‘binmode() can be used to set :crlf and :raw
modes’’.

Utility Changes
dprofpp

dprofpp is used to display profile data generated using Devel::DProf. See dprofpp.

find2perl
The find2perl utility now uses the enhanced features of the File::Find module. The -depth and
-follow options are supported. Pod documentation is also included in the script.

h2xs
The h2xs tool can now work in conjunction with C::Scan (available from CPAN) to automatically
parse real-life header files. The -M, -a, -k, and -o options are new.

perlcc
perlcc now supports the C and Bytecode backends. By default, it generates output from the simple
C backend rather than the optimized C backend.

Support for non-Unix platforms has been improved.

perldoc
perldoc has been reworked to avoid possible security holes. It will not by default let itself be run as
the superuser, but you may still use the -U switch to try to make it drop privileges first.

The Perl Debugger
Many bug fixes and enhancements were added to perl5db.pl, the Perl debugger. The help
documentation was rearranged. New commands include < ?, > ?, and { ? to list out current actions,
man docpage to run your doc viewer on some perl docset, and support for quoted options. The help
information was rearranged, and should be viewable once again if you’re using less as your pager. A
serious security hole was plugged — you should immediately remove all older versions of the Perl
debugger as installed in previous releases, all the way back to perl3, from your system to avoid being
bitten by this.

Improved Documentation
Many of the platform-specific README files are now part of the perl installation. See perl for the
complete list.

perl v5.36.0 2019-02-18 515

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

perlapi.pod
The official list of public Perl API functions.

perlboot.pod
A tutorial for beginners on object-oriented Perl.

perlcompile.pod
An introduction to using the Perl Compiler suite.

perldbmfilter.pod
A howto document on using the DBM filter facility.

perldebug.pod
All material unrelated to running the Perl debugger, plus all low-level guts-like details that risked
crushing the casual user of the debugger, have been relocated from the old manpage to the next
entry below.

perldebguts.pod
This new manpage contains excessively low-level material not related to the Perl debugger, but
slightly related to debugging Perl itself. It also contains some arcane internal details of how the
debugging process works that may only be of interest to developers of Perl debuggers.

perlfork.pod
Notes on the fork() emulation currently available for the Windows platform.

perlfilter.pod
An introduction to writing Perl source filters.

perlhack.pod
Some guidelines for hacking the Perl source code.

perlintern.pod
A list of internal functions in the Perl source code. (List is currently empty.)

perllexwarn.pod
Introduction and reference information about lexically scoped warning categories.

perlnumber.pod
Detailed information about numbers as they are represented in Perl.

perlopentut.pod
A tutorial on using open() effectively.

perlreftut.pod
A tutorial that introduces the essentials of references.

perltootc.pod
A tutorial on managing class data for object modules.

perltodo.pod
Discussion of the most often wanted features that may someday be supported in Perl.

perlunicode.pod
An introduction to Unicode support features in Perl.

Performance enhancements
Simple sort() using { $a <=> $b } and the like are optimized

Many common sort() operations using a simple inlined block are now optimized for faster
performance.

Optimized assignments to lexical variables
Certain operations in the RHS of assignment statements have been optimized to directly set the lexical
variable on the LHS, eliminating redundant copying overheads.

Faster subroutine calls
Minor changes in how subroutine calls are handled internally provide marginal improvements in
performance.

delete(), each(), values() and hash iteration are faster
The hash values returned by delete(), each(), values() and hashes in a list context are the actual values
in the hash, instead of copies. This results in significantly better performance, because it eliminates

perl v5.36.0 2019-02-18 516

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

needless copying in most situations.

Installation and Configuration Improvements
-Dusethreads means something different

The -Dusethreads flag now enables the experimental interpreter-based thread support by default. To
get the flavor of experimental threads that was in 5.005 instead, you need to run Configure with
‘‘-Dusethreads -Duse5005threads’’.

As of v5.6.0, interpreter-threads support is still lacking a way to create new threads from Perl (i.e., use
Thread; will not work with interpreter threads). use Thread; continues to be available when you
specify the -Duse5005threads option to Configure, bugs and all.

NOTE: Support for threads continues to be an experimental feature.
Interfaces and implementation are subject to sudden and drastic changes.

New Configure flags
The following new flags may be enabled on the Configure command line by running Configure with
-Dflag.

usemultiplicity
usethreads useithreads (new interpreter threads: no Perl API yet)
usethreads use5005threads (threads as they were in 5.005)

use64bitint (equal to now deprecated 'use64bits')
use64bitall

uselongdouble
usemorebits
uselargefiles
usesocks (only SOCKS v5 supported)

Threadedness and 64-bitness now more daring
The Configure options enabling the use of threads and the use of 64-bitness are now more daring in the
sense that they no more have an explicit list of operating systems of known threads/64-bit capabilities.
In other words: if your operating system has the necessary APIs and datatypes, you should be able just
to go ahead and use them, for threads by Configure -Dusethreads, and for 64 bits either explicitly by
Configure -Duse64bitint or implicitly if your system has 64-bit wide datatypes. See also ‘‘64-bit
support’’.

Long Doubles
Some platforms have ‘‘long doubles’’, floating point numbers of even larger range than ordinary
‘‘doubles’’. To enable using long doubles for Perl’s scalars, use -Duselongdouble.

-Dusemorebits
You can enable both -Duse64bitint and -Duselongdouble with -Dusemorebits. See also ‘‘64-bit
support’’.

-Duselargefiles
Some platforms support system APIs that are capable of handling large files (typically, files larger than
two gigabytes). Perl will try to use these APIs if you ask for -Duselargefiles.

See ‘‘Large file support’’ for more information.

installusrbinperl
You can use ‘‘Configure -Uinstallusrbinperl’’ which causes installperl to skip installing perl also as
/usr/bin/perl. This is useful if you prefer not to modify /usr/bin for some reason or another but harmful
because many scripts assume to find Perl in /usr/bin/perl.

SOCKS support
You can use ‘‘Configure -Dusesocks’’ which causes Perl to probe for the SOCKS proxy protocol library
(v5, not v4). For more information on SOCKS, see:

http://www.socks.nec.com/

-A flag
You can ‘‘post-edit’’ the Configure variables using the Configure -A switch. The editing happens
immediately after the platform specific hints files have been processed but before the actual

perl v5.36.0 2019-02-18 517

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

configuration process starts. Run Configure -h to find out the full -A syntax.

Enhanced Installation Directories
The installation structure has been enriched to improve the support for maintaining multiple versions of
perl, to provide locations for vendor-supplied modules, scripts, and manpages, and to ease maintenance
of locally-added modules, scripts, and manpages. See the section on Installation Directories in the
INSTALL file for complete details. For most users building and installing from source, the defaults
should be fine.

If you previously used Configure -Dsitelib or -Dsitearch to set special values for library
directories, you might wish to consider using the new -Dsiteprefix setting instead. Also, if you
wish to re-use a config.sh file from an earlier version of perl, you should be sure to check that
Configure makes sensible choices for the new directories. See INSTALL for complete details.

gcc automatically tried if ’cc’ does not seem to be working
In many platforms the vendor-supplied ’cc’ is too stripped-down to build Perl (basically, the ’cc’
doesn’t do ANSI C). If this seems to be the case and the ’cc’ does not seem to be the GNU C compiler
’gcc’, an automatic attempt is made to find and use ’gcc’ instead.

Platform specific changes
Supported platforms

• The Mach CThreads (NEXTSTEP, OPENSTEP) are now supported by the Thread extension.

• GNU/Hurd is now supported.

• Rhapsody/Darwin is now supported.

• EPOC is now supported (on Psion 5).

• The cygwin port (formerly cygwin32) has been greatly improved.

DOS
• Perl now works with djgpp 2.02 (and 2.03 alpha).

• Environment variable names are not converted to uppercase any more.

• Incorrect exit codes from backticks have been fixed.

• This port continues to use its own builtin globbing (not File::Glob).

OS390 (OpenEdition MVS)
Support for this EBCDIC platform has not been renewed in this release. There are difficulties in
reconciling Perl’s standardization on UTF-8 as its internal representation for characters with the
EBCDIC character set, because the two are incompatible.

It is unclear whether future versions will renew support for this platform, but the possibility exists.

VMS
Numerous revisions and extensions to configuration, build, testing, and installation process to
accommodate core changes and VMS-specific options.

Expand %ENV-handling code to allow runtime mapping to logical names, CLI symbols, and CRTL
environ array.

Extension of subprocess invocation code to accept filespecs as command ‘‘verbs’’.

Add to Perl command line processing the ability to use default file types and to recognize Unix-style
2>&1.

Expansion of File::Spec::VMS routines, and integration into ExtUtils::MM_VMS.

Extension of ExtUtils::MM_VMS to handle complex extensions more flexibly.

Barewords at start of Unix-syntax paths may be treated as text rather than only as logical names.

Optional secure translation of several logical names used internally by Perl.

Miscellaneous bugfixing and porting of new core code to VMS.

Thanks are gladly extended to the many people who have contributed VMS patches, testing, and ideas.

Win32
Perl can now emulate fork() internally, using multiple interpreters running in different concurrent
threads. This support must be enabled at build time. See perlfork for detailed information.

perl v5.36.0 2019-02-18 518

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

When given a pathname that consists only of a drivename, such as A:, opendir() and stat() now use
the current working directory for the drive rather than the drive root.

The builtin XSUB functions in the Win32:: namespace are documented. See Win32.

$ˆX now contains the full path name of the running executable.

A Win32::GetLongPathName() function is provided to complement Win32::GetFullPathName()
and Win32::GetShortPathName(). See Win32.

POSIX::uname() is supported.

system(1,...) now returns true process IDs rather than process handles. kill() accepts any real process
id, rather than strictly return values from system(1,...).

For better compatibility with Unix, kill(0, $pid) can now be used to test whether a process
exists.

The Shell module is supported.

Better support for building Perl under command.com in Windows 95 has been added.

Scripts are read in binary mode by default to allow ByteLoader (and the filter mechanism in general) to
work properly. For compatibility, the DATA filehandle will be set to text mode if a carriage return is
detected at the end of the line containing the _ _END_ _ or _ _DATA_ _ token; if not, the DATA
filehandle will be left open in binary mode. Earlier versions always opened the DATA filehandle in text
mode.

The glob() operator is implemented via the File::Glob extension, which supports glob syntax of
the C shell. This increases the flexibility of the glob() operator, but there may be compatibility issues
for programs that relied on the older globbing syntax. If you want to preserve compatibility with the
older syntax, you might want to run perl with -MFile::DosGlob. For details and compatibility
information, see File::Glob.

Significant bug fixes
<HANDLE> on empty files

With $/ set to undef, ‘‘slurping’’ an empty file returns a string of zero length (instead of undef, as it
used to) the first time the HANDLE is read after $/ is set to undef. Further reads yield undef.

This means that the following will append ‘‘foo’’ to an empty file (it used to do nothing):

perl -0777 -pi -e 's/ˆ/foo/' empty_file

The behaviour of:

perl -pi -e 's/ˆ/foo/' empty_file

is unchanged (it continues to leave the file empty).

eval '...' improvements
Line numbers (as reflected by caller() and most diagnostics) within eval '...' were often incorrect
where here documents were involved. This has been corrected.

Lexical lookups for variables appearing in eval '...' within functions that were themselves called
within an eval '...' were searching the wrong place for lexicals. The lexical search now correctly
ends at the subroutine’s block boundary.

The use of return within eval {...} caused $@ not to be reset correctly when no exception
occurred within the eval. This has been fixed.

Parsing of here documents used to be flawed when they appeared as the replacement expression in
eval 's/.../.../e' . This has been fixed.

All compilation errors are true errors
Some ‘‘errors’’ encountered at compile time were by necessity generated as warnings followed by
eventual termination of the program. This enabled more such errors to be reported in a single run,
rather than causing a hard stop at the first error that was encountered.

The mechanism for reporting such errors has been reimplemented to queue compile-time errors and
report them at the end of the compilation as true errors rather than as warnings. This fixes cases where
error messages leaked through in the form of warnings when code was compiled at run time using
eval STRING, and also allows such errors to be reliably trapped using eval "...".

perl v5.36.0 2019-02-18 519

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Implicitly closed filehandles are safer
Sometimes implicitly closed filehandles (as when they are localized, and Perl automatically closes
them on exiting the scope) could inadvertently set $? or $!. This has been corrected.

Behavior of list slices is more consistent
When taking a slice of a literal list (as opposed to a slice of an array or hash), Perl used to return an
empty list if the result happened to be composed of all undef values.

The new behavior is to produce an empty list if (and only if) the original list was empty. Consider the
following example:

@a = (1,undef,undef,2)[2,1,2];

The old behavior would have resulted in @a having no elements. The new behavior ensures it has three
undefined elements.

Note in particular that the behavior of slices of the following cases remains unchanged:

@a = ()[1,2];
@a = (getpwent)[7,0];
@a = (anything_returning_empty_list())[2,1,2];
@a = @b[2,1,2];
@a = @c{'a','b','c'};

See perldata.

(\$) prototype and $foo{a}
A scalar reference prototype now correctly allows a hash or array element in that slot.

goto &sub and AUTOLOAD
The goto &sub construct works correctly when &sub happens to be autoloaded.

-bareword allowed under use integer
The autoquoting of barewords preceded by - did not work in prior versions when the integer
pragma was enabled. This has been fixed.

Failures in DESTROY()
When code in a destructor threw an exception, it went unnoticed in earlier versions of Perl, unless
someone happened to be looking in $@ just after the point the destructor happened to run. Such
failures are now visible as warnings when warnings are enabled.

Locale bugs fixed
printf() and sprintf() previously reset the numeric locale back to the default ‘‘C’’ locale. This has
been fixed.

Numbers formatted according to the local numeric locale (such as using a decimal comma instead of a
decimal dot) caused ‘‘isn’t numeric’’ warnings, even while the operations accessing those numbers
produced correct results. These warnings have been discontinued.

Memory leaks
The eval 'return sub {...}' construct could sometimes leak memory. This has been fixed.

Operations that aren’t filehandle constructors used to leak memory when used on invalid filehandles.
This has been fixed.

Constructs that modified @_ could fail to deallocate values in @_ and thus leak memory. This has been
corrected.

Spurious subroutine stubs after failed subroutine calls
Perl could sometimes create empty subroutine stubs when a subroutine was not found in the package.
Such cases stopped later method lookups from progressing into base packages. This has been
corrected.

Taint failures under -U
When running in unsafe mode, taint violations could sometimes cause silent failures. This has been
fixed.

END blocks and the -c switch
Prior versions used to run BEGIN and END blocks when Perl was run in compile-only mode. Since this
is typically not the expected behavior, END blocks are not executed anymore when the -c switch is

perl v5.36.0 2019-02-18 520

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

used, or if compilation fails.

See ‘‘Support for CHECK blocks’’ for how to run things when the compile phase ends.

Potential to leak DATA filehandles
Using the _ _DATA_ _ token creates an implicit filehandle to the file that contains the token. It is the
program’s responsibility to close it when it is done reading from it.

This caveat is now better explained in the documentation. See perldata.

New or Changed Diagnostics
‘‘%s’’ variable %s masks earlier declaration in same %s

(W misc) A ‘‘my’’ or ‘‘our’’ variable has been redeclared in the current scope or statement,
effectively eliminating all access to the previous instance. This is almost always a typographical
error. Note that the earlier variable will still exist until the end of the scope or until all closure
referents to it are destroyed.

‘‘my sub’’ not yet implemented
(F) Lexically scoped subroutines are not yet implemented. Don’t try that yet.

‘‘our’’ variable %s redeclared
(W misc) You seem to have already declared the same global once before in the current lexical
scope.

’!’ allowed only after types %s
(F) The ’!’ is allowed in pack() and unpack() only after certain types. See ‘‘pack’’ in perlfunc.

/ cannot take a count
(F) You had an unpack template indicating a counted-length string, but you have also specified an
explicit size for the string. See ‘‘pack’’ in perlfunc.

/ must be followed by a, A or Z
(F) You had an unpack template indicating a counted-length string, which must be followed by
one of the letters a, A or Z to indicate what sort of string is to be unpacked. See ‘‘pack’’ in
perlfunc.

/ must be followed by a*, A* or Z*
(F) You had a pack template indicating a counted-length string, Currently the only things that can
have their length counted are a*, A* or Z*. See ‘‘pack’’ in perlfunc.

/ must follow a numeric type
(F) You had an unpack template that contained a ’#’, but this did not follow some numeric unpack
specification. See ‘‘pack’’ in perlfunc.

/%s/: Unrecognized escape \\%c passed through
(W regexp) You used a backslash-character combination which is not recognized by Perl. This
combination appears in an interpolated variable or a ' -delimited regular expression. The
character was understood literally.

/%s/: Unrecognized escape \\%c in character class passed through
(W regexp) You used a backslash-character combination which is not recognized by Perl inside
character classes. The character was understood literally.

/%s/ should probably be written as ‘‘%s’’
(W syntax) You have used a pattern where Perl expected to find a string, as in the first argument to
join. Perl will treat the true or false result of matching the pattern against $_ as the string,
which is probably not what you had in mind.

%s() called too early to check prototype
(W prototype) You’ve called a function that has a prototype before the parser saw a definition or
declaration for it, and Perl could not check that the call conforms to the prototype. You need to
either add an early prototype declaration for the subroutine in question, or move the subroutine
definition ahead of the call to get proper prototype checking. Alternatively, if you are certain that
you’re calling the function correctly, you may put an ampersand before the name to avoid the
warning. See perlsub.

perl v5.36.0 2019-02-18 521

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

%s argument is not a HASH or ARRAY element
(F) The argument to exists() must be a hash or array element, such as:

$foo{$bar}
$ref->{"susie"}[12]

%s argument is not a HASH or ARRAY element or slice
(F) The argument to delete() must be either a hash or array element, such as:

$foo{$bar}
$ref->{"susie"}[12]

or a hash or array slice, such as:

@foo[$bar, $baz, $xyzzy]
@{$ref->[12]}{"susie", "queue"}

%s argument is not a subroutine name
(F) The argument to exists() for exists &sub must be a subroutine name, and not a subroutine
call. exists &sub() will generate this error.

%s package attribute may clash with future reserved word: %s
(W reserved) A lowercase attribute name was used that had a package-specific handler. That
name might have a meaning to Perl itself some day, even though it doesn’t yet. Perhaps you
should use a mixed-case attribute name, instead. See attributes.

(in cleanup) %s
(W misc) This prefix usually indicates that a DESTROY() method raised the indicated exception.
Since destructors are usually called by the system at arbitrary points during execution, and often a
vast number of times, the warning is issued only once for any number of failures that would
otherwise result in the same message being repeated.

Failure of user callbacks dispatched using the G_KEEPERR flag could also result in this warning.
See ‘‘G_KEEPERR’’ in perlcall.

<> should be quotes
(F) You wrote require <file> when you should have written require 'file'.

Attempt to join self
(F) You tried to join a thread from within itself, which is an impossible task. You may be joining
the wrong thread, or you may need to move the join() to some other thread.

Bad evalled substitution pattern
(F) You’ve used the /e switch to evaluate the replacement for a substitution, but perl found a
syntax error in the code to evaluate, most likely an unexpected right brace ’}’.

Bad realloc() ignored
(S) An internal routine called realloc() on something that had never been malloc()ed in the first
place. Mandatory, but can be disabled by setting environment variable PERL_BADFREE to 1.

Bareword found in conditional
(W bareword) The compiler found a bareword where it expected a conditional, which often
indicates that an || or && was parsed as part of the last argument of the previous construct, for
example:

open FOO || die;

It may also indicate a misspelled constant that has been interpreted as a bareword:

use constant TYPO => 1;
if (TYOP) { print "foo" }

The strict pragma is useful in avoiding such errors.

Binary number > 0b11111111111111111111111111111111 non-portable
(W portable) The binary number you specified is larger than 2**32-1 (4294967295) and therefore
non-portable between systems. See perlport for more on portability concerns.

perl v5.36.0 2019-02-18 522

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Bit vector size > 32 non-portable
(W portable) Using bit vector sizes larger than 32 is non-portable.

Buffer overflow in prime_env_iter: %s
(W internal) A warning peculiar to VMS. While Perl was preparing to iterate over %ENV, it
encountered a logical name or symbol definition which was too long, so it was truncated to the
string shown.

Can’t check filesystem of script ‘‘%s’’
(P) For some reason you can’t check the filesystem of the script for nosuid.

Can’t declare class for non-scalar %s in ‘‘%s’’
(S) Currently, only scalar variables can declared with a specific class qualifier in a ‘‘my’’ or ‘‘our’’
declaration. The semantics may be extended for other types of variables in future.

Can’t declare %s in ‘‘%s’’
(F) Only scalar, array, and hash variables may be declared as ‘‘my’’ or ‘‘our’’ variables. They
must have ordinary identifiers as names.

Can’t ignore signal CHLD, forcing to default
(W signal) Perl has detected that it is being run with the SIGCHLD signal (sometimes known as
SIGCLD) disabled. Since disabling this signal will interfere with proper determination of exit
status of child processes, Perl has reset the signal to its default value. This situation typically
indicates that the parent program under which Perl may be running (e.g., cron) is being very
careless.

Can’t modify non-lvalue subroutine call
(F) Subroutines meant to be used in lvalue context should be declared as such, see ‘‘Lvalue
subroutines’’ in perlsub.

Can’t read CRTL environ
(S) A warning peculiar to VMS. Perl tried to read an element of %ENV from the CRTL’s internal
environment array and discovered the array was missing. You need to figure out where your CRTL
misplaced its environ or define PERL_ENV_TABLES (see perlvms) so that environ is not searched.

Can’t remove %s: %s, skipping file
(S) You requested an inplace edit without creating a backup file. Perl was unable to remove the
original file to replace it with the modified file. The file was left unmodified.

Can’t return %s from lvalue subroutine
(F) Perl detected an attempt to return illegal lvalues (such as temporary or readonly values) from a
subroutine used as an lvalue. This is not allowed.

Can’t weaken a nonreference
(F) You attempted to weaken something that was not a reference. Only references can be
weakened.

Character class [:%s:] unknown
(F) The class in the character class [: :] syntax is unknown. See perlre.

Character class syntax [%s] belongs inside character classes
(W unsafe) The character class constructs [: :], [= =], and [. .] go inside character classes, the []
are part of the construct, for example: /[012[:alpha:]345]/. Note that [= =] and [. .] are not
currently implemented; they are simply placeholders for future extensions.

Constant is not %s reference
(F) A constant value (perhaps declared using the use constant pragma) is being dereferenced,
but it amounts to the wrong type of reference. The message indicates the type of reference that
was expected. This usually indicates a syntax error in dereferencing the constant value. See
‘‘Constant Functions’’ in perlsub and constant.

constant(%s): %s
(F) The parser found inconsistencies either while attempting to define an overloaded constant, or
when trying to find the character name specified in the \N{...} escape. Perhaps you forgot to
load the corresponding overload or charnames pragma? See charnames and overload.

perl v5.36.0 2019-02-18 523

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

CORE::%s is not a keyword
(F) The CORE:: namespace is reserved for Perl keywords.

defined(@array) is deprecated
(D) defined() is not usually useful on arrays because it checks for an undefined scalar value. If
you want to see if the array is empty, just use if (@array) { # not empty } for
example.

defined(%hash) is deprecated
(D) defined() is not usually useful on hashes because it checks for an undefined scalar value. If
you want to see if the hash is empty, just use if (%hash) { # not empty } for example.

Did not produce a valid header
See Server error.

(Did you mean ‘‘local’’ instead of ‘‘our’’?)
(W misc) Remember that ‘‘our’’ does not localize the declared global variable. You have declared
it again in the same lexical scope, which seems superfluous.

Document contains no data
See Server error.

entering effective %s failed
(F) While under the use filetest pragma, switching the real and effective uids or gids failed.

false [] range ‘‘%s’’ in regexp
(W regexp) A character class range must start and end at a literal character, not another character
class like \d or [:alpha:]. The ‘‘-’’ in your false range is interpreted as a literal ‘‘-’’.
Consider quoting the ‘‘-’’, ‘‘\-’’. See perlre.

Filehandle %s opened only for output
(W io) You tried to read from a filehandle opened only for writing. If you intended it to be a
read/write filehandle, you needed to open it with ‘‘+<’’ or ‘‘+>’’ or ‘‘+>>’’ instead of with ‘‘<’’ or
nothing. If you intended only to read from the file, use ‘‘<’’. See ‘‘open’’ in perlfunc.

flock() on closed filehandle %s
(W closed) The filehandle you’re attempting to flock() got itself closed some time before now.
Check your logic flow. flock() operates on filehandles. Are you attempting to call flock() on a
dirhandle by the same name?

Global symbol ‘‘%s’’ requires explicit package name
(F) You’ve said ‘‘use strict vars’’, which indicates that all variables must either be lexically scoped
(using ‘‘my’’), declared beforehand using ‘‘our’’, or explicitly qualified to say which package the
global variable is in (using ‘‘::’’).

Hexadecimal number > 0xffffffff non-portable
(W portable) The hexadecimal number you specified is larger than 2**32-1 (4294967295) and
therefore non-portable between systems. See perlport for more on portability concerns.

Ill-formed CRTL environ value ‘‘%s’’
(W internal) A warning peculiar to VMS. Perl tried to read the CRTL’s internal environ array, and
encountered an element without the = delimiter used to separate keys from values. The element is
ignored.

Ill-formed message in prime_env_iter: |%s|
(W internal) A warning peculiar to VMS. Perl tried to read a logical name or CLI symbol
definition when preparing to iterate over %ENV, and didn’t see the expected delimiter between key
and value, so the line was ignored.

Illegal binary digit %s
(F) You used a digit other than 0 or 1 in a binary number.

Illegal binary digit %s ignored
(W digit) You may have tried to use a digit other than 0 or 1 in a binary number. Interpretation of
the binary number stopped before the offending digit.

perl v5.36.0 2019-02-18 524

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Illegal number of bits in vec
(F) The number of bits in vec() (the third argument) must be a power of two from 1 to 32 (or 64, if
your platform supports that).

Integer overflow in %s number
(W overflow) The hexadecimal, octal or binary number you have specified either as a literal or as
an argument to hex() or oct() is too big for your architecture, and has been converted to a floating
point number. On a 32-bit architecture the largest hexadecimal, octal or binary number
representable without overflow is 0xFFFFFFFF, 037777777777, or
0b11111111111111111111111111111111 respectively. Note that Perl transparently promotes all
numbers to a floating point representation internally — subject to loss of precision errors in
subsequent operations.

Invalid %s attribute: %s
The indicated attribute for a subroutine or variable was not recognized by Perl or by a user-
supplied handler. See attributes.

Invalid %s attributes: %s
The indicated attributes for a subroutine or variable were not recognized by Perl or by a user-
supplied handler. See attributes.

invalid [] range ‘‘%s’’ in regexp
The offending range is now explicitly displayed.

Invalid separator character %s in attribute list
(F) Something other than a colon or whitespace was seen between the elements of an attribute list.
If the previous attribute had a parenthesised parameter list, perhaps that list was terminated too
soon. See attributes.

Invalid separator character %s in subroutine attribute list
(F) Something other than a colon or whitespace was seen between the elements of a subroutine
attribute list. If the previous attribute had a parenthesised parameter list, perhaps that list was
terminated too soon.

leaving effective %s failed
(F) While under the use filetest pragma, switching the real and effective uids or gids failed.

Lvalue subs returning %s not implemented yet
(F) Due to limitations in the current implementation, array and hash values cannot be returned in
subroutines used in lvalue context. See ‘‘Lvalue subroutines’’ in perlsub.

Method %s not permitted
See Server error.

Missing %sbrace%s on \N{}
(F) Wrong syntax of character name literal \N{charname} within double-quotish context.

Missing command in piped open
(W pipe) You used the open(FH, "| command") or open(FH, "command |")
construction, but the command was missing or blank.

Missing name in ‘‘my sub’’
(F) The reserved syntax for lexically scoped subroutines requires that they have a name with
which they can be found.

No %s specified for -%c
(F) The indicated command line switch needs a mandatory argument, but you haven’t specified
one.

No package name allowed for variable %s in ‘‘our’’
(F) Fully qualified variable names are not allowed in ‘‘our’’ declarations, because that doesn’t
make much sense under existing semantics. Such syntax is reserved for future extensions.

No space allowed after -%c
(F) The argument to the indicated command line switch must follow immediately after the switch,
without intervening spaces.

perl v5.36.0 2019-02-18 525

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

no UTC offset information; assuming local time is UTC
(S) A warning peculiar to VMS. Perl was unable to find the local timezone offset, so it’s assuming
that local system time is equivalent to UTC. If it’s not, define the logical name
SYS$TIMEZONE_DIFFERENTIAL to translate to the number of seconds which need to be added to
UTC to get local time.

Octal number > 037777777777 non-portable
(W portable) The octal number you specified is larger than 2**32-1 (4294967295) and therefore
non-portable between systems. See perlport for more on portability concerns.

See also perlport for writing portable code.

panic: del_backref
(P) Failed an internal consistency check while trying to reset a weak reference.

panic: kid popen errno read
(F) forked child returned an incomprehensible message about its errno.

panic: magic_killbackrefs
(P) Failed an internal consistency check while trying to reset all weak references to an object.

Parentheses missing around ‘‘%s’’ list
(W parenthesis) You said something like

my $foo, $bar = @_;

when you meant

my ($foo, $bar) = @_;

Remember that ‘‘my’’, ‘‘our’’, and ‘‘local’’ bind tighter than comma.

Possible unintended interpolation of %s in string
(W ambiguous) It used to be that Perl would try to guess whether you wanted an array interpolated
or a literal @. It no longer does this; arrays are now always interpolated into strings. This means
that if you try something like:

print "fred@example.com";

and the array @example doesn’t exist, Perl is going to print fred.com, which is probably not
what you wanted. To get a literal @ sign in a string, put a backslash before it, just as you would to
get a literal $ sign.

Possible Y2K bug: %s
(W y2k) You are concatenating the number 19 with another number, which could be a potential
Year 2000 problem.

pragma ‘‘attrs’’ is deprecated, use ‘‘sub NAME : ATTRS’’ instead
(W deprecated) You have written something like this:

sub doit
{

use attrs qw(locked);
}

You should use the new declaration syntax instead.

sub doit : locked
{

...

The use attrs pragma is now obsolete, and is only provided for backward-compatibility. See
‘‘Subroutine Attributes’’ in perlsub.

Premature end of script headers
See Server error.

Repeat count in pack overflows
(F) You can’t specify a repeat count so large that it overflows your signed integers. See ‘‘pack’’ in
perlfunc.

perl v5.36.0 2019-02-18 526

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Repeat count in unpack overflows
(F) You can’t specify a repeat count so large that it overflows your signed integers. See ‘‘unpack’’
in perlfunc.

realloc() of freed memory ignored
(S) An internal routine called realloc() on something that had already been freed.

Reference is already weak
(W misc) You have attempted to weaken a reference that is already weak. Doing so has no effect.

setpgrp can’t take arguments
(F) Your system has the setpgrp() from BSD 4.2, which takes no arguments, unlike POSIX
setpgid(), which takes a process ID and process group ID.

Strange *+?{} on zero-length expression
(W regexp) You applied a regular expression quantifier in a place where it makes no sense, such as
on a zero-width assertion. Try putting the quantifier inside the assertion instead. For example, the
way to match ‘‘abc’’ provided that it is followed by three repetitions of ‘‘xyz’’ is
/abc(?=(?:xyz){3})/, not /abc(?=xyz){3}/.

switching effective %s is not implemented
(F) While under the use filetest pragma, we cannot switch the real and effective uids or
gids.

This Perl can’t reset CRTL environ elements (%s)
This Perl can’t set CRTL environ elements (%s=%s)

(W internal) Warnings peculiar to VMS. You tried to change or delete an element of the CRTL’s
internal environ array, but your copy of Perl wasn’t built with a CRTL that contained the setenv()
function. You’ll need to rebuild Perl with a CRTL that does, or redefine PERL_ENV_TABLES (see
perlvms) so that the environ array isn’t the target of the change to %ENV which produced the
warning.

Too late to run %s block
(W void) A CHECK or INIT block is being defined during run time proper, when the opportunity to
run them has already passed. Perhaps you are loading a file with require or do when you
should be using use instead. Or perhaps you should put the require or do inside a BEGIN
block.

Unknown open() mode ’%s’
(F) The second argument of 3-argument open() is not among the list of valid modes: <, >, >>,
+<, +>, +>>, -|, |-.

Unknown process %x sent message to prime_env_iter: %s
(P) An error peculiar to VMS. Perl was reading values for %ENV before iterating over it, and
someone else stuck a message in the stream of data Perl expected. Someone’s very confused, or
perhaps trying to subvert Perl’s population of %ENV for nefarious purposes.

Unrecognized escape \\%c passed through
(W misc) You used a backslash-character combination which is not recognized by Perl. The
character was understood literally.

Unterminated attribute parameter in attribute list
(F) The lexer saw an opening (left) parenthesis character while parsing an attribute list, but the
matching closing (right) parenthesis character was not found. You may need to add (or remove) a
backslash character to get your parentheses to balance. See attributes.

Unterminated attribute list
(F) The lexer found something other than a simple identifier at the start of an attribute, and it
wasn’t a semicolon or the start of a block. Perhaps you terminated the parameter list of the
previous attribute too soon. See attributes.

Unterminated attribute parameter in subroutine attribute list
(F) The lexer saw an opening (left) parenthesis character while parsing a subroutine attribute list,
but the matching closing (right) parenthesis character was not found. You may need to add (or
remove) a backslash character to get your parentheses to balance.

perl v5.36.0 2019-02-18 527

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Unterminated subroutine attribute list
(F) The lexer found something other than a simple identifier at the start of a subroutine attribute,
and it wasn’t a semicolon or the start of a block. Perhaps you terminated the parameter list of the
previous attribute too soon.

Value of CLI symbol ‘‘%s’’ too long
(W misc) A warning peculiar to VMS. Perl tried to read the value of an %ENV element from a CLI
symbol table, and found a resultant string longer than 1024 characters. The return value has been
truncated to 1024 characters.

Version number must be a constant number
(P) The attempt to translate a use Module n.n LIST statement into its equivalent BEGIN
block found an internal inconsistency with the version number.

New tests
lib/attrs

Compatibility tests for sub : attrs vs the older use attrs.

lib/env
Tests for new environment scalar capability (e.g., use Env qw($BAR);).

lib/env-array
Tests for new environment array capability (e.g., use Env qw(@PATH);).

lib/io_const
IO constants (SEEK_*, _IO*).

lib/io_dir
Directory-related IO methods (new, read, close, rewind, tied delete).

lib/io_multihomed
INET sockets with multi-homed hosts.

lib/io_poll
IO poll().

lib/io_unix
UNIX sockets.

op/attrs
Regression tests for my ($x,@y,%z) : attrs and <sub : attrs>.

op/filetest
File test operators.

op/lex_assign
Verify operations that access pad objects (lexicals and temporaries).

op/exists_sub
Verify exists &sub operations.

Incompatible Changes
Perl Source Incompatibilities

Beware that any new warnings that have been added or old ones that have been enhanced are not
considered incompatible changes.

Since all new warnings must be explicitly requested via the -w switch or the warnings pragma, it is
ultimately the programmer’s responsibility to ensure that warnings are enabled judiciously.

CHECK is a new keyword
All subroutine definitions named CHECK are now special. See /"Support for CHECK
blocks" for more information.

Treatment of list slices of undef has changed
There is a potential incompatibility in the behavior of list slices that are comprised entirely of
undefined values. See ‘‘Behavior of list slices is more consistent’’.

Format of $English::PERL_VERSION is different
The English module now sets $PERL_VERSION to $ˆV (a string value) rather than $] (a
numeric value). This is a potential incompatibility. Send us a report via perlbug if you are

perl v5.36.0 2019-02-18 528

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

affected by this.

See ‘‘Improved Perl version numbering system’’ for the reasons for this change.

Literals of the form 1.2.3 parse differently
Previously, numeric literals with more than one dot in them were interpreted as a floating point
number concatenated with one or more numbers. Such ‘‘numbers’’ are now parsed as strings
composed of the specified ordinals.

For example, print 97.98.99 used to output 97.9899 in earlier versions, but now prints
abc.

See ‘‘Support for strings represented as a vector of ordinals’’.

Possibly changed pseudo-random number generator
Perl programs that depend on reproducing a specific set of pseudo-random numbers may now
produce different output due to improvements made to the rand() builtin. You can use sh
Configure -Drandfunc=rand to obtain the old behavior.

See ‘‘Better pseudo-random number generator’’.

Hashing function for hash keys has changed
Even though Perl hashes are not order preserving, the apparently random order encountered when
iterating on the contents of a hash is actually determined by the hashing algorithm used.
Improvements in the algorithm may yield a random order that is different from that of previous
versions, especially when iterating on hashes.

See ‘‘Better worst-case behavior of hashes’’ for additional information.

undef fails on read only values
Using the undef operator on a readonly value (such as $1) has the same effect as assigning
undef to the readonly value — it throws an exception.

Close-on-exec bit may be set on pipe and socket handles
Pipe and socket handles are also now subject to the close-on-exec behavior determined by the
special variable $ˆF.

See ‘‘More consistent close-on-exec behavior’’.

Writing ‘‘$$1’’ to mean ‘‘${$}1’’ is unsupported
Perl 5.004 deprecated the interpretation of $$1 and similar within interpolated strings to mean $$
. "1", but still allowed it.

In Perl 5.6.0 and later, "$$1" always means "${$1}".

delete(), each(), values() and \(%h)
operate on aliases to values, not copies

delete(), each(), values() and hashes (e.g. \(%h)) in a list context return the actual values in the
hash, instead of copies (as they used to in earlier versions). Typical idioms for using these
constructs copy the returned values, but this can make a significant difference when creating
references to the returned values. Keys in the hash are still returned as copies when iterating on a
hash.

See also ‘‘delete(), each(), values() and hash iteration are faster’’.

vec(EXPR,OFFSET,BITS) enforces powers-of-two BITS
vec() generates a run-time error if the BITS argument is not a valid power-of-two integer.

Text of some diagnostic output has changed
Most references to internal Perl operations in diagnostics have been changed to be more
descriptive. This may be an issue for programs that may incorrectly rely on the exact text of
diagnostics for proper functioning.

%@ has been removed
The undocumented special variable %@ that used to accumulate ‘‘background’’ errors (such as
those that happen in DESTROY()) has been removed, because it could potentially result in
memory leaks.

perl v5.36.0 2019-02-18 529

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Parenthesized not() behaves like a list operator
The not operator now falls under the ‘‘if it looks like a function, it behaves like a function’’ rule.

As a result, the parenthesized form can be used with grep and map. The following construct
used to be a syntax error before, but it works as expected now:

grep not($_), @things;

On the other hand, using not with a literal list slice may not work. The following previously
allowed construct:

print not (1,2,3)[0];

needs to be written with additional parentheses now:

print not((1,2,3)[0]);

The behavior remains unaffected when not is not followed by parentheses.

Semantics of bareword prototype (*) have changed
The semantics of the bareword prototype * have changed. Perl 5.005 always coerced simple
scalar arguments to a typeglob, which wasn’t useful in situations where the subroutine must
distinguish between a simple scalar and a typeglob. The new behavior is to not coerce bareword
arguments to a typeglob. The value will always be visible as either a simple scalar or as a
reference to a typeglob.

See ‘‘More functional bareword prototype (*)’’.

Semantics of bit operators may have changed on 64-bit platforms
If your platform is either natively 64-bit or if Perl has been configured to used 64-bit integers,
i.e., $Config{ivsize} is 8, there may be a potential incompatibility in the behavior of bitwise
numeric operators (& | ˆ ˜ << >>). These operators used to strictly operate on the lower 32 bits of
integers in previous versions, but now operate over the entire native integral width. In particular,
note that unary ˜ will produce different results on platforms that have different $Config{ivsize}.
For portability, be sure to mask off the excess bits in the result of unary ˜, e.g., ˜$x &
0xffffffff.

See ‘‘Bit operators support full native integer width’’.

More builtins taint their results
As described in ‘‘Improved security features’’, there may be more sources of taint in a Perl
program.

To avoid these new tainting behaviors, you can build Perl with the Configure option
-Accflags=-DINCOMPLETE_TAINTS. Beware that the ensuing perl binary may be insecure.

C Source Incompatibilities
PERL_POLLUTE

Release 5.005 grandfathered old global symbol names by providing preprocessor macros for
extension source compatibility. As of release 5.6.0, these preprocessor definitions are not
available by default. You need to explicitly compile perl with -DPERL_POLLUTE to get these
definitions. For extensions still using the old symbols, this option can be specified via
MakeMaker:

perl Makefile.PL POLLUTE=1

PERL_IMPLICIT_CONTEXT
This new build option provides a set of macros for all API functions such that an implicit
interpreter/thread context argument is passed to every API function. As a result of this, something
like sv_setsv(foo,bar) amounts to a macro invocation that actually translates to something
like Perl_sv_setsv(my_perl,foo,bar). While this is generally expected to not have
any significant source compatibility issues, the difference between a macro and a real function call
will need to be considered.

This means that there is a source compatibility issue as a result of this if your extensions attempt
to use pointers to any of the Perl API functions.

Note that the above issue is not relevant to the default build of Perl, whose interfaces continue to

perl v5.36.0 2019-02-18 530

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

match those of prior versions (but subject to the other options described here).

See ‘‘Background and PERL_IMPLICIT_CONTEXT’’ in perlguts for detailed information on the
ramifications of building Perl with this option.

NOTE: PERL_IMPLICIT_CONTEXT is automatically enabled whenever Perl is built
with one of -Dusethreads, -Dusemultiplicity, or both. It is not
intended to be enabled by users at this time.

PERL_POLLUTE_MALLOC
Enabling Perl’s malloc in release 5.005 and earlier caused the namespace of the system’s malloc
family of functions to be usurped by the Perl versions, since by default they used the same names.
Besides causing problems on platforms that do not allow these functions to be cleanly replaced,
this also meant that the system versions could not be called in programs that used Perl’s malloc.
Previous versions of Perl have allowed this behaviour to be suppressed with the HIDEMYMALLOC
and EMBEDMYMALLOC preprocessor definitions.

As of release 5.6.0, Perl’s malloc family of functions have default names distinct from the system
versions. You need to explicitly compile perl with -DPERL_POLLUTE_MALLOC to get the older
behaviour. HIDEMYMALLOC and EMBEDMYMALLOC have no effect, since the behaviour they
enabled is now the default.

Note that these functions do not constitute Perl’s memory allocation API. See ‘‘Memory
Allocation’’ in perlguts for further information about that.

Compatible C Source API Changes
PATCHLEVEL is now PERL_VERSION

The cpp macros PERL_REVISION, PERL_VERSION, and PERL_SUBVERSION are now
available by default from perl.h, and reflect the base revision, patchlevel, and subversion
respectively. PERL_REVISION had no prior equivalent, while PERL_VERSION and
PERL_SUBVERSION were previously available as PATCHLEVEL and SUBVERSION.

The new names cause less pollution of the cpp namespace and reflect what the numbers have
come to stand for in common practice. For compatibility, the old names are still supported when
patchlevel.h is explicitly included (as required before), so there is no source incompatibility from
the change.

Binary Incompatibilities
In general, the default build of this release is expected to be binary compatible for extensions built with
the 5.005 release or its maintenance versions. However, specific platforms may have broken binary
compatibility due to changes in the defaults used in hints files. Therefore, please be sure to always
check the platform-specific README files for any notes to the contrary.

The usethreads or usemultiplicity builds are not binary compatible with the corresponding builds in
5.005.

On platforms that require an explicit list of exports (AIX, OS/2 and Windows, among others), purely
internal symbols such as parser functions and the run time opcodes are not exported by default. Perl
5.005 used to export all functions irrespective of whether they were considered part of the public API or
not.

For the full list of public API functions, see perlapi.

Known Problems
Localizing a tied hash element may leak memory

As of the 5.6.1 release, there is a known leak when code such as this is executed:

use Tie::Hash;
tie my %tie_hash => 'Tie::StdHash';

...

local($tie_hash{Foo}) = 1; # leaks

Known test failures

perl v5.36.0 2019-02-18 531

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

• 64-bit builds

Subtest #15 of lib/b.t may fail under 64-bit builds on platforms such as HP-UX PA64 and Linux
IA64. The issue is still being investigated.

The lib/io_multihomed test may hang in HP-UX if Perl has been configured to be 64-bit.
Because other 64-bit platforms do not hang in this test, HP-UX is suspect. All other tests pass in
64-bit HP-UX. The test attempts to create and connect to ‘‘multihomed’’ sockets (sockets which
have multiple IP addresses).

Note that 64-bit support is still experimental.

• Failure of Thread tests

The subtests 19 and 20 of lib/thr5005.t test are known to fail due to fundamental problems in the
5.005 threading implementation. These are not new failures — Perl 5.005_0x has the same bugs,
but didn’t have these tests. (Note that support for 5.005-style threading remains experimental.)

• NEXTSTEP 3.3 POSIX test failure

In NEXTSTEP 3.3p2 the implementation of the strftime (3) in the operating system libraries is
buggy: the %j format numbers the days of a month starting from zero, which, while being logical
to programmers, will cause the subtests 19 to 27 of the lib/posix test may fail.

• Tru64 (aka Digital UNIX, aka DEC OSF/1) lib/sdbm test failure with gcc

If compiled with gcc 2.95 the lib/sdbm test will fail (dump core). The cure is to use the vendor cc,
it comes with the operating system and produces good code.

EBCDIC platforms not fully supported
In earlier releases of Perl, EBCDIC environments like OS390 (also known as Open Edition MVS) and
VM-ESA were supported. Due to changes required by the UTF-8 (Unicode) support, the EBCDIC
platforms are not supported in Perl 5.6.0.

The 5.6.1 release improves support for EBCDIC platforms, but they are not fully supported yet.

UNICOS/mk CC failures during Configure run
In UNICOS/mk the following errors may appear during the Configure run:

Guessing which symbols your C compiler and preprocessor define...
CC-20 cc: ERROR File = try.c, Line = 3
...

bad switch yylook 79bad switch yylook 79bad switch yylook 79bad switch yylook 79#ifdef A29K
...
4 errors detected in the compilation of "try.c".

The culprit is the broken awk of UNICOS/mk. The effect is fortunately rather mild: Perl itself is not
adversely affected by the error, only the h2ph utility coming with Perl, and that is rather rarely needed
these days.

Arrow operator and arrays
When the left argument to the arrow operator -> is an array, or the scalar operator operating on an
array, the result of the operation must be considered erroneous. For example:

@x->[2]
scalar(@x)->[2]

These expressions will get run-time errors in some future release of Perl.

Experimental features
As discussed above, many features are still experimental. Interfaces and implementation of these
features are subject to change, and in extreme cases, even subject to removal in some future release of
Perl. These features include the following:

Threads
Unicode
64-bit support

perl v5.36.0 2019-02-18 532

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

Lvalue subroutines
Weak references
The pseudo-hash data type
The Compiler suite
Internal implementation of file globbing
The DB module
The regular expression code constructs:

(?{ code }) and (??{ code })

Obsolete Diagnostics
Character class syntax [: :] is reserved for future extensions

(W) Within regular expression character classes ([]) the syntax beginning with ‘‘[:’’ and ending
with ‘‘:]’’ is reserved for future extensions. If you need to represent those character sequences
inside a regular expression character class, just quote the square brackets with the backslash: ‘‘\[:’’
and ‘‘:\]’’.

Ill-formed logical name |%s| in prime_env_iter
(W) A warning peculiar to VMS. A logical name was encountered when preparing to iterate over
%ENV which violates the syntactic rules governing logical names. Because it cannot be translated
normally, it is skipped, and will not appear in %ENV. This may be a benign occurrence, as some
software packages might directly modify logical name tables and introduce nonstandard names, or
it may indicate that a logical name table has been corrupted.

In string, @%s now must be written as \@%s
The description of this error used to say:

(Someday it will simply assume that an unbackslashed @
interpolates an array.)

That day has come, and this fatal error has been removed. It has been replaced by a non-fatal
warning instead. See ‘‘Arrays now always interpolate into double-quoted strings’’ for details.

Probable precedence problem on %s
(W) The compiler found a bareword where it expected a conditional, which often indicates that an
|| or && was parsed as part of the last argument of the previous construct, for example:

open FOO || die;

regexp too big
(F) The current implementation of regular expressions uses shorts as address offsets within a
string. Unfortunately this means that if the regular expression compiles to longer than 32767, it’ll
blow up. Usually when you want a regular expression this big, there is a better way to do it with
multiple statements. See perlre.

Use of ‘‘$$<digit>’’ to mean ‘‘${$}<digit>’’ is deprecated
(D) Perl versions before 5.004 misinterpreted any type marker followed by ‘‘$’’ and a digit. For
example, ‘‘$$0’’ was incorrectly taken to mean ‘‘${$}0’’ instead of ‘‘${$0}’’. This bug is
(mostly) fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely, because at least two
widely-used modules depend on the old meaning of ‘‘$$0’’ in a string. So Perl 5.004 still
interprets ‘‘$$<digit>’’ in the old (broken) way inside strings; but it generates this message as a
warning. And in Perl 5.005, this special treatment will cease.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/ , the Perl
Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

perl v5.36.0 2019-02-18 533

PERL561DELTA(1) Perl Programmers Reference Guide PERL561DELTA(1)

The README file for general stuff.

The Artistic and Copying files for copyright information.

HISTORY
Written by Gurusamy Sarathy <gsar@ActiveState.com>, with many contributions from The Perl
Porters.

Send omissions or corrections to <perlbug@perl.org>.

perl v5.36.0 2019-02-18 534

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

NAME
perl56delta - what’s new for perl v5.6.0

DESCRIPTION
This document describes differences between the 5.005 release and the 5.6.0 release.

Core Enhancements
Interpreter cloning, threads, and concurrency

Perl 5.6.0 introduces the beginnings of support for running multiple interpreters concurrently in
different threads. In conjunction with the perl_clone() API call, which can be used to selectively
duplicate the state of any given interpreter, it is possible to compile a piece of code once in an
interpreter, clone that interpreter one or more times, and run all the resulting interpreters in distinct
threads.

On the Windows platform, this feature is used to emulate fork() at the interpreter level. See perlfork
for details about that.

This feature is still in evolution. It is eventually meant to be used to selectively clone a subroutine and
data reachable from that subroutine in a separate interpreter and run the cloned subroutine in a separate
thread. Since there is no shared data between the interpreters, little or no locking will be needed
(unless parts of the symbol table are explicitly shared). This is obviously intended to be an easy-to-use
replacement for the existing threads support.

Support for cloning interpreters and interpreter concurrency can be enabled using the -Dusethreads
Configure option (see win32/Makefile for how to enable it on Windows.) The resulting perl executable
will be functionally identical to one that was built with -Dmultiplicity, but the perl_clone() API call
will only be available in the former.

-Dusethreads enables the cpp macro USE_ITHREADS by default, which in turn enables Perl source
code changes that provide a clear separation between the op tree and the data it operates with. The
former is immutable, and can therefore be shared between an interpreter and all of its clones, while the
latter is considered local to each interpreter, and is therefore copied for each clone.

Note that building Perl with the -Dusemultiplicity Configure option is adequate if you wish to run
multiple independent interpreters concurrently in different threads. -Dusethreads only provides the
additional functionality of the perl_clone() API call and other support for running cloned interpreters
concurrently.

NOTE: This is an experimental feature. Implementation details are
subject to change.

Lexically scoped warning categories
You can now control the granularity of warnings emitted by perl at a finer level using the use
warnings pragma. warnings and perllexwarn have copious documentation on this feature.

Unicode and UTF-8 support
Perl now uses UTF-8 as its internal representation for character strings. The utf8 and bytes
pragmas are used to control this support in the current lexical scope. See perlunicode, utf8 and bytes
for more information.

This feature is expected to evolve quickly to support some form of I/O disciplines that can be used to
specify the kind of input and output data (bytes or characters). Until that happens, additional modules
from CPAN will be needed to complete the toolkit for dealing with Unicode.

NOTE: This should be considered an experimental feature. Implementation
details are subject to change.

Support for interpolating named characters
The new \N escape interpolates named characters within strings. For example, "Hi! \N{WHITE
SMILING FACE}" evaluates to a string with a unicode smiley face at the end.

‘‘our’’ declarations
An ‘‘our’’ declaration introduces a value that can be best understood as a lexically scoped symbolic
alias to a global variable in the package that was current where the variable was declared. This is
mostly useful as an alternative to the vars pragma, but also provides the opportunity to introduce
typing and other attributes for such variables. See ‘‘our’’ in perlfunc.

perl v5.36.0 2019-02-18 535

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

Support for strings represented as a vector of ordinals
Literals of the form v1.2.3.4 are now parsed as a string composed of characters with the specified
ordinals. This is an alternative, more readable way to construct (possibly unicode) strings instead of
interpolating characters, as in "\x{1}\x{2}\x{3}\x{4}". The leading v may be omitted if there
are more than two ordinals, so 1.2.3 is parsed the same as v1.2.3.

Strings written in this form are also useful to represent version ‘‘numbers’’. It is easy to compare such
version ‘‘numbers’’ (which are really just plain strings) using any of the usual string comparison
operators eq, ne, lt, gt, etc., or perform bitwise string operations on them using |, &, etc.

In conjunction with the new $ˆV magic variable (which contains the perl version as a string), such
literals can be used as a readable way to check if you’re running a particular version of Perl:

this will parse in older versions of Perl also
if ($ˆV and $ˆV gt v5.6.0) {

new features supported
}

require and use also have some special magic to support such literals, but this particular usage
should be avoided because it leads to misleading error messages under versions of Perl which don’t
support vector strings. Using a true version number will ensure correct behavior in all versions of Perl:

require 5.006; # run time check for v5.6
use 5.006_001; # compile time check for v5.6.1

Also, sprintf and printf support the Perl-specific format flag %v to print ordinals of characters in
arbitrary strings:

printf "v%vd", $ˆV; # prints current version, such as "v5.5.650"
printf "%*vX", ":", $addr; # formats IPv6 address
printf "%*vb", " ", $bits; # displays bitstring

See ‘‘Scalar value constructors’’ in perldata for additional information.

Improved Perl version numbering system
Beginning with Perl version 5.6.0, the version number convention has been changed to a ‘‘dotted
integer’’ scheme that is more commonly found in open source projects.

Maintenance versions of v5.6.0 will be released as v5.6.1, v5.6.2 etc. The next development series
following v5.6.0 will be numbered v5.7.x, beginning with v5.7.0, and the next major production release
following v5.6.0 will be v5.8.0.

The English module now sets $PERL_VERSION to $ˆV (a string value) rather than $] (a numeric
value). (This is a potential incompatibility. Send us a report via perlbug if you are affected by this.)

The v1.2.3 syntax is also now legal in Perl. See ‘‘Support for strings represented as a vector of
ordinals’’ for more on that.

To cope with the new versioning system’s use of at least three significant digits for each version
component, the method used for incrementing the subversion number has also changed slightly. We
assume that versions older than v5.6.0 have been incrementing the subversion component in multiples
of 10. Versions after v5.6.0 will increment them by 1. Thus, using the new notation, 5.005_03 is the
‘‘same’’ as v5.5.30, and the first maintenance version following v5.6.0 will be v5.6.1 (which should be
read as being equivalent to a floating point value of 5.006_001 in the older format, stored in $]).

New syntax for declaring subroutine attributes
Formerly, if you wanted to mark a subroutine as being a method call or as requiring an automatic lock()
when it is entered, you had to declare that with a use attrs pragma in the body of the subroutine.
That can now be accomplished with declaration syntax, like this:

sub mymethod : locked method;
...
sub mymethod : locked method {

...
}

sub othermethod :locked :method;
...

perl v5.36.0 2019-02-18 536

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

sub othermethod :locked :method {
...

}

(Note how only the first : is mandatory, and whitespace surrounding the : is optional.)

AutoSplit.pm and SelfLoader.pm have been updated to keep the attributes with the stubs they provide.
See attributes.

File and directory handles can be autovivified
Similar to how constructs such as $x->[0] autovivify a reference, handle constructors (open(),
opendir(), pipe(), socketpair(), sysopen(), socket(), and accept()) now autovivify a file or directory
handle if the handle passed to them is an uninitialized scalar variable. This allows the constructs such
as open(my $fh, ...) and open(local $fh,...) to be used to create filehandles that will
conveniently be closed automatically when the scope ends, provided there are no other references to
them. This largely eliminates the need for typeglobs when opening filehandles that must be passed
around, as in the following example:

sub myopen {
open my $fh, "@_"

or die "Can't open '@_': $!";
return $fh;

}

{
my $f = myopen("</etc/motd");
print <$f>;
$f implicitly closed here

}

open() with more than two arguments
If open() is passed three arguments instead of two, the second argument is used as the mode and the
third argument is taken to be the file name. This is primarily useful for protecting against unintended
magic behavior of the traditional two-argument form. See ‘‘open’’ in perlfunc.

64-bit support
Any platform that has 64-bit integers either

(1) natively as longs or ints
(2) via special compiler flags
(3) using long long or int64_t

is able to use ‘‘quads’’ (64-bit integers) as follows:

• constants (decimal, hexadecimal, octal, binary) in the code

• arguments to oct() and hex()

• arguments to print(), printf() and sprintf() (flag prefixes ll, L, q)

• printed as such

• pack() and unpack() ‘‘q’’ and ‘‘Q’’ formats

• in basic arithmetics: + - * / % (NOTE: operating close to the limits of the integer values may
produce surprising results)

• in bit arithmetics: & | ˆ ˜ << >> (NOTE: these used to be forced to be 32 bits wide but now operate
on the full native width.)

• vec()

Note that unless you have the case (a) you will have to configure and compile Perl using the
-Duse64bitint Configure flag.

NOTE: The Configure flags -Duselonglong and -Duse64bits have been
deprecated. Use -Duse64bitint instead.

There are actually two modes of 64-bitness: the first one is achieved using Configure -Duse64bitint
and the second one using Configure -Duse64bitall. The difference is that the first one is minimal and

perl v5.36.0 2019-02-18 537

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

the second one maximal. The first works in more places than the second.

The use64bitint does only as much as is required to get 64-bit integers into Perl (this may mean,
for example, using ‘‘long longs’’) while your memory may still be limited to 2 gigabytes (because your
pointers could still be 32-bit). Note that the name 64bitint does not imply that your C compiler
will be using 64-bit ints (it might, but it doesn’t have to): the use64bitint means that you will be
able to have 64 bits wide scalar values.

The use64bitall goes all the way by attempting to switch also integers (if it can), longs (and
pointers) to being 64-bit. This may create an even more binary incompatible Perl than -Duse64bitint:
the resulting executable may not run at all in a 32-bit box, or you may have to
reboot/reconfigure/rebuild your operating system to be 64-bit aware.

Natively 64-bit systems like Alpha and Cray need neither -Duse64bitint nor -Duse64bitall.

Last but not least: note that due to Perl’s habit of always using floating point numbers, the quads are
still not true integers. When quads overflow their limits (0...18_446_744_073_709_551_615 unsigned,
-9_223_372_036_854_775_808...9_223_372_036_854_775_807 signed), they are silently promoted to
floating point numbers, after which they will start losing precision (in their lower digits).

NOTE: 64-bit support is still experimental on most platforms.
Existing support only covers the LP64 data model. In particular, the
LLP64 data model is not yet supported. 64-bit libraries and system
APIs on many platforms have not stabilized--your mileage may vary.

Large file support
If you have filesystems that support ‘‘large files’’ (files larger than 2 gigabytes), you may now also be
able to create and access them from Perl.

NOTE: The default action is to enable large file support, if
available on the platform.

If the large file support is on, and you have a Fcntl constant O_LARGEFILE, the O_LARGEFILE is
automatically added to the flags of sysopen().

Beware that unless your filesystem also supports ‘‘sparse files’’ seeking to umpteen petabytes may be
inadvisable.

Note that in addition to requiring a proper file system to do large files you may also need to adjust your
per-process (or your per-system, or per-process-group, or per-user-group) maximum filesize limits
before running Perl scripts that try to handle large files, especially if you intend to write such files.

Finally, in addition to your process/process group maximum filesize limits, you may have quota limits
on your filesystems that stop you (your user id or your user group id) from using large files.

Adjusting your process/user/group/file system/operating system limits is outside the scope of Perl core
language. For process limits, you may try increasing the limits using your shell’s limits/limit/ulimit
command before running Perl. The BSD::Resource extension (not included with the standard Perl
distribution) may also be of use, it offers the getrlimit/setrlimit interface that can be used to adjust
process resource usage limits, including the maximum filesize limit.

Long doubles
In some systems you may be able to use long doubles to enhance the range and precision of your
double precision floating point numbers (that is, Perl’s numbers). Use Configure -Duselongdouble to
enable this support (if it is available).

‘‘more bits’’
You can ‘‘Configure -Dusemorebits’’ to turn on both the 64-bit support and the long double support.

Enhanced support for sort() subroutines
Perl subroutines with a prototype of ($$), and XSUBs in general, can now be used as sort
subroutines. In either case, the two elements to be compared are passed as normal parameters in @_.
See ‘‘sort’’ in perlfunc.

For unprototyped sort subroutines, the historical behavior of passing the elements to be compared as
the global variables $a and $b remains unchanged.

perl v5.36.0 2019-02-18 538

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

sort $coderef @foo allowed
sort() did not accept a subroutine reference as the comparison function in earlier versions. This is now
permitted.

File globbing implemented internally
Perl now uses the File::Glob implementation of the glob() operator automatically. This avoids using an
external csh process and the problems associated with it.

NOTE: This is currently an experimental feature. Interfaces and
implementation are subject to change.

Support for CHECK blocks
In addition to BEGIN, INIT, END, DESTROY and AUTOLOAD, subroutines named CHECK are now
special. These are queued up during compilation and behave similar to END blocks, except they are
called at the end of compilation rather than at the end of execution. They cannot be called directly.

POSIX character class syntax [: :] supported
For example to match alphabetic characters use /[[:alpha:]]/. See perlre for details.

Better pseudo-random number generator
In 5.005_0x and earlier, perl’s rand() function used the C library rand (3) function. As of 5.005_52,
Configure tests for drand48(), random(), and rand() (in that order) and picks the first one it finds.

These changes should result in better random numbers from rand().

Improved qw// operator
The qw// operator is now evaluated at compile time into a true list instead of being replaced with a run
time call to split(). This removes the confusing misbehaviour of qw// in scalar context, which
had inherited that behaviour from split().

Thus:

$foo = ($bar) = qw(a b c); print "$foo|$bar\n";

now correctly prints ‘‘3|a’’, instead of ‘‘2|a’’.

Better worst-case behavior of hashes
Small changes in the hashing algorithm have been implemented in order to improve the distribution of
lower order bits in the hashed value. This is expected to yield better performance on keys that are
repeated sequences.

pack() format ’Z’ supported
The new format type ’Z’ is useful for packing and unpacking null-terminated strings. See ‘‘pack’’ in
perlfunc.

pack() format modifier ’!’ supported
The new format type modifier ’!’ is useful for packing and unpacking native shorts, ints, and longs.
See ‘‘pack’’ in perlfunc.

pack() and unpack() support counted strings
The template character ’/’ can be used to specify a counted string type to be packed or unpacked. See
‘‘pack’’ in perlfunc.

Comments in pack() templates
The ’#’ character in a template introduces a comment up to end of the line. This facilitates
documentation of pack() templates.

Weak references
In previous versions of Perl, you couldn’t cache objects so as to allow them to be deleted if the last
reference from outside the cache is deleted. The reference in the cache would hold a reference count
on the object and the objects would never be destroyed.

Another familiar problem is with circular references. When an object references itself, its reference
count would never go down to zero, and it would not get destroyed until the program is about to exit.

Weak references solve this by allowing you to ‘‘weaken’’ any reference, that is, make it not count
towards the reference count. When the last non-weak reference to an object is deleted, the object is
destroyed and all the weak references to the object are automatically undef-ed.

To use this feature, you need the Devel::WeakRef package from CPAN, which contains additional

perl v5.36.0 2019-02-18 539

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

documentation.

NOTE: This is an experimental feature. Details are subject to change.

Binary numbers supported
Binary numbers are now supported as literals, in s?printf formats, and oct():

$answer = 0b101010;
printf "The answer is: %b\n", oct("0b101010");

Lvalue subroutines
Subroutines can now return modifiable lvalues. See ‘‘Lvalue subroutines’’ in perlsub.

NOTE: This is an experimental feature. Details are subject to change.

Some arrows may be omitted in calls through references
Perl now allows the arrow to be omitted in many constructs involving subroutine calls through
references. For example, $foo[10]->('foo') may now be written $foo[10]('foo'). This is
rather similar to how the arrow may be omitted from $foo[10]->{'foo'}. Note however, that the
arrow is still required for foo(10)->('bar').

Boolean assignment operators are legal lvalues
Constructs such as ($a ||= 2) += 1 are now allowed.

exists() is supported on subroutine names
The exists() builtin now works on subroutine names. A subroutine is considered to exist if it has been
declared (even if implicitly). See ‘‘exists’’ in perlfunc for examples.

exists() and delete() are supported on array elements
The exists() and delete() builtins now work on simple arrays as well. The behavior is similar to that on
hash elements.

exists() can be used to check whether an array element has been initialized. This avoids autovivifying
array elements that don’t exist. If the array is tied, the EXISTS() method in the corresponding tied
package will be invoked.

delete() may be used to remove an element from the array and return it. The array element at that
position returns to its uninitialized state, so that testing for the same element with exists() will return
false. If the element happens to be the one at the end, the size of the array also shrinks up to the highest
element that tests true for exists(), or 0 if none such is found. If the array is tied, the DELETE()
method in the corresponding tied package will be invoked.

See ‘‘exists’’ in perlfunc and ‘‘delete’’ in perlfunc for examples.

Pseudo-hashes work better
Dereferencing some types of reference values in a pseudo-hash, such as $ph->{foo}[1], was
accidentally disallowed. This has been corrected.

When applied to a pseudo-hash element, exists() now reports whether the specified value exists, not
merely if the key is valid.

delete() now works on pseudo-hashes. When given a pseudo-hash element or slice it deletes the values
corresponding to the keys (but not the keys themselves). See ‘‘Pseudo-hashes: Using an array as a
hash’’ in perlref.

Pseudo-hash slices with constant keys are now optimized to array lookups at compile-time.

List assignments to pseudo-hash slices are now supported.

The fields pragma now provides ways to create pseudo-hashes, via fields::new() and
fields::phash(). See fields.

NOTE: The pseudo-hash data type continues to be experimental.
Limiting oneself to the interface elements provided by the
fields pragma will provide protection from any future changes.

Automatic flushing of output buffers
fork(), exec(), system(), qx//, and pipe open()s now flush buffers of all files opened for output when
the operation was attempted. This mostly eliminates confusing buffering mishaps suffered by users
unaware of how Perl internally handles I/O.

perl v5.36.0 2019-02-18 540

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

This is not supported on some platforms like Solaris where a suitably correct implementation of
fflush(NULL) isn’t available.

Better diagnostics on meaningless filehandle operations
Constructs such as open(<FH>) and close(<FH>) are compile time errors. Attempting to read
from filehandles that were opened only for writing will now produce warnings (just as writing to read-
only filehandles does).

Where possible, buffered data discarded from duped input filehandle
open(NEW, "<&OLD") now attempts to discard any data that was previously read and buffered in
OLD before duping the handle. On platforms where doing this is allowed, the next read operation on
NEW will return the same data as the corresponding operation on OLD. Formerly, it would have
returned the data from the start of the following disk block instead.

eof() has the same old magic as <>
eof() would return true if no attempt to read from <> had yet been made. eof() has been changed
to have a little magic of its own, it now opens the <> files.

binmode() can be used to set :crlf and :raw modes
binmode() now accepts a second argument that specifies a discipline for the handle in question. The
two pseudo-disciplines ‘‘:raw’’ and ‘‘:crlf’’ are currently supported on DOS-derivative platforms. See
‘‘binmode’’ in perlfunc and open.

-T filetest recognizes UTF-8 encoded files as ‘‘text’’
The algorithm used for the -T filetest has been enhanced to correctly identify UTF-8 content as ‘‘text’’.

system(), backticks and pipe open now reflect exec() failure
On Unix and similar platforms, system(), qx() and open(FOO, ‘‘cmd |’’) etc., are implemented via
fork() and exec(). When the underlying exec() fails, earlier versions did not report the error properly,
since the exec() happened to be in a different process.

The child process now communicates with the parent about the error in launching the external
command, which allows these constructs to return with their usual error value and set $!.

Improved diagnostics
Line numbers are no longer suppressed (under most likely circumstances) during the global destruction
phase.

Diagnostics emitted from code running in threads other than the main thread are now accompanied by
the thread ID.

Embedded null characters in diagnostics now actually show up. They used to truncate the message in
prior versions.

$foo::a and $foo::b are now exempt from ‘‘possible typo’’ warnings only if sort() is encountered
in package foo.

Unrecognized alphabetic escapes encountered when parsing quote constructs now generate a warning,
since they may take on new semantics in later versions of Perl.

Many diagnostics now report the internal operation in which the warning was provoked, like so:

Use of uninitialized value in concatenation (.) at (eval 1) line 1.
Use of uninitialized value in print at (eval 1) line 1.

Diagnostics that occur within eval may also report the file and line number where the eval is located, in
addition to the eval sequence number and the line number within the evaluated text itself. For example:

Not enough arguments for scalar at (eval 4)[newlib/perl5db.pl:1411] line 2, at EOF

Diagnostics follow STDERR
Diagnostic output now goes to whichever file the STDERR handle is pointing at, instead of always
going to the underlying C runtime library’s stderr.

More consistent close-on-exec behavior
On systems that support a close-on-exec flag on filehandles, the flag is now set for any handles created
by pipe(), socketpair(), socket(), and accept(), if that is warranted by the value of $ˆF that may be in
effect. Earlier versions neglected to set the flag for handles created with these operators. See ‘‘pipe’’ in
perlfunc, ‘‘socketpair’’ in perlfunc, ‘‘socket’’ in perlfunc, ‘‘accept’’ in perlfunc, and ‘‘$ˆF’’ in perlvar.

perl v5.36.0 2019-02-18 541

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

syswrite() ease-of-use
The length argument of syswrite() has become optional.

Better syntax checks on parenthesized unary operators
Expressions such as:

print defined(&foo,&bar,&baz);
print uc("foo","bar","baz");
undef($foo,&bar);

used to be accidentally allowed in earlier versions, and produced unpredictable behaviour. Some
produced ancillary warnings when used in this way; others silently did the wrong thing.

The parenthesized forms of most unary operators that expect a single argument now ensure that they
are not called with more than one argument, making the cases shown above syntax errors. The usual
behaviour of:

print defined &foo, &bar, &baz;
print uc "foo", "bar", "baz";
undef $foo, &bar;

remains unchanged. See perlop.

Bit operators support full native integer width
The bit operators (& | ˆ ˜ << >>) now operate on the full native integral width (the exact size of which is
available in $Config{ivsize}). For example, if your platform is either natively 64-bit or if Perl has
been configured to use 64-bit integers, these operations apply to 8 bytes (as opposed to 4 bytes on
32-bit platforms). For portability, be sure to mask off the excess bits in the result of unary ˜, e.g., ˜$x
& 0xffffffff.

Improved security features
More potentially unsafe operations taint their results for improved security.

The passwd and shell fields returned by the getpwent(), getpwnam(), and getpwuid() are now
tainted, because the user can affect their own encrypted password and login shell.

The variable modified by shmread(), and messages returned by msgrcv() (and its object-oriented
interface IPC::SysV::Msg::rcv) are also tainted, because other untrusted processes can modify
messages and shared memory segments for their own nefarious purposes.

More functional bareword prototype (*)
Bareword prototypes have been rationalized to enable them to be used to override builtins that accept
barewords and interpret them in a special way, such as require or do.

Arguments prototyped as * will now be visible within the subroutine as either a simple scalar or as a
reference to a typeglob. See ‘‘Prototypes’’ in perlsub.

require and do may be overridden
require and do 'file' operations may be overridden locally by importing subroutines of the
same name into the current package (or globally by importing them into the CORE::GLOBAL::
namespace). Overriding require will also affect use, provided the override is visible at compile-
time. See ‘‘Overriding Built-in Functions’’ in perlsub.

$ˆX variables may now have names longer than one character
Formerly, $ˆX was synonymous with ${‘‘\cX’’}, but $ˆXY was a syntax error. Now variable names
that begin with a control character may be arbitrarily long. However, for compatibility reasons, these
variables must be written with explicit braces, as ${ˆXY} for example. ${ˆXYZ} is synonymous with
${‘‘\cXYZ’’}. Variable names with more than one control character, such as ${ˆXYˆZ}, are illegal.

The old syntax has not changed. As before, ‘ˆX’ may be either a literal control-X character or the two-
character sequence ‘caret’ plus ‘X’. When braces are omitted, the variable name stops after the control
character. Thus "$ˆXYZ" continues to be synonymous with $ˆX . "YZ" as before.

As before, lexical variables may not have names beginning with control characters. As before,
variables whose names begin with a control character are always forced to be in package ‘main’. All
such variables are reserved for future extensions, except those that begin with ˆ_, which may be used
by user programs and are guaranteed not to acquire special meaning in any future version of Perl.

perl v5.36.0 2019-02-18 542

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

New variable $ˆC reflects -c switch
$ˆC has a boolean value that reflects whether perl is being run in compile-only mode (i.e. via the -c
switch). Since BEGIN blocks are executed under such conditions, this variable enables perl code to
determine whether actions that make sense only during normal running are warranted. See perlvar.

New variable $ˆV contains Perl version as a string
$ˆV contains the Perl version number as a string composed of characters whose ordinals match the
version numbers, i.e. v5.6.0. This may be used in string comparisons.

See Support for strings represented as a vector of ordinals for an example.

Optional Y2K warnings
If Perl is built with the cpp macro PERL_Y2KWARN defined, it emits optional warnings when
concatenating the number 19 with another number.

This behavior must be specifically enabled when running Configure. See INSTALL and README.Y2K.

Arrays now always interpolate into double-quoted strings
In double-quoted strings, arrays now interpolate, no matter what. The behavior in earlier versions of
perl 5 was that arrays would interpolate into strings if the array had been mentioned before the string
was compiled, and otherwise Perl would raise a fatal compile-time error. In versions 5.000 through
5.003, the error was

Literal @example now requires backslash

In versions 5.004_01 through 5.6.0, the error was

In string, @example now must be written as \@example

The idea here was to get people into the habit of writing "fred\@example.com" when they
wanted a literal @ sign, just as they have always written "Give me back my \$5" when they
wanted a literal $ sign.

Starting with 5.6.1, when Perl now sees an @ sign in a double-quoted string, it always attempts to
interpolate an array, regardless of whether or not the array has been used or declared already. The fatal
error has been downgraded to an optional warning:

Possible unintended interpolation of @example in string

This warns you that "fred@example.com" is going to turn into fred.com if you don’t backslash
the @. See http://perl.plover.com/at-error.html for more details about the history here.

@- and @+ provide starting/ending offsets of regex matches
The new magic variables @- and @+ provide the starting and ending offsets, respectively, of $&, $1,
$2, etc. See perlvar for details.

Modules and Pragmata
Modules

attributes
While used internally by Perl as a pragma, this module also provides a way to fetch subroutine and
variable attributes. See attributes.

B The Perl Compiler suite has been extensively reworked for this release. More of the standard Perl
test suite passes when run under the Compiler, but there is still a significant way to go to achieve
production quality compiled executables.

NOTE: The Compiler suite remains highly experimental. The
generated code may not be correct, even when it manages to execute
without errors.

Benchmark
Overall, Benchmark results exhibit lower average error and better timing accuracy.

You can now run tests for n seconds instead of guessing the right number of tests to run: e.g.,
timethese(-5, ...) will run each code for at least 5 CPU seconds. Zero as the ‘‘number of
repetitions’’ means ‘‘for at least 3 CPU seconds’’. The output format has also changed. For
example:

use Benchmark;$x=3;timethese(-5,{a=>sub{$x*$x},b=>sub{$x**2}})

perl v5.36.0 2019-02-18 543

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

will now output something like this:

Benchmark: running a, b, each for at least 5 CPU seconds...
a: 5 wallclock secs (5.77 usr + 0.00 sys = 5.77 CPU) @ 200551.91/s (n=1156516)
b: 4 wallclock secs (5.00 usr + 0.02 sys = 5.02 CPU) @ 159605.18/s (n=800686)

New features: ‘‘each for at least N CPU seconds...’’, ‘‘wallclock secs’’, and the ‘‘@
operations/CPU second (n=operations)’’.

timethese() now returns a reference to a hash of Benchmark objects containing the test results,
keyed on the names of the tests.

timethis() now returns the iterations field in the Benchmark result object instead of 0.

timethese(), timethis(), and the new cmpthese() (see below) can also take a format specifier of
’none’ to suppress output.

A new function countit() is just like timeit() except that it takes a TIME instead of a COUNT.

A new function cmpthese() prints a chart comparing the results of each test returned from a
timethese() call. For each possible pair of tests, the percentage speed difference (iters/sec or
seconds/iter) is shown.

For other details, see Benchmark.

ByteLoader
The ByteLoader is a dedicated extension to generate and run Perl bytecode. See ByteLoader.

constant
References can now be used.

The new version also allows a leading underscore in constant names, but disallows a double
leading underscore (as in ‘‘_ _LINE_ _’’). Some other names are disallowed or warned against,
including BEGIN, END, etc. Some names which were forced into main:: used to fail silently in
some cases; now they’re fatal (outside of main::) and an optional warning (inside of main::). The
ability to detect whether a constant had been set with a given name has been added.

See constant.

charnames
This pragma implements the \N string escape. See charnames.

Data::Dumper
A Maxdepth setting can be specified to avoid venturing too deeply into deep data structures. See
Data::Dumper.

The XSUB implementation of Dump() is now automatically called if the Useqq setting is not in
use.

Dumping qr// objects works correctly.

DB DB is an experimental module that exposes a clean abstraction to Perl’s debugging API.

DB_File
DB_File can now be built with Berkeley DB versions 1, 2 or 3. See ext/DB_File/Changes.

Devel::DProf
Devel::DProf, a Perl source code profiler has been added. See Devel::DProf and dprofpp.

Devel::Peek
The Devel::Peek module provides access to the internal representation of Perl variables and data.
It is a data debugging tool for the XS programmer.

Dumpvalue
The Dumpvalue module provides screen dumps of Perl data.

DynaLoader
DynaLoader now supports a dl_unload_file() function on platforms that support unloading shared
objects using dlclose().

Perl can also optionally arrange to unload all extension shared objects loaded by Perl. To enable

perl v5.36.0 2019-02-18 544

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

this, build Perl with the Configure option -Accflags=-DDL_UNLOAD_ALL_AT_EXIT. (This
maybe useful if you are using Apache with mod_perl.)

English
$PERL_VERSION now stands for $ˆV (a string value) rather than for $] (a numeric value).

Env
Env now supports accessing environment variables like PATH as array variables.

Fcntl
More Fcntl constants added: F_SETLK64, F_SETLKW64, O_LARGEFILE for large file (more
than 4GB) access (NOTE: the O_LARGEFILE is automatically added to sysopen() flags if large
file support has been configured, as is the default), Free/Net/OpenBSD locking behaviour flags
F_FLOCK, F_POSIX, Linux F_SHLCK, and O_ACCMODE: the combined mask of
O_RDONLY, O_WRONLY, and O_RDWR. The seek()/sysseek() constants SEEK_SET,
SEEK_CUR, and SEEK_END are available via the :seek tag. The chmod()/stat() S_IF* constants
and S_IS* functions are available via the :mode tag.

File::Compare
A compare_text() function has been added, which allows custom comparison functions. See
File::Compare.

File::Find
File::Find now works correctly when the wanted() function is either autoloaded or is a symbolic
reference.

A bug that caused File::Find to lose track of the working directory when pruning top-level
directories has been fixed.

File::Find now also supports several other options to control its behavior. It can follow symbolic
links if the follow option is specified. Enabling the no_chdir option will make File::Find
skip changing the current directory when walking directories. The untaint flag can be useful
when running with taint checks enabled.

See File::Find.

File::Glob
This extension implements BSD-style file globbing. By default, it will also be used for the
internal implementation of the glob() operator. See File::Glob.

File::Spec
New methods have been added to the File::Spec module: devnull() returns the name of the null
device (/dev/null on Unix) and tmpdir() the name of the temp directory (normally /tmp on Unix).
There are now also methods to convert between absolute and relative filenames: abs2rel() and
rel2abs(). For compatibility with operating systems that specify volume names in file paths, the
splitpath(), splitdir(), and catdir() methods have been added.

File::Spec::Functions
The new File::Spec::Functions modules provides a function interface to the File::Spec module.
Allows shorthand

$fullname = catfile($dir1, $dir2, $file);

instead of

$fullname = File::Spec->catfile($dir1, $dir2, $file);

Getopt::Long
Getopt::Long licensing has changed to allow the Perl Artistic License as well as the GPL. It used
to be GPL only, which got in the way of non-GPL applications that wanted to use Getopt::Long.

Getopt::Long encourages the use of Pod::Usage to produce help messages. For example:

perl v5.36.0 2019-02-18 545

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

use Getopt::Long;
use Pod::Usage;
my $man = 0;
my $help = 0;
GetOptions('help|?' => \$help, man => \$man) or pod2usage(2);
pod2usage(1) if $help;
pod2usage(-exitstatus => 0, -verbose => 2) if $man;

_ _END_ _

=head1 NAME

sample - Using Getopt::Long and Pod::Usage

=head1 SYNOPSIS

sample [options] [file ...]

Options:
-help brief help message
-man full documentation

=head1 OPTIONS

=over 8

=item B<-help>

Print a brief help message and exits.

=item B<-man>

Prints the manual page and exits.

=back

=head1 DESCRIPTION

B<This program> will read the given input file(s) and do something
useful with the contents thereof.

=cut

See Pod::Usage for details.

A bug that prevented the non-option call-back <> from being specified as the first argument has
been fixed.

To specify the characters < and > as option starters, use ><. Note, however, that changing option
starters is strongly deprecated.

IO write() and syswrite() will now accept a single-argument form of the call, for consistency with
Perl’s syswrite().

You can now create a TCP-based IO::Socket::INET without forcing a connect attempt. This
allows you to configure its options (like making it non-blocking) and then call connect()
manually.

A bug that prevented the IO::Socket::protocol() accessor from ever returning the correct value
has been corrected.

IO::Socket::connect now uses non-blocking IO instead of alarm() to do connect timeouts.

perl v5.36.0 2019-02-18 546

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

IO::Socket::accept now uses select() instead of alarm() for doing timeouts.

IO::Socket::INET->new now sets $! correctly on failure. $@ is still set for backwards
compatibility.

JPL Java Perl Lingo is now distributed with Perl. See jpl/README for more information.

lib use lib now weeds out any trailing duplicate entries. no lib removes all named entries.

Math::BigInt
The bitwise operations <<, >>, &, |, and ˜ are now supported on bigints.

Math::Complex
The accessor methods Re, Im, arg, abs, rho, and theta can now also act as mutators (accessor
$z->Re(), mutator $z->Re (3)).

The class method display_format and the corresponding object method
display_format, in addition to accepting just one argument, now can also accept a parameter
hash. Recognized keys of a parameter hash are "style", which corresponds to the old one
parameter case, and two new parameters: "format", which is a printf()-style format string
(defaults usually to "%.15g", you can revert to the default by setting the format string to undef)
used for both parts of a complex number, and "polar_pretty_print" (defaults to true),
which controls whether an attempt is made to try to recognize small multiples and rationals of pi
(2pi, pi/2) at the argument (angle) of a polar complex number.

The potentially disruptive change is that in list context both methods now return the parameter
hash, instead of only the value of the "style" parameter.

Math::Trig
A little bit of radial trigonometry (cylindrical and spherical), radial coordinate conversions, and
the great circle distance were added.

Pod::Parser, Pod::InputObjects
Pod::Parser is a base class for parsing and selecting sections of pod documentation from an input
stream. This module takes care of identifying pod paragraphs and commands in the input and
hands off the parsed paragraphs and commands to user-defined methods which are free to interpret
or translate them as they see fit.

Pod::InputObjects defines some input objects needed by Pod::Parser, and for advanced users of
Pod::Parser that need more about a command besides its name and text.

As of release 5.6.0 of Perl, Pod::Parser is now the officially sanctioned ‘‘base parser code’’
recommended for use by all pod2xxx translators. Pod::Text (pod2text) and Pod::Man (pod2man)
have already been converted to use Pod::Parser and efforts to convert Pod::HTML (pod2html) are
already underway. For any questions or comments about pod parsing and translating issues and
utilities, please use the pod-people@perl.org mailing list.

For further information, please see Pod::Parser and Pod::InputObjects.

Pod::Checker, podchecker
This utility checks pod files for correct syntax, according to perlpod. Obvious errors are flagged
as such, while warnings are printed for mistakes that can be handled gracefully. The checklist is
not complete yet. See Pod::Checker.

Pod::ParseUtils, Pod::Find
These modules provide a set of gizmos that are useful mainly for pod translators. Pod::Find
traverses directory structures and returns found pod files, along with their canonical names (like
File::Spec::Unix). Pod::ParseUtils contains Pod::List (useful for storing pod list
information), Pod::Hyperlink (for parsing the contents of L<> sequences) and Pod::Cache (for
caching information about pod files, e.g., link nodes).

Pod::Select, podselect
Pod::Select is a subclass of Pod::Parser which provides a function named ‘‘podselect()’’ to filter
out user-specified sections of raw pod documentation from an input stream. podselect is a script
that provides access to Pod::Select from other scripts to be used as a filter. See Pod::Select.

perl v5.36.0 2019-02-18 547

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

Pod::Usage, pod2usage
Pod::Usage provides the function ‘‘pod2usage()’’ to print usage messages for a Perl script based
on its embedded pod documentation. The pod2usage() function is generally useful to all script
authors since it lets them write and maintain a single source (the pods) for documentation, thus
removing the need to create and maintain redundant usage message text consisting of information
already in the pods.

There is also a pod2usage script which can be used from other kinds of scripts to print usage
messages from pods (even for non-Perl scripts with pods embedded in comments).

For details and examples, please see Pod::Usage.

Pod::Text and Pod::Man
Pod::Text has been rewritten to use Pod::Parser. While pod2text() is still available for backwards
compatibility, the module now has a new preferred interface. See Pod::Text for the details. The
new Pod::Text module is easily subclassed for tweaks to the output, and two such subclasses
(Pod::Text::Termcap for man-page-style bold and underlining using termcap information, and
Pod::Text::Color for markup with ANSI color sequences) are now standard.

pod2man has been turned into a module, Pod::Man, which also uses Pod::Parser. In the process,
several outstanding bugs related to quotes in section headers, quoting of code escapes, and nested
lists have been fixed. pod2man is now a wrapper script around this module.

SDBM_File
An EXISTS method has been added to this module (and sdbm_exists() has been added to the
underlying sdbm library), so one can now call exists on an SDBM_File tied hash and get the
correct result, rather than a runtime error.

A bug that may have caused data loss when more than one disk block happens to be read from the
database in a single FETCH() has been fixed.

Sys::Syslog
Sys::Syslog now uses XSUBs to access facilities from syslog.h so it no longer requires syslog.ph
to exist.

Sys::Hostname
Sys::Hostname now uses XSUBs to call the C library’s gethostname() or uname() if they exist.

Term::ANSIColor
Term::ANSIColor is a very simple module to provide easy and readable access to the ANSI color
and highlighting escape sequences, supported by most ANSI terminal emulators. It is now
included standard.

Time::Local
The timelocal() and timegm() functions used to silently return bogus results when the date fell
outside the machine’s integer range. They now consistently croak() if the date falls in an
unsupported range.

Win32
The error return value in list context has been changed for all functions that return a list of values.
Previously these functions returned a list with a single element undef if an error occurred. Now
these functions return the empty list in these situations. This applies to the following functions:

Win32::FsType
Win32::GetOSVersion

The remaining functions are unchanged and continue to return undef on error even in list
context.

The Win32::SetLastError(ERROR) function has been added as a complement to the
Win32::GetLastError() function.

The new Win32::GetFullPathName(FILENAME) returns the full absolute pathname for FILENAME
in scalar context. In list context it returns a two-element list containing the fully qualified
directory name and the filename. See Win32.

perl v5.36.0 2019-02-18 548

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

XSLoader
The XSLoader extension is a simpler alternative to DynaLoader. See XSLoader.

DBM Filters
A new feature called ‘‘DBM Filters’’ has been added to all the DBM modules--DB_File,
GDBM_File, NDBM_File, ODBM_File, and SDBM_File. DBM Filters add four new methods to
each DBM module:

filter_store_key
filter_store_value
filter_fetch_key
filter_fetch_value

These can be used to filter key-value pairs before the pairs are written to the database or just after
they are read from the database. See perldbmfilter for further information.

Pragmata
use attrs is now obsolete, and is only provided for backward-compatibility. It’s been replaced by
the sub : attributes syntax. See ‘‘Subroutine Attributes’’ in perlsub and attributes.

Lexical warnings pragma, use warnings;, to control optional warnings. See perllexwarn.

use filetest to control the behaviour of filetests (-r -w ...). Currently only one subpragma
implemented, ‘‘use filetest ’access’;’’, that uses access (2) or equivalent to check permissions instead of
using stat (2) as usual. This matters in filesystems where there are ACLs (access control lists): the
stat (2) might lie, but access (2) knows better.

The open pragma can be used to specify default disciplines for handle constructors (e.g. open()) and
for qx//. The two pseudo-disciplines :raw and :crlf are currently supported on DOS-derivative
platforms (i.e. where binmode is not a no-op). See also ‘‘binmode() can be used to set :crlf and :raw
modes’’.

Utility Changes
dprofpp

dprofpp is used to display profile data generated using Devel::DProf. See dprofpp.

find2perl
The find2perl utility now uses the enhanced features of the File::Find module. The -depth and
-follow options are supported. Pod documentation is also included in the script.

h2xs
The h2xs tool can now work in conjunction with C::Scan (available from CPAN) to automatically
parse real-life header files. The -M, -a, -k, and -o options are new.

perlcc
perlcc now supports the C and Bytecode backends. By default, it generates output from the simple
C backend rather than the optimized C backend.

Support for non-Unix platforms has been improved.

perldoc
perldoc has been reworked to avoid possible security holes. It will not by default let itself be run as
the superuser, but you may still use the -U switch to try to make it drop privileges first.

The Perl Debugger
Many bug fixes and enhancements were added to perl5db.pl, the Perl debugger. The help
documentation was rearranged. New commands include < ?, > ?, and { ? to list out current actions,
man docpage to run your doc viewer on some perl docset, and support for quoted options. The help
information was rearranged, and should be viewable once again if you’re using less as your pager. A
serious security hole was plugged — you should immediately remove all older versions of the Perl
debugger as installed in previous releases, all the way back to perl3, from your system to avoid being
bitten by this.

Improved Documentation
Many of the platform-specific README files are now part of the perl installation. See perl for the
complete list.

perl v5.36.0 2019-02-18 549

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

perlapi.pod
The official list of public Perl API functions.

perlboot.pod
A tutorial for beginners on object-oriented Perl.

perlcompile.pod
An introduction to using the Perl Compiler suite.

perldbmfilter.pod
A howto document on using the DBM filter facility.

perldebug.pod
All material unrelated to running the Perl debugger, plus all low-level guts-like details that risked
crushing the casual user of the debugger, have been relocated from the old manpage to the next
entry below.

perldebguts.pod
This new manpage contains excessively low-level material not related to the Perl debugger, but
slightly related to debugging Perl itself. It also contains some arcane internal details of how the
debugging process works that may only be of interest to developers of Perl debuggers.

perlfork.pod
Notes on the fork() emulation currently available for the Windows platform.

perlfilter.pod
An introduction to writing Perl source filters.

perlhack.pod
Some guidelines for hacking the Perl source code.

perlintern.pod
A list of internal functions in the Perl source code. (List is currently empty.)

perllexwarn.pod
Introduction and reference information about lexically scoped warning categories.

perlnumber.pod
Detailed information about numbers as they are represented in Perl.

perlopentut.pod
A tutorial on using open() effectively.

perlreftut.pod
A tutorial that introduces the essentials of references.

perltootc.pod
A tutorial on managing class data for object modules.

perltodo.pod
Discussion of the most often wanted features that may someday be supported in Perl.

perlunicode.pod
An introduction to Unicode support features in Perl.

Performance enhancements
Simple sort() using { $a <=> $b } and the like are optimized

Many common sort() operations using a simple inlined block are now optimized for faster
performance.

Optimized assignments to lexical variables
Certain operations in the RHS of assignment statements have been optimized to directly set the lexical
variable on the LHS, eliminating redundant copying overheads.

Faster subroutine calls
Minor changes in how subroutine calls are handled internally provide marginal improvements in
performance.

delete(), each(), values() and hash iteration are faster
The hash values returned by delete(), each(), values() and hashes in a list context are the actual values
in the hash, instead of copies. This results in significantly better performance, because it eliminates

perl v5.36.0 2019-02-18 550

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

needless copying in most situations.

Installation and Configuration Improvements
-Dusethreads means something different

The -Dusethreads flag now enables the experimental interpreter-based thread support by default. To
get the flavor of experimental threads that was in 5.005 instead, you need to run Configure with
‘‘-Dusethreads -Duse5005threads’’.

As of v5.6.0, interpreter-threads support is still lacking a way to create new threads from Perl (i.e., use
Thread; will not work with interpreter threads). use Thread; continues to be available when you
specify the -Duse5005threads option to Configure, bugs and all.

NOTE: Support for threads continues to be an experimental feature.
Interfaces and implementation are subject to sudden and drastic changes.

New Configure flags
The following new flags may be enabled on the Configure command line by running Configure with
-Dflag.

usemultiplicity
usethreads useithreads (new interpreter threads: no Perl API yet)
usethreads use5005threads (threads as they were in 5.005)

use64bitint (equal to now deprecated 'use64bits')
use64bitall

uselongdouble
usemorebits
uselargefiles
usesocks (only SOCKS v5 supported)

Threadedness and 64-bitness now more daring
The Configure options enabling the use of threads and the use of 64-bitness are now more daring in the
sense that they no more have an explicit list of operating systems of known threads/64-bit capabilities.
In other words: if your operating system has the necessary APIs and datatypes, you should be able just
to go ahead and use them, for threads by Configure -Dusethreads, and for 64 bits either explicitly by
Configure -Duse64bitint or implicitly if your system has 64-bit wide datatypes. See also ‘‘64-bit
support’’.

Long Doubles
Some platforms have ‘‘long doubles’’, floating point numbers of even larger range than ordinary
‘‘doubles’’. To enable using long doubles for Perl’s scalars, use -Duselongdouble.

-Dusemorebits
You can enable both -Duse64bitint and -Duselongdouble with -Dusemorebits. See also ‘‘64-bit
support’’.

-Duselargefiles
Some platforms support system APIs that are capable of handling large files (typically, files larger than
two gigabytes). Perl will try to use these APIs if you ask for -Duselargefiles.

See ‘‘Large file support’’ for more information.

installusrbinperl
You can use ‘‘Configure -Uinstallusrbinperl’’ which causes installperl to skip installing perl also as
/usr/bin/perl. This is useful if you prefer not to modify /usr/bin for some reason or another but harmful
because many scripts assume to find Perl in /usr/bin/perl.

SOCKS support
You can use ‘‘Configure -Dusesocks’’ which causes Perl to probe for the SOCKS proxy protocol library
(v5, not v4). For more information on SOCKS, see:

http://www.socks.nec.com/

-A flag
You can ‘‘post-edit’’ the Configure variables using the Configure -A switch. The editing happens
immediately after the platform specific hints files have been processed but before the actual

perl v5.36.0 2019-02-18 551

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

configuration process starts. Run Configure -h to find out the full -A syntax.

Enhanced Installation Directories
The installation structure has been enriched to improve the support for maintaining multiple versions of
perl, to provide locations for vendor-supplied modules, scripts, and manpages, and to ease maintenance
of locally-added modules, scripts, and manpages. See the section on Installation Directories in the
INSTALL file for complete details. For most users building and installing from source, the defaults
should be fine.

If you previously used Configure -Dsitelib or -Dsitearch to set special values for library
directories, you might wish to consider using the new -Dsiteprefix setting instead. Also, if you
wish to re-use a config.sh file from an earlier version of perl, you should be sure to check that
Configure makes sensible choices for the new directories. See INSTALL for complete details.

Platform specific changes
Supported platforms

• The Mach CThreads (NEXTSTEP, OPENSTEP) are now supported by the Thread extension.

• GNU/Hurd is now supported.

• Rhapsody/Darwin is now supported.

• EPOC is now supported (on Psion 5).

• The cygwin port (formerly cygwin32) has been greatly improved.

DOS
• Perl now works with djgpp 2.02 (and 2.03 alpha).

• Environment variable names are not converted to uppercase any more.

• Incorrect exit codes from backticks have been fixed.

• This port continues to use its own builtin globbing (not File::Glob).

OS390 (OpenEdition MVS)
Support for this EBCDIC platform has not been renewed in this release. There are difficulties in
reconciling Perl’s standardization on UTF-8 as its internal representation for characters with the
EBCDIC character set, because the two are incompatible.

It is unclear whether future versions will renew support for this platform, but the possibility exists.

VMS
Numerous revisions and extensions to configuration, build, testing, and installation process to
accommodate core changes and VMS-specific options.

Expand %ENV-handling code to allow runtime mapping to logical names, CLI symbols, and CRTL
environ array.

Extension of subprocess invocation code to accept filespecs as command ‘‘verbs’’.

Add to Perl command line processing the ability to use default file types and to recognize Unix-style
2>&1.

Expansion of File::Spec::VMS routines, and integration into ExtUtils::MM_VMS.

Extension of ExtUtils::MM_VMS to handle complex extensions more flexibly.

Barewords at start of Unix-syntax paths may be treated as text rather than only as logical names.

Optional secure translation of several logical names used internally by Perl.

Miscellaneous bugfixing and porting of new core code to VMS.

Thanks are gladly extended to the many people who have contributed VMS patches, testing, and ideas.

Win32
Perl can now emulate fork() internally, using multiple interpreters running in different concurrent
threads. This support must be enabled at build time. See perlfork for detailed information.

When given a pathname that consists only of a drivename, such as A:, opendir() and stat() now use
the current working directory for the drive rather than the drive root.

The builtin XSUB functions in the Win32:: namespace are documented. See Win32.

perl v5.36.0 2019-02-18 552

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

$ˆX now contains the full path name of the running executable.

A Win32::GetLongPathName() function is provided to complement Win32::GetFullPathName()
and Win32::GetShortPathName(). See Win32.

POSIX::uname() is supported.

system(1,...) now returns true process IDs rather than process handles. kill() accepts any real process
id, rather than strictly return values from system(1,...).

For better compatibility with Unix, kill(0, $pid) can now be used to test whether a process
exists.

The Shell module is supported.

Better support for building Perl under command.com in Windows 95 has been added.

Scripts are read in binary mode by default to allow ByteLoader (and the filter mechanism in general) to
work properly. For compatibility, the DATA filehandle will be set to text mode if a carriage return is
detected at the end of the line containing the _ _END_ _ or _ _DATA_ _ token; if not, the DATA
filehandle will be left open in binary mode. Earlier versions always opened the DATA filehandle in text
mode.

The glob() operator is implemented via the File::Glob extension, which supports glob syntax of
the C shell. This increases the flexibility of the glob() operator, but there may be compatibility issues
for programs that relied on the older globbing syntax. If you want to preserve compatibility with the
older syntax, you might want to run perl with -MFile::DosGlob. For details and compatibility
information, see File::Glob.

Significant bug fixes
<HANDLE> on empty files

With $/ set to undef, ‘‘slurping’’ an empty file returns a string of zero length (instead of undef, as it
used to) the first time the HANDLE is read after $/ is set to undef. Further reads yield undef.

This means that the following will append ‘‘foo’’ to an empty file (it used to do nothing):

perl -0777 -pi -e 's/ˆ/foo/' empty_file

The behaviour of:

perl -pi -e 's/ˆ/foo/' empty_file

is unchanged (it continues to leave the file empty).

eval '...' improvements
Line numbers (as reflected by caller() and most diagnostics) within eval '...' were often incorrect
where here documents were involved. This has been corrected.

Lexical lookups for variables appearing in eval '...' within functions that were themselves called
within an eval '...' were searching the wrong place for lexicals. The lexical search now correctly
ends at the subroutine’s block boundary.

The use of return within eval {...} caused $@ not to be reset correctly when no exception
occurred within the eval. This has been fixed.

Parsing of here documents used to be flawed when they appeared as the replacement expression in
eval 's/.../.../e' . This has been fixed.

All compilation errors are true errors
Some ‘‘errors’’ encountered at compile time were by necessity generated as warnings followed by
eventual termination of the program. This enabled more such errors to be reported in a single run,
rather than causing a hard stop at the first error that was encountered.

The mechanism for reporting such errors has been reimplemented to queue compile-time errors and
report them at the end of the compilation as true errors rather than as warnings. This fixes cases where
error messages leaked through in the form of warnings when code was compiled at run time using
eval STRING, and also allows such errors to be reliably trapped using eval "...".

Implicitly closed filehandles are safer
Sometimes implicitly closed filehandles (as when they are localized, and Perl automatically closes
them on exiting the scope) could inadvertently set $? or $!. This has been corrected.

perl v5.36.0 2019-02-18 553

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

Behavior of list slices is more consistent
When taking a slice of a literal list (as opposed to a slice of an array or hash), Perl used to return an
empty list if the result happened to be composed of all undef values.

The new behavior is to produce an empty list if (and only if) the original list was empty. Consider the
following example:

@a = (1,undef,undef,2)[2,1,2];

The old behavior would have resulted in @a having no elements. The new behavior ensures it has three
undefined elements.

Note in particular that the behavior of slices of the following cases remains unchanged:

@a = ()[1,2];
@a = (getpwent)[7,0];
@a = (anything_returning_empty_list())[2,1,2];
@a = @b[2,1,2];
@a = @c{'a','b','c'};

See perldata.

(\$) prototype and $foo{a}
A scalar reference prototype now correctly allows a hash or array element in that slot.

goto &sub and AUTOLOAD
The goto &sub construct works correctly when &sub happens to be autoloaded.

-bareword allowed under use integer
The autoquoting of barewords preceded by - did not work in prior versions when the integer
pragma was enabled. This has been fixed.

Failures in DESTROY()
When code in a destructor threw an exception, it went unnoticed in earlier versions of Perl, unless
someone happened to be looking in $@ just after the point the destructor happened to run. Such
failures are now visible as warnings when warnings are enabled.

Locale bugs fixed
printf() and sprintf() previously reset the numeric locale back to the default ‘‘C’’ locale. This has
been fixed.

Numbers formatted according to the local numeric locale (such as using a decimal comma instead of a
decimal dot) caused ‘‘isn’t numeric’’ warnings, even while the operations accessing those numbers
produced correct results. These warnings have been discontinued.

Memory leaks
The eval 'return sub {...}' construct could sometimes leak memory. This has been fixed.

Operations that aren’t filehandle constructors used to leak memory when used on invalid filehandles.
This has been fixed.

Constructs that modified @_ could fail to deallocate values in @_ and thus leak memory. This has been
corrected.

Spurious subroutine stubs after failed subroutine calls
Perl could sometimes create empty subroutine stubs when a subroutine was not found in the package.
Such cases stopped later method lookups from progressing into base packages. This has been
corrected.

Taint failures under -U
When running in unsafe mode, taint violations could sometimes cause silent failures. This has been
fixed.

END blocks and the -c switch
Prior versions used to run BEGIN and END blocks when Perl was run in compile-only mode. Since this
is typically not the expected behavior, END blocks are not executed anymore when the -c switch is
used, or if compilation fails.

See ‘‘Support for CHECK blocks’’ for how to run things when the compile phase ends.

perl v5.36.0 2019-02-18 554

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

Potential to leak DATA filehandles
Using the _ _DATA_ _ token creates an implicit filehandle to the file that contains the token. It is the
program’s responsibility to close it when it is done reading from it.

This caveat is now better explained in the documentation. See perldata.

New or Changed Diagnostics
‘‘%s’’ variable %s masks earlier declaration in same %s

(W misc) A ‘‘my’’ or ‘‘our’’ variable has been redeclared in the current scope or statement,
effectively eliminating all access to the previous instance. This is almost always a typographical
error. Note that the earlier variable will still exist until the end of the scope or until all closure
referents to it are destroyed.

‘‘my sub’’ not yet implemented
(F) Lexically scoped subroutines are not yet implemented. Don’t try that yet.

‘‘our’’ variable %s redeclared
(W misc) You seem to have already declared the same global once before in the current lexical
scope.

’!’ allowed only after types %s
(F) The ’!’ is allowed in pack() and unpack() only after certain types. See ‘‘pack’’ in perlfunc.

/ cannot take a count
(F) You had an unpack template indicating a counted-length string, but you have also specified an
explicit size for the string. See ‘‘pack’’ in perlfunc.

/ must be followed by a, A or Z
(F) You had an unpack template indicating a counted-length string, which must be followed by
one of the letters a, A or Z to indicate what sort of string is to be unpacked. See ‘‘pack’’ in
perlfunc.

/ must be followed by a*, A* or Z*
(F) You had a pack template indicating a counted-length string, Currently the only things that can
have their length counted are a*, A* or Z*. See ‘‘pack’’ in perlfunc.

/ must follow a numeric type
(F) You had an unpack template that contained a ’#’, but this did not follow some numeric unpack
specification. See ‘‘pack’’ in perlfunc.

/%s/: Unrecognized escape \\%c passed through
(W regexp) You used a backslash-character combination which is not recognized by Perl. This
combination appears in an interpolated variable or a ' -delimited regular expression. The
character was understood literally.

/%s/: Unrecognized escape \\%c in character class passed through
(W regexp) You used a backslash-character combination which is not recognized by Perl inside
character classes. The character was understood literally.

/%s/ should probably be written as ‘‘%s’’
(W syntax) You have used a pattern where Perl expected to find a string, as in the first argument to
join. Perl will treat the true or false result of matching the pattern against $_ as the string,
which is probably not what you had in mind.

%s() called too early to check prototype
(W prototype) You’ve called a function that has a prototype before the parser saw a definition or
declaration for it, and Perl could not check that the call conforms to the prototype. You need to
either add an early prototype declaration for the subroutine in question, or move the subroutine
definition ahead of the call to get proper prototype checking. Alternatively, if you are certain that
you’re calling the function correctly, you may put an ampersand before the name to avoid the
warning. See perlsub.

%s argument is not a HASH or ARRAY element
(F) The argument to exists() must be a hash or array element, such as:

$foo{$bar}
$ref->{"susie"}[12]

perl v5.36.0 2019-02-18 555

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

%s argument is not a HASH or ARRAY element or slice
(F) The argument to delete() must be either a hash or array element, such as:

$foo{$bar}
$ref->{"susie"}[12]

or a hash or array slice, such as:

@foo[$bar, $baz, $xyzzy]
@{$ref->[12]}{"susie", "queue"}

%s argument is not a subroutine name
(F) The argument to exists() for exists &sub must be a subroutine name, and not a subroutine
call. exists &sub() will generate this error.

%s package attribute may clash with future reserved word: %s
(W reserved) A lowercase attribute name was used that had a package-specific handler. That
name might have a meaning to Perl itself some day, even though it doesn’t yet. Perhaps you
should use a mixed-case attribute name, instead. See attributes.

(in cleanup) %s
(W misc) This prefix usually indicates that a DESTROY() method raised the indicated exception.
Since destructors are usually called by the system at arbitrary points during execution, and often a
vast number of times, the warning is issued only once for any number of failures that would
otherwise result in the same message being repeated.

Failure of user callbacks dispatched using the G_KEEPERR flag could also result in this warning.
See ‘‘G_KEEPERR’’ in perlcall.

<> should be quotes
(F) You wrote require <file> when you should have written require 'file'.

Attempt to join self
(F) You tried to join a thread from within itself, which is an impossible task. You may be joining
the wrong thread, or you may need to move the join() to some other thread.

Bad evalled substitution pattern
(F) You’ve used the /e switch to evaluate the replacement for a substitution, but perl found a
syntax error in the code to evaluate, most likely an unexpected right brace ’}’.

Bad realloc() ignored
(S) An internal routine called realloc() on something that had never been malloc()ed in the first
place. Mandatory, but can be disabled by setting environment variable PERL_BADFREE to 1.

Bareword found in conditional
(W bareword) The compiler found a bareword where it expected a conditional, which often
indicates that an || or && was parsed as part of the last argument of the previous construct, for
example:

open FOO || die;

It may also indicate a misspelled constant that has been interpreted as a bareword:

use constant TYPO => 1;
if (TYOP) { print "foo" }

The strict pragma is useful in avoiding such errors.

Binary number > 0b11111111111111111111111111111111 non-portable
(W portable) The binary number you specified is larger than 2**32-1 (4294967295) and therefore
non-portable between systems. See perlport for more on portability concerns.

Bit vector size > 32 non-portable
(W portable) Using bit vector sizes larger than 32 is non-portable.

Buffer overflow in prime_env_iter: %s
(W internal) A warning peculiar to VMS. While Perl was preparing to iterate over %ENV, it
encountered a logical name or symbol definition which was too long, so it was truncated to the
string shown.

perl v5.36.0 2019-02-18 556

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

Can’t check filesystem of script ‘‘%s’’
(P) For some reason you can’t check the filesystem of the script for nosuid.

Can’t declare class for non-scalar %s in ‘‘%s’’
(S) Currently, only scalar variables can declared with a specific class qualifier in a ‘‘my’’ or ‘‘our’’
declaration. The semantics may be extended for other types of variables in future.

Can’t declare %s in ‘‘%s’’
(F) Only scalar, array, and hash variables may be declared as ‘‘my’’ or ‘‘our’’ variables. They
must have ordinary identifiers as names.

Can’t ignore signal CHLD, forcing to default
(W signal) Perl has detected that it is being run with the SIGCHLD signal (sometimes known as
SIGCLD) disabled. Since disabling this signal will interfere with proper determination of exit
status of child processes, Perl has reset the signal to its default value. This situation typically
indicates that the parent program under which Perl may be running (e.g., cron) is being very
careless.

Can’t modify non-lvalue subroutine call
(F) Subroutines meant to be used in lvalue context should be declared as such, see ‘‘Lvalue
subroutines’’ in perlsub.

Can’t read CRTL environ
(S) A warning peculiar to VMS. Perl tried to read an element of %ENV from the CRTL’s internal
environment array and discovered the array was missing. You need to figure out where your CRTL
misplaced its environ or define PERL_ENV_TABLES (see perlvms) so that environ is not searched.

Can’t remove %s: %s, skipping file
(S) You requested an inplace edit without creating a backup file. Perl was unable to remove the
original file to replace it with the modified file. The file was left unmodified.

Can’t return %s from lvalue subroutine
(F) Perl detected an attempt to return illegal lvalues (such as temporary or readonly values) from a
subroutine used as an lvalue. This is not allowed.

Can’t weaken a nonreference
(F) You attempted to weaken something that was not a reference. Only references can be
weakened.

Character class [:%s:] unknown
(F) The class in the character class [: :] syntax is unknown. See perlre.

Character class syntax [%s] belongs inside character classes
(W unsafe) The character class constructs [: :], [= =], and [. .] go inside character classes, the []
are part of the construct, for example: /[012[:alpha:]345]/. Note that [= =] and [. .] are not
currently implemented; they are simply placeholders for future extensions.

Constant is not %s reference
(F) A constant value (perhaps declared using the use constant pragma) is being dereferenced,
but it amounts to the wrong type of reference. The message indicates the type of reference that
was expected. This usually indicates a syntax error in dereferencing the constant value. See
‘‘Constant Functions’’ in perlsub and constant.

constant(%s): %s
(F) The parser found inconsistencies either while attempting to define an overloaded constant, or
when trying to find the character name specified in the \N{...} escape. Perhaps you forgot to
load the corresponding overload or charnames pragma? See charnames and overload.

CORE::%s is not a keyword
(F) The CORE:: namespace is reserved for Perl keywords.

defined(@array) is deprecated
(D) defined() is not usually useful on arrays because it checks for an undefined scalar value. If
you want to see if the array is empty, just use if (@array) { # not empty } for
example.

perl v5.36.0 2019-02-18 557

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

defined(%hash) is deprecated
(D) defined() is not usually useful on hashes because it checks for an undefined scalar value. If
you want to see if the hash is empty, just use if (%hash) { # not empty } for example.

Did not produce a valid header
See Server error.

(Did you mean ‘‘local’’ instead of ‘‘our’’?)
(W misc) Remember that ‘‘our’’ does not localize the declared global variable. You have declared
it again in the same lexical scope, which seems superfluous.

Document contains no data
See Server error.

entering effective %s failed
(F) While under the use filetest pragma, switching the real and effective uids or gids failed.

false [] range ‘‘%s’’ in regexp
(W regexp) A character class range must start and end at a literal character, not another character
class like \d or [:alpha:]. The ‘‘-’’ in your false range is interpreted as a literal ‘‘-’’.
Consider quoting the ‘‘-’’, ‘‘\-’’. See perlre.

Filehandle %s opened only for output
(W io) You tried to read from a filehandle opened only for writing. If you intended it to be a
read/write filehandle, you needed to open it with ‘‘+<’’ or ‘‘+>’’ or ‘‘+>>’’ instead of with ‘‘<’’ or
nothing. If you intended only to read from the file, use ‘‘<’’. See ‘‘open’’ in perlfunc.

flock() on closed filehandle %s
(W closed) The filehandle you’re attempting to flock() got itself closed some time before now.
Check your logic flow. flock() operates on filehandles. Are you attempting to call flock() on a
dirhandle by the same name?

Global symbol ‘‘%s’’ requires explicit package name
(F) You’ve said ‘‘use strict vars’’, which indicates that all variables must either be lexically scoped
(using ‘‘my’’), declared beforehand using ‘‘our’’, or explicitly qualified to say which package the
global variable is in (using ‘‘::’’).

Hexadecimal number > 0xffffffff non-portable
(W portable) The hexadecimal number you specified is larger than 2**32-1 (4294967295) and
therefore non-portable between systems. See perlport for more on portability concerns.

Ill-formed CRTL environ value ‘‘%s’’
(W internal) A warning peculiar to VMS. Perl tried to read the CRTL’s internal environ array, and
encountered an element without the = delimiter used to separate keys from values. The element is
ignored.

Ill-formed message in prime_env_iter: |%s|
(W internal) A warning peculiar to VMS. Perl tried to read a logical name or CLI symbol
definition when preparing to iterate over %ENV, and didn’t see the expected delimiter between key
and value, so the line was ignored.

Illegal binary digit %s
(F) You used a digit other than 0 or 1 in a binary number.

Illegal binary digit %s ignored
(W digit) You may have tried to use a digit other than 0 or 1 in a binary number. Interpretation of
the binary number stopped before the offending digit.

Illegal number of bits in vec
(F) The number of bits in vec() (the third argument) must be a power of two from 1 to 32 (or 64, if
your platform supports that).

Integer overflow in %s number
(W overflow) The hexadecimal, octal or binary number you have specified either as a literal or as
an argument to hex() or oct() is too big for your architecture, and has been converted to a floating
point number. On a 32-bit architecture the largest hexadecimal, octal or binary number
representable without overflow is 0xFFFFFFFF, 037777777777, or
0b11111111111111111111111111111111 respectively. Note that Perl transparently promotes all

perl v5.36.0 2019-02-18 558

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

numbers to a floating point representation internally — subject to loss of precision errors in
subsequent operations.

Invalid %s attribute: %s
The indicated attribute for a subroutine or variable was not recognized by Perl or by a user-
supplied handler. See attributes.

Invalid %s attributes: %s
The indicated attributes for a subroutine or variable were not recognized by Perl or by a user-
supplied handler. See attributes.

invalid [] range ‘‘%s’’ in regexp
The offending range is now explicitly displayed.

Invalid separator character %s in attribute list
(F) Something other than a colon or whitespace was seen between the elements of an attribute list.
If the previous attribute had a parenthesised parameter list, perhaps that list was terminated too
soon. See attributes.

Invalid separator character %s in subroutine attribute list
(F) Something other than a colon or whitespace was seen between the elements of a subroutine
attribute list. If the previous attribute had a parenthesised parameter list, perhaps that list was
terminated too soon.

leaving effective %s failed
(F) While under the use filetest pragma, switching the real and effective uids or gids failed.

Lvalue subs returning %s not implemented yet
(F) Due to limitations in the current implementation, array and hash values cannot be returned in
subroutines used in lvalue context. See ‘‘Lvalue subroutines’’ in perlsub.

Method %s not permitted
See Server error.

Missing %sbrace%s on \N{}
(F) Wrong syntax of character name literal \N{charname} within double-quotish context.

Missing command in piped open
(W pipe) You used the open(FH, "| command") or open(FH, "command |")
construction, but the command was missing or blank.

Missing name in ‘‘my sub’’
(F) The reserved syntax for lexically scoped subroutines requires that they have a name with
which they can be found.

No %s specified for -%c
(F) The indicated command line switch needs a mandatory argument, but you haven’t specified
one.

No package name allowed for variable %s in ‘‘our’’
(F) Fully qualified variable names are not allowed in ‘‘our’’ declarations, because that doesn’t
make much sense under existing semantics. Such syntax is reserved for future extensions.

No space allowed after -%c
(F) The argument to the indicated command line switch must follow immediately after the switch,
without intervening spaces.

no UTC offset information; assuming local time is UTC
(S) A warning peculiar to VMS. Perl was unable to find the local timezone offset, so it’s assuming
that local system time is equivalent to UTC. If it’s not, define the logical name
SYS$TIMEZONE_DIFFERENTIAL to translate to the number of seconds which need to be added to
UTC to get local time.

Octal number > 037777777777 non-portable
(W portable) The octal number you specified is larger than 2**32-1 (4294967295) and therefore
non-portable between systems. See perlport for more on portability concerns.

See also perlport for writing portable code.

perl v5.36.0 2019-02-18 559

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

panic: del_backref
(P) Failed an internal consistency check while trying to reset a weak reference.

panic: kid popen errno read
(F) forked child returned an incomprehensible message about its errno.

panic: magic_killbackrefs
(P) Failed an internal consistency check while trying to reset all weak references to an object.

Parentheses missing around ‘‘%s’’ list
(W parenthesis) You said something like

my $foo, $bar = @_;

when you meant

my ($foo, $bar) = @_;

Remember that ‘‘my’’, ‘‘our’’, and ‘‘local’’ bind tighter than comma.

Possible unintended interpolation of %s in string
(W ambiguous) It used to be that Perl would try to guess whether you wanted an array interpolated
or a literal @. It no longer does this; arrays are now always interpolated into strings. This means
that if you try something like:

print "fred@example.com";

and the array @example doesn’t exist, Perl is going to print fred.com, which is probably not
what you wanted. To get a literal @ sign in a string, put a backslash before it, just as you would to
get a literal $ sign.

Possible Y2K bug: %s
(W y2k) You are concatenating the number 19 with another number, which could be a potential
Year 2000 problem.

pragma ‘‘attrs’’ is deprecated, use ‘‘sub NAME : ATTRS’’ instead
(W deprecated) You have written something like this:

sub doit
{

use attrs qw(locked);
}

You should use the new declaration syntax instead.

sub doit : locked
{

...

The use attrs pragma is now obsolete, and is only provided for backward-compatibility. See
‘‘Subroutine Attributes’’ in perlsub.

Premature end of script headers
See Server error.

Repeat count in pack overflows
(F) You can’t specify a repeat count so large that it overflows your signed integers. See ‘‘pack’’ in
perlfunc.

Repeat count in unpack overflows
(F) You can’t specify a repeat count so large that it overflows your signed integers. See ‘‘unpack’’
in perlfunc.

realloc() of freed memory ignored
(S) An internal routine called realloc() on something that had already been freed.

Reference is already weak
(W misc) You have attempted to weaken a reference that is already weak. Doing so has no effect.

perl v5.36.0 2019-02-18 560

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

setpgrp can’t take arguments
(F) Your system has the setpgrp() from BSD 4.2, which takes no arguments, unlike POSIX
setpgid(), which takes a process ID and process group ID.

Strange *+?{} on zero-length expression
(W regexp) You applied a regular expression quantifier in a place where it makes no sense, such as
on a zero-width assertion. Try putting the quantifier inside the assertion instead. For example, the
way to match ‘‘abc’’ provided that it is followed by three repetitions of ‘‘xyz’’ is
/abc(?=(?:xyz){3})/, not /abc(?=xyz){3}/.

switching effective %s is not implemented
(F) While under the use filetest pragma, we cannot switch the real and effective uids or
gids.

This Perl can’t reset CRTL environ elements (%s)
This Perl can’t set CRTL environ elements (%s=%s)

(W internal) Warnings peculiar to VMS. You tried to change or delete an element of the CRTL’s
internal environ array, but your copy of Perl wasn’t built with a CRTL that contained the setenv()
function. You’ll need to rebuild Perl with a CRTL that does, or redefine PERL_ENV_TABLES (see
perlvms) so that the environ array isn’t the target of the change to %ENV which produced the
warning.

Too late to run %s block
(W void) A CHECK or INIT block is being defined during run time proper, when the opportunity to
run them has already passed. Perhaps you are loading a file with require or do when you
should be using use instead. Or perhaps you should put the require or do inside a BEGIN
block.

Unknown open() mode ’%s’
(F) The second argument of 3-argument open() is not among the list of valid modes: <, >, >>,
+<, +>, +>>, -|, |-.

Unknown process %x sent message to prime_env_iter: %s
(P) An error peculiar to VMS. Perl was reading values for %ENV before iterating over it, and
someone else stuck a message in the stream of data Perl expected. Someone’s very confused, or
perhaps trying to subvert Perl’s population of %ENV for nefarious purposes.

Unrecognized escape \\%c passed through
(W misc) You used a backslash-character combination which is not recognized by Perl. The
character was understood literally.

Unterminated attribute parameter in attribute list
(F) The lexer saw an opening (left) parenthesis character while parsing an attribute list, but the
matching closing (right) parenthesis character was not found. You may need to add (or remove) a
backslash character to get your parentheses to balance. See attributes.

Unterminated attribute list
(F) The lexer found something other than a simple identifier at the start of an attribute, and it
wasn’t a semicolon or the start of a block. Perhaps you terminated the parameter list of the
previous attribute too soon. See attributes.

Unterminated attribute parameter in subroutine attribute list
(F) The lexer saw an opening (left) parenthesis character while parsing a subroutine attribute list,
but the matching closing (right) parenthesis character was not found. You may need to add (or
remove) a backslash character to get your parentheses to balance.

Unterminated subroutine attribute list
(F) The lexer found something other than a simple identifier at the start of a subroutine attribute,
and it wasn’t a semicolon or the start of a block. Perhaps you terminated the parameter list of the
previous attribute too soon.

Value of CLI symbol ‘‘%s’’ too long
(W misc) A warning peculiar to VMS. Perl tried to read the value of an %ENV element from a CLI
symbol table, and found a resultant string longer than 1024 characters. The return value has been
truncated to 1024 characters.

perl v5.36.0 2019-02-18 561

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

Version number must be a constant number
(P) The attempt to translate a use Module n.n LIST statement into its equivalent BEGIN
block found an internal inconsistency with the version number.

New tests
lib/attrs

Compatibility tests for sub : attrs vs the older use attrs.

lib/env
Tests for new environment scalar capability (e.g., use Env qw($BAR);).

lib/env-array
Tests for new environment array capability (e.g., use Env qw(@PATH);).

lib/io_const
IO constants (SEEK_*, _IO*).

lib/io_dir
Directory-related IO methods (new, read, close, rewind, tied delete).

lib/io_multihomed
INET sockets with multi-homed hosts.

lib/io_poll
IO poll().

lib/io_unix
UNIX sockets.

op/attrs
Regression tests for my ($x,@y,%z) : attrs and <sub : attrs>.

op/filetest
File test operators.

op/lex_assign
Verify operations that access pad objects (lexicals and temporaries).

op/exists_sub
Verify exists &sub operations.

Incompatible Changes
Perl Source Incompatibilities

Beware that any new warnings that have been added or old ones that have been enhanced are not
considered incompatible changes.

Since all new warnings must be explicitly requested via the -w switch or the warnings pragma, it is
ultimately the programmer’s responsibility to ensure that warnings are enabled judiciously.

CHECK is a new keyword
All subroutine definitions named CHECK are now special. See /"Support for CHECK
blocks" for more information.

Treatment of list slices of undef has changed
There is a potential incompatibility in the behavior of list slices that are comprised entirely of
undefined values. See ‘‘Behavior of list slices is more consistent’’.

Format of $English::PERL_VERSION is different
The English module now sets $PERL_VERSION to $ˆV (a string value) rather than $] (a
numeric value). This is a potential incompatibility. Send us a report via perlbug if you are
affected by this.

See ‘‘Improved Perl version numbering system’’ for the reasons for this change.

Literals of the form 1.2.3 parse differently
Previously, numeric literals with more than one dot in them were interpreted as a floating point
number concatenated with one or more numbers. Such ‘‘numbers’’ are now parsed as strings
composed of the specified ordinals.

For example, print 97.98.99 used to output 97.9899 in earlier versions, but now prints

perl v5.36.0 2019-02-18 562

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

abc.

See ‘‘Support for strings represented as a vector of ordinals’’.

Possibly changed pseudo-random number generator
Perl programs that depend on reproducing a specific set of pseudo-random numbers may now
produce different output due to improvements made to the rand() builtin. You can use sh
Configure -Drandfunc=rand to obtain the old behavior.

See ‘‘Better pseudo-random number generator’’.

Hashing function for hash keys has changed
Even though Perl hashes are not order preserving, the apparently random order encountered when
iterating on the contents of a hash is actually determined by the hashing algorithm used.
Improvements in the algorithm may yield a random order that is different from that of previous
versions, especially when iterating on hashes.

See ‘‘Better worst-case behavior of hashes’’ for additional information.

undef fails on read only values
Using the undef operator on a readonly value (such as $1) has the same effect as assigning
undef to the readonly value — it throws an exception.

Close-on-exec bit may be set on pipe and socket handles
Pipe and socket handles are also now subject to the close-on-exec behavior determined by the
special variable $ˆF.

See ‘‘More consistent close-on-exec behavior’’.

Writing ‘‘$$1’’ to mean ‘‘${$}1’’ is unsupported
Perl 5.004 deprecated the interpretation of $$1 and similar within interpolated strings to mean $$
. "1", but still allowed it.

In Perl 5.6.0 and later, "$$1" always means "${$1}".

delete(), each(), values() and \(%h)
operate on aliases to values, not copies

delete(), each(), values() and hashes (e.g. \(%h)) in a list context return the actual values in the
hash, instead of copies (as they used to in earlier versions). Typical idioms for using these
constructs copy the returned values, but this can make a significant difference when creating
references to the returned values. Keys in the hash are still returned as copies when iterating on a
hash.

See also ‘‘delete(), each(), values() and hash iteration are faster’’.

vec(EXPR,OFFSET,BITS) enforces powers-of-two BITS
vec() generates a run-time error if the BITS argument is not a valid power-of-two integer.

Text of some diagnostic output has changed
Most references to internal Perl operations in diagnostics have been changed to be more
descriptive. This may be an issue for programs that may incorrectly rely on the exact text of
diagnostics for proper functioning.

%@ has been removed
The undocumented special variable %@ that used to accumulate ‘‘background’’ errors (such as
those that happen in DESTROY()) has been removed, because it could potentially result in
memory leaks.

Parenthesized not() behaves like a list operator
The not operator now falls under the ‘‘if it looks like a function, it behaves like a function’’ rule.

As a result, the parenthesized form can be used with grep and map. The following construct
used to be a syntax error before, but it works as expected now:

grep not($_), @things;

On the other hand, using not with a literal list slice may not work. The following previously
allowed construct:

perl v5.36.0 2019-02-18 563

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

print not (1,2,3)[0];

needs to be written with additional parentheses now:

print not((1,2,3)[0]);

The behavior remains unaffected when not is not followed by parentheses.

Semantics of bareword prototype (*) have changed
The semantics of the bareword prototype * have changed. Perl 5.005 always coerced simple
scalar arguments to a typeglob, which wasn’t useful in situations where the subroutine must
distinguish between a simple scalar and a typeglob. The new behavior is to not coerce bareword
arguments to a typeglob. The value will always be visible as either a simple scalar or as a
reference to a typeglob.

See ‘‘More functional bareword prototype (*)’’.

Semantics of bit operators may have changed on 64-bit platforms
If your platform is either natively 64-bit or if Perl has been configured to used 64-bit integers,
i.e., $Config{ivsize} is 8, there may be a potential incompatibility in the behavior of bitwise
numeric operators (& | ˆ ˜ << >>). These operators used to strictly operate on the lower 32 bits of
integers in previous versions, but now operate over the entire native integral width. In particular,
note that unary ˜ will produce different results on platforms that have different $Config{ivsize}.
For portability, be sure to mask off the excess bits in the result of unary ˜, e.g., ˜$x &
0xffffffff.

See ‘‘Bit operators support full native integer width’’.

More builtins taint their results
As described in ‘‘Improved security features’’, there may be more sources of taint in a Perl
program.

To avoid these new tainting behaviors, you can build Perl with the Configure option
-Accflags=-DINCOMPLETE_TAINTS. Beware that the ensuing perl binary may be insecure.

C Source Incompatibilities
PERL_POLLUTE

Release 5.005 grandfathered old global symbol names by providing preprocessor macros for
extension source compatibility. As of release 5.6.0, these preprocessor definitions are not
available by default. You need to explicitly compile perl with -DPERL_POLLUTE to get these
definitions. For extensions still using the old symbols, this option can be specified via
MakeMaker:

perl Makefile.PL POLLUTE=1

PERL_IMPLICIT_CONTEXT
This new build option provides a set of macros for all API functions such that an implicit
interpreter/thread context argument is passed to every API function. As a result of this, something
like sv_setsv(foo,bar) amounts to a macro invocation that actually translates to something
like Perl_sv_setsv(my_perl,foo,bar). While this is generally expected to not have
any significant source compatibility issues, the difference between a macro and a real function call
will need to be considered.

This means that there is a source compatibility issue as a result of this if your extensions attempt
to use pointers to any of the Perl API functions.

Note that the above issue is not relevant to the default build of Perl, whose interfaces continue to
match those of prior versions (but subject to the other options described here).

See ‘‘Background and PERL_IMPLICIT_CONTEXT’’ in perlguts for detailed information on the
ramifications of building Perl with this option.

NOTE: PERL_IMPLICIT_CONTEXT is automatically enabled whenever Perl is built
with one of -Dusethreads, -Dusemultiplicity, or both. It is not
intended to be enabled by users at this time.

perl v5.36.0 2019-02-18 564

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

PERL_POLLUTE_MALLOC
Enabling Perl’s malloc in release 5.005 and earlier caused the namespace of the system’s malloc
family of functions to be usurped by the Perl versions, since by default they used the same names.
Besides causing problems on platforms that do not allow these functions to be cleanly replaced,
this also meant that the system versions could not be called in programs that used Perl’s malloc.
Previous versions of Perl have allowed this behaviour to be suppressed with the HIDEMYMALLOC
and EMBEDMYMALLOC preprocessor definitions.

As of release 5.6.0, Perl’s malloc family of functions have default names distinct from the system
versions. You need to explicitly compile perl with -DPERL_POLLUTE_MALLOC to get the older
behaviour. HIDEMYMALLOC and EMBEDMYMALLOC have no effect, since the behaviour they
enabled is now the default.

Note that these functions do not constitute Perl’s memory allocation API. See ‘‘Memory
Allocation’’ in perlguts for further information about that.

Compatible C Source API Changes
PATCHLEVEL is now PERL_VERSION

The cpp macros PERL_REVISION, PERL_VERSION, and PERL_SUBVERSION are now
available by default from perl.h, and reflect the base revision, patchlevel, and subversion
respectively. PERL_REVISION had no prior equivalent, while PERL_VERSION and
PERL_SUBVERSION were previously available as PATCHLEVEL and SUBVERSION.

The new names cause less pollution of the cpp namespace and reflect what the numbers have
come to stand for in common practice. For compatibility, the old names are still supported when
patchlevel.h is explicitly included (as required before), so there is no source incompatibility from
the change.

Binary Incompatibilities
In general, the default build of this release is expected to be binary compatible for extensions built with
the 5.005 release or its maintenance versions. However, specific platforms may have broken binary
compatibility due to changes in the defaults used in hints files. Therefore, please be sure to always
check the platform-specific README files for any notes to the contrary.

The usethreads or usemultiplicity builds are not binary compatible with the corresponding builds in
5.005.

On platforms that require an explicit list of exports (AIX, OS/2 and Windows, among others), purely
internal symbols such as parser functions and the run time opcodes are not exported by default. Perl
5.005 used to export all functions irrespective of whether they were considered part of the public API or
not.

For the full list of public API functions, see perlapi.

Known Problems
Thread test failures

The subtests 19 and 20 of lib/thr5005.t test are known to fail due to fundamental problems in the 5.005
threading implementation. These are not new failures — Perl 5.005_0x has the same bugs, but didn’t
have these tests.

EBCDIC platforms not supported
In earlier releases of Perl, EBCDIC environments like OS390 (also known as Open Edition MVS) and
VM-ESA were supported. Due to changes required by the UTF-8 (Unicode) support, the EBCDIC
platforms are not supported in Perl 5.6.0.

In 64-bit HP-UX the lib/io_multihomed test may hang
The lib/io_multihomed test may hang in HP-UX if Perl has been configured to be 64-bit. Because
other 64-bit platforms do not hang in this test, HP-UX is suspect. All other tests pass in 64-bit HP-
UX. The test attempts to create and connect to ‘‘multihomed’’ sockets (sockets which have multiple IP
addresses).

NEXTSTEP 3.3 POSIX test failure
In NEXTSTEP 3.3p2 the implementation of the strftime (3) in the operating system libraries is buggy:
the %j format numbers the days of a month starting from zero, which, while being logical to
programmers, will cause the subtests 19 to 27 of the lib/posix test may fail.

perl v5.36.0 2019-02-18 565

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

Tru64 (aka Digital UNIX, aka DEC OSF/1) lib/sdbm test failure with gcc
If compiled with gcc 2.95 the lib/sdbm test will fail (dump core). The cure is to use the vendor cc, it
comes with the operating system and produces good code.

UNICOS/mk CC failures during Configure run
In UNICOS/mk the following errors may appear during the Configure run:

Guessing which symbols your C compiler and preprocessor define...
CC-20 cc: ERROR File = try.c, Line = 3
...

bad switch yylook 79bad switch yylook 79bad switch yylook 79bad switch yylook 79#ifdef A29K
...
4 errors detected in the compilation of "try.c".

The culprit is the broken awk of UNICOS/mk. The effect is fortunately rather mild: Perl itself is not
adversely affected by the error, only the h2ph utility coming with Perl, and that is rather rarely needed
these days.

Arrow operator and arrays
When the left argument to the arrow operator -> is an array, or the scalar operator operating on an
array, the result of the operation must be considered erroneous. For example:

@x->[2]
scalar(@x)->[2]

These expressions will get run-time errors in some future release of Perl.

Experimental features
As discussed above, many features are still experimental. Interfaces and implementation of these
features are subject to change, and in extreme cases, even subject to removal in some future release of
Perl. These features include the following:

Threads
Unicode
64-bit support
Lvalue subroutines
Weak references
The pseudo-hash data type
The Compiler suite
Internal implementation of file globbing
The DB module
The regular expression code constructs:

(?{ code }) and (??{ code })

Obsolete Diagnostics
Character class syntax [: :] is reserved for future extensions

(W) Within regular expression character classes ([]) the syntax beginning with ‘‘[:’’ and ending
with ‘‘:]’’ is reserved for future extensions. If you need to represent those character sequences
inside a regular expression character class, just quote the square brackets with the backslash: ‘‘\[:’’
and ‘‘:\]’’.

Ill-formed logical name |%s| in prime_env_iter
(W) A warning peculiar to VMS. A logical name was encountered when preparing to iterate over
%ENV which violates the syntactic rules governing logical names. Because it cannot be translated
normally, it is skipped, and will not appear in %ENV. This may be a benign occurrence, as some
software packages might directly modify logical name tables and introduce nonstandard names, or
it may indicate that a logical name table has been corrupted.

In string, @%s now must be written as \@%s
The description of this error used to say:

(Someday it will simply assume that an unbackslashed @
interpolates an array.)

That day has come, and this fatal error has been removed. It has been replaced by a non-fatal
warning instead. See ‘‘Arrays now always interpolate into double-quoted strings’’ for details.

perl v5.36.0 2019-02-18 566

PERL56DELTA(1) Perl Programmers Reference Guide PERL56DELTA(1)

Probable precedence problem on %s
(W) The compiler found a bareword where it expected a conditional, which often indicates that an
|| or && was parsed as part of the last argument of the previous construct, for example:

open FOO || die;

regexp too big
(F) The current implementation of regular expressions uses shorts as address offsets within a
string. Unfortunately this means that if the regular expression compiles to longer than 32767, it’ll
blow up. Usually when you want a regular expression this big, there is a better way to do it with
multiple statements. See perlre.

Use of ‘‘$$<digit>’’ to mean ‘‘${$}<digit>’’ is deprecated
(D) Perl versions before 5.004 misinterpreted any type marker followed by ‘‘$’’ and a digit. For
example, ‘‘$$0’’ was incorrectly taken to mean ‘‘${$}0’’ instead of ‘‘${$0}’’. This bug is
(mostly) fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely, because at least two
widely-used modules depend on the old meaning of ‘‘$$0’’ in a string. So Perl 5.004 still
interprets ‘‘$$<digit>’’ in the old (broken) way inside strings; but it generates this message as a
warning. And in Perl 5.005, this special treatment will cease.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/perl/ , the Perl
Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

HISTORY
Written by Gurusamy Sarathy <gsar@activestate.com>, with many contributions from The Perl
Porters.

Send omissions or corrections to <perlbug@perl.org>.

perl v5.36.0 2019-02-18 567

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

NAME
perl581delta - what is new for perl v5.8.1

DESCRIPTION
This document describes differences between the 5.8.0 release and the 5.8.1 release.

If you are upgrading from an earlier release such as 5.6.1, first read the perl58delta, which describes
differences between 5.6.0 and 5.8.0.

In case you are wondering about 5.6.1, it was bug-fix-wise rather identical to the development release
5.7.1. Confused? This timeline hopefully helps a bit: it lists the new major releases, their maintenance
releases, and the development releases.

New Maintenance Development

5.6.0 2000-Mar-22
5.7.0 2000-Sep-02

5.6.1 2001-Apr-08
5.7.1 2001-Apr-09
5.7.2 2001-Jul-13
5.7.3 2002-Mar-05

5.8.0 2002-Jul-18
5.8.1 2003-Sep-25

Incompatible Changes
Hash Randomisation

Mainly due to security reasons, the ‘‘random ordering’’ of hashes has been made even more random.
Previously while the order of hash elements from keys(), values(), and each() was essentially random,
it was still repeatable. Now, however, the order varies between different runs of Perl.

Perl has never guaranteed any ordering of the hash keys, and the ordering has already changed
several times during the lifetime of Perl 5. Also, the ordering of hash keys has always been, and
continues to be, affected by the insertion order.

The added randomness may affect applications.

One possible scenario is when output of an application has included hash data. For example, if you
have used the Data::Dumper module to dump data into different files, and then compared the files to
see whether the data has changed, now you will have false positives since the order in which hashes are
dumped will vary. In general the cure is to sort the keys (or the values); in particular for Data::Dumper
to use the Sortkeys option. If some particular order is really important, use tied hashes: for example
the Tie::IxHash module which by default preserves the order in which the hash elements were added.

More subtle problem is reliance on the order of ‘‘global destruction’’. That is what happens at the end
of execution: Perl destroys all data structures, including user data. If your destructors (the DESTROY
subroutines) have assumed any particular ordering to the global destruction, there might be problems
ahead. For example, in a destructor of one object you cannot assume that objects of any other class are
still available, unless you hold a reference to them. If the environment variable
PERL_DESTRUCT_LEVEL is set to a non-zero value, or if Perl is exiting a spawned thread, it will also
destruct the ordinary references and the symbol tables that are no longer in use. You can’t call a class
method or an ordinary function on a class that has been collected that way.

The hash randomisation is certain to reveal hidden assumptions about some particular ordering of hash
elements, and outright bugs: it revealed a few bugs in the Perl core and core modules.

To disable the hash randomisation in runtime, set the environment variable PERL_HASH_SEED to 0
(zero) before running Perl (for more information see ‘‘PERL_HASH_SEED’’ in perlrun), or to disable
the feature completely in compile time, compile with -DNO_HASH_SEED (see INSTALL).

See ‘‘Algorithmic Complexity Attacks’’ in perlsec for the original rationale behind this change.

UTF-8 On Filehandles No Longer Activated By Locale
In Perl 5.8.0 all filehandles, including the standard filehandles, were implicitly set to be in Unicode
UTF-8 if the locale settings indicated the use of UTF-8. This feature caused too many problems, so the
feature was turned off and redesigned: see ‘‘Core Enhancements’’.

perl v5.36.0 2019-02-18 568

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

Single-number v-strings are no longer v-strings before ‘‘=>’’
The version strings or v-strings (see ‘‘Version Strings’’ in perldata) feature introduced in Perl 5.6.0 has
been a source of some confusion — especially when the user did not want to use it, but Perl thought it
knew better. Especially troublesome has been the feature that before a ‘‘=>’’ a version string (a ‘‘v’’
followed by digits) has been interpreted as a v-string instead of a string literal. In other words:

%h = (v65 => 42);

has meant since Perl 5.6.0

%h = ('A' => 42);

(at least in platforms of ASCII progeny) Perl 5.8.1 restores the more natural interpretation

%h = ('v65' => 42);

The multi-number v-strings like v65.66 and 65.66.67 still continue to be v-strings in Perl 5.8.

(Win32) The -C Switch Has Been Repurposed
The -C switch has changed in an incompatible way. The old semantics of this switch only made sense
in Win32 and only in the ‘‘use utf8’’ universe in 5.6.x releases, and do not make sense for the Unicode
implementation in 5.8.0. Since this switch could not have been used by anyone, it has been repurposed.
The behavior that this switch enabled in 5.6.x releases may be supported in a transparent, data-
dependent fashion in a future release.

For the new life of this switch, see ‘‘UTF-8 no longer default under UTF-8 locales’’, and ‘‘-C’’ in
perlrun.

(Win32) The /d Switch Of cmd.exe
Perl 5.8.1 uses the /d switch when running the cmd.exe shell internally for system(), backticks, and
when opening pipes to external programs. The extra switch disables the execution of AutoRun
commands from the registry, which is generally considered undesirable when running external
programs. If you wish to retain compatibility with the older behavior, set PERL5SHELL in your
environment to cmd /x/c.

Core Enhancements
UTF-8 no longer default under UTF-8 locales

In Perl 5.8.0 many Unicode features were introduced. One of them was found to be of more nuisance
than benefit: the automagic (and silent) ‘‘UTF-8-ification’’ of filehandles, including the standard
filehandles, if the user’s locale settings indicated use of UTF-8.

For example, if you had en_US.UTF-8 as your locale, your STDIN and STDOUT were automatically
‘‘UTF-8’’, in other words an implicit binmode(..., ‘‘:utf8’’) was made. This meant that trying to print,
say, chr (0xff), ended up printing the bytes 0xc3 0xbf. Hardly what you had in mind unless you were
aware of this feature of Perl 5.8.0. The problem is that the vast majority of people weren’t: for example
in RedHat releases 8 and 9 the default locale setting is UTF-8, so all RedHat users got UTF-8
filehandles, whether they wanted it or not. The pain was intensified by the Unicode implementation of
Perl 5.8.0 (still) having nasty bugs, especially related to the use of s/// and tr///. (Bugs that have been
fixed in 5.8.1)

Therefore a decision was made to backtrack the feature and change it from implicit silent default to
explicit conscious option. The new Perl command line option -C and its counterpart environment
variable PERL_UNICODE can now be used to control how Perl and Unicode interact at interfaces like
I/O and for example the command line arguments. See ‘‘-C’’ in perlrun and ‘‘PERL_UNICODE’’ in
perlrun for more information.

Unsafe signals again available
In Perl 5.8.0 the so-called ‘‘safe signals’’ were introduced. This means that Perl no longer handles
signals immediately but instead ‘‘between opcodes’’, when it is safe to do so. The earlier immediate
handling easily could corrupt the internal state of Perl, resulting in mysterious crashes.

However, the new safer model has its problems too. Because now an opcode, a basic unit of Perl
execution, is never interrupted but instead let to run to completion, certain operations that can take a
long time now really do take a long time. For example, certain network operations have their own
blocking and timeout mechanisms, and being able to interrupt them immediately would be nice.

Therefore perl 5.8.1 introduces a ‘‘backdoor’’ to restore the pre-5.8.0 (pre-5.7.3, really) signal
behaviour. Just set the environment variable PERL_SIGNALS to unsafe, and the old immediate (and

perl v5.36.0 2019-02-18 569

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

unsafe) signal handling behaviour returns. See ‘‘PERL_SIGNALS’’ in perlrun and ‘‘Deferred Signals
(Safe Signals)’’ in perlipc.

In completely unrelated news, you can now use safe signals with POSIX::SigAction. See
‘‘POSIX::SigAction’’ in POSIX.

Tied Arrays with Negative Array Indices
Formerly, the indices passed to FETCH, STORE, EXISTS, and DELETE methods in tied array class
were always non-negative. If the actual argument was negative, Perl would call FETCHSIZE implicitly
and add the result to the index before passing the result to the tied array method. This behaviour is now
optional. If the tied array class contains a package variable named $NEGATIVE_INDICES which is
set to a true value, negative values will be passed to FETCH, STORE, EXISTS, and DELETE
unchanged.

local ${$x}
The syntaxes

local ${$x}
local @{$x}
local %{$x}

now do localise variables, given that the $x is a valid variable name.

Unicode Character Database 4.0.0
The copy of the Unicode Character Database included in Perl 5.8 has been updated to 4.0.0 from 3.2.0.
This means for example that the Unicode character properties are as in Unicode 4.0.0.

Deprecation Warnings
There is one new feature deprecation. Perl 5.8.0 forgot to add some deprecation warnings, these
warnings have now been added. Finally, a reminder of an impending feature removal.

(Reminder) Pseudo-hashes are deprecated (really)

Pseudo-hashes were deprecated in Perl 5.8.0 and will be removed in Perl 5.10.0, see perl58delta for
details. Each attempt to access pseudo-hashes will trigger the warning Pseudo-hashes are
deprecated. If you really want to continue using pseudo-hashes but not to see the deprecation
warnings, use:

no warnings 'deprecated';

Or you can continue to use the fields pragma, but please don’t expect the data structures to be
pseudohashes any more.

(Reminder) 5.005-style threads are deprecated (really)

5.005-style threads (activated by use Thread;) were deprecated in Perl 5.8.0 and will be removed
after Perl 5.8, see perl58delta for details. Each 5.005-style thread creation will trigger the warning
5.005 threads are deprecated. If you really want to continue using the 5.005 threads but
not to see the deprecation warnings, use:

no warnings 'deprecated';

(Reminder) The $* variable is deprecated (really)

The $* variable controlling multi-line matching has been deprecated and will be removed after 5.8.
The variable has been deprecated for a long time, and a deprecation warning Use of $* is
deprecated is given, now the variable will just finally be removed. The functionality has been
supplanted by the /s and /m modifiers on pattern matching. If you really want to continue using the
$*-variable but not to see the deprecation warnings, use:

no warnings 'deprecated';

Miscellaneous Enhancements
map in void context is no longer expensive. map is now context aware, and will not construct a list if
called in void context.

If a socket gets closed by the server while printing to it, the client now gets a SIGPIPE. While this new
feature was not planned, it fell naturally out of PerlIO changes, and is to be considered an accidental
feature.

PerlIO::get_layers(FH) returns the names of the PerlIO layers active on a filehandle.

perl v5.36.0 2019-02-18 570

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

PerlIO::via layers can now have an optional UTF8 method to indicate whether the layer wants to
‘‘auto-:utf8’’ the stream.

utf8::is_utf8() has been added as a quick way to test whether a scalar is encoded internally in UTF-8
(Unicode).

Modules and Pragmata
Updated Modules And Pragmata

The following modules and pragmata have been updated since Perl 5.8.0:

base
B::Bytecode

In much better shape than it used to be. Still far from perfect, but maybe worth a try.

B::Concise
B::Deparse
Benchmark

An optional feature, :hireswallclock, now allows for high resolution wall clock times (uses
Time::HiRes).

ByteLoader
See B::Bytecode.

bytes
Now has bytes::substr.

CGI
charnames

One can now have custom character name aliases.

CPAN
There is now a simple command line frontend to the CPAN.pm module called cpan.

Data::Dumper
A new option, Pair, allows choosing the separator between hash keys and values.

DB_File
Devel::PPPort
Digest::MD5
Encode

Significant updates on the encoding pragma functionality (tr/// and the DATA filehandle, formats).

If a filehandle has been marked as to have an encoding, unmappable characters are detected
already during input, not later (when the corrupted data is being used).

The ISO 8859-6 conversion table has been corrected (the 0x30..0x39 erroneously mapped to
U+0660..U+0669, instead of U+0030..U+0039). The GSM 03.38 conversion did not handle escape
sequences correctly. The UTF-7 encoding has been added (making Encode feature-complete with
Unicode::String).

fields
libnet
Math::BigInt

A lot of bugs have been fixed since v1.60, the version included in Perl v5.8.0. Especially
noteworthy are the bug in Calc that caused div and mod to fail for some large values, and the fixes
to the handling of bad inputs.

Some new features were added, e.g. the broot() method, you can now pass parameters to config()
to change some settings at runtime, and it is now possible to trap the creation of NaN and infinity.

As usual, some optimizations took place and made the math overall a tad faster. In some cases,
quite a lot faster, actually. Especially alternative libraries like Math::BigInt::GMP benefit from
this. In addition, a lot of the quite clunky routines like fsqrt() and flog() are now much much
faster.

MIME::Base64

perl v5.36.0 2019-02-18 571

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

NEXT
Diamond inheritance now works.

Net::Ping
PerlIO::scalar

Reading from non-string scalars (like the special variables, see perlvar) now works.

podlators
Pod::LaTeX
PodParsers
Pod::Perldoc

Complete rewrite. As a side-effect, no longer refuses to startup when run by root.

Scalar::Util
New utilities: refaddr, isvstring, looks_like_number, set_prototype.

Storable
Can now store code references (via B::Deparse, so not foolproof).

strict
Earlier versions of the strict pragma did not check the parameters implicitly passed to its ‘‘import’’
(use) and ‘‘unimport’’ (no) routine. This caused the false idiom such as:

use strict qw(@ISA);
@ISA = qw(Foo);

This however (probably) raised the false expectation that the strict refs, vars and subs were being
enforced (and that @ISA was somehow ‘‘declared’’). But the strict refs, vars, and subs are not
enforced when using this false idiom.

Starting from Perl 5.8.1, the above will cause an error to be raised. This may cause programs
which used to execute seemingly correctly without warnings and errors to fail when run under
5.8.1. This happens because

use strict qw(@ISA);

will now fail with the error:

Unknown 'strict' tag(s) '@ISA'

The remedy to this problem is to replace this code with the correct idiom:

use strict;
use vars qw(@ISA);
@ISA = qw(Foo);

Term::ANSIcolor
Test::Harness

Now much more picky about extra or missing output from test scripts.

Test::More
Test::Simple
Text::Balanced
Time::HiRes

Use of nanosleep(), if available, allows mixing subsecond sleeps with alarms.

threads
Several fixes, for example for join() problems and memory leaks. In some platforms (like Linux)
that use glibc the minimum memory footprint of one ithread has been reduced by several hundred
kilobytes.

threads::shared
Many memory leaks have been fixed.

Unicode::Collate
Unicode::Normalize
Win32::GetFolderPath

perl v5.36.0 2019-02-18 572

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

Win32::GetOSVersion
Now returns extra information.

Utility Changes
The h2xs utility now produces a more modern layout: Foo-Bar/lib/Foo/Bar.pm instead of
Foo/Bar/Bar.pm. Also, the boilerplate test is now called t/Foo-Bar.t instead of t/1.t.

The Perl debugger (lib/perl5db.pl) has now been extensively documented and bugs found while
documenting have been fixed.

perldoc has been rewritten from scratch to be more robust and feature rich.

perlcc -B works now at least somewhat better, while perlcc -c is rather more broken. (The
Perl compiler suite as a whole continues to be experimental.)

New Documentation
perl573delta has been added to list the differences between the (now quite obsolete) development
releases 5.7.2 and 5.7.3.

perl58delta has been added: it is the perldelta of 5.8.0, detailing the differences between 5.6.0 and
5.8.0.

perlartistic has been added: it is the Artistic License in pod format, making it easier for modules to refer
to it.

perlcheat has been added: it is a Perl cheat sheet.

perlgpl has been added: it is the GNU General Public License in pod format, making it easier for
modules to refer to it.

perlmacosx has been added to tell about the installation and use of Perl in Mac OS X.

perlos400 has been added to tell about the installation and use of Perl in OS/400 PASE.

perlreref has been added: it is a regular expressions quick reference.

Installation and Configuration Improvements
The Unix standard Perl location, /usr/bin/perl, is no longer overwritten by default if it exists. This
change was very prudent because so many Unix vendors already provide a /usr/bin/perl, but
simultaneously many system utilities may depend on that exact version of Perl, so better not to
overwrite it.

One can now specify installation directories for site and vendor man and HTML pages, and site and
vendor scripts. See INSTALL.

One can now specify a destination directory for Perl installation by specifying the DESTDIR variable
for make install. (This feature is slightly different from the previous Configure
-Dinstallprefix=....) See INSTALL.

gcc versions 3.x introduced a new warning that caused a lot of noise during Perl compilation: gcc
-Ialreadyknowndirectory (warning: changing search order). This warning has
now been avoided by Configure weeding out such directories before the compilation.

One can now build subsets of Perl core modules by using the Configure flags
-Dnoextensions=... and -Donlyextensions=..., see INSTALL.

Platform-specific enhancements
In Cygwin Perl can now be built with threads (Configure -Duseithreads). This works with
both Cygwin 1.3.22 and Cygwin 1.5.3.

In newer FreeBSD releases Perl 5.8.0 compilation failed because of trying to use malloc.h, which in
FreeBSD is just a dummy file, and a fatal error to even try to use. Now malloc.h is not used.

Perl is now known to build also in Hitachi HI-UXMPP.

Perl is now known to build again in LynxOS.

Mac OS X now installs with Perl version number embedded in installation directory names for easier
upgrading of user-compiled Perl, and the installation directories in general are more standard. In other
words, the default installation no longer breaks the Apple-provided Perl. On the other hand, with
Configure -Dprefix=/usr you can now really replace the Apple-supplied Perl (please be
careful).

perl v5.36.0 2019-02-18 573

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

Mac OS X now builds Perl statically by default. This change was done mainly for faster startup times.
The Apple-provided Perl is still dynamically linked and shared, and you can enable the sharedness for
your own Perl builds by Configure -Duseshrplib.

Perl has been ported to IBM’s OS/400 PASE environment. The best way to build a Perl for PASE is to
use an AIX host as a cross-compilation environment. See README.os400.

Yet another cross-compilation option has been added: now Perl builds on OpenZaurus, a Linux
distribution based on Mandrake + Embedix for the Sharp Zaurus PDA. See the Cross/README file.

Tru64 when using gcc 3 drops the optimisation for toke.c to -O2 because of gigantic memory use with
the default -O3.

Tru64 can now build Perl with the newer Berkeley DBs.

Building Perl on WinCE has been much enhanced, see README.ce and README.perlce.

Selected Bug Fixes
Closures, eval and lexicals

There have been many fixes in the area of anonymous subs, lexicals and closures. Although this means
that Perl is now more ‘‘correct’’, it is possible that some existing code will break that happens to rely
on the faulty behaviour. In practice this is unlikely unless your code contains a very complex nesting of
anonymous subs, evals and lexicals.

Generic fixes
If an input filehandle is marked :utf8 and Perl sees illegal UTF-8 coming in when doing <FH>, if
warnings are enabled a warning is immediately given - instead of being silent about it and Perl being
unhappy about the broken data later. (The :encoding(utf8) layer also works the same way.)

binmode(SOCKET, ‘‘:utf8’’) only worked on the input side, not on the output side of the socket. Now it
works both ways.

For threaded Perls certain system database functions like getpwent() and getgrent() now grow their
result buffer dynamically, instead of failing. This means that at sites with lots of users and groups the
functions no longer fail by returning only partial results.

Perl 5.8.0 had accidentally broken the capability for users to define their own uppercase<->lowercase
Unicode mappings (as advertised by the Camel). This feature has been fixed and is also documented
better.

In 5.8.0 this

$some_unicode .= <FH>;

didn’t work correctly but instead corrupted the data. This has now been fixed.

Tied methods like FETCH etc. may now safely access tied values, i.e. resulting in a recursive call to
FETCH etc. Remember to break the recursion, though.

At startup Perl blocks the SIGFPE signal away since there isn’t much Perl can do about it. Previously
this blocking was in effect also for programs executed from within Perl. Now Perl restores the original
SIGFPE handling routine, whatever it was, before running external programs.

Linenumbers in Perl scripts may now be greater than 65536, or 2**16. (Perl scripts have always been
able to be larger than that, it’s just that the linenumber for reported errors and warnings have ‘‘wrapped
around’’.) While scripts that large usually indicate a need to rethink your code a bit, such Perl scripts
do exist, for example as results from generated code. Now linenumbers can go all the way to
4294967296, or 2**32.

Platform-specific fixes
Linux

• Setting $0 works again (with certain limitations that Perl cannot do much about: see ‘‘$0’’ in
perlvar)

HP-UX

• Setting $0 now works.

VMS

perl v5.36.0 2019-02-18 574

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

• Configuration now tests for the presence of poll(), and IO::Poll now uses the vendor-supplied
function if detected.

• A rare access violation at Perl start-up could occur if the Perl image was installed with privileges
or if there was an identifier with the subsystem attribute set in the process’s rightslist. Either of
these circumstances triggered tainting code that contained a pointer bug. The faulty pointer
arithmetic has been fixed.

• The length limit on values (not keys) in the %ENV hash has been raised from 255 bytes to 32640
bytes (except when the PERL_ENV_TABLES setting overrides the default use of logical names for
%ENV). If it is necessary to access these long values from outside Perl, be aware that they are
implemented using search list logical names that store the value in pieces, each 255-byte piece
(up to 128 of them) being an element in the search list. When doing a lookup in %ENV from within
Perl, the elements are combined into a single value. The existing VMS-specific ability to access
individual elements of a search list logical name via the $ENV{’foo;N’} syntax (where N is the
search list index) is unimpaired.

• The piping implementation now uses local rather than global DCL symbols for inter-process
communication.

• File::Find could become confused when navigating to a relative directory whose name collided
with a logical name. This problem has been corrected by adding directory syntax to relative path
names, thus preventing logical name translation.

Win32

• A memory leak in the fork() emulation has been fixed.

• The return value of the ioctl() built-in function was accidentally broken in 5.8.0. This has been
corrected.

• The internal message loop executed by perl during blocking operations sometimes interfered with
messages that were external to Perl. This often resulted in blocking operations terminating
prematurely or returning incorrect results, when Perl was executing under environments that could
generate Windows messages. This has been corrected.

• Pipes and sockets are now automatically in binary mode.

• The four-argument form of select() did not preserve $! (errno) properly when there were errors in
the underlying call. This is now fixed.

• The ‘‘CR CR LF’’ problem of has been fixed, binmode(FH, ‘‘:crlf’’) is now effectively a no-op.

New or Changed Diagnostics
All the warnings related to pack() and unpack() were made more informative and consistent.

Changed ‘‘A thread exited while %d threads were running’’
The old version

A thread exited while %d other threads were still running

was misleading because the ‘‘other’’ included also the thread giving the warning.

Removed ‘‘Attempt to clear a restricted hash’’
It is not illegal to clear a restricted hash, so the warning was removed.

New ‘‘Illegal declaration of anonymous subroutine’’
You must specify the block of code for sub.

Changed ‘‘Invalid range ’’%s‘‘ in transliteration operator’’
The old version

Invalid [] range "%s" in transliteration operator

was simply wrong because there are no ‘‘[] ranges’’ in tr///.

New ‘‘Missing control char name in \c’’
Self-explanatory.

New ‘‘Newline in left-justified string for %s’’
The padding spaces would appear after the newline, which is probably not what you had in mind.

perl v5.36.0 2019-02-18 575

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

New ‘‘Possible precedence problem on bitwise %c operator’’
If you think this

$x & $y == 0

tests whether the bitwise AND of $x and $y is zero, you will like this warning.

New ‘‘Pseudo-hashes are deprecated’’
This warning should have been already in 5.8.0, since they are.

New ‘‘read() on %s filehandle %s’’
You cannot read() (or sysread()) from a closed or unopened filehandle.

New ‘‘5.005 threads are deprecated’’
This warning should have been already in 5.8.0, since they are.

New ‘‘Tied variable freed while still in use’’
Something pulled the plug on a live tied variable, Perl plays safe by bailing out.

New ‘‘To%s: illegal mapping ’%s’’’
An illegal user-defined Unicode casemapping was specified.

New ‘‘Use of freed value in iteration’’
Something modified the values being iterated over. This is not good.

Changed Internals
These news matter to you only if you either write XS code or like to know about or hack Perl internals
(using Devel::Peek or any of the B:: modules counts), or like to run Perl with the -D option.

The embedding examples of perlembed have been reviewed to be up to date and consistent: for
example, the correct use of PERL_SYS_INIT3() and PERL_SYS_TERM().

Extensive reworking of the pad code (the code responsible for lexical variables) has been conducted by
Dave Mitchell.

Extensive work on the v-strings by John Peacock.

UTF-8 length and position cache: to speed up the handling of Unicode (UTF-8) scalars, a cache was
introduced. Potential problems exist if an extension bypasses the official APIs and directly modifies
the PV of an SV: the UTF-8 cache does not get cleared as it should.

APIs obsoleted in Perl 5.8.0, like sv_2pv, sv_catpvn, sv_catsv, sv_setsv, are again available.

Certain Perl core C APIs like cxinc and regatom are no longer available at all to code outside the Perl
core of the Perl core extensions. This is intentional. They never should have been available with the
shorter names, and if you application depends on them, you should (be ashamed and) contact
perl5-porters to discuss what are the proper APIs.

Certain Perl core C APIs like Perl_list are no longer available without their Perl_ prefix. If your
XS module stops working because some functions cannot be found, in many cases a simple fix is to add
the Perl_ prefix to the function and the thread context aTHX_ as the first argument of the function
call. This is also how it should always have been done: letting the Perl_-less forms to leak from the
core was an accident. For cleaner embedding you can also force this for all APIs by defining at
compile time the cpp define PERL_NO_SHORT_NAMES.

Perl_save_bool() has been added.

Regexp objects (those created with qr) now have S-magic rather than R-magic. This fixed regexps of
the form /...(??{...;$x})/ to no longer ignore changes made to $x. The S-magic avoids dropping the
caching optimization and making (??{...}) constructs obscenely slow (and consequently useless). See
also ‘‘Magic Variables’’ in perlguts. Regexp::Copy was affected by this change.

The Perl internal debugging macros DEBUG() and DEB() have been renamed to PERL_DEBUG() and
PERL_DEB() to avoid namespace conflicts.

-DL removed (the leaktest had been broken and unsupported for years, use alternative debugging
mallocs or tools like valgrind and Purify).

Verbose modifier v added for -DXv and -Dsv, see perlrun.

perl v5.36.0 2019-02-18 576

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

New Tests
In Perl 5.8.0 there were about 69000 separate tests in about 700 test files, in Perl 5.8.1 there are about
77000 separate tests in about 780 test files. The exact numbers depend on the Perl configuration and on
the operating system platform.

Known Problems
The hash randomisation mentioned in ‘‘Incompatible Changes’’ is definitely problematic: it will wake
dormant bugs and shake out bad assumptions.

If you want to use mod_perl 2.x with Perl 5.8.1, you will need mod_perl-1.99_10 or higher. Earlier
versions of mod_perl 2.x do not work with the randomised hashes. (mod_perl 1.x works fine.) You
will also need Apache::Test 1.04 or higher.

Many of the rarer platforms that worked 100% or pretty close to it with perl 5.8.0 have been left a little
bit untended since their maintainers have been otherwise busy lately, and therefore there will be more
failures on those platforms. Such platforms include Mac OS Classic, IBM z/OS (and other EBCDIC
platforms), and NetWare. The most common Perl platforms (Unix and Unix-like, Microsoft platforms,
and VMS) have large enough testing and expert population that they are doing well.

Tied hashes in scalar context
Tied hashes do not currently return anything useful in scalar context, for example when used as boolean
tests:

if (%tied_hash) { ... }

The current nonsensical behaviour is always to return false, regardless of whether the hash is empty or
has elements.

The root cause is that there is no interface for the implementors of tied hashes to implement the
behaviour of a hash in scalar context.

Net::Ping 450_service and 510_ping_udp failures
The subtests 9 and 18 of lib/Net/Ping/t/450_service.t, and the subtest 2 of
lib/Net/Ping/t/510_ping_udp.t might fail if you have an unusual networking setup. For example in the
latter case the test is trying to send a UDP ping to the IP address 127.0.0.1.

B::C
The C-generating compiler backend B::C (the frontend being perlcc -c) is even more broken than
it used to be because of the extensive lexical variable changes. (The good news is that B::Bytecode and
ByteLoader are better than they used to be.)

Platform Specific Problems
EBCDIC Platforms

IBM z/OS and other EBCDIC platforms continue to be problematic regarding Unicode support. Many
Unicode tests are skipped when they really should be fixed.

Cygwin 1.5 problems
In Cygwin 1.5 the io/tell and op/sysio tests have failures for some yet unknown reason. In 1.5.5 the
threads tests stress_cv, stress_re, and stress_string are failing unless the environment variable PERLIO
is set to ‘‘perlio’’ (which makes also the io/tell failure go away).

Perl 5.8.1 does build and work well with Cygwin 1.3: with (uname -a) CYGWIN_NT-5.0 ...
1.3.22(0.78/3/2) 2003-03-18 09:20 i686 ... a 100% ‘‘make test’’ was achieved
with Configure -des -Duseithreads.

HP-UX: HP cc warnings about sendfile and sendpath
With certain HP C compiler releases (e.g. B.11.11.02) you will get many warnings like this (lines
wrapped for easier reading):

cc: "/usr/include/sys/socket.h", line 504: warning 562:
Redeclaration of "sendfile" with a different storage class specifier:

"sendfile" will have internal linkage.
cc: "/usr/include/sys/socket.h", line 505: warning 562:

Redeclaration of "sendpath" with a different storage class specifier:
"sendpath" will have internal linkage.

The warnings show up both during the build of Perl and during certain lib/ExtUtils tests that invoke the
C compiler. The warning, however, is not serious and can be ignored.

perl v5.36.0 2019-02-18 577

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

IRIX: t/uni/tr_7jis.t falsely failing
The test t/uni/tr_7jis.t is known to report failure under ’make test’ or the test harness with certain
releases of IRIX (at least IRIX 6.5 and MIPSpro Compilers Version 7.3.1.1m), but if run manually the
test fully passes.

Mac OS X: no usemymalloc
The Perl malloc (-Dusemymalloc) does not work at all in Mac OS X. This is not that serious,
though, since the native malloc works just fine.

Tru64: No threaded builds with GNU cc (gcc)
In the latest Tru64 releases (e.g. v5.1B or later) gcc cannot be used to compile a threaded Perl
(-Duseithreads) because the system <pthread.h> file doesn’t know about gcc.

Win32: sysopen, sysread, syswrite
As of the 5.8.0 release, sysopen()/sysread()/syswrite() do not behave like they used to in 5.6.1 and
earlier with respect to ‘‘text’’ mode. These built-ins now always operate in ‘‘binary’’ mode (even if
sysopen() was passed the O_TEXT flag, or if binmode() was used on the file handle). Note that this
issue should only make a difference for disk files, as sockets and pipes have always been in ‘‘binary’’
mode in the Windows port. As this behavior is currently considered a bug, compatible behavior may be
re-introduced in a future release. Until then, the use of sysopen(), sysread() and syswrite() is not
supported for ‘‘text’’ mode operations.

Future Directions
The following things might happen in future. The first publicly available releases having these
characteristics will be the developer releases Perl 5.9.x, culminating in the Perl 5.10.0 release. These
are our best guesses at the moment: we reserve the right to rethink.

• PerlIO will become The Default. Currently (in Perl 5.8.x) the stdio library is still used if Perl
thinks it can use certain tricks to make stdio go really fast. For future releases our goal is to make
PerlIO go even faster.

• A new feature called assertions will be available. This means that one can have code called
assertions sprinkled in the code: usually they are optimised away, but they can be enabled with the
-A option.

• A new operator // (defined-or) will be available. This means that one will be able to say

$a // $b

instead of

defined $a ? $a : $b

and

$c //= $d;

instead of

$c = $d unless defined $c;

The operator will have the same precedence and associativity as ||. A source code patch against
the Perl 5.8.1 sources will be available in CPAN as authors/id/H/HM/HMBRAND/dor-5.8.1.diff.

• unpack() will default to unpacking the $_.

• Various Copy-On-Write techniques will be investigated in hopes of speeding up Perl.

• CPANPLUS, Inline, and Module::Build will become core modules.

• The ability to write true lexically scoped pragmas will be introduced.

• Work will continue on the bytecompiler and byteloader.

• v-strings as they currently exist are scheduled to be deprecated. The v-less form (1.2.3) will
become a ‘‘version object’’ when used with use, require, and $VERSION. $ˆV will also be a
‘‘version object’’ so the printf(‘‘%vd’’,...) construct will no longer be needed. The v-ful version
(v1.2.3) will become obsolete. The equivalence of strings and v-strings (e.g. that currently 5.8.0
is equal to ‘‘\5\8\0’’) will go away. There may be no deprecation warning for v-strings,
though: it is quite hard to detect when v-strings are being used safely, and when they are not.

perl v5.36.0 2019-02-18 578

PERL581DELTA(1) Perl Programmers Reference Guide PERL581DELTA(1)

• 5.005 Threads Will Be Removed

• The $* Variable Will Be Removed (it was deprecated a long time ago)

• Pseudohashes Will Be Removed

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://bugs.perl.org/ . There may also be
information at http://www.perl.com/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team. You can
browse and search the Perl 5 bugs at http://bugs.perl.org/

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 579

PERL582DELTA(1) Perl Programmers Reference Guide PERL582DELTA(1)

NAME
perl582delta - what is new for perl v5.8.2

DESCRIPTION
This document describes differences between the 5.8.1 release and the 5.8.2 release.

If you are upgrading from an earlier release such as 5.6.1, first read the perl58delta, which describes
differences between 5.6.0 and 5.8.0, and the perl581delta, which describes differences between 5.8.0
and 5.8.1.

Incompatible Changes
For threaded builds for modules calling certain re-entrant system calls, binary compatibility was
accidentally lost between 5.8.0 and 5.8.1. Binary compatibility with 5.8.0 has been restored in 5.8.2,
which necessitates breaking compatibility with 5.8.1. We see this as the lesser of two evils.

This will only affect people who have a threaded perl 5.8.1, and compiled modules which use these
calls, and now attempt to run the compiled modules with 5.8.2. The fix is to re-compile and re-install
the modules using 5.8.2.

Core Enhancements
Hash Randomisation

The hash randomisation introduced with 5.8.1 has been amended. It transpired that although the
implementation introduced in 5.8.1 was source compatible with 5.8.0, it was not binary compatible in
certain cases. 5.8.2 contains an improved implementation which is both source and binary compatible
with both 5.8.0 and 5.8.1, and remains robust against the form of attack which prompted the change for
5.8.1.

We are grateful to the Debian project for their input in this area. See ‘‘Algorithmic Complexity
Attacks’’ in perlsec for the original rationale behind this change.

Threading
Several memory leaks associated with variables shared between threads have been fixed.

Modules and Pragmata
Updated Modules And Pragmata

The following modules and pragmata have been updated since Perl 5.8.1:

Devel::PPPort
Digest::MD5
I18N::LangTags
libnet
MIME::Base64
Pod::Perldoc
strict

Documentation improved

Tie::Hash
Documentation improved

Time::HiRes
Unicode::Collate
Unicode::Normalize
UNIVERSAL

Documentation improved

Selected Bug Fixes
Some syntax errors involving unrecognized filetest operators are now handled correctly by the parser.

Changed Internals
Interpreter initialization is more complete when -DMULTIPLICITY is off. This should resolve
problems with initializing and destroying the Perl interpreter more than once in a single process.

Platform Specific Problems
Dynamic linker flags have been tweaked for Solaris and OS X, which should solve problems seen while
building some XS modules.

Bugs in OS/2 sockets and tmpfile have been fixed.

perl v5.36.0 2017-06-16 580

PERL582DELTA(1) Perl Programmers Reference Guide PERL582DELTA(1)

In OS X setreuid and friends are troublesome - perl will now work around their problems as best
possible.

Future Directions
Starting with 5.8.3 we intend to make more frequent maintenance releases, with a smaller number of
changes in each. The intent is to propagate bug fixes out to stable releases more rapidly and make
upgrading stable releases less of an upheaval. This should give end users more flexibility in their choice
of upgrade timing, and allow them easier assessment of the impact of upgrades. The current plan is for
code freezes as follows

• 5.8.3 23:59:59 GMT, Wednesday December 31st 2003

• 5.8.4 23:59:59 GMT, Wednesday March 31st 2004

• 5.8.5 23:59:59 GMT, Wednesday June 30th 2004

with the release following soon after, when testing is complete.

See ‘‘Future Directions’’ in perl581delta for more soothsaying.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://bugs.perl.org/. There may also be
information at http://www.perl.com/, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team. You can
browse and search the Perl 5 bugs at http://bugs.perl.org/

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2017-06-16 581

PERL583DELTA(1) Perl Programmers Reference Guide PERL583DELTA(1)

NAME
perl583delta - what is new for perl v5.8.3

DESCRIPTION
This document describes differences between the 5.8.2 release and the 5.8.3 release.

If you are upgrading from an earlier release such as 5.6.1, first read the perl58delta, which describes
differences between 5.6.0 and 5.8.0, and the perl581delta and perl582delta, which describe differences
between 5.8.0, 5.8.1 and 5.8.2

Incompatible Changes
There are no changes incompatible with 5.8.2.

Core Enhancements
A SCALAR method is now available for tied hashes. This is called when a tied hash is used in scalar
context, such as

if (%tied_hash) {
...

}

The old behaviour was that %tied_hash would return whatever would have been returned for that
hash before the hash was tied (so usually 0). The new behaviour in the absence of a SCALAR method is
to return TRUE if in the middle of an each iteration, and otherwise call FIRSTKEY to check if the hash
is empty (making sure that a subsequent each will also begin by calling FIRSTKEY). Please see
‘‘SCALAR’’ in perltie for the full details and caveats.

Modules and Pragmata
CGI
Cwd
Digest
Digest::MD5
Encode
File::Spec
FindBin

A function again is provided to resolve problems where modules in different directories wish to
use FindBin.

List::Util
You can now weaken references to read only values.

Math::BigInt
PodParser
Pod::Perldoc
POSIX
Unicode::Collate
Unicode::Normalize
Test::Harness
threads::shared

cond_wait has a new two argument form. cond_timedwait has been added.

Utility Changes
find2perl now assumes -print as a default action. Previously, it needed to be specified explicitly.

A new utility, prove, makes it easy to run an individual regression test at the command line. prove is
part of Test::Harness, which users of earlier Perl versions can install from CPAN.

New Documentation
The documentation has been revised in places to produce more standard manpages.

The documentation for the special code blocks (BEGIN, CHECK, INIT, END) has been improved.

Installation and Configuration Improvements
Perl now builds on OpenVMS I64

Selected Bug Fixes
Using substr() on a UTF8 string could cause subsequent accesses on that string to return garbage. This
was due to incorrect UTF8 offsets being cached, and is now fixed.

perl v5.36.0 2017-06-16 582

PERL583DELTA(1) Perl Programmers Reference Guide PERL583DELTA(1)

join() could return garbage when the same join() statement was used to process 8 bit data having
earlier processed UTF8 data, due to the flags on that statement’s temporary workspace not being reset
correctly. This is now fixed.

$a .. $b will now work as expected when either $a or $b is undef

Using Unicode keys with tied hashes should now work correctly.

Reading $ˆE now preserves $!. Previously, the C code implementing $ˆE did not preserve errno, so
reading $ˆE could cause errno and therefore $! to change unexpectedly.

Reentrant functions will (once more) work with C++. 5.8.2 introduced a bugfix which accidentally broke
the compilation of Perl extensions written in C++

New or Changed Diagnostics
The fatal error ‘‘DESTROY created new reference to dead object’’ is now documented in perldiag.

Changed Internals
The hash code has been refactored to reduce source duplication. The external interface is unchanged,
and aside from the bug fixes described above, there should be no change in behaviour.

hv_clear_placeholders is now part of the perl API

Some C macros have been tidied. In particular macros which create temporary local variables now
name these variables more defensively, which should avoid bugs where names clash.

<signal.h> is now always included.

Configuration and Building
Configure now invokes callbacks regardless of the value of the variable they are called for.
Previously callbacks were only invoked in the case $variable $define) branch. This change
should only affect platform maintainers writing configuration hints files.

Platform Specific Problems
The regression test ext/threads/shared/t/wait.t fails on early RedHat 9 and HP-UX 10.20 due to bugs in
their threading implementations. RedHat users should see
https://rhn.redhat.com/errata/RHBA-2003-136.html and consider upgrading their glibc.

Known Problems
Detached threads aren’t supported on Windows yet, as they may lead to memory access violation
problems.

There is a known race condition opening scripts in suidperl. suidperl is neither built nor
installed by default, and has been deprecated since perl 5.8.0. You are advised to replace use of suidperl
with tools such as sudo (http://www.courtesan.com/sudo/)

We have a backlog of unresolved bugs. Dealing with bugs and bug reports is unglamorous work; not
something ideally suited to volunteer labour, but that is all that we have.

The perl5 development team are implementing changes to help address this problem, which should go
live in early 2004.

Future Directions
Code freeze for the next maintenance release (5.8.4) is on March 31st 2004, with release expected by
mid April. Similarly 5.8.5’s freeze will be at the end of June, with release by mid July.

Obituary
Iain ’Spoon’ Truskett, Perl hacker, author of perlreref and contributor to CPAN, died suddenly on 29th
December 2003, aged 24. He will be missed.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://bugs.perl.org. There may also be
information at http://www.perl.org, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team. You can
browse and search the Perl 5 bugs at http://bugs.perl.org/

perl v5.36.0 2017-06-16 583

PERL583DELTA(1) Perl Programmers Reference Guide PERL583DELTA(1)

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2017-06-16 584

PERL584DELTA(1) Perl Programmers Reference Guide PERL584DELTA(1)

NAME
perl584delta - what is new for perl v5.8.4

DESCRIPTION
This document describes differences between the 5.8.3 release and the 5.8.4 release.

Incompatible Changes
Many minor bugs have been fixed. Scripts which happen to rely on previously erroneous behaviour will
consider these fixes as incompatible changes :-) You are advised to perform sufficient acceptance
testing on this release to satisfy yourself that this does not affect you, before putting this release into
production.

The diagnostic output of Carp has been changed slightly, to add a space after the comma between
arguments. This makes it much easier for tools such as web browsers to wrap it, but might confuse any
automatic tools which perform detailed parsing of Carp output.

The internal dump output has been improved, so that non-printable characters such as newline and
backspace are output in \x notation, rather than octal. This might just confuse non-robust tools which
parse the output of modules such as Devel::Peek.

Core Enhancements
Malloc wrapping

Perl can now be built to detect attempts to assign pathologically large chunks of memory. Previously
such assignments would suffer from integer wrap-around during size calculations causing a
misallocation, which would crash perl, and could theoretically be used for ‘‘stack smashing’’ attacks.
The wrapping defaults to enabled on platforms where we know it works (most AIX configurations,
BSDi, Darwin, DEC OSF/1, FreeBSD, HP/UX, GNU Linux, OpenBSD, Solaris, VMS and most Win32
compilers) and defaults to disabled on other platforms.

Unicode Character Database 4.0.1
The copy of the Unicode Character Database included in Perl 5.8 has been updated to 4.0.1 from 4.0.0.

suidperl less insecure
Paul Szabo has analysed and patched suidperl to remove existing known insecurities. Currently
there are no known holes in suidperl, but previous experience shows that we cannot be confident
that these were the last. You may no longer invoke the set uid perl directly, so to preserve backwards
compatibility with scripts that invoke #!/usr/bin/suidperl the only set uid binary is now sperl5.8.n
(sperl5.8.4 for this release). suidperl is installed as a hard link to perl; both suidperl and
perl will invoke sperl5.8.4 automatically the set uid binary, so this change should be completely
transparent.

For new projects the core perl team would strongly recommend that you use dedicated, single purpose
security tools such as sudo in preference to suidperl.

format
In addition to bug fixes, format’s features have been enhanced. See perlform

Modules and Pragmata
The (mis)use of /tmp in core modules and documentation has been tidied up. Some modules available
both within the perl core and independently from CPAN (‘‘dual-life modules’’) have not yet had these
changes applied; the changes will be integrated into future stable perl releases as the modules are
updated on CPAN.

Updated modules
Attribute::Handlers
B
Benchmark
CGI
Carp
Cwd
Exporter
File::Find
IO

perl v5.36.0 2017-06-16 585

PERL584DELTA(1) Perl Programmers Reference Guide PERL584DELTA(1)

IPC::Open3
Local::Maketext
Math::BigFloat
Math::BigInt
Math::BigRat
MIME::Base64
ODBM_File
POSIX
Shell
Socket

There is experimental support for Linux abstract Unix domain sockets.

Storable
Switch

Synced with its CPAN version 2.10

Sys::Syslog
syslog() can now use numeric constants for facility names and priorities, in addition to strings.

Term::ANSIColor
Time::HiRes
Unicode::UCD
Win32

Win32.pm/Win32.xs has moved from the libwin32 module to core Perl

base
open
threads

Detached threads are now also supported on Windows.

utf8

Performance Enhancements
• Accelerated Unicode case mappings (/i, lc, uc, etc).

• In place sort optimised (eg @a = sort @a)

• Unnecessary assignment optimised away in

my $s = undef;
my @a = ();
my %h = ();

• Optimised map in scalar context

Utility Changes
The Perl debugger (lib/perl5db.pl) can now save all debugger commands for sourcing later, and can
display the parent inheritance tree of a given class.

Installation and Configuration Improvements
The build process on both VMS and Windows has had several minor improvements made. On Windows
Borland’s C compiler can now compile perl with PerlIO and/or USE_LARGE_FILES enabled.

perl.exe on Windows now has a ‘‘Camel’’ logo icon. The use of a camel with the topic of Perl is a
trademark of O’Reilly and Associates Inc., and is used with their permission (ie distribution of the
source, compiling a Windows executable from it, and using that executable locally). Use of the
supplied camel for anything other than a perl executable’s icon is specifically not covered, and anyone
wishing to redistribute perl binaries with the icon should check directly with O’Reilly beforehand.

Perl should build cleanly on Stratus VOS once more.

Selected Bug Fixes
More utf8 bugs fixed, notably in how chomp, chop, send, and syswrite and interact with utf8
data. Concatenation now works correctly when use bytes; is in scope.

Pragmata are now correctly propagated into (?{...}) constructions in regexps. Code such as

my $x = qr{ ... (??{ $x }) ... };

perl v5.36.0 2017-06-16 586

PERL584DELTA(1) Perl Programmers Reference Guide PERL584DELTA(1)

will now (correctly) fail under use strict. (As the inner $x is and has always referred to $::x)

The ‘‘const in void context’’ warning has been suppressed for a constant in an optimised-away boolean
expression such as 5 || print;

perl -i could fchmod(stdin) by mistake. This is serious if stdin is attached to a terminal, and
perl is running as root. Now fixed.

New or Changed Diagnostics
Carp and the internal diagnostic routines used by Devel::Peek have been made clearer, as
described in ‘‘Incompatible Changes’’

Changed Internals
Some bugs have been fixed in the hash internals. Restricted hashes and their place holders are now
allocated and deleted at slightly different times, but this should not be visible to user code.

Future Directions
Code freeze for the next maintenance release (5.8.5) will be on 30th June 2004, with release by mid
July.

Platform Specific Problems
This release is known not to build on Windows 95.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://bugs.perl.org. There may also be
information at http://www.perl.org, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team. You can
browse and search the Perl 5 bugs at http://bugs.perl.org/

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2017-06-16 587

PERL585DELTA(1) Perl Programmers Reference Guide PERL585DELTA(1)

NAME
perl585delta - what is new for perl v5.8.5

DESCRIPTION
This document describes differences between the 5.8.4 release and the 5.8.5 release.

Incompatible Changes
There are no changes incompatible with 5.8.4.

Core Enhancements
Perl’s regular expression engine now contains support for matching on the intersection of two Unicode
character classes. You can also now refer to user-defined character classes from within other user
defined character classes.

Modules and Pragmata
• Carp improved to work nicely with Safe. Carp’s message reporting should now be anomaly free -

it will always print out line number information.

• CGI upgraded to version 3.05

• charnames now avoids clobbering $_

• Digest upgraded to version 1.08

• Encode upgraded to version 2.01

• FileCache upgraded to version 1.04

• libnet upgraded to version 1.19

• Pod::Parser upgraded to version 1.28

• Pod::Perldoc upgraded to version 3.13

• Pod::LaTeX upgraded to version 0.57

• Safe now works properly with Carp

• Scalar-List-Utils upgraded to version 1.14

• Shell’s documentation has been re-written, and its historical partial auto-quoting of command
arguments can now be disabled.

• Test upgraded to version 1.25

• Test::Harness upgraded to version 2.42

• Time::Local upgraded to version 1.10

• Unicode::Collate upgraded to version 0.40

• Unicode::Normalize upgraded to version 0.30

Utility Changes
Perl’s debugger

The debugger can now emulate stepping backwards, by restarting and rerunning all bar the last
command from a saved command history.

h2ph
h2ph is now able to understand a very limited set of C inline functions — basically, the inline
functions that look like CPP macros. This has been introduced to deal with some of the headers of the
newest versions of the glibc. The standard warning still applies; to quote h2ph’s documentation, you
may need to dicker with the files produced.

Installation and Configuration Improvements
Perl 5.8.5 should build cleanly from source on LynxOS.

Selected Bug Fixes
• The in-place sort optimisation introduced in 5.8.4 had a bug. For example, in code such as

@a = sort ($b, @a)

the result would omit the value $b. This is now fixed.

perl v5.36.0 2017-06-16 588

PERL585DELTA(1) Perl Programmers Reference Guide PERL585DELTA(1)

• The optimisation for unnecessary assignments introduced in 5.8.4 could give spurious warnings.
This has been fixed.

• Perl should now correctly detect and read BOM-marked and (BOMless) UTF-16 scripts of either
endianness.

• Creating a new thread when weak references exist was buggy, and would often cause warnings at
interpreter destruction time. The known bug is now fixed.

• Several obscure bugs involving manipulating Unicode strings with substr have been fixed.

• Previously if Perl’s file globbing function encountered a directory that it did not have permission
to open it would return immediately, leading to unexpected truncation of the list of results. This
has been fixed, to be consistent with Unix shells’ globbing behaviour.

• Thread creation time could vary wildly between identical runs. This was caused by a poor hashing
algorithm in the thread cloning routines, which has now been fixed.

• The internals of the ithreads implementation were not checking if OS-level thread creation had
failed. threads->create() now returns undef in if thread creation fails instead of crashing perl.

New or Changed Diagnostics
• Perl -V has several improvements

• correctly outputs local patch names that contain embedded code snippets or other characters
that used to confuse it.

• arguments to -V that look like regexps will give multiple lines of output.

• a trailing colon suppresses the linefeed and ’;’ terminator, allowing embedding of queries
into shell commands.

• a leading colon removes the ’name=’ part of the response, allowing mapping to any name.

• When perl fails to find the specified script, it now outputs a second line suggesting that the user
use the -S flag:

$ perl5.8.5 missing.pl
Can't open perl script "missing.pl": No such file or directory.
Use -S to search $PATH for it.

Changed Internals
The Unicode character class files used by the regular expression engine are now built at build time from
the supplied Unicode consortium data files, instead of being shipped prebuilt. This makes the
compressed Perl source tarball about 200K smaller. A side effect is that the layout of files inside
lib/unicore has changed.

Known Problems
The regression test t/uni/class.t is now performing considerably more tests, and can take several
minutes to run even on a fast machine.

Platform Specific Problems
This release is known not to build on Windows 95.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://bugs.perl.org. There may also be
information at http://www.perl.org, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team. You can
browse and search the Perl 5 bugs at http://bugs.perl.org/

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2017-06-16 589

PERL586DELTA(1) Perl Programmers Reference Guide PERL586DELTA(1)

NAME
perl586delta - what is new for perl v5.8.6

DESCRIPTION
This document describes differences between the 5.8.5 release and the 5.8.6 release.

Incompatible Changes
There are no changes incompatible with 5.8.5.

Core Enhancements
The perl interpreter is now more tolerant of UTF-16-encoded scripts.

On Win32, Perl can now use non-IFS compatible LSPs, which allows Perl to work in conjunction with
firewalls such as McAfee Guardian. For full details see the file README.win32, particularly if you’re
running Win95.

Modules and Pragmata
• With the base pragma, an intermediate class with no fields used to messes up private fields in the

base class. This has been fixed.

• Cwd upgraded to version 3.01 (as part of the new PathTools distribution)

• Devel::PPPort upgraded to version 3.03

• File::Spec upgraded to version 3.01 (as part of the new PathTools distribution)

• Encode upgraded to version 2.08

• ExtUtils::MakeMaker remains at version 6.17, as later stable releases currently available on CPAN
have some issues with core modules on some core platforms.

• I18N::LangTags upgraded to version 0.35

• Math::BigInt upgraded to version 1.73

• Math::BigRat upgraded to version 0.13

• MIME::Base64 upgraded to version 3.05

• POSIX::sigprocmask function can now retrieve the current signal mask without also setting it.

• Time::HiRes upgraded to version 1.65

Utility Changes
Perl has a new -dt command-line flag, which enables threads support in the debugger.

Performance Enhancements
reverse sort ... is now optimized to sort in reverse, avoiding the generation of a temporary
intermediate list.

for (reverse @foo) now iterates in reverse, avoiding the generation of a temporary reversed list.

Selected Bug Fixes
The regexp engine is now more robust when given invalid utf8 input, as is sometimes generated by
buggy XS modules.

foreach on threads::shared array used to be able to crash Perl. This bug has now been fixed.

A regexp in STDOUT’s destructor used to coredump, because the regexp pad was already freed. This
has been fixed.

goto & is now more robust - bugs in deep recursion and chained goto & have been fixed.

Using delete on an array no longer leaks memory. A pop of an item from a shared array reference
no longer causes a leak.

eval_sv() failing a taint test could corrupt the stack - this has been fixed.

On platforms with 64 bit pointers numeric comparison operators used to erroneously compare the
addresses of references that are overloaded, rather than using the overloaded values. This has been
fixed.

read into a UTF8-encoded buffer with an offset off the end of the buffer no longer mis-calculates
buffer lengths.

perl v5.36.0 2017-06-16 590

PERL586DELTA(1) Perl Programmers Reference Guide PERL586DELTA(1)

Although Perl has promised since version 5.8 that sort() would be stable, the two cases sort {$b
cmp $a} and sort {$b <=> $a} could produce non-stable sorts. This is corrected in perl5.8.6.

Localising $ˆD no longer generates a diagnostic message about valid -D flags.

New or Changed Diagnostics
For -t and -T,

Too late for ‘‘-T’’ option has been changed to the more informative
‘‘-T’’ is on the #! line, it must also be used on the command line

Changed Internals
From now on all applications embedding perl will behave as if perl were compiled with
-DPERL_USE_SAFE_PUTENV. See ‘‘Environment access’’ in the INSTALL file for details.

Most C source files now have comments at the top explaining their purpose, which should help anyone
wishing to get an overview of the implementation.

New Tests
There are significantly more tests for the B suite of modules.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://bugs.perl.org. There may also be
information at http://www.perl.org, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team. You can
browse and search the Perl 5 bugs at http://bugs.perl.org/

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2017-06-16 591

PERL587DELTA(1) Perl Programmers Reference Guide PERL587DELTA(1)

NAME
perl587delta - what is new for perl v5.8.7

DESCRIPTION
This document describes differences between the 5.8.6 release and the 5.8.7 release.

Incompatible Changes
There are no changes incompatible with 5.8.6.

Core Enhancements
Unicode Character Database 4.1.0

The copy of the Unicode Character Database included in Perl 5.8 has been updated to 4.1.0 from 4.0.1.
See <http://www.unicode.org/versions/Unicode4.1.0/#NotableChanges> for the notable changes.

suidperl less insecure
A pair of exploits in suidperl involving debugging code have been closed.

For new projects the core perl team strongly recommends that you use dedicated, single purpose
security tools such as sudo in preference to suidperl.

Optional site customization script
The perl interpreter can be built to allow the use of a site customization script. By default this is not
enabled, to be consistent with previous perl releases. To use this, add -Dusesitecustomize to the
command line flags when running the Configure script. See also ‘‘-f’’ in perlrun.

Config.pm is now much smaller.
Config.pm is now about 3K rather than 32K, with the infrequently used code and %Config values
loaded on demand. This is transparent to the programmer, but means that most code will save parsing
and loading 29K of script (for example, code that uses File::Find).

Modules and Pragmata
• B upgraded to version 1.09

• base upgraded to version 2.07

• bignum upgraded to version 0.17

• bytes upgraded to version 1.02

• Carp upgraded to version 1.04

• CGI upgraded to version 3.10

• Class::ISA upgraded to version 0.33

• Data::Dumper upgraded to version 2.121_02

• DB_File upgraded to version 1.811

• Devel::PPPort upgraded to version 3.06

• Digest upgraded to version 1.10

• Encode upgraded to version 2.10

• FileCache upgraded to version 1.05

• File::Path upgraded to version 1.07

• File::Temp upgraded to version 0.16

• IO::File upgraded to version 1.11

• IO::Socket upgraded to version 1.28

• Math::BigInt upgraded to version 1.77

• Math::BigRat upgraded to version 0.15

• overload upgraded to version 1.03

• PathTools upgraded to version 3.05

• Pod::HTML upgraded to version 1.0503

perl v5.36.0 2019-02-18 592

PERL587DELTA(1) Perl Programmers Reference Guide PERL587DELTA(1)

• Pod::Perldoc upgraded to version 3.14

• Pod::LaTeX upgraded to version 0.58

• Pod::Parser upgraded to version 1.30

• Symbol upgraded to version 1.06

• Term::ANSIColor upgraded to version 1.09

• Test::Harness upgraded to version 2.48

• Test::Simple upgraded to version 0.54

• Text::Wrap upgraded to version 2001.09293, to fix a bug when wrap() was called with a non-
space separator.

• threads::shared upgraded to version 0.93

• Time::HiRes upgraded to version 1.66

• Time::Local upgraded to version 1.11

• Unicode::Normalize upgraded to version 0.32

• utf8 upgraded to version 1.05

• Win32 upgraded to version 0.24, which provides Win32::GetFileVersion

Utility Changes
find2perl enhancements

find2perl has new options -iname, -path and -ipath.

Performance Enhancements
The internal pointer mapping hash used during ithreads cloning now uses an arena for memory
allocation. In tests this reduced ithreads cloning time by about 10%.

Installation and Configuration Improvements
• The Win32 ‘‘dmake’’ makefile.mk has been updated to make it compatible with the latest versions

of dmake.

• PERL_MALLOC, DEBUG_MSTATS, PERL_HASH_SEED_EXPLICIT and NO_HASH_SEED
should now work in Win32 makefiles.

Selected Bug Fixes
• The socket() function on Win32 has been fixed so that it is able to use transport providers which

specify a protocol of 0 (meaning any protocol is allowed) once more. (This was broken in 5.8.6,
and typically caused the use of ICMP sockets to fail.)

• Another obscure bug involving substr and UTF-8 caused by bad internal offset caching has
been identified and fixed.

• A bug involving the loading of UTF-8 tables by the regexp engine has been fixed - code such as
"\x{100}" =˜ /[[:print:]]/ will no longer give corrupt results.

• Case conversion operations such as uc on a long Unicode string could exhaust memory. This has
been fixed.

• index/rindex were buggy for some combinations of Unicode and non-Unicode data. This has
been fixed.

• read (and presumably sysread) would expose the UTF-8 internals when reading from a byte
oriented file handle into a UTF-8 scalar. This has been fixed.

• Several pack/unpack bug fixes:

• Checksums with b or B formats were broken.

• unpack checksums could overflow with the C format.

• U0 and C0 are now scoped to () pack sub-templates.

• Counted length prefixes now don’t change C0/U0 mode.

perl v5.36.0 2019-02-18 593

PERL587DELTA(1) Perl Programmers Reference Guide PERL587DELTA(1)

• pack Z0 used to destroy the preceding character.

• P/p pack formats used to only recognise literal undef

• Using closures with ithreads could cause perl to crash. This was due to failure to correctly lock
internal OP structures, and has been fixed.

• The return value of close now correctly reflects any file errors that occur while flushing the
handle’s data, instead of just giving failure if the actual underlying file close operation failed.

• not() || 1 used to segfault. not() now behaves like not(0), which was the pre 5.6.0
behaviour.

• h2ph has various enhancements to cope with constructs in header files that used to result in
incorrect or invalid output.

New or Changed Diagnostics
There is a new taint error, ‘‘%ENV is aliased to %s’’. This error is thrown when taint checks are
enabled and when *ENV has been aliased, so that %ENV has no env-magic anymore and hence the
environment cannot be verified as taint-free.

The internals of pack and unpack have been updated. All legitimate templates should work as
before, but there may be some changes in the error reported for complex failure cases. Any behaviour
changes for non-error cases are bugs, and should be reported.

Changed Internals
There has been a fair amount of refactoring of the C source code, partly to make it tidier and more
maintainable. The resulting object code and the perl binary may well be smaller than 5.8.6, and
hopefully faster in some cases, but apart from this there should be no user-detectable changes.

${ˆUTF8LOCALE} has been added to give perl space access to PL_utf8locale.

The size of the arenas used to allocate SV heads and most SV bodies can now be changed at compile
time. The old size was 1008 bytes, the new default size is 4080 bytes.

Known Problems
Unicode strings returned from overloaded operators can be buggy. This is a long standing bug reported
since 5.8.6 was released, but we do not yet have a suitable fix for it.

Platform Specific Problems
On UNICOS, lib/Math/BigInt/t/bigintc.t hangs burning CPU. ext/B/t/bytecode.t and
ext/Socket/t/socketpair.t both fail tests. These are unlikely to be resolved, as our valiant UNICOS
porter’s last Cray is being decommissioned.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://bugs.perl.org. There may also be
information at http://www.perl.org, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team. You can
browse and search the Perl 5 bugs at http://bugs.perl.org/

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 594

PERL588DELTA(1) Perl Programmers Reference Guide PERL588DELTA(1)

NAME
perl588delta - what is new for perl v5.8.8

DESCRIPTION
This document describes differences between the 5.8.7 release and the 5.8.8 release.

Incompatible Changes
There are no changes intentionally incompatible with 5.8.7. If any exist, they are bugs and reports are
welcome.

Core Enhancements
• chdir, chmod and chown can now work on filehandles as well as filenames, if the system

supports respectively fchdir, fchmod and fchown, thanks to a patch provided by Gisle Aas.

Modules and Pragmata
• Attribute::Handlers upgraded to version 0.78_02

• Documentation typo fix

• attrs upgraded to version 1.02

• Internal cleanup only

• autouse upgraded to version 1.05

• Simplified implementation

• B upgraded to version 1.09_01

• The inheritance hierarchy of the B:: modules has been corrected; B::NV now inherits from
B::SV (instead of B::IV).

• blib upgraded to version 1.03

• Documentation typo fix

• ByteLoader upgraded to version 0.06

• Internal cleanup

• CGI upgraded to version 3.15

• Extraneous ‘‘?’’ from self_url() removed

• scrolling_list() select attribute fixed

• virtual_port now works properly with the https protocol

• upload_hook() and append() now works in function-oriented mode

• POST_MAX doesn’t cause the client to hang any more

• Automatic tab indexes are now disabled and new -tabindex pragma has been added to
turn automatic indexes back on

• end_form() doesn’t emit empty (and non-validating) <div>

• CGI::Carp works better in certain mod_perl configurations

• Setting $CGI::TMPDIRECTORY is now effective

• Enhanced documentation

• charnames upgraded to version 1.05

• viacode() now accept hex strings and has been optimized.

• CPAN upgraded to version 1.76_02

• 1 minor bug fix for Win32

• Cwd upgraded to version 3.12

• canonpath() on Win32 now collapses foo\.. sections correctly.

• Improved behaviour on Symbian OS.

perl v5.36.0 2019-02-18 595

PERL588DELTA(1) Perl Programmers Reference Guide PERL588DELTA(1)

• Enhanced documentation and typo fixes

• Internal cleanup

• Data::Dumper upgraded to version 2.121_08

• A problem where Data::Dumper would sometimes update the iterator state of hashes has
been fixed

• Numeric labels now work

• Internal cleanup

• DB upgraded to version 1.01

• A problem where the state of the regexp engine would sometimes get clobbered when
running under the debugger has been fixed.

• DB_File upgraded to version 1.814

• Adds support for Berkeley DB 4.4.

• Devel::DProf upgraded to version 20050603.00

• Internal cleanup

• Devel::Peek upgraded to version 1.03

• Internal cleanup

• Devel::PPPort upgraded to version 3.06_01

• --compat-version argument checking has been improved

• Files passed on the command line are filtered by default

• --nofilter option to override the filtering has been added

• Enhanced documentation

• diagnostics upgraded to version 1.15

• Documentation typo fix

• Digest upgraded to version 1.14

• The constructor now knows which module implements SHA-224

• Documentation tweaks and typo fixes

• Digest::MD5 upgraded to version 2.36

• XSLoader is now used for faster loading

• Enhanced documentation including MD5 weaknesses discovered lately

• Dumpvalue upgraded to version 1.12

• Documentation fix

• DynaLoader upgraded but unfortunately we’re not able to increment its version number :-(

• Implements dl_unload_file on Win32

• Internal cleanup

• XSLoader 0.06 incorporated; small optimisation for calling bootstrap_inherit()
and documentation enhancements.

• Encode upgraded to version 2.12

• A coderef is now acceptable for CHECK!

• 3 new characters added to the ISO-8859-7 encoding

• New encoding MIME-Header-ISO_2022_JP added

• Problem with partial characters and encoding(utf-8-strict) fixed.

perl v5.36.0 2019-02-18 596

PERL588DELTA(1) Perl Programmers Reference Guide PERL588DELTA(1)

• Documentation enhancements and typo fixes

• English upgraded to version 1.02

• the $COMPILING variable has been added

• ExtUtils::Constant upgraded to version 0.17

• Improved compatibility with older versions of perl

• ExtUtils::MakeMaker upgraded to version 6.30 (was 6.17)

• Too much to list here; see <http://search.cpan.org/dist/ExtUtils-MakeMaker/Changes>

• File::Basename upgraded to version 2.74, with changes contributed by Michael Schwern.

• Documentation clarified and errors corrected.

• basename now strips trailing path separators before processing the name.

• basename now returns / for parameter /, to make basename consistent with the shell
utility of the same name.

• The suffix is no longer stripped if it is identical to the remaining characters in the name, again
for consistency with the shell utility.

• Some internal code cleanup.

• File::Copy upgraded to version 2.09

• Copying a file onto itself used to fail.

• Moving a file between file systems now preserves the access and modification time stamps

• File::Find upgraded to version 1.10

• Win32 portability fixes

• Enhanced documentation

• File::Glob upgraded to version 1.05

• Internal cleanup

• File::Path upgraded to version 1.08

• mkpath now preserves errno when mkdir fails

• File::Spec upgraded to version 3.12

• File::Spec->rootdir() now returns \ on Win32, instead of /

• $ˆO could sometimes become tainted. This has been fixed.

• canonpath on Win32 now collapses foo/.. (or foo\..) sections correctly, rather than
doing the ‘‘misguided’’ work it was previously doing. Note that canonpath on Unix still
does not collapse these sections, as doing so would be incorrect.

• Some documentation improvements

• Some internal code cleanup

• FileCache upgraded to version 1.06

• POD formatting errors in the documentation fixed

• Filter::Simple upgraded to version 0.82

• FindBin upgraded to version 1.47

• Now works better with directories where access rights are more restrictive than usual.

• GDBM_File upgraded to version 1.08

• Internal cleanup

• Getopt::Long upgraded to version 2.35

• prefix_pattern has now been complemented by a new configuration option
long_prefix_pattern that allows the user to specify what prefix patterns should have
long option style semantics applied.

perl v5.36.0 2019-02-18 597

PERL588DELTA(1) Perl Programmers Reference Guide PERL588DELTA(1)

• Options can now take multiple values at once (experimental)

• Various bug fixes

• if upgraded to version 0.05

• Give more meaningful error messages from if when invoked with a condition in list context.

• Restore backwards compatibility with earlier versions of perl

• IO upgraded to version 1.22

• Enhanced documentation

• Internal cleanup

• IPC::Open2 upgraded to version 1.02

• Enhanced documentation

• IPC::Open3 upgraded to version 1.02

• Enhanced documentation

• List::Util upgraded to version 1.18 (was 1.14)

• Fix pure-perl version of refaddr to avoid blessing an un-blessed reference

• Use XSLoader for faster loading

• Fixed various memory leaks

• Internal cleanup and portability fixes

• Math::Complex upgraded to version 1.35

• atan2(0, i) now works, as do all the (computable) complex argument cases

• Fixes for certain bugs in make and emake

• Support returning the kth root directly

• Support [2,-3pi/8] in emake

• Support inf for make/emake

• Document make/emake more visibly

• Math::Trig upgraded to version 1.03

• Add more great circle routines: great_circle_waypoint and
great_circle_destination

• MIME::Base64 upgraded to version 3.07

• Use XSLoader for faster loading

• Enhanced documentation

• Internal cleanup

• NDBM_File upgraded to version 1.06

• Enhanced documentation

• ODBM_File upgraded to version 1.06

• Documentation typo fixed

• Internal cleanup

• Opcode upgraded to version 1.06

• Enhanced documentation

• Internal cleanup

• open upgraded to version 1.05

• Enhanced documentation

perl v5.36.0 2019-02-18 598

PERL588DELTA(1) Perl Programmers Reference Guide PERL588DELTA(1)

• overload upgraded to version 1.04

• Enhanced documentation

• PerlIO upgraded to version 1.04

• PerlIO::via iterate over layers properly now

• PerlIO::scalar understands $/ = "" now

• encoding(utf-8-strict) with partial characters now works

• Enhanced documentation

• Internal cleanup

• Pod::Functions upgraded to version 1.03

• Documentation typos fixed

• Pod::Html upgraded to version 1.0504

• HTML output will now correctly link to =items on the same page, and should be valid
XHTML.

• Variable names are recognized as intended

• Documentation typos fixed

• Pod::Parser upgraded to version 1.32

• Allow files that start with =head on the first line

• Win32 portability fix

• Exit status of pod2usage fixed

• New -noperldoc switch for pod2usage

• Arbitrary URL schemes now allowed

• Documentation typos fixed

• POSIX upgraded to version 1.09

• Documentation typos fixed

• Internal cleanup

• re upgraded to version 0.05

• Documentation typo fixed

• Safe upgraded to version 2.12

• Minor documentation enhancement

• SDBM_File upgraded to version 1.05

• Documentation typo fixed

• Internal cleanup

• Socket upgraded to version 1.78

• Internal cleanup

• Storable upgraded to version 2.15

• This includes the STORABLE_attach hook functionality added by Adam Kennedy, and
more frugal memory requirements when storing under ithreads, by using the ithreads
cloning tracking code.

• Switch upgraded to version 2.10_01

• Documentation typos fixed

• Sys::Syslog upgraded to version 0.13

perl v5.36.0 2019-02-18 599

PERL588DELTA(1) Perl Programmers Reference Guide PERL588DELTA(1)

• Now provides numeric macros and meaningful Exporter tags.

• No longer uses Sys::Hostname as it may provide useless values in unconfigured network
environments, so instead uses INADDR_LOOPBACK directly.

• syslog() now uses local timestamp.

• setlogmask() now behaves like its C counterpart.

• setlogsock() will now croak() as documented.

• Improved error and warnings messages.

• Improved documentation.

• Term::ANSIColor upgraded to version 1.10

• Fixes a bug in colored when $EACHLINE is set that caused it to not color lines consisting
solely of 0 (literal zero).

• Improved tests.

• Term::ReadLine upgraded to version 1.02

• Documentation tweaks

• Test::Harness upgraded to version 2.56 (was 2.48)

• The Test::Harness timer is now off by default.

• Now shows elapsed time in milliseconds.

• Various bug fixes

• Test::Simple upgraded to version 0.62 (was 0.54)

• is_deeply() no longer fails to work for many cases

• Various minor bug fixes

• Documentation enhancements

• Text::Tabs upgraded to version 2005.0824

• Provides a faster implementation of expand

• Text::Wrap upgraded to version 2005.082401

• Adds $Text::Wrap::separator2, which allows you to preserve existing newlines but
add line-breaks with some other string.

• threads upgraded to version 1.07

• threads will now honour no warnings 'threads'

• A thread’s interpreter is now freed after $t->join() rather than after undef $t, which
should fix some ithreads memory leaks. (Fixed by Dave Mitchell)

• Some documentation typo fixes.

• threads::shared upgraded to version 0.94

• Documentation changes only

• Note: An improved implementation of threads::shared is available on CPAN - this will
be merged into 5.8.9 if it proves stable.

• Tie::Hash upgraded to version 1.02

• Documentation typo fixed

• Time::HiRes upgraded to version 1.86 (was 1.66)

• clock_nanosleep() and clock() functions added

• Support for the POSIX clock_gettime() and clock_getres() has been added

• Return undef or an empty list if the C gettimeofday() function fails

perl v5.36.0 2019-02-18 600

PERL588DELTA(1) Perl Programmers Reference Guide PERL588DELTA(1)

• Improved nanosleep detection

• Internal cleanup

• Enhanced documentation

• Unicode::Collate upgraded to version 0.52

• Now implements UCA Revision 14 (based on Unicode 4.1.0).

• Unicode::Collate->new method no longer overwrites user’s $_

• Enhanced documentation

• Unicode::UCD upgraded to version 0.24

• Documentation typos fixed

• User::grent upgraded to version 1.01

• Documentation typo fixed

• utf8 upgraded to version 1.06

• Documentation typos fixed

• vmsish upgraded to version 1.02

• Documentation typos fixed

• warnings upgraded to version 1.05

• Gentler messing with Carp:: internals

• Internal cleanup

• Documentation update

• Win32 upgraded to version 0.2601

• Provides Windows Vista support to Win32::GetOSName

• Documentation enhancements

• XS::Typemap upgraded to version 0.02

• Internal cleanup

Utility Changes
h2xs enhancements

h2xs implements new option --use-xsloader to force use of XSLoader even in backwards
compatible modules.

The handling of authors’ names that had apostrophes has been fixed.

Any enums with negative values are now skipped.

perlivp enhancements
perlivp implements new option -a and will not check for *.ph files by default any more. Use the
-a option to run all tests.

New Documentation
The perlglossary manpage is a glossary of terms used in the Perl documentation, technical and
otherwise, kindly provided by O’Reilly Media, inc.

Performance Enhancements
• Weak reference creation is now O(1) rather than O(n), courtesy of Nicholas Clark. Weak reference

deletion remains O(n), but if deletion only happens at program exit, it may be skipped completely.

• Salvador Fandiño provided improvements to reduce the memory usage of sort and to speed up
some cases.

• Jarkko Hietaniemi and Andy Lester worked to mark as much data as possible in the C source files
as static, to increase the proportion of the executable file that the operating system can share
between process, and thus reduce real memory usage on multi-user systems.

perl v5.36.0 2019-02-18 601

PERL588DELTA(1) Perl Programmers Reference Guide PERL588DELTA(1)

Installation and Configuration Improvements
Parallel makes should work properly now, although there may still be problems if make test is
instructed to run in parallel.

Building with Borland’s compilers on Win32 should work more smoothly. In particular Steve Hay has
worked to side step many warnings emitted by their compilers and at least one C compiler internal
error.

Configure will now detect clearenv and unsetenv, thanks to a patch from Alan Burlison. It
will also probe for futimes and whether sprintf correctly returns the length of the formatted
string, which will both be used in perl 5.8.9.

There are improved hints for next-3.0, vmesa, IX, Darwin, Solaris, Linux, DEC/OSF, HP-UX and
MPE/iX

Perl extensions on Windows now can be statically built into the Perl DLL, thanks to a work by Vadim
Konovalov. (This improvement was actually in 5.8.7, but was accidentally omitted from perl587delta).

Selected Bug Fixes
no warnings ’category’ works correctly with -w

Previously when running with warnings enabled globally via -w, selective disabling of specific
warning categories would actually turn off all warnings. This is now fixed; now no warnings
'io'; will only turn off warnings in the io class. Previously it would erroneously turn off all
warnings.

This bug fix may cause some programs to start correctly issuing warnings.

Remove over-optimisation
Perl 5.8.4 introduced a change so that assignments of undef to a scalar, or of an empty list to an array
or a hash, were optimised away. As this could cause problems when goto jumps were involved, this
change has been backed out.

sprintf() fixes
Using the sprintf() function with some formats could lead to a buffer overflow in some specific cases.
This has been fixed, along with several other bugs, notably in bounds checking.

In related fixes, it was possible for badly written code that did not follow the documentation of
Sys::Syslog to have formatting vulnerabilities. Sys::Syslog has been changed to protect
people from poor quality third party code.

Debugger and Unicode slowdown
It had been reported that running under perl’s debugger when processing Unicode data could cause
unexpectedly large slowdowns. The most likely cause of this was identified and fixed by Nicholas
Clark.

Smaller fixes
• FindBin now works better with directories where access rights are more restrictive than usual.

• Several memory leaks in ithreads were closed. An improved implementation of
threads::shared is available on CPAN - this will be merged into 5.8.9 if it proves stable.

• Trailing spaces are now trimmed from $! and $ˆE.

• Operations that require perl to read a process’s list of groups, such as reads of $(and $), now
dynamically allocate memory rather than using a fixed sized array. The fixed size array could
cause C stack exhaustion on systems configured to use large numbers of groups.

• PerlIO::scalar now works better with non-default $/ settings.

• You can now use the x operator to repeat a qw// list. This used to raise a syntax error.

• The debugger now traces correctly execution in eval("")uated code that contains #line directives.

• The value of the open pragma is no longer ignored for three-argument opens.

• The optimisation of for (reverse @a) introduced in perl 5.8.6 could misbehave when the
array had undefined elements and was used in LVALUE context. Dave Mitchell provided a fix.

• Some case insensitive matches between UTF-8 encoded data and 8 bit regexps, and vice versa,
could give malformed character warnings. These have been fixed by Dave Mitchell and Yves
Orton.

perl v5.36.0 2019-02-18 602

PERL588DELTA(1) Perl Programmers Reference Guide PERL588DELTA(1)

• lcfirst and ucfirst could corrupt the string for certain cases where the length UTF-8
encoding of the string in lower case, upper case or title case differed. This was fixed by Nicholas
Clark.

• Perl will now use the C library calls unsetenv and clearenv if present to delete keys from
%ENV and delete %ENV entirely, thanks to a patch from Alan Burlison.

New or Changed Diagnostics
Attempt to set length of freed array

This is a new warning, produced in situations such as this:

$r = do {my @a; \$#a};
$$r = 503;

Non-string passed as bitmask
This is a new warning, produced when number has been passed as an argument to select(), instead of a
bitmask.

Wrong, will now warn
$rin = fileno(STDIN);
($nfound,$timeleft) = select($rout=$rin, undef, undef, $timeout);

Should be
$rin = '';
vec($rin,fileno(STDIN),1) = 1;
($nfound,$timeleft) = select($rout=$rin, undef, undef, $timeout);

Search pattern not terminated or ternary operator parsed as search pattern
This syntax error indicates that the lexer couldn’t find the final delimiter of a ?PATTERN? construct.
Mentioning the ternary operator in this error message makes it easier to diagnose syntax errors.

Changed Internals
There has been a fair amount of refactoring of the C source code, partly to make it tidier and more
maintainable. The resulting object code and the perl binary may well be smaller than 5.8.7, in
particular due to a change contributed by Dave Mitchell which reworked the warnings code to be
significantly smaller. Apart from being smaller and possibly faster, there should be no user-detectable
changes.

Andy Lester supplied many improvements to determine which function parameters and local variables
could actually be declared const to the C compiler. Steve Peters provided new *_set macros and
reworked the core to use these rather than assigning to macros in LVALUE context.

Dave Mitchell improved the lexer debugging output under -DT

Nicholas Clark changed the string buffer allocation so that it is now rounded up to the next multiple of
4 (or 8 on platforms with 64 bit pointers). This should reduce the number of calls to realloc without
actually using any extra memory.

The HV’s array of HE*s is now allocated at the correct (minimal) size, thanks to another change by
Nicholas Clark. Compile with -DPERL_USE_LARGE_HV_ALLOC to use the old, sloppier, default.

For XS or embedding debugging purposes, if perl is compiled with
-DDEBUG_LEAKING_SCALARS_FORK_DUMP in addition to -DDEBUG_LEAKING_SCALARS then
a child process is forked just before global destruction, which is used to display the values of any
scalars found to have leaked at the end of global destruction. Without this, the scalars have already been
freed sufficiently at the point of detection that it is impossible to produce any meaningful dump of their
contents. This feature was implemented by the indefatigable Nicholas Clark, based on an idea by Mike
Giroux.

Platform Specific Problems
The optimiser on HP-UX 11.23 (Itanium 2) is currently partly disabled (scaled down to +O1) when
using HP C-ANSI-C; the cause of problems at higher optimisation levels is still unclear.

There are a handful of remaining test failures on VMS, mostly due to test fixes and minor module
tweaks with too many dependencies to integrate into this release from the development stream, where
they have all been corrected. The following is a list of expected failures with the patch number of the
fix where that is known:

perl v5.36.0 2019-02-18 603

PERL588DELTA(1) Perl Programmers Reference Guide PERL588DELTA(1)

ext/Devel/PPPort/t/ppphtest.t #26913
ext/List/Util/t/p_tainted.t #26912
lib/ExtUtils/t/PL_FILES.t #26813
lib/ExtUtils/t/basic.t #26813
t/io/fs.t
t/op/cmp.t

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://bugs.perl.org. There may also be
information at http://www.perl.org, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team. You can
browse and search the Perl 5 bugs at http://bugs.perl.org/

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 604

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

NAME
perl589delta - what is new for perl v5.8.9

DESCRIPTION
This document describes differences between the 5.8.8 release and the 5.8.9 release.

Notice
The 5.8.9 release will be the last significant release of the 5.8.x series. Any future releases of 5.8.x will
likely only be to deal with security issues, and platform build failures. Hence you should look to
migrating to 5.10.x, if you have not started already. See ‘‘Known Problems’’ for more information.

Incompatible Changes
A particular construction in the source code of extensions written in C++ may need changing. See
‘‘Changed Internals’’ for more details. All extensions written in C, most written in C++, and all existing
compiled extensions are unaffected. This was necessary to improve C++ support.

Other than this, there are no changes intentionally incompatible with 5.8.8. If any exist, they are bugs
and reports are welcome.

Core Enhancements
Unicode Character Database 5.1.0.

The copy of the Unicode Character Database included in Perl 5.8 has been updated to 5.1.0 from 4.1.0.
See <http://www.unicode.org/versions/Unicode5.1.0/#NotableChanges> for the notable changes.

stat and -X on directory handles
It is now possible to call stat and the -X filestat operators on directory handles. As both directory and
file handles are barewords, there can be ambiguities over which was intended. In these situations the
file handle semantics are preferred. Both also treat *FILE{IO} filehandles like *FILE filehandles.

Source filters in @INC
It’s possible to enhance the mechanism of subroutine hooks in @INC by adding a source filter on top of
the filehandle opened and returned by the hook. This feature was planned a long time ago, but wasn’t
quite working until now. See ‘‘require’’ in perlfunc for details. (Nicholas Clark)

Exceptions in constant folding
The constant folding routine is now wrapped in an exception handler, and if folding throws an
exception (such as attempting to evaluate 0/0), perl now retains the current optree, rather than aborting
the whole program. Without this change, programs would not compile if they had expressions that
happened to generate exceptions, even though those expressions were in code that could never be
reached at runtime. (Nicholas Clark, Dave Mitchell)

no VERSION
You can now use no followed by a version number to specify that you want to use a version of perl
older than the specified one.

Improved internal UTF-8 caching code
The code that caches calculated UTF-8 byte offsets for character offsets for a string has been re-written.
Several bugs have been located and eliminated, and the code now makes better use of the information it
has, so should be faster. In particular, it doesn’t scan to the end of a string before calculating an offset
within the string, which should speed up some operations on long strings. It is now possible to disable
the caching code at run time, to verify that it is not the cause of suspected problems.

Runtime relocatable installations
There is now Configure support for creating a perl tree that is relocatable at run time. see ‘‘Relocatable
installations’’.

New internal variables
${ˆCHILD_ERROR_NATIVE}

This variable gives the native status returned by the last pipe close, backtick command, successful
call to wait or waitpid, or from the system operator. See perlvar for details. (Contributed by
Gisle Aas.)

${ˆUTF8CACHE}
This variable controls the state of the internal UTF-8 offset caching code. 1 for on (the default), 0
for off, -1 to debug the caching code by checking all its results against linear scans, and panicking
on any discrepancy.

perl v5.36.0 2019-02-18 605

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

readpipe is now overridable
The built-in function readpipe is now overridable. Overriding it permits also to override its operator
counterpart, qx// (also known as ``).

simple exception handling macros
Perl 5.8.9 (and 5.10.0 onwards) now provides a couple of macros to do very basic exception handling
in XS modules. You can use these macros if you call code that may croak, but you need to do some
cleanup before giving control back to Perl. See ‘‘Exception Handling’’ in perlguts for more details.

-D option enhancements
• -Dq suppresses the EXECUTING... message when running under -D

• -Dl logs runops loop entry and exit, and jump level popping.

• -Dv displays the process id as part of the trace output.

XS-assisted SWASHGET
Some pure-perl code that the regexp engine was using to retrieve Unicode properties and transliteration
mappings has been reimplemented in XS for faster execution. (SADAHIRO Tomoyuki)

Constant subroutines
The interpreter internals now support a far more memory efficient form of inlineable constants. Storing
a reference to a constant value in a symbol table is equivalent to a full typeglob referencing a constant
subroutine, but using about 400 bytes less memory. This proxy constant subroutine is automatically
upgraded to a real typeglob with subroutine if necessary. The approach taken is analogous to the
existing space optimisation for subroutine stub declarations, which are stored as plain scalars in place
of the full typeglob.

However, to aid backwards compatibility of existing code, which (wrongly) does not expect anything
other than typeglobs in symbol tables, nothing in core uses this feature, other than the regression tests.

Stubs for prototyped subroutines have been stored in symbol tables as plain strings, and stubs for
unprototyped subroutines as the number -1, since 5.005, so code which assumes that the core only
places typeglobs in symbol tables has been making incorrect assumptions for over 10 years.

New Platforms
Compile support added for:

• DragonFlyBSD

• MidnightBSD

• MirOS BSD

• RISC OS

• Cray XT4/Catamount

Modules and Pragmata
New Modules

• Module::Pluggable is a simple framework to create modules that accept pluggable sub-
modules. The bundled version is 3.8

• Module::CoreList is a hash of hashes that is keyed on perl version as indicated in $]. The
bundled version is 2.17

• Win32API::File now available in core on Microsoft Windows. The bundled version is
0.1001_01

• Devel::InnerPackage finds all the packages defined by a single file. It is part of the
Module::Pluggable distribution. The bundled version is 0.3

Updated Modules
• attributes upgraded to version 0.09

• AutoLoader upgraded to version 5.67

• AutoSplit upgraded to 1.06

• autouse upgraded to version 1.06

perl v5.36.0 2019-02-18 606

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

• B upgraded from 1.09_01 to 1.19

• provides new pad related abstraction macros B::NV::COP_SEQ_RANGE_LOW,
B::NV::COP_SEQ_RANGE_HIGH, B::NV::PARENT_PAD_INDEX,
B::NV::PARENT_FAKELEX_FLAGS, which hides the difference in storage in 5.10.0 and
later.

• provides B::sub_generation, which exposes PL_sub_generation

• provides B::GV::isGV_with_GP, which on pre-5.10 perls always returns true.

• New type B::HE added with methods VAL, HASH and SVKEY_force

• The B::GVf_IMPORTED_CV flag is now set correctly when a proxy constant subroutine is
imported.

• bugs fixed in the handling of PMOPs.

• B::BM::PREVIOUS returns now U32, not U16. B::CV::START and B:CV::ROOT
return now NULL on an XSUB, B::CV::XSUB and B::CV::XSUBANY return 0 on a non-
XSUB.

• B::C upgraded to 1.05

• B::Concise upgraded to 0.76

• new option -src causes the rendering of each statement (starting with the nextstate OP) to
be preceded by the first line of source code that generates it.

• new option -stash="somepackage", requires ‘‘somepackage’’, and then renders
each function defined in its namespace.

• now has documentation of detailed hint symbols.

• B::Debug upgraded to version 1.05

• B::Deparse upgraded to version 0.87

• properly deparse print readpipe $x, $y.

• now handles ''->(), ::(), sub :: {}, etc. correctly [RT #43010]. All bugs in parsing
these kinds of syntax are now fixed:

perl -MO=Deparse -e '"my %h = "->()'
perl -MO=Deparse -e '::->()'
perl -MO=Deparse -e 'sub :: {}'
perl -MO=Deparse -e 'package a; sub a::b::c {}'
perl -MO=Deparse -e 'sub the::main::road {}'

• does not deparse $ˆH{v_string}, which is automatically set by the internals.

• B::Lint upgraded to version 1.11

• B::Terse upgraded to version 1.05

• base upgraded to version 2.13

• loading a module via base.pm would mask a global $SIG{_ _DIE_ _} in that module.

• push all classes at once in @ISA

• Benchmark upgraded to version 1.10

• bigint upgraded to 0.23

• bignum upgraded to 0.23

• bigrat upgraded to 0.23

• blib upgraded to 0.04

• Carp upgraded to version 1.10

The argument backtrace code now shows undef as undef, instead of a string ‘‘undef’’.

perl v5.36.0 2019-02-18 607

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

• CGI upgraded to version 3.42

• charnames upgraded to 1.06

• constant upgraded to version 1.17

• CPAN upgraded to version 1.9301

• Cwd upgraded to version 3.29 with some platform specific improvements (including for VMS).

• Data::Dumper upgraded to version 2.121_17

• Fixes hash iterator current position with the pure Perl version [RT #40668]

• Performance enhancements, which will be most evident on platforms where repeated calls to
C’s realloc() are slow, such as Win32.

• DB_File upgraded to version 1.817

• DB_Filter upgraded to version 0.02

• Devel::DProf upgraded to version 20080331.00

• Devel::Peek upgraded to version 1.04

• Devel::PPPort upgraded to version 3.14

• diagnostics upgraded to version 1.16

• Digest upgraded to version 1.15

• Digest::MD5 upgraded to version 2.37

• DirHandle upgraded to version 1.02

• now localises $., $@, $!, $ˆE, and $? before closing the directory handle to suppress
leaking any side effects of warnings about it already being closed.

• DynaLoader upgraded to version 1.09

DynaLoader can now dynamically load a loadable object from a file with a non-default file
extension.

• Encode upgraded to version 2.26

Encode::Alias includes a fix for encoding ‘‘646’’ on Solaris (better known as ASCII).

• English upgraded to version 1.03

• Errno upgraded to version 1.10

• Exporter upgraded to version 5.63

• ExtUtils::Command upgraded to version 1.15

• ExtUtils::Constant upgraded to version 0.21

• ExtUtils::Embed upgraded to version 1.28

• ExtUtils::Install upgraded to version 1.50_01

• ExtUtils::Installed upgraded to version 1.43

• ExtUtils::MakeMaker upgraded to version 6.48

• support for INSTALLSITESCRIPT and INSTALLVENDORSCRIPT configuration.

• ExtUtils::Manifest upgraded to version 1.55

• ExtUtils::ParseXS upgraded to version 2.19

• Fatal upgraded to version 1.06

• allows built-ins in CORE::GLOBAL to be made fatal.

• Fcntl upgraded to version 1.06

• fields upgraded to version 2.12

perl v5.36.0 2019-02-18 608

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

• File::Basename upgraded to version 2.77

• FileCache upgraded to version 1.07

• File::Compare upgraded to 1.1005

• File::Copy upgraded to 2.13

• now uses 3-arg open.

• File::DosGlob upgraded to 1.01

• File::Find upgraded to version 1.13

• File::Glob upgraded to version 1.06

• fixes spurious results with brackets inside braces.

• File::Path upgraded to version 2.07_02

• File::Spec upgraded to version 3.29

• improved handling of bad arguments.

• some platform specific improvements (including for VMS and Cygwin), with an optimisation
on abs2rel when handling both relative arguments.

• File::stat upgraded to version 1.01

• File::Temp upgraded to version 0.20

• filetest upgraded to version 1.02

• Filter::Util::Call upgraded to version 1.07

• Filter::Simple upgraded to version 0.83

• FindBin upgraded to version 1.49

• GDBM_File upgraded to version 1.09

• Getopt::Long upgraded to version 2.37

• Getopt::Std upgraded to version 1.06

• Hash::Util upgraded to version 0.06

• if upgraded to version 0.05

• IO upgraded to version 1.23

Reduced number of calls to getpeername in IO::Socket

• IPC::Open upgraded to version 1.03

• IPC::Open3 upgraded to version 1.03

• IPC::SysV upgraded to version 2.00

• lib upgraded to version 0.61

• avoid warning about loading .par files.

• libnet upgraded to version 1.22

• List::Util upgraded to 1.19

• Locale::Maketext upgraded to 1.13

• Math::BigFloat upgraded to version 1.60

• Math::BigInt upgraded to version 1.89

• Math::BigRat upgraded to version 0.22

• implements new as_float method.

• Math::Complex upgraded to version 1.54.

• Math::Trig upgraded to version 1.18.

perl v5.36.0 2019-02-18 609

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

• NDBM_File upgraded to version 1.07

• improve g++ handling for systems using GDBM compatibility headers.

• Net::Ping upgraded to version 2.35

• NEXT upgraded to version 0.61

• fix several bugs with NEXT when working with AUTOLOAD, eval block, and within
overloaded stringification.

• ODBM_File upgraded to 1.07

• open upgraded to 1.06

• ops upgraded to 1.02

• PerlIO::encoding upgraded to version 0.11

• PerlIO::scalar upgraded to version 0.06

• [RT #40267] PerlIO::scalar doesn’t respect readonly-ness.

• PerlIO::via upgraded to version 0.05

• Pod::Html upgraded to version 1.09

• Pod::Parser upgraded to version 1.35

• Pod::Usage upgraded to version 1.35

• POSIX upgraded to version 1.15

• POSIX constants that duplicate those in Fcntl are now imported from Fcntl and re-
exported, rather than being duplicated by POSIX

• POSIX::remove can remove empty directories.

• POSIX::setlocale safer to call multiple times.

• POSIX::SigRt added, which provides access to POSIX realtime signal functionality on
systems that support it.

• re upgraded to version 0.06_01

• Safe upgraded to version 2.16

• Scalar::Util upgraded to 1.19

• SDBM_File upgraded to version 1.06

• SelfLoader upgraded to version 1.17

• Shell upgraded to version 0.72

• sigtrap upgraded to version 1.04

• Socket upgraded to version 1.81

• this fixes an optimistic use of gethostbyname

• Storable upgraded to 2.19

• Switch upgraded to version 2.13

• Sys::Syslog upgraded to version 0.27

• Term::ANSIColor upgraded to version 1.12

• Term::Cap upgraded to version 1.12

• Term::ReadLine upgraded to version 1.03

• Test::Builder upgraded to version 0.80

• Test::Harness upgraded version to 2.64

• this makes it able to handle newlines.

perl v5.36.0 2019-02-18 610

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

• Test::More upgraded to version 0.80

• Test::Simple upgraded to version 0.80

• Text::Balanced upgraded to version 1.98

• Text::ParseWords upgraded to version 3.27

• Text::Soundex upgraded to version 3.03

• Text::Tabs upgraded to version 2007.1117

• Text::Wrap upgraded to version 2006.1117

• Thread upgraded to version 2.01

• Thread::Semaphore upgraded to version 2.09

• Thread::Queue upgraded to version 2.11

• added capability to add complex structures (e.g., hash of hashes) to queues.

• added capability to dequeue multiple items at once.

• added new methods to inspect and manipulate queues: peek, insert and extract

• Tie::Handle upgraded to version 4.2

• Tie::Hash upgraded to version 1.03

• Tie::Memoize upgraded to version 1.1

• Tie::Memoize::EXISTS now correctly caches its results.

• Tie::RefHash upgraded to version 1.38

• Tie::Scalar upgraded to version 1.01

• Tie::StdHandle upgraded to version 4.2

• Time::gmtime upgraded to version 1.03

• Time::Local upgraded to version 1.1901

• Time::HiRes upgraded to version 1.9715 with various build improvements (including VMS)
and minor platform-specific bug fixes (including for HP-UX 11 ia64).

• threads upgraded to 1.71

• new thread state information methods: is_running, is_detached and is_joinable.
list method enhanced to return running or joinable threads.

• new thread signal method: kill

• added capability to specify thread stack size.

• added capability to control thread exiting behavior. Added a new exit method.

• threads::shared upgraded to version 1.27

• smaller and faster implementation that eliminates one internal structure and the consequent
level of indirection.

• user locks are now stored in a safer manner.

• new function shared_clone creates a copy of an object leaving shared elements as-is and
deep-cloning non-shared elements.

• added new is_shared method.

• Unicode::Normalize upgraded to version 1.02

• Unicode::UCD upgraded to version 0.25

• warnings upgraded to version 1.05_01

• Win32 upgraded to version 0.38

• added new function GetCurrentProcessId which returns the regular Windows process
identifier of the current process, even when called from within a fork.

perl v5.36.0 2019-02-18 611

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

• XSLoader upgraded to version 0.10

• XS::APItest and XS::Typemap are for internal use only and hence no longer installed.
Many more tests have been added to XS::APItest.

Utility Changes
debugger upgraded to version 1.31

• Andreas Ko
..
nig contributed two functions to save and load the debugger history.

• NEXT::AUTOLOAD no longer emits warnings under the debugger.

• The debugger should now correctly find tty the device on OS X 10.5 and VMS when the program
forks.

• LVALUE subs now work inside the debugger.

perlthanks
Perl 5.8.9 adds a new utility perlthanks, which is a variant of perlbug, but for sending non-bug-reports
to the authors and maintainers of Perl. Getting nothing but bug reports can become a bit demoralising
- we’ll see if this changes things.

perlbug
perlbug now checks if you’re reporting about a non-core module and suggests you report it to the CPAN
author instead.

h2xs
• won’t define an empty string as a constant [RT #25366]

• has examples for h2xs -X

h2ph
• now attempts to deal sensibly with the difference in path implications between "" and <> quoting

in #include statements.

• now generates correct code for #if defined A || defined B [RT #39130]

New Documentation
As usual, the documentation received its share of corrections, clarifications and other nitfixes. More
tags were added for indexing.

perlunitut is a tutorial written by Juerd Waalboer on Unicode-related terminology and how to correctly
handle Unicode in Perl scripts.

perlunicode is updated in section user defined properties.

perluniintro has been updated in the example of detecting data that is not valid in particular encoding.

perlcommunity provides an overview of the Perl Community along with further resources.

CORE documents the pseudo-namespace for Perl’s core routines.

Changes to Existing Documentation
perlglossary adds deprecated modules and features and to be dropped modules.

perlhack has been updated and added resources on smoke testing.

The Perl FAQs (perlfaq1..perlfaq9) have been updated.

perlcheat is updated with better details on \w, \d, and \s.

perldebug is updated with information on how to call the debugger.

perldiag documentation updated with subroutine with an ampersand on the argument to exists and
delete and also several terminology updates on warnings.

perlfork documents the limitation of exec inside pseudo-processes.

perlfunc:

• Documentation is fixed in section caller and pop.

• Function alarm now mentions Time::HiRes::ualarm in preference to select.

perl v5.36.0 2019-02-18 612

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

• Regarding precedence in -X, filetest operators are the same as unary operators, but not regarding
parsing and parentheses (spotted by Eirik Berg Hanssen).

• reverse function documentation received scalar context examples.

perllocale documentation is adjusted for number localization and POSIX::setlocale to fix Debian
bug #379463.

perlmodlib is updated with CPAN::API::HOWTO and Sys::Syslog::win32::Win32

perlre documentation updated to reflect the differences between [[:xxxxx:]] and \p{IsXxxxx}
matches. Also added section on /g and /c modifiers.

perlreguts describe the internals of the regular expressions engine. It has been contributed by Yves
Orton.

perlrebackslash describes all perl regular expression backslash and escape sequences.

perlrecharclass describes the syntax and use of character classes in Perl Regular Expressions.

perlrun is updated to clarify on the hash seed PERL_HASH_SEED. Also more information in options -x
and -u.

perlsub example is updated to use a lexical variable for opendir syntax.

perlvar fixes confusion about real GID $(and effective GID $).

Perl thread tutorial example is fixed in section ‘‘Queues: Passing Data Around’’ in perlthrtut and
perlthrtut.

perlhack documentation extensively improved by Jarkko Hietaniemi and others.

perltoot provides information on modifying @UNIVERSAL::ISA.

perlport documentation extended to include different kill(-9, ...) semantics on Windows. It
also clearly states dump is not supported on Win32 and cygwin.

INSTALL has been updated and modernised.

Performance Enhancements
• The default since perl 5.000 has been for perl to create an empty scalar with every new typeglob.

The increased use of lexical variables means that most are now unused. Thanks to Nicholas
Clark’s efforts, Perl can now be compiled with -DPERL_DONT_CREATE_GVSV to avoid
creating these empty scalars. This will significantly decrease the number of scalars allocated for
all configurations, and the number of scalars that need to be copied for ithread creation. Whilst
this option is binary compatible with existing perl installations, it does change a long-standing
assumption about the internals, hence it is not enabled by default, as some third party code may
rely on the old behaviour.

We would recommend testing with this configuration on new deployments of perl, particularly for
multi-threaded servers, to see whether all third party code is compatible with it, as this
configuration may give useful performance improvements. For existing installations we would not
recommend changing to this configuration unless thorough testing is performed before
deployment.

• diagnostics no longer uses $&, which results in large speedups for regexp matching in all
code using it.

• Regular expressions classes of a single character are now treated the same as if the character had
been used as a literal, meaning that code that uses char-classes as an escaping mechanism will see
a speedup. (Yves Orton)

• Creating anonymous array and hash references (ie. [] and {}) now incurs no more overhead than
creating an anonymous list or hash. Nicholas Clark provided changes with a saving of two ops and
one stack push, which was measured as a slightly better than 5% improvement for these
operations.

• Many calls to strlen() have been eliminated, either because the length was already known, or
by adopting or enhancing APIs that pass lengths. This has been aided by the adoption of a
my_sprintf() wrapper, which returns the correct C89 value - the length of the formatted
string. Previously we could not rely on the return value of sprintf(), because on some ancient

perl v5.36.0 2019-02-18 613

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

but extant platforms it still returns char *.

• index is now faster if the search string is stored in UTF-8 but only contains characters in the
Latin-1 range.

• The Unicode swatch cache inside the regexp engine is now used. (the lookup had a key mismatch,
present since the initial implementation). [RT #42839]

Installation and Configuration Improvements
Relocatable installations

There is now Configure support for creating a relocatable perl tree. If you Configure with
-Duserelocatableinc, then the paths in @INC (and everything else in %Config) can be
optionally located via the path of the perl executable.

At start time, if any paths in @INC or Config that Configure marked as relocatable (by starting them
with ".../"), then they are prefixed the directory of $ˆX. This allows the relocation can be
configured on a per-directory basis, although the default with -Duserelocatableinc is that
everything is relocated. The initial install is done to the original configured prefix.

Configuration improvements
Configure is now better at removing temporary files. Tom Callaway (from RedHat) also contributed
patches that complete the set of flags passed to the compiler and the linker, in particular that -fPIC is
now enabled on Linux. It will also croak when your /dev/null isn’t a device.

A new configuration variable d_pseudofork has been to Configure, and is available as
$Config{d_pseudofork} in the Config module. This distinguishes real fork support from the
pseudofork emulation used on Windows platforms.

Config.pod and config.sh are now placed correctly for cross-compilation.

$Config{useshrplib} is now ’true’ rather than ’yes’ when using a shared perl library.

Compilation improvements
Parallel makes should work properly now, although there may still be problems if make test is
instructed to run in parallel.

Many compilation warnings have been cleaned up. A very stubborn compiler warning in
S_emulate_eaccess() was killed after six attempts. g++ support has been tuned, especially for
FreeBSD.

mkppport has been integrated, and all ppport.h files in the core will now be autogenerated at build time
(and removed during cleanup).

Installation improvements.
installman now works with -Duserelocatableinc and DESTDIR.

installperl no longer installs:

• static library files of statically linked extensions when a shared perl library is being used. (They
are not needed. See ‘‘Windows’’ below).

• SIGNATURE and PAUSE*.pub (CPAN files)

• NOTES and PATCHING (ExtUtils files)

• perlld and ld2 (Cygwin files)

Platform Specific Changes
There are improved hints for AIX, Cygwin, DEC/OSF, FreeBSD, HP/UX, Irix 6 Linux, MachTen,
NetBSD, OS/390, QNX, SCO, Solaris, SunOS, System V Release 5.x (UnixWare 7, OpenUNIX 8),
Ultrix, UMIPS, uts and VOS.

FreeBSD

• Drop -std=c89 and -ansi if using long long as the main integral type, else in FreeBSD
6.2 (and perhaps other releases), system headers do not declare some functions required by perl.

Solaris

• Starting with Solaris 10, we do not want versioned shared libraries, because those often indicate a
private use only library. These problems could often be triggered when SUNWbdb (Berkeley DB)
was installed. Hence if Solaris 10 is detected set ignore_versioned_solibs=y.

perl v5.36.0 2019-02-18 614

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

VMS

• Allow IEEE math to be deselected on OpenVMS I64 (but it remains the default).

• Record IEEE usage in config.h

• Help older VMS compilers by using ccflags when building munchconfig.exe.

• Don’t try to build old Thread extension on VMS when -Duseithreads has been chosen.

• Passing a raw string of ‘‘NaN’’ to nawk causes a core dump - so the string has been changed to
‘‘*NaN*’’

• t/op/stat.t tests will now test hard links on VMS if they are supported.

Windows

• When using a shared perl library installperl no longer installs static library files, import library
files and export library files (of statically linked extensions) and empty bootstrap files (of
dynamically linked extensions). This fixes a problem building PAR-Packer on Win32 with a debug
build of perl.

• Various improvements to the win32 build process, including support for Visual C++ 2005 Express
Edition (aka Visual C++ 8.x).

• perl.exe will now have an icon if built with MinGW or Borland.

• Improvements to the perl-static.exe build process.

• Add Win32 makefile option to link all extensions statically.

• The WinCE directory has been merged into the Win32 directory.

• setlocale tests have been re-enabled for Windows XP onwards.

Selected Bug Fixes
Unicode

Many many bugs related to the internal Unicode implementation (UTF-8) have been fixed. In particular,
long standing bugs related to returning Unicode via tie, overloading or $@ are now gone, some of
which were never reported.

unpack will internally convert the string back from UTF-8 on numeric types. This is a compromise
between the full consistency now in 5.10, and the current behaviour, which is often used as a ‘‘feature’’
on string types.

Using :crlf and UTF-16 IO layers together will now work.

Fixed problems with split, Unicode /\s+/ and / \0/.

Fixed bug RT #40641 - encoding of Unicode characters in regular expressions.

Fixed a bug where using certain patterns in a regexp led to a panic. [RT #45337]

Perl no longer segfaults (due to infinite internal recursion) if the locale’s character is not UTF-8 [RT
#41442]:

use open ':locale';
print STDERR "\x{201e}"; # „

PerlIO
Inconsistencies have been fixed in the reference counting PerlIO uses to keep track of Unix file
descriptors, and the API used by XS code to manage getting and releasing FILE *s

Magic
Several bugs have been fixed in Magic, the internal system used to implement features such as tie,
tainting and threads sharing.

undef @array on a tied array now correctly calls the CLEAR method.

Some of the bitwise ops were not checking whether their arguments were magical before using them.
[RT #24816]

Magic is no longer invoked twice by the expression \&$x

A bug with assigning large numbers and tainting has been resolved. [RT #40708]

perl v5.36.0 2019-02-18 615

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

A new entry has been added to the MAGIC vtable - svt_local. This is used when copying magic to
the new value during local, allowing certain problems with localising shared variables to be resolved.

For the implementation details, see ‘‘Magic Virtual Tables’’ in perlguts.

Reblessing overloaded objects now works
Internally, perl object-ness is on the referent, not the reference, even though methods can only be called
via a reference. However, the original implementation of overloading stored flags related to overloading
on the reference, relying on the flags being copied when the reference was copied, or set at the creation
of a new reference. This manifests in a bug - if you rebless an object from a class that has overloading,
into one that does not, then any other existing references think that they (still) point to an overloaded
object, choose these C code paths, and then throw errors. Analogously, blessing into an overloaded
class when other references exist will result in them not using overloading.

The implementation has been fixed for 5.10, but this fix changes the semantics of flag bits, so is not
binary compatible, so can’t be applied to 5.8.9. However, 5.8.9 has a work-around that implements the
same bug fix. If the referent has multiple references, then all the other references are located and
corrected. A full search is avoided whenever possible by scanning lexicals outwards from the current
subroutine, and the argument stack.

A certain well known Linux vendor applied incomplete versions of this bug fix to their /usr/bin/perl
and then prematurely closed bug reports about performance issues without consulting back upstream.
This not being enough, they then proceeded to ignore the necessary fixes to these unreleased changes
for 11 months, until massive pressure was applied by their long-suffering paying customers, catalysed
by the failings being featured on a prominent blog and Slashdot.

strict now propagates correctly into string evals
Under 5.8.8 and earlier:

$ perl5.8.8 -e 'use strict; eval "use foo bar" or die $@'
Can't locate foo.pm in @INC (@INC contains:) at (eval 1) line 2.
BEGIN failed--compilation aborted at (eval 1) line 2.

Under 5.8.9 and later:

$ perl5.8.9 -e 'use strict; eval "use foo bar" or die $@'
Bareword "bar" not allowed while "strict subs" in use at (eval 1) line 1.

This may cause problems with programs that parse the error message and rely on the buggy behaviour.

Other fixes
• The tokenizer no longer treats =cute (and other words beginning with =cut) as a synonym for

=cut.

• Calling CORE::require

CORE::require and CORE::do were always parsed as require and do when they were
overridden. This is now fixed.

• Stopped memory leak on long /etc/groups entries.

• while (my $x ...) { ...; redo } shouldn’t undef $x.

In the presence of my in the conditional of a while(), until(), or for(;;) loop, we now
add an extra scope to the body so that redo doesn’t undef the lexical.

• The encoding pragma now correctly ignores anything following an @ character in the LC_ALL
and LANG environment variables. [RT # 49646]

• A segfault observed with some gcc 3.3 optimisations is resolved.

• A possible segfault when unpack used in scalar context with () groups is resolved. [RT #50256]

• Resolved issue where $! could be changed by a signal handler interrupting a system call.

• Fixed bug RT #37886, symbolic dereferencing was allowed in the argument of defined even
under the influence of use strict 'refs'.

• Fixed bug RT #43207, where lc/uc inside sort affected the return value.

perl v5.36.0 2019-02-18 616

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

• Fixed bug RT #45607, where *{"BONK"} = \&{"BONK"} didn’t work correctly.

• Fixed bug RT #35878, croaking from a XSUB called via goto &xsub corrupts perl internals.

• Fixed bug RT #32539, DynaLoader.o is moved into libperl.so to avoid the need to statically link
DynaLoader into the stub perl executable. With this libperl.so provides everything needed to get a
functional embedded perl interpreter to run.

• Fix bug RT #36267 so that assigning to a tied hash doesn’t change the underlying hash.

• Fix bug RT #6006, regexp replaces using large replacement variables fail some of the time, i.e.
when substitution contains something like ${10} (note the bracket) instead of just $10.

• Fix bug RT #45053, Perl_newCONSTSUB() is now thread safe.

Platform Specific Fixes
Darwin / MacOS X

• Various improvements to 64 bit builds.

• Mutex protection added in PerlIOStdio_close() to avoid race conditions. Hopefully this
fixes failures in the threads tests free.t and blocks.t.

• Added forked terminal support to the debugger, with the ability to update the window title.

OS/2

• A build problem with specifying USE_MULTI and USE_ITHREADS but without USE_IMP_SYS
has been fixed.

• OS2::REXX upgraded to version 1.04

Tru64

• Aligned floating point build policies for cc and gcc.

RedHat Linux

• Revisited a patch from 5.6.1 for RH7.2 for Intel’s icc [RT #7916], added an additional check for
$Config{gccversion}.

Solaris/i386

• Use -DPTR_IS_LONG when using 64 bit integers

VMS

• Fixed PerlIO::Scalar in-memory file record-style reads.

• pipe shutdown at process exit should now be more robust.

• Bugs in VMS exit handling tickled by Test::Harness 2.64 have been fixed.

• Fix fcntl() locking capability test in configure.com.

• Replaced shrplib='define' with useshrplib='true' on VMS.

Windows

• File::Find used to fail when the target directory is a bare drive letter and no_chdir is 1 (the
default is 0). [RT #41555]

• A build problem with specifying USE_MULTI and USE_ITHREADS but without USE_IMP_SYS
has been fixed.

• The process id is no longer truncated to 16 bits on some Windows platforms (
http://bugs.activestate.com/show_bug.cgi?id=72443)

• Fixed bug RT #54828 in perlio.c where calling binmode on Win32 and Cygwin may cause a
segmentation fault.

Smaller fixes
• It is now possible to overload eq when using nomethod.

• Various problems using overload with 64 bit integers corrected.

perl v5.36.0 2019-02-18 617

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

• The reference count of PerlIO file descriptors is now correctly handled.

• On VMS, escaped dots will be preserved when converted to Unix syntax.

• keys %+ no longer throws an 'ambiguous' warning.

• Using #!perl -d could trigger an assertion, which has been fixed.

• Don’t stringify tied code references in @INC when calling require.

• Code references in @INC report the correct file name when _ _FILE_ _ is used.

• Width and precision in sprintf didn’t handle characters above 255 correctly. [RT #40473]

• List slices with indices out of range now work more consistently. [RT #39882]

• A change introduced with perl 5.8.1 broke the parsing of arguments of the form -foo=bar with
the -s on the <#!> line. This has been fixed. See
http://bugs.activestate.com/show_bug.cgi?id=43483

• tr/// is now threadsafe. Previously it was storing a swash inside its OP, rather than in a pad.

• pod2html labels anchors more consistently and handles nested definition lists better.

• threads cleanup veto has been extended to include perl_free() and perl_destruct()

• On some systems, changes to $ENV{TZ} would not always be respected by the underlying calls
to localtime_r(). Perl now forces the inspection of the environment on these systems.

• The special variable $ˆR is now more consistently set when executing regexps using the
(?{...}) construct. In particular, it will still be set even if backreferences or optional sub-
patterns (?:...)? are used.

New or Changed Diagnostics
panic: sv_chop %s

This new fatal error occurs when the C routine Perl_sv_chop() was passed a position that is not
within the scalar’s string buffer. This is caused by buggy XS code, and at this point recovery is not
possible.

Maximal count of pending signals (%s) exceeded
This new fatal error occurs when the perl process has to abort due to too many pending signals, which
is bound to prevent perl from being able to handle further incoming signals safely.

panic: attempt to call %s in %s
This new fatal error occurs when the ACL version file test operator is used where it is not available on
the current platform. Earlier checks mean that it should never be possible to get this.

FETCHSIZE returned a negative value
New error indicating that a tied array has claimed to have a negative number of elements.

Can’t upgrade %s (%d) to %d
Previously the internal error from the SV upgrade code was the less informative Can’t upgrade that
kind of scalar. It now reports the current internal type, and the new type requested.

%s argument is not a HASH or ARRAY element or a subroutine
This error, thrown if an invalid argument is provided to exists now correctly includes ‘‘or a
subroutine’’. [RT #38955]

Cannot make the non-overridable builtin %s fatal
This error in Fatal previously did not show the name of the builtin in question (now represented by
%s above).

Unrecognized character ’%s’ in column %d
This error previously did not state the column.

Offset outside string
This can now also be generated by a seek on a file handle using PerlIO::scalar.

Invalid escape in the specified encoding in regexp; marked by <-- HERE in m/%s/
New error, introduced as part of the fix to RT #40641 to handle encoding of Unicode characters in
regular expression comments.

perl v5.36.0 2019-02-18 618

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

Your machine doesn’t support dump/undump.
A more informative fatal error issued when calling dump on Win32 and Cygwin. (Given that the
purpose of dump is to abort with a core dump, and core dumps can’t be produced on these platforms,
this is more useful than silently exiting.)

Changed Internals
The perl sources can now be compiled with a C++ compiler instead of a C compiler. A necessary
implementation details is that under C++, the macro XS used to define XSUBs now includes an extern
"C" definition. A side effect of this is that C++ code that used the construction

typedef XS(SwigPerlWrapper);

now needs to be written

typedef XSPROTO(SwigPerlWrapper);

using the new XSPROTO macro, in order to compile. C extensions are unaffected, although C
extensions are encouraged to use XSPROTO too. This change was present in the 5.10.0 release of perl,
so any actively maintained code that happened to use this construction should already have been
adapted. Code that needs changing will fail with a compilation error.

set magic on localizing/assigning to a magic variable will now only trigger for container magics, i.e.
it will for %ENV or %SIG but not for $#array.

The new API macro newSVpvs() can be used in place of constructions such as
newSVpvn("ISA", 3). It takes a single string constant, and at C compile time determines its
length.

The new API function Perl_newSV_type() can be used as a more efficient replacement of the
common idiom

sv = newSV(0);
sv_upgrade(sv, type);

Similarly Perl_newSVpvn_flags() can be used to combine Perl_newSVpv() with
Perl_sv_2mortal() or the equivalent Perl_sv_newmortal() with Perl_sv_setpvn()

Two new macros mPUSHs() and mXPUSHs() are added, to make it easier to push mortal SVs onto
the stack. They were then used to fix several bugs where values on the stack had not been mortalised.

A Perl_signbit() function was added to test the sign of an NV. It maps to the system one when
available.

Perl_av_reify(), Perl_lex_end(), Perl_mod(), Perl_op_clear(),
Perl_pop_return(), Perl_qerror(), Perl_setdefout(),
Perl_vivify_defelem() and Perl_yylex() are now visible to extensions. This was required
to allow Data::Alias to work on Windows.

Perl_find_runcv() is now visible to perl core extensions. This was required to allow
Sub::Current to work on Windows.

ptr_table* functions are now available in unthreaded perl. Storable takes advantage of this.

There have been many small cleanups made to the internals. In particular, Perl_sv_upgrade() has
been simplified considerably, with a straight-through code path that uses memset() and memcpy()
to initialise the new body, rather than assignment via multiple temporary variables. It has also benefited
from simplification and de-duplication of the arena management code.

A lot of small improvements in the code base were made due to reports from the Coverity static code
analyzer.

Corrected use and documentation of Perl_gv_stashpv(), Perl_gv_stashpvn(),
Perl_gv_stashsv() functions (last parameter is a bitmask, not boolean).

PERL_SYS_INIT, PERL_SYS_INIT3 and PERL_SYS_TERM macros have been changed into
functions.

PERLSYS_TERM no longer requires a context. PerlIO_teardown() is now called without a
context, and debugging output in this function has been disabled because that required that an
interpreter was present, an invalid assumption at termination time.

perl v5.36.0 2019-02-18 619

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

All compile time options which affect binary compatibility have been grouped together into a global
variable (PL_bincompat_options).

The values of PERL_REVISION, PERL_VERSION and PERL_SUBVERSION are now baked into
global variables (and hence into any shared perl library). Additionally under MULTIPLICITY, the
perl executable now records the size of the interpreter structure (total, and for this version). Coupled
with PL_bincompat_options this will allow 5.8.10 (and later), when compiled with a shared perl
library, to perform sanity checks in main() to verify that the shared library is indeed binary
compatible.

Symbolic references can now have embedded NULs. The new public function
Perl_get_cvn_flags() can be used in extensions if you have to handle them.

Macro cleanups
The core code, and XS code in ext that is not dual-lived on CPAN, no longer uses the macros PL_na,
NEWSV(), Null(), Nullav, Nullcv, Nullhv, Nullhv etc. Their use is discouraged in new
code, particularly PL_na, which is a small performance hit.

New Tests
Many modules updated from CPAN incorporate new tests. Some core specific tests have been added:

ext/DynaLoader/t/DynaLoader.t
Tests for the DynaLoader module.

t/comp/fold.t
Tests for compile-time constant folding.

t/io/pvbm.t
Tests incorporated from 5.10.0 which check that there is no unexpected interaction between the
internal types PVBM and PVGV.

t/lib/proxy_constant_subs.t
Tests for the new form of constant subroutines.

t/op/attrhand.t
Tests for Attribute::Handlers.

t/op/dbm.t
Tests for dbmopen.

t/op/inccode-tie.t
Calls all tests in t/op/inccode.t after first tying @INC.

t/op/incfilter.t
Tests for source filters returned from code references in @INC.

t/op/kill0.t
Tests for RT #30970.

t/op/qrstack.t
Tests for RT #41484.

t/op/qr.t
Tests for the qr// construct.

t/op/regexp_qr_embed.t
Tests for the qr// construct within another regexp.

t/op/regexp_qr.t
Tests for the qr// construct.

t/op/rxcode.t
Tests for RT #32840.

t/op/studytied.t
Tests for study on tied scalars.

t/op/substT.t
Tests for subst run under -T mode.

perl v5.36.0 2019-02-18 620

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

t/op/symbolcache.t
Tests for undef and delete on stash entries that are bound to subroutines or methods.

t/op/upgrade.t
Tests for Perl_sv_upgrade().

t/mro/package_aliases.t
MRO tests for isa and package aliases.

t/pod/twice.t
Tests for calling Pod::Parser twice.

t/run/cloexec.t
Tests for inheriting file descriptors across exec (close-on-exec).

t/uni/cache.t
Tests for the UTF-8 caching code.

t/uni/chr.t
Test that strange encodings do not upset Perl_pp_chr().

t/uni/greek.t
Tests for RT #40641.

t/uni/latin2.t
Tests for RT #40641.

t/uni/overload.t
Tests for returning Unicode from overloaded values.

t/uni/tie.t
Tests for returning Unicode from tied variables.

Known Problems
There are no known new bugs.

However, programs that rely on bugs that have been fixed will have problems. Also, many bug fixes
present in 5.10.0 can’t be back-ported to the 5.8.x branch, because they require changes that are binary
incompatible, or because the code changes are too large and hence too risky to incorporate.

We have only limited volunteer labour, and the maintenance burden is getting increasingly complex.
Hence this will be the last significant release of the 5.8.x series. Any future releases of 5.8.x will likely
only be to deal with security issues, and platform build failures. Hence you should look to migrating to
5.10.x, if you have not started already. Alternatively, if business requirements constrain you to continue
to use 5.8.x, you may wish to consider commercial support from firms such as ActiveState.

Platform Specific Notes
Win32

readdir(), cwd(), $ˆX and @INC now use the alternate (short) filename if the long name is
outside the current codepage (Jan Dubois).

Updated Modules

• Win32 upgraded to version 0.38. Now has a documented ’WinVista’ response from GetOSName
and support for Vista’s privilege elevation in IsAdminUser. Support for Unicode characters in
path names. Improved cygwin and Win64 compatibility.

• Win32API updated to 0.1001_01

• killpg() support added to MSWin32 (Jan Dubois).

• File::Spec::Win32 upgraded to version 3.2701

OS/2
Updated Modules

• OS2::Process upgraded to 1.03

Ilya Zakharevich has added and documented several Window* and Clipbrd* functions.

perl v5.36.0 2019-02-18 621

PERL589DELTA(1) Perl Programmers Reference Guide PERL589DELTA(1)

• OS2::REXX::DLL, OS2::REXX updated to version 1.03

VMS
Updated Modules

• DCLsym upgraded to version 1.03

• Stdio upgraded to version 2.4

• VMS::XSSymSet upgraded to 1.1.

Obituary
Nick Ing-Simmons, long time Perl hacker, author of the Tk and Encode modules, perlio.c in the core,
and 5.003_02 pumpking, died of a heart attack on 25th September 2006. He will be missed.

Acknowledgements
Some of the work in this release was funded by a TPF grant.

Steve Hay worked behind the scenes working out the causes of the differences between core modules,
their CPAN releases, and previous core releases, and the best way to rectify them. He doesn’t want to do
it again. I know this feeling, and I’m very glad he did it this time, instead of me.

Paul Fenwick assembled a team of 18 volunteers, who broke the back of writing this document. In
particular, Bradley Dean, Eddy Tan, and Vincent Pit provided half the team’s contribution.

Schwern verified the list of updated module versions, correcting quite a few errors that I (and everyone
else) had missed, both wrongly stated module versions, and changed modules that had not been listed.

The crack Berlin-based QA team of Andreas Ko
..
nig and Slaven Rezic tirelessly re-built snapshots,

tested most everything CPAN against them, and then identified the changes responsible for any module
regressions, ensuring that several show-stopper bugs were stomped before the first release candidate
was cut.

The other core committers contributed most of the changes, and applied most of the patches sent in by
the hundreds of contributors listed in AUTHORS.

And obviously, Larry Wall, without whom we wouldn’t have Perl.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://bugs.perl.org. There may also be
information at http://www.perl.org, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team. You can
browse and search the Perl 5 bugs at http://bugs.perl.org/

If the bug you are reporting has security implications, which make it inappropriate to send to a publicly
archived mailing list, then please send it to perl5-security-report@perl.org. This points to a closed
subscription unarchived mailing list, which includes all the core committers, who will be able to help
assess the impact of issues, figure out a resolution, and help co-ordinate the release of patches to
mitigate or fix the problem across all platforms on which Perl is supported. Please only use this address
for security issues in the Perl core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2019-02-18 622

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

NAME
perl58delta - what is new for perl v5.8.0

DESCRIPTION
This document describes differences between the 5.6.0 release and the 5.8.0 release.

Many of the bug fixes in 5.8.0 were already seen in the 5.6.1 maintenance release since the two releases
were kept closely coordinated (while 5.8.0 was still called 5.7.something).

Changes that were integrated into the 5.6.1 release are marked [561]. Many of these changes have
been further developed since 5.6.1 was released, those are marked [561+].

You can see the list of changes in the 5.6.1 release (both from the 5.005_03 release and the 5.6.0
release) by reading perl561delta.

Highlights In 5.8.0
• Better Unicode support

• New IO Implementation

• New Thread Implementation

• Better Numeric Accuracy

• Safe Signals

• Many New Modules

• More Extensive Regression Testing

Incompatible Changes
Binary Incompatibility

Perl 5.8 is not binary compatible with earlier releases of Perl.

You have to recompile your XS modules.

(Pure Perl modules should continue to work.)

The major reason for the discontinuity is the new IO architecture called PerlIO. PerlIO is the default
configuration because without it many new features of Perl 5.8 cannot be used. In other words: you
just have to recompile your modules containing XS code, sorry about that.

In future releases of Perl, non-PerlIO aware XS modules may become completely unsupported. This
shouldn’t be too difficult for module authors, however: PerlIO has been designed as a drop-in
replacement (at the source code level) for the stdio interface.

Depending on your platform, there are also other reasons why we decided to break binary
compatibility, please read on.

64-bit platforms and malloc
If your pointers are 64 bits wide, the Perl malloc is no longer being used because it does not work well
with 8-byte pointers. Also, usually the system mallocs on such platforms are much better optimized
for such large memory models than the Perl malloc. Some memory-hungry Perl applications like the
PDL don’t work well with Perl’s malloc. Finally, other applications than Perl (such as mod_perl) tend
to prefer the system malloc. Such platforms include Alpha and 64-bit HPPA, MIPS, PPC, and Sparc.

AIX Dynaloading
The AIX dynaloading now uses in AIX releases 4.3 and newer the native dlopen interface of AIX instead
of the old emulated interface. This change will probably break backward compatibility with compiled
modules. The change was made to make Perl more compliant with other applications like mod_perl
which are using the AIX native interface.

Attributes for my variables now handled at run-time
The my EXPR : ATTRS syntax now applies variable attributes at run-time. (Subroutine and our
variables still get attributes applied at compile-time.) See attributes for additional details. In particular,
however, this allows variable attributes to be useful for tie interfaces, which was a deficiency of
earlier releases. Note that the new semantics doesn’t work with the Attribute::Handlers module (as of
version 0.76).

perl v5.36.0 2021-06-26 623

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

Socket Extension Dynamic in VMS
The Socket extension is now dynamically loaded instead of being statically built in. This may or may
not be a problem with ancient TCP/IP stacks of VMS: we do not know since we weren’t able to test Perl
in such configurations.

IEEE-format Floating Point Default on OpenVMS Alpha
Perl now uses IEEE format (T_FLOAT) as the default internal floating point format on OpenVMS
Alpha, potentially breaking binary compatibility with external libraries or existing data. G_FLOAT is
still available as a configuration option. The default on VAX (D_FLOAT) has not changed.

New Unicode Semantics (no more use utf8, almost)
Previously in Perl 5.6 to use Unicode one would say ‘‘use utf8’’ and then the operations (like string
concatenation) were Unicode-aware in that lexical scope.

This was found to be an inconvenient interface, and in Perl 5.8 the Unicode model has completely
changed: now the ‘‘Unicodeness’’ is bound to the data itself, and for most of the time ‘‘use utf8’’ is not
needed at all. The only remaining use of ‘‘use utf8’’ is when the Perl script itself has been written in
the UTF-8 encoding of Unicode. (UTF-8 has not been made the default since there are many Perl
scripts out there that are using various national eight-bit character sets, which would be illegal in
UTF-8.)

See perluniintro for the explanation of the current model, and utf8 for the current use of the utf8
pragma.

New Unicode Properties
Unicode scripts are now supported. Scripts are similar to (and superior to) Unicode blocks. The
difference between scripts and blocks is that scripts are the glyphs used by a language or a group of
languages, while the blocks are more artificial groupings of (mostly) 256 characters based on the
Unicode numbering.

In general, scripts are more inclusive, but not universally so. For example, while the script Latin
includes all the Latin characters and their various diacritic-adorned versions, it does not include the
various punctuation or digits (since they are not solely Latin).

A number of other properties are now supported, including \p{L&}, \p{Any} \p{Assigned},
\p{Unassigned}, \p{Blank} [561] and \p{SpacePerl} [561] (along with their \P{...}
versions, of course). See perlunicode for details, and more additions.

The In or Is prefix to names used with the \p{...} and \P{...} are now almost always optional.
The only exception is that a In prefix is required to signify a Unicode block when a block name
conflicts with a script name. For example, \p{Tibetan} refers to the script, while
\p{InTibetan} refers to the block. When there is no name conflict, you can omit the In from the
block name (e.g. \p{BraillePatterns}), but to be safe, it’s probably best to always use the In).

REF(...) Instead Of SCALAR(...)
A reference to a reference now stringifies as ‘‘REF(0x81485ec)’’ instead of ‘‘SCALAR(0x81485ec)’’ in
order to be more consistent with the return value of ref().

pack/unpack D/F recycled
The undocumented pack/unpack template letters D/F have been recycled for better use: now they stand
for long double (if supported by the platform) and NV (Perl internal floating point type). (They used to
be aliases for d/f, but you never knew that.)

glob() now returns filenames in alphabetical order
The list of filenames from glob() (or <...>) is now by default sorted alphabetically to be csh-compliant
(which is what happened before in most Unix platforms). (bsd_glob() does still sort platform natively,
ASCII or EBCDIC, unless GLOB_ALPHASORT is specified.) [561]

Deprecations
• The semantics of bless(REF, REF) were unclear and until someone proves it to make some sense, it

is forbidden.

• The obsolete chat2 library that should never have been allowed to escape the laboratory has been
decommissioned.

perl v5.36.0 2021-06-26 624

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• Using chdir("") or chdir(undef) instead of explicit chdir() is doubtful. A failure (think
chdir(some_function()) can lead into unintended chdir() to the home directory, therefore this
behaviour is deprecated.

• The builtin dump() function has probably outlived most of its usefulness. The core-dumping
functionality will remain in future available as an explicit call to CORE::dump(), but in future
releases the behaviour of an unqualified dump() call may change.

• The very dusty examples in the eg/ directory have been removed. Suggestions for new shiny
examples welcome but the main issue is that the examples need to be documented, tested and
(most importantly) maintained.

• The (bogus) escape sequences \8 and \9 now give an optional warning (‘‘Unrecognized escape
passed through’’). There is no need to \-escape any \w character.

• The *glob{FILEHANDLE} is deprecated, use *glob{IO} instead.

• The package; syntax (package without an argument) has been deprecated. Its semantics
were never that clear and its implementation even less so. If you have used that feature to disallow
all but fully qualified variables, use strict; instead.

• The unimplemented POSIX regex features [[.cc.]] and [[=c=]] are still recognised but now cause
fatal errors. The previous behaviour of ignoring them by default and warning if requested was
unacceptable since it, in a way, falsely promised that the features could be used.

• In future releases, non-PerlIO aware XS modules may become completely unsupported. Since
PerlIO is a drop-in replacement for stdio at the source code level, this shouldn’t be that drastic a
change.

• Previous versions of perl and some readings of some sections of Camel III implied that the :raw
‘‘discipline’’ was the inverse of :crlf. Turning off ‘‘clrfness’’ is no longer enough to make a
stream truly binary. So the PerlIO :raw layer (or ‘‘discipline’’, to use the Camel book’s older
terminology) is now formally defined as being equivalent to binmode(FH) - which is in turn
defined as doing whatever is necessary to pass each byte as-is without any translation. In
particular binmode(FH) - and hence :raw - will now turn off both CRLF and UTF-8 translation
and remove other layers (e.g. :encoding()) which would modify byte stream.

• The current user-visible implementation of pseudo-hashes (the weird use of the first array
element) is deprecated starting from Perl 5.8.0 and will be removed in Perl 5.10.0, and the feature
will be implemented differently. Not only is the current interface rather ugly, but the current
implementation slows down normal array and hash use quite noticeably. The fields pragma
interface will remain available. The restricted hashes interface is expected to be the replacement
interface (see Hash::Util). If your existing programs depends on the underlying implementation,
consider using Class::PseudoHash from CPAN.

• The syntaxes @a->[...] and %h->{...} have now been deprecated.

• After years of trying, suidperl is considered to be too complex to ever be considered truly secure.
The suidperl functionality is likely to be removed in a future release.

• The 5.005 threads model (module Thread) is deprecated and expected to be removed in Perl
5.10. Multithreaded code should be migrated to the new ithreads model (see threads,
threads::shared and perlthrtut).

• The long deprecated uppercase aliases for the string comparison operators (EQ, NE, LT, LE, GE,
GT) have now been removed.

• The tr///C and tr///U features have been removed and will not return; the interface was a mistake.
Sorry about that. For similar functionality, see pack(’U0’, ...) and pack(’C0’, ...). [561]

• Earlier Perls treated ‘‘sub foo (@bar)’’ as equivalent to ‘‘sub foo (@)’’. The prototypes are now
checked better at compile-time for invalid syntax. An optional warning is generated (‘‘Illegal
character in prototype...’’) but this may be upgraded to a fatal error in a future release.

• The exec LIST and system LIST operations now produce warnings on tainted data and in
some future release they will produce fatal errors.

perl v5.36.0 2021-06-26 625

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• The existing behaviour when localising tied arrays and hashes is wrong, and will be changed in a
future release, so do not rely on the existing behaviour. See ‘‘Localising Tied Arrays and Hashes Is
Broken’’.

Core Enhancements
Unicode Overhaul

Unicode in general should be now much more usable than in Perl 5.6.0 (or even in 5.6.1). Unicode can
be used in hash keys, Unicode in regular expressions should work now, Unicode in tr/// should work
now, Unicode in I/O should work now. See perluniintro for introduction and perlunicode for details.

• The Unicode Character Database coming with Perl has been upgraded to Unicode 3.2.0. For more
information, see http://www.unicode.org/ . [561+] (5.6.1 has UCD 3.0.1.)

• For developers interested in enhancing Perl’s Unicode capabilities: almost all the UCD files are
included with the Perl distribution in the lib/unicore subdirectory. The most notable omission, for
space considerations, is the Unihan database.

• The properties \p{Blank} and \p{SpacePerl} have been added. ‘‘Blank’’ is like C isblank(), that
is, it contains only ‘‘horizontal whitespace’’ (the space character is, the newline isn’t), and the
‘‘SpacePerl’’ is the Unicode equivalent of \s (\p{Space} isn’t, since that includes the vertical
tabulator character, whereas \s doesn’t.)

See ‘‘New Unicode Properties’’ earlier in this document for additional information on changes
with Unicode properties.

PerlIO is Now The Default
• IO is now by default done via PerlIO rather than system’s ‘‘stdio’’. PerlIO allows ‘‘layers’’ to be

‘‘pushed’’ onto a file handle to alter the handle’s behaviour. Layers can be specified at open time
via 3-arg form of open:

open($fh,'>:crlf :utf8', $path) || ...

or on already opened handles via extended binmode:

binmode($fh,':encoding(iso-8859-7)');

The built-in layers are: unix (low level read/write), stdio (as in previous Perls), perlio (re-
implementation of stdio buffering in a portable manner), crlf (does CRLF <=> ‘‘\n’’ translation as
on Win32, but available on any platform). A mmap layer may be available if platform supports it
(mostly Unixes).

Layers to be applied by default may be specified via the ’open’ pragma.

See ‘‘Installation and Configuration Improvements’’ for the effects of PerlIO on your architecture
name.

• If your platform supports fork(), you can use the list form of open for pipes. For example:

open KID_PS, "-|", "ps", "aux" or die $!;

forks the ps (1) command (without spawning a shell, as there are more than three arguments to
open()), and reads its standard output via the KID_PS filehandle. See perlipc.

• File handles can be marked as accepting Perl’s internal encoding of Unicode (UTF-8 or UTF-
EBCDIC depending on platform) by a pseudo layer ‘‘:utf8’’ :

open($fh,">:utf8","Uni.txt");

Note for EBCDIC users: the pseudo layer ‘‘:utf8’’ is erroneously named for you since it’s not
UTF-8 what you will be getting but instead UTF-EBCDIC. See perlunicode, utf8, and
http://www.unicode.org/reports/tr16/ for more information. In future releases this naming may
change. See perluniintro for more information about UTF-8.

• If your environment variables (LC_ALL, LC_CTYPE, LANG) look like you want to use UTF-8 (any
of the variables match /utf-?8/i), your STDIN, STDOUT, STDERR handles and the default
open layer (see open) are marked as UTF-8. (This feature, like other new features that combine
Unicode and I/O, work only if you are using PerlIO, but that’s the default.)

Note that after this Perl really does assume that everything is UTF-8: for example if some input

perl v5.36.0 2021-06-26 626

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

handle is not, Perl will probably very soon complain about the input data like this ‘‘Malformed
UTF-8 ...’’ since any old eight-bit data is not legal UTF-8.

Note for code authors: if you want to enable your users to use UTF-8 as their default encoding but
in your code still have eight-bit I/O streams (such as images or zip files), you need to explicitly
open() or binmode() with :bytes (see ‘‘open’’ in perlfunc and ‘‘binmode’’ in perlfunc), or you
can just use binmode(FH) (nice for pre-5.8.0 backward compatibility).

• File handles can translate character encodings from/to Perl’s internal Unicode form on read/write
via the ‘‘:encoding()’’ layer.

• File handles can be opened to ‘‘in memory’’ files held in Perl scalars via:

open($fh,'>', \$variable) || ...

• Anonymous temporary files are available without need to ’use FileHandle’ or other module via

open($fh,"+>", undef) || ...

That is a literal undef, not an undefined value.

ithreads
The new interpreter threads (‘‘ithreads’’ for short) implementation of multithreading, by Arthur
Bergman, replaces the old ‘‘5.005 threads’’ implementation. In the ithreads model any data sharing
between threads must be explicit, as opposed to the model where data sharing was implicit. See
threads and threads::shared, and perlthrtut.

As a part of the ithreads implementation Perl will also use any necessary and detectable reentrant libc
interfaces.

Restricted Hashes
A restricted hash is restricted to a certain set of keys, no keys outside the set can be added. Also
individual keys can be restricted so that the key cannot be deleted and the value cannot be changed. No
new syntax is involved: the Hash::Util module is the interface.

Safe Signals
Perl used to be fragile in that signals arriving at inopportune moments could corrupt Perl’s internal
state. Now Perl postpones handling of signals until it’s safe (between opcodes).

This change may have surprising side effects because signals no longer interrupt Perl instantly. Perl
will now first finish whatever it was doing, like finishing an internal operation (like sort()) or an
external operation (like an I/O operation), and only then look at any arrived signals (and before starting
the next operation). No more corrupt internal state since the current operation is always finished first,
but the signal may take more time to get heard. Note that breaking out from potentially blocking
operations should still work, though.

Understanding of Numbers
In general a lot of fixing has happened in the area of Perl’s understanding of numbers, both integer and
floating point. Since in many systems the standard number parsing functions like strtoul() and
atof() seem to have bugs, Perl tries to work around their deficiencies. This results hopefully in more
accurate numbers.

Perl now tries internally to use integer values in numeric conversions and basic arithmetics (+ - * /) if
the arguments are integers, and tries also to keep the results stored internally as integers. This change
leads to often slightly faster and always less lossy arithmetics. (Previously Perl always preferred
floating point numbers in its math.)

Arrays now always interpolate into double-quoted strings [561]
In double-quoted strings, arrays now interpolate, no matter what. The behavior in earlier versions of
perl 5 was that arrays would interpolate into strings if the array had been mentioned before the string
was compiled, and otherwise Perl would raise a fatal compile-time error. In versions 5.000 through
5.003, the error was

Literal @example now requires backslash

In versions 5.004_01 through 5.6.0, the error was

In string, @example now must be written as \@example

The idea here was to get people into the habit of writing "fred\@example.com" when they

perl v5.36.0 2021-06-26 627

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

wanted a literal @ sign, just as they have always written "Give me back my \$5" when they
wanted a literal $ sign.

Starting with 5.6.1, when Perl now sees an @ sign in a double-quoted string, it always attempts to
interpolate an array, regardless of whether or not the array has been used or declared already. The fatal
error has been downgraded to an optional warning:

Possible unintended interpolation of @example in string

This warns you that "fred@example.com" is going to turn into fred.com if you don’t backslash
the @. See http://perl.plover.com/at-error.html for more details about the history here.

Miscellaneous Changes
• AUTOLOAD is now lvaluable, meaning that you can add the :lvalue attribute to AUTOLOAD

subroutines and you can assign to the AUTOLOAD return value.

• The $Config{byteorder} (and corresponding BYTEORDER in config.h) was previously wrong in
platforms if sizeof(long) was 4, but sizeof(IV) was 8. The byteorder was only sizeof(long) bytes
long (1234 or 4321), but now it is correctly sizeof(IV) bytes long, (12345678 or 87654321). (This
problem didn’t affect Windows platforms.)

Also, $Config{byteorder} is now computed dynamically — this is more robust with ‘‘fat
binaries’’ where an executable image contains binaries for more than one binary platform, and
when cross-compiling.

• perl -d:Module=arg,arg,arg now works (previously one couldn’t pass in multiple
arguments.)

• do followed by a bareword now ensures that this bareword isn’t a keyword (to avoid a bug where
do q(foo.pl) tried to call a subroutine called q). This means that for example instead of do
format() you must write do &format().

• The builtin dump() now gives an optional warning dump() better written as
CORE::dump(), meaning that by default dump(...) is resolved as the builtin dump() which
dumps core and aborts, not as (possibly) user-defined sub dump. To call the latter, qualify the
call as &dump(...). (The whole dump() feature is to considered deprecated, and possibly
removed/changed in future releases.)

• chomp() and chop() are now overridable. Note, however, that their prototype (as given by
prototype("CORE::chomp") is undefined, because it cannot be expressed and therefore one
cannot really write replacements to override these builtins.

• END blocks are now run even if you exit/die in a BEGIN block. Internally, the execution of END
blocks is now controlled by PL_exit_flags & PERL_EXIT_DESTRUCT_END. This enables the new
behaviour for Perl embedders. This will default in 5.10. See perlembed.

• Formats now support zero-padded decimal fields.

• Although ‘‘you shouldn’t do that’’, it was possible to write code that depends on Perl’s hashed key
order (Data::Dumper does this). The new algorithm ‘‘One-at-a-Time’’ produces a different hashed
key order. More details are in ‘‘Performance Enhancements’’.

• lstat(FILEHANDLE) now gives a warning because the operation makes no sense. In future releases
this may become a fatal error.

• Spurious syntax errors generated in certain situations, when glob() caused File::Glob to be loaded
for the first time, have been fixed. [561]

• Lvalue subroutines can now return undef in list context. However, the lvalue subroutine feature
still remains experimental. [561+]

• A lost warning ‘‘Can’t declare ... dereference in my’’ has been restored (Perl had it earlier but it
became lost in later releases.)

• A new special regular expression variable has been introduced: $ˆN, which contains the most-
recently closed group (submatch).

• no Module; does not produce an error even if Module does not have an unimport() method.
This parallels the behavior of use vis-a-vis import. [561]

perl v5.36.0 2021-06-26 628

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• The numerical comparison operators return undef if either operand is a NaN. Previously the
behaviour was unspecified.

• our can now have an experimental optional attribute unique that affects how global variables
are shared among multiple interpreters, see ‘‘our’’ in perlfunc.

• The following builtin functions are now overridable: each(), keys(), pop(), push(), shift(),
splice(), unshift(). [561]

• pack() / unpack() can now group template letters with () and then apply repetition/count
modifiers on the groups.

• pack() / unpack() can now process the Perl internal numeric types: IVs, UVs, NVs — and
also long doubles, if supported by the platform. The template letters are j, J, F, and D.

• pack('U0a*', ...) can now be used to force a string to UTF-8.

• my _ _PACKAGE_ _ $obj now works. [561]

• POSIX::sleep() now returns the number of unslept seconds (as the POSIX standard says), as
opposed to CORE::sleep() which returns the number of slept seconds.

• printf() and sprintf() now support parameter reordering using the %\d+\$ and *\d+\$
syntaxes. For example

printf "%2\$s %1\$s\n", "foo", "bar";

will print ‘‘bar foo\n’’. This feature helps in writing internationalised software, and in general
when the order of the parameters can vary.

• The (\&) prototype now works properly. [561]

• prototype(\[$@%&]) is now available to implicitly create references (useful for example if you
want to emulate the tie() interface).

• A new command-line option, -t is available. It is the little brother of -T: instead of dying on
taint violations, lexical warnings are given. This is only meant as a temporary debugging aid
while securing the code of old legacy applications. This is not a substitute for -T.

• In other taint news, the exec LIST and system LIST have now been considered too risky
(think exec @ARGV: it can start any program with any arguments), and now the said forms cause
a warning under lexical warnings. You should carefully launder the arguments to guarantee their
validity. In future releases of Perl the forms will become fatal errors so consider starting
laundering now.

• Tied hash interfaces are now required to have the EXISTS and DELETE methods (either own or
inherited).

• If tr/// is just counting characters, it doesn’t attempt to modify its target.

• untie() will now call an UNTIE() hook if it exists. See perltie for details. [561]

• ‘‘utime’’ in perlfunc now supports utime undef, undef, @files to change the file
timestamps to the current time.

• The rules for allowing underscores (underbars) in numeric constants have been relaxed and
simplified: now you can have an underscore simply between digits.

• Rather than relying on C’s argv[0] (which may not contain a full pathname) where possible $ˆX is
now set by asking the operating system. (eg by reading /proc/self/exe on Linux, /proc/curproc/file
on FreeBSD)

• A new variable, ${ˆTAINT}, indicates whether taint mode is enabled.

• You can now override the readline() builtin, and this overrides also the <FILEHANDLE> angle
bracket operator.

• The command-line options -s and -F are now recognized on the shebang (#!) line.

• Use of the /c match modifier without an accompanying /g modifier elicits a new warning: Use
of /c modifier is meaningless without /g.

Use of /c in substitutions, even with /g, elicits Use of /c modifier is meaningless

perl v5.36.0 2021-06-26 629

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

in s///.

Use of /g with split elicits Use of /g modifier is meaningless in split.

• Support for the CLONE special subroutine had been added. With ithreads, when a new thread is
created, all Perl data is cloned, however non-Perl data cannot be cloned automatically. In CLONE
you can do whatever you need to do, like for example handle the cloning of non-Perl data, if
necessary. CLONE will be executed once for every package that has it defined or inherited. It will
be called in the context of the new thread, so all modifications are made in the new area.

See perlmod

Modules and Pragmata
New Modules and Pragmata

• Attribute::Handlers, originally by Damian Conway and now maintained by Arthur
Bergman, allows a class to define attribute handlers.

package MyPack;
use Attribute::Handlers;
sub Wolf :ATTR(SCALAR) { print "howl!\n" }

later, in some package using or inheriting from MyPack...

my MyPack $Fluffy : Wolf; # the attribute handler Wolf will be called

Both variables and routines can have attribute handlers. Handlers can be specific to type
(SCALAR, ARRAY, HASH, or CODE), or specific to the exact compilation phase (BEGIN, CHECK,
INIT, or END). See Attribute::Handlers.

• B::Concise, by Stephen McCamant, is a new compiler backend for walking the Perl syntax
tree, printing concise info about ops. The output is highly customisable. See B::Concise. [561+]

• The new bignum, bigint, and bigrat pragmas, by Tels, implement transparent bignum support
(using the Math::BigInt, Math::BigFloat, and Math::BigRat backends).

• Class::ISA, by Sean Burke, is a module for reporting the search path for a class’s ISA tree.
See Class::ISA.

• Cwd now has a split personality: if possible, an XS extension is used, (this will hopefully be faster,
more secure, and more robust) but if not possible, the familiar Perl implementation is used.

• Devel::PPPort, originally by Kenneth Albanowski and now maintained by Paul Marquess,
has been added. It is primarily used by h2xs to enhance portability of XS modules between
different versions of Perl. See Devel::PPPort.

• Digest, frontend module for calculating digests (checksums), from Gisle Aas, has been added.
See Digest.

• Digest::MD5 for calculating MD5 digests (checksums) as defined in RFC 1321, from Gisle Aas,
has been added. See Digest::MD5.

use Digest::MD5 'md5_hex';

$digest = md5_hex("Thirsty Camel");

print $digest, "\n"; # 01d19d9d2045e005c3f1b80e8b164de1

NOTE: the MD5 backward compatibility module is deliberately not included since its further use is
discouraged.

See also PerlIO::via::QuotedPrint.

• Encode, originally by Nick Ing-Simmons and now maintained by Dan Kogai, provides a
mechanism to translate between different character encodings. Support for Unicode, ISO-8859-1,
and ASCII are compiled in to the module. Several other encodings (like the rest of the ISO-8859,
CP*/Win*, Mac, KOI8-R, three variants EBCDIC, Chinese, Japanese, and Korean encodings) are
included and can be loaded at runtime. (For space considerations, the largest Chinese encodings
have been separated into their own CPAN module, Encode::HanExtra, which Encode will use if

perl v5.36.0 2021-06-26 630

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

available). See Encode.

Any encoding supported by Encode module is also available to the ‘‘:encoding()’’ layer if PerlIO
is used.

• Hash::Util is the interface to the new restricted hashes feature. (Implemented by Jeffrey
Friedl, Nick Ing-Simmons, and Michael Schwern.) See Hash::Util.

• I18N::Langinfo can be used to query locale information. See I18N::Langinfo.

• I18N::LangTags, by Sean Burke, has functions for dealing with RFC3066-style language
tags. See I18N::LangTags.

• ExtUtils::Constant, by Nicholas Clark, is a new tool for extension writers for generating
XS code to import C header constants. See ExtUtils::Constant.

• Filter::Simple, by Damian Conway, is an easy-to-use frontend to Filter::Util::Call. See
Filter::Simple.

in MyFilter.pm:

package MyFilter;

use Filter::Simple sub {
while (my ($from, $to) = splice @_, 0, 2) {

s/$from/$to/g;
}

};

1;

in user's code:

use MyFilter qr/red/ => 'green';

print "red\n"; # this code is filtered, will print "green\n"
print "bored\n"; # this code is filtered, will print "bogreen\n"

no MyFilter;

print "red\n"; # this code is not filtered, will print "red\n"

• File::Temp, by Tim Jenness, allows one to create temporary files and directories in an easy,
portable, and secure way. See File::Temp. [561+]

• Filter::Util::Call, by Paul Marquess, provides you with the framework to write source
filters in Perl. For most uses, the frontend Filter::Simple is to be preferred. See Filter::Util::Call.

• if, by Ilya Zakharevich, is a new pragma for conditional inclusion of modules.

• libnet, by Graham Barr, is a collection of perl5 modules related to network programming. See
Net::FTP, Net::NNTP, Net::Ping (not part of libnet, but related), Net::POP3, Net::SMTP, and
Net::Time.

Perl installation leaves libnet unconfigured; use libnetcfg to configure it.

• List::Util, by Graham Barr, is a selection of general-utility list subroutines, such as sum(),
min(), first(), and shuffle(). See List::Util.

• Locale::Constants, Locale::Country, Locale::Currency
Locale::Language, and Locale::Script, by Neil Bowers, have been added. They provide the
codes for various locale standards, such as ‘‘fr’’ for France, ‘‘usd’’ for US Dollar, and ‘‘ja’’ for
Japanese.

use Locale::Country;

$country = code2country('jp'); # $country gets 'Japan'

perl v5.36.0 2021-06-26 631

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

$code = country2code('Norway'); # $code gets 'no'

See Locale::Constants, Locale::Country, Locale::Currency, and Locale::Language.

• Locale::Maketext, by Sean Burke, is a localization framework. See Locale::Maketext, and
Locale::Maketext::TPJ13. The latter is an article about software localization, originally published
in The Perl Journal #13, and republished here with kind permission.

• Math::BigRat for big rational numbers, to accompany Math::BigInt and Math::BigFloat, from
Tels. See Math::BigRat.

• Memoize can make your functions faster by trading space for time, from Mark-Jason Dominus.
See Memoize.

• MIME::Base64, by Gisle Aas, allows you to encode data in base64, as defined in RFC 2045 -
MIME (Multipurpose Internet Mail Extensions).

use MIME::Base64;

$encoded = encode_base64('Aladdin:open sesame');
$decoded = decode_base64($encoded);

print $encoded, "\n"; # "QWxhZGRpbjpvcGVuIHNlc2FtZQ=="

See MIME::Base64.

• MIME::QuotedPrint, by Gisle Aas, allows you to encode data in quoted-printable encoding,
as defined in RFC 2045 - MIME (Multipurpose Internet Mail Extensions).

use MIME::QuotedPrint;

$encoded = encode_qp("\xDE\xAD\xBE\xEF");
$decoded = decode_qp($encoded);

print $encoded, "\n"; # "=DE=AD=BE=EF\n"
print $decoded, "\n"; # "\xDE\xAD\xBE\xEF\n"

See also PerlIO::via::QuotedPrint.

• NEXT, by Damian Conway, is a pseudo-class for method redispatch. See NEXT.

• open is a new pragma for setting the default I/O layers for open().

• PerlIO::scalar, by Nick Ing-Simmons, provides the implementation of IO to ‘‘in memory’’
Perl scalars as discussed above. It also serves as an example of a loadable PerlIO layer. Other
future possibilities include PerlIO::Array and PerlIO::Code. See PerlIO::scalar.

• PerlIO::via, by Nick Ing-Simmons, acts as a PerlIO layer and wraps PerlIO layer
functionality provided by a class (typically implemented in Perl code).

• PerlIO::via::QuotedPrint, by Elizabeth Mattijsen, is an example of a PerlIO::via
class:

use PerlIO::via::QuotedPrint;
open($fh,">:via(QuotedPrint)",$path);

This will automatically convert everything output to $fh to Quoted-Printable. See PerlIO::via
and PerlIO::via::QuotedPrint.

• Pod::ParseLink, by Russ Allbery, has been added, to parse L<> links in pods as described in
the new perlpodspec.

• Pod::Text::Overstrike, by Joe Smith, has been added. It converts POD data to formatted
overstrike text. See Pod::Text::Overstrike. [561+]

• Scalar::Util is a selection of general-utility scalar subroutines, such as blessed(), reftype(),
and tainted(). See Scalar::Util.

• sort is a new pragma for controlling the behaviour of sort().

perl v5.36.0 2021-06-26 632

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• Storable gives persistence to Perl data structures by allowing the storage and retrieval of Perl
data to and from files in a fast and compact binary format. Because in effect Storable does
serialisation of Perl data structures, with it you can also clone deep, hierarchical datastructures.
Storable was originally created by Raphael Manfredi, but it is now maintained by Abhijit Menon-
Sen. Storable has been enhanced to understand the two new hash features, Unicode keys and
restricted hashes. See Storable.

• Switch, by Damian Conway, has been added. Just by saying

use Switch;

you have switch and case available in Perl.

use Switch;

switch ($val) {

case 1 { print "number 1" }
case "a" { print "string a" }
case [1..10,42] { print "number in list" }
case (@array) { print "number in list" }
case /\w+/ { print "pattern" }
case qr/\w+/ { print "pattern" }
case (%hash) { print "entry in hash" }
case (\%hash) { print "entry in hash" }
case (\&sub) { print "arg to subroutine" }
else { print "previous case not true" }

}

See Switch.

• Test::More, by Michael Schwern, is yet another framework for writing test scripts, more
extensive than Test::Simple. See Test::More.

• Test::Simple, by Michael Schwern, has basic utilities for writing tests. See Test::Simple.

• Text::Balanced, by Damian Conway, has been added, for extracting delimited text sequences
from strings.

use Text::Balanced 'extract_delimited';

($a, $b) = extract_delimited("'never say never', he never said", "'", '');

$a will be ‘‘’never say never’’’, $b will be ’, he never said’.

In addition to extract_delimited(), there are also extract_bracketed(), extract_quotelike(),
extract_codeblock(), extract_variable(), extract_tagged(), extract_multiple(),
gen_delimited_pat(), and gen_extract_tagged(). With these, you can implement rather advanced
parsing algorithms. See Text::Balanced.

• threads, by Arthur Bergman, is an interface to interpreter threads. Interpreter threads (ithreads)
is the new thread model introduced in Perl 5.6 but only available as an internal interface for
extension writers (and for Win32 Perl for fork() emulation). See threads, threads::shared, and
perlthrtut.

• threads::shared, by Arthur Bergman, allows data sharing for interpreter threads. See
threads::shared.

• Tie::File, by Mark-Jason Dominus, associates a Perl array with the lines of a file. See
Tie::File.

• Tie::Memoize, by Ilya Zakharevich, provides on-demand loaded hashes. See Tie::Memoize.

• Tie::RefHash::Nestable, by Edward Avis, allows storing hash references (unlike the
standard Tie::RefHash) The module is contained within Tie::RefHash. See Tie::RefHash.

perl v5.36.0 2021-06-26 633

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• Time::HiRes, by Douglas E. Wegscheid, provides high resolution timing (ualarm, usleep, and
gettimeofday). See Time::HiRes.

• Unicode::UCD offers a querying interface to the Unicode Character Database. See
Unicode::UCD.

• Unicode::Collate, by SADAHIRO Tomoyuki, implements the UCA (Unicode Collation
Algorithm) for sorting Unicode strings. See Unicode::Collate.

• Unicode::Normalize, by SADAHIRO Tomoyuki, implements the various Unicode
normalization forms. See Unicode::Normalize.

• XS::APItest, by Tim Jenness, is a test extension that exercises XS APIs. Currently only
printf() is tested: how to output various basic data types from XS.

• XS::Typemap, by Tim Jenness, is a test extension that exercises XS typemaps. Nothing gets
installed, but the code is worth studying for extension writers.

Updated And Improved Modules and Pragmata
• The following independently supported modules have been updated to the newest versions from

CPAN: CGI, CPAN, DB_File, File::Spec, File::Temp, Getopt::Long, Math::BigFloat, Math::BigInt,
the podlators bundle (Pod::Man, Pod::Text), Pod::LaTeX [561+], Pod::Parser, Storable,
Term::ANSIColor, Test, Text-Tabs+Wrap.

• attributes::reftype() now works on tied arguments.

• AutoLoader can now be disabled with no AutoLoader;.

• B::Deparse has been significantly enhanced by Robin Houston. It can now deparse almost all of
the standard test suite (so that the tests still succeed). There is a make target ‘‘test.deparse’’ for
trying this out.

• Carp now has better interface documentation, and the @CARP_NOT interface has been added to
get optional control over where errors are reported independently of @ISA, by Ben Tilly.

• Class::Struct can now define the classes in compile time.

• Class::Struct now assigns the array/hash element if the accessor is called with an array/hash
element as the sole argument.

• The return value of Cwd::fastcwd() is now tainted.

• Data::Dumper now has an option to sort hashes.

• Data::Dumper now has an option to dump code references using B::Deparse.

• DB_File now supports newer Berkeley DB versions, among other improvements.

• Devel::Peek now has an interface for the Perl memory statistics (this works only if you are using
perl’s malloc, and if you have compiled with debugging).

• The English module can now be used without the infamous performance hit by saying

use English '-no_match_vars';

(Assuming, of course, that you don’t need the troublesome variables $`, $&, or $'.) Also,
introduced @LAST_MATCH_START and @LAST_MATCH_END English aliases for @- and @+.

• ExtUtils::MakeMaker has been significantly cleaned up and fixed. The enhanced version has also
been backported to earlier releases of Perl and submitted to CPAN so that the earlier releases can
enjoy the fixes.

• The arguments of WriteMakefile() in Makefile.PL are now checked for sanity much more
carefully than before. This may cause new warnings when modules are being installed. See
ExtUtils::MakeMaker for more details.

• ExtUtils::MakeMaker now uses File::Spec internally, which hopefully leads to better portability.

• Fcntl, Socket, and Sys::Syslog have been rewritten by Nicholas Clark to use the new-style
constant dispatch section (see ExtUtils::Constant). This means that they will be more robust and
hopefully faster.

perl v5.36.0 2021-06-26 634

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• File::Find now chdir()s correctly when chasing symbolic links. [561]

• File::Find now has pre- and post-processing callbacks. It also correctly changes directories when
chasing symbolic links. Callbacks (naughtily) exiting with ‘‘next;’’ instead of ‘‘return;’’ now
work.

• File::Find is now (again) reentrant. It also has been made more portable.

• The warnings issued by File::Find now belong to their own category. You can enable/disable them
with use/no warnings 'File::Find';.

• File::Glob::glob() has been renamed to File::Glob::bsd_glob() because the name clashes with
the builtin glob(). The older name is still available for compatibility, but is deprecated. [561]

• File::Glob now supports GLOB_LIMIT constant to limit the size of the returned list of filenames.

• IPC::Open3 now allows the use of numeric file descriptors.

• IO::Socket now has an atmark() method, which returns true if the socket is positioned at the out-
of-band mark. The method is also exportable as a sockatmark() function.

• IO::Socket::INET failed to open the specified port if the service name was not known. It now
correctly uses the supplied port number as is. [561]

• IO::Socket::INET has support for the ReusePort option (if your platform supports it). The Reuse
option now has an alias, ReuseAddr. For clarity, you may want to prefer ReuseAddr.

• IO::Socket::INET now supports a value of zero for LocalPort (usually meaning that the
operating system will make one up.)

• ’use lib’ now works identically to @INC. Removing directories with ’no lib’ now works.

• Math::BigFloat and Math::BigInt have undergone a full rewrite by Tels. They are now magnitudes
faster, and they support various bignum libraries such as GMP and PARI as their backends.

• Math::Complex handles inf, NaN etc., better.

• Net::Ping has been considerably enhanced by Rob Brown: multihoming is now supported, Win32
functionality is better, there is now time measuring functionality (optionally high-resolution using
Time::HiRes), and there is now ‘‘external’’ protocol which uses Net::Ping::External module which
runs your external ping utility and parses the output. A version of Net::Ping::External is available
in CPAN.

Note that some of the Net::Ping tests are disabled when running under the Perl distribution since
one cannot assume one or more of the following: enabled echo port at localhost, full Internet
connectivity, or sympathetic firewalls. You can set the environment variable
PERL_TEST_Net_Ping to ‘‘1’’ (one) before running the Perl test suite to enable all the Net::Ping
tests.

• POSIX::sigaction() is now much more flexible and robust. You can now install coderef handlers,
’DEFAULT’, and ’IGNORE’ handlers, installing new handlers was not atomic.

• In Safe, %INC is now localised in a Safe compartment so that use/require work.

• In SDBM_File on DOSish platforms, some keys went missing because of lack of support for files
with ‘‘holes’’. A workaround for the problem has been added.

• In Search::Dict one can now have a pre-processing hook for the lines being searched.

• The Shell module now has an OO interface.

• In Sys::Syslog there is now a failover mechanism that will go through alternative connection
mechanisms until the message is successfully logged.

• The Test module has been significantly enhanced.

• Time::Local::timelocal() does not handle fractional seconds anymore. The rationale is that
neither does localtime(), and timelocal() and localtime() are supposed to be inverses of each
other.

• The vars pragma now supports declaring fully qualified variables. (Something that our() does
not and will not support.)

perl v5.36.0 2021-06-26 635

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• The utf8:: name space (as in the pragma) provides various Perl-callable functions to provide
low level access to Perl’s internal Unicode representation. At the moment only length() has been
implemented.

Utility Changes
• Emacs perl mode (emacs/cperl-mode.el) has been updated to version 4.31.

• emacs/e2ctags.pl is now much faster.

• enc2xs is a tool for people adding their own encodings to the Encode module.

• h2ph now supports C trigraphs.

• h2xs now produces a template README.

• h2xs now uses Devel::PPPort for better portability between different versions of Perl.

• h2xs uses the new ExtUtils::Constant module which will affect newly created extensions that
define constants. Since the new code is more correct (if you have two constants where the first
one is a prefix of the second one, the first constant never got defined), less lossy (it uses integers
for integer constant, as opposed to the old code that used floating point numbers even for integer
constants), and slightly faster, you might want to consider regenerating your extension code (the
new scheme makes regenerating easy). h2xs now also supports C trigraphs.

• libnetcfg has been added to configure libnet.

• perlbug is now much more robust. It also sends the bug report to perl.org, not perl.com.

• perlcc has been rewritten and its user interface (that is, command line) is much more like that of
the Unix C compiler, cc. (The perlbc tools has been removed. Use perlcc -B instead.) Note
that perlcc is still considered very experimental and unsupported. [561]

• perlivp is a new Installation Verification Procedure utility for running any time after installing
Perl.

• piconv is an implementation of the character conversion utility iconv, demonstrating the new
Encode module.

• pod2html now allows specifying a cache directory.

• pod2html now produces XHTML 1.0.

• pod2html now understands POD written using different line endings (PC-like CRLF versus
Unix-like LF versus MacClassic-like CR).

• s2p has been completely rewritten in Perl. (It is in fact a full implementation of sed in Perl: you
can use the sed functionality by using the psed utility.)

• xsubpp now understands POD documentation embedded in the *.xs files. [561]

• xsubpp now supports the OUT keyword.

New Documentation
• perl56delta details the changes between the 5.005 release and the 5.6.0 release.

• perlclib documents the internal replacements for standard C library functions. (Interesting only
for extension writers and Perl core hackers.) [561+]

• perldebtut is a Perl debugging tutorial. [561+]

• perlebcdic contains considerations for running Perl on EBCDIC platforms. [561+]

• perlintro is a gentle introduction to Perl.

• perliol documents the internals of PerlIO with layers.

• perlmodstyle is a style guide for writing modules.

• perlnewmod tells about writing and submitting a new module. [561+]

• perlpacktut is a pack() tutorial.

• perlpod has been rewritten to be clearer and to record the best practices gathered over the years.

perl v5.36.0 2021-06-26 636

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• perlpodspec is a more formal specification of the pod format, mainly of interest for writers of pod
applications, not to people writing in pod.

• perlretut is a regular expression tutorial. [561+]

• perlrequick is a regular expressions quick-start guide. Yes, much quicker than perlretut. [561]

• perltodo has been updated.

• perltootc has been renamed as perltooc (to not to conflict with perltoot in filesystems restricted to
‘‘8.3’’ names).

• perluniintro is an introduction to using Unicode in Perl. (perlunicode is more of a detailed
reference and background information)

• perlutil explains the command line utilities packaged with the Perl distribution. [561+]

The following platform-specific documents are available before the installation as README.platform,
and after the installation as perlplatform:

perlaix perlamiga perlapollo perlbeos perlbs2000
perlce perlcygwin perldgux perldos perlepoc perlfreebsd perlhpux
perlhurd perlirix perlmachten perlmacos perlmint perlmpeix
perlnetware perlos2 perlos390 perlplan9 perlqnx perlsolaris
perltru64 perluts perlvmesa perlvms perlvos perlwin32

These documents usually detail one or more of the following subjects: configuring, building, testing,
installing, and sometimes also using Perl on the said platform.

Eastern Asian Perl users are now welcomed in their own languages: README.jp (Japanese),
README.ko (Korean), README.cn (simplified Chinese) and README.tw (traditional Chinese), which
are written in normal pod but encoded in EUC-JP, EUC-KR, EUC-CN and Big5. These will get
installed as

perljp perlko perlcn perltw

• The documentation for the POSIX-BC platform is called ‘‘BS2000’’, to avoid confusion with the
Perl POSIX module.

• The documentation for the WinCE platform is called perlce (README.ce in the source code kit),
to avoid confusion with the perlwin32 documentation on 8.3-restricted filesystems.

Performance Enhancements
• map() could get pathologically slow when the result list it generates is larger than the source list.

The performance has been improved for common scenarios. [561]

• sort() is also fully reentrant, in the sense that the sort function can itself call sort(). This did not
work reliably in previous releases. [561]

• sort() has been changed to use primarily mergesort internally as opposed to the earlier quicksort.
For very small lists this may result in slightly slower sorting times, but in general the speedup
should be at least 20%. Additional bonuses are that the worst case behaviour of sort() is now
better (in computer science terms it now runs in time O(N log N), as opposed to quicksort’s
Theta(N**2) worst-case run time behaviour), and that sort() is now stable (meaning that elements
with identical keys will stay ordered as they were before the sort). See the sort pragma for
information.

The story in more detail: suppose you want to serve yourself a little slice of Pi.

@digits = (3,1,4,1,5,9);

A numerical sort of the digits will yield (1,1,3,4,5,9), as expected. Which 1 comes first is hard to
know, since one 1 looks pretty much like any other. You can regard this as totally trivial, or
somewhat profound. However, if you just want to sort the even digits ahead of the odd ones, then
what will

sort { ($a % 2) <=> ($b % 2) } @digits;

yield? The only even digit, 4, will come first. But how about the odd numbers, which all compare
equal? With the quicksort algorithm used to implement Perl 5.6 and earlier, the order of ties is left
up to the sort. So, as you add more and more digits of Pi, the order in which the sorted even and

perl v5.36.0 2021-06-26 637

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

odd digits appear will change. and, for sufficiently large slices of Pi, the quicksort algorithm in
Perl 5.8 won’t return the same results even if reinvoked with the same input. The justification for
this rests with quicksort’s worst case behavior. If you run

sort { $a <=> $b } (1 .. $N , 1 .. $N);

(something you might approximate if you wanted to merge two sorted arrays using sort), doubling
$N doesn’t just double the quicksort time, it quadruples it. Quicksort has a worst case run time
that can grow like N**2, so-called quadratic behaviour, and it can happen on patterns that may
well arise in normal use. You won’t notice this for small arrays, but you will notice it with larger
arrays, and you may not live long enough for the sort to complete on arrays of a million elements.
So the 5.8 quicksort scrambles large arrays before sorting them, as a statistical defence against
quadratic behaviour. But that means if you sort the same large array twice, ties may be broken in
different ways.

Because of the unpredictability of tie-breaking order, and the quadratic worst-case behaviour,
quicksort was almost replaced completely with a stable mergesort. Stable means that ties are
broken to preserve the original order of appearance in the input array. So

sort { ($a % 2) <=> ($b % 2) } (3,1,4,1,5,9);

will yield (4,3,1,1,5,9), guaranteed. The even and odd numbers appear in the output in the same
order they appeared in the input. Mergesort has worst case O(N log N) behaviour, the best value
attainable. And, ironically, this mergesort does particularly well where quicksort goes quadratic:
mergesort sorts (1..$N, 1..$N) in O(N) time. But quicksort was rescued at the last moment
because it is faster than mergesort on certain inputs and platforms. For example, if you really
don’t care about the order of even and odd digits, quicksort will run in O(N) time; it’s very good at
sorting many repetitions of a small number of distinct elements. The quicksort divide and conquer
strategy works well on platforms with relatively small, very fast, caches. Eventually, the problem
gets whittled down to one that fits in the cache, from which point it benefits from the increased
memory speed.

Quicksort was rescued by implementing a sort pragma to control aspects of the sort. The stable
subpragma forces stable behaviour, regardless of algorithm. The _quicksort and _mergesort
subpragmas are heavy-handed ways to select the underlying implementation. The leading _ is a
reminder that these subpragmas may not survive beyond 5.8. More appropriate mechanisms for
selecting the implementation exist, but they wouldn’t have arrived in time to save quicksort.

• Hashes now use Bob Jenkins ‘‘One-at-a-Time’’ hashing key algorithm (
http://burtleburtle.net/bob/hash/doobs.html). This algorithm is reasonably fast while producing a
much better spread of values than the old hashing algorithm (originally by Chris Torek, later
tweaked by Ilya Zakharevich). Hash values output from the algorithm on a hash of all 3-char
printable ASCII keys comes much closer to passing the DIEHARD random number generation
tests. According to perlbench, this change has not affected the overall speed of Perl.

• unshift() should now be noticeably faster.

Installation and Configuration Improvements
Generic Improvements

• INSTALL now explains how you can configure Perl to use 64-bit integers even on non-64-bit
platforms.

• Policy.sh policy change: if you are reusing a Policy.sh file (see INSTALL) and you use Configure
-Dprefix=/foo/bar and in the old Policy $prefix eq $siteprefix and $prefix eq
$vendorprefix, all of them will now be changed to the new prefix, /foo/bar. (Previously only
$prefix changed.) If you do not like this new behaviour, specify prefix, siteprefix, and
vendorprefix explicitly.

• A new optional location for Perl libraries, otherlibdirs, is available. It can be used for example for
vendor add-ons without disturbing Perl’s own library directories.

• In many platforms, the vendor-supplied ’cc’ is too stripped-down to build Perl (basically, ’cc’
doesn’t do ANSI C). If this seems to be the case and ’cc’ does not seem to be the GNU C compiler
’gcc’, an automatic attempt is made to find and use ’gcc’ instead.

perl v5.36.0 2021-06-26 638

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• gcc needs to closely track the operating system release to avoid build problems. If Configure finds
that gcc was built for a different operating system release than is running, it now gives a clearly
visible warning that there may be trouble ahead.

• Since Perl 5.8 is not binary-compatible with previous releases of Perl, Configure no longer
suggests including the 5.005 modules in @INC.

• Configure -S can now run non-interactively. [561]

• Configure support for pdp11-style memory models has been removed due to obsolescence. [561]

• configure.gnu now works with options with whitespace in them.

• installperl now outputs everything to STDERR.

• Because PerlIO is now the default on most platforms, ‘‘-perlio’’ doesn’t get appended to the
$Config{archname} (also known as $ˆO) anymore. Instead, if you explicitly choose not to use
perlio (Configure command line option -Uuseperlio), you will get ‘‘-stdio’’ appended.

• Another change related to the architecture name is that ‘‘-64all’’ (-Duse64bitall, or ‘‘maximally
64-bit’’) is appended only if your pointers are 64 bits wide. (To be exact, the use64bitall is
ignored.)

• In AFS installations, one can configure the root of the AFS to be somewhere else than the default
/afs by using the Configure parameter -Dafsroot=/some/where/else.

• APPLLIB_EXP, a lesser-known configuration-time definition, has been documented. It can be used
to prepend site-specific directories to Perl’s default search path (@INC); see INSTALL for
information.

• The version of Berkeley DB used when the Perl (and, presumably, the DB_File extension) was
built is now available as @Config{qw(db_version_major db_version_minor
db_version_patch)} from Perl and as DB_VERSION_MAJOR_CFG
DB_VERSION_MINOR_CFG DB_VERSION_PATCH_CFG from C.

• Building Berkeley DB3 for compatibility modes for DB, NDBM, and ODBM has been documented
in INSTALL.

• If you have CPAN access (either network or a local copy such as a CD-ROM) you can during
specify extra modules to Configure to build and install with Perl using the -Dextras=... option.
See INSTALL for more details.

• In addition to config.over, a new override file, config.arch, is available. This file is supposed to be
used by hints file writers for architecture-wide changes (as opposed to config.over which is for
site-wide changes).

• If your file system supports symbolic links, you can build Perl outside of the source directory by

mkdir perl/build/directory
cd perl/build/directory
sh /path/to/perl/source/Configure -Dmksymlinks ...

This will create in perl/build/directory a tree of symbolic links pointing to files in
/path/to/perl/source. The original files are left unaffected. After Configure has finished, you can
just say

make all test

and Perl will be built and tested, all in perl/build/directory. [561]

• For Perl developers, several new make targets for profiling and debugging have been added; see
perlhack.

• Use of the gprof tool to profile Perl has been documented in perlhack. There is a make
target called ‘‘perl.gprof’’ for generating a gprofiled Perl executable.

• If you have GCC 3, there is a make target called ‘‘perl.gcov’’ for creating a gcoved Perl
executable for coverage analysis. See perlhack.

perl v5.36.0 2021-06-26 639

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• If you are on IRIX or Tru64 platforms, new profiling/debugging options have been
added; see perlhack for more information about pixie and Third Degree.

• Guidelines of how to construct minimal Perl installations have been added to INSTALL.

• The Thread extension is now not built at all under ithreads (Configure -Duseithreads)
because it wouldn’t work anyway (the Thread extension requires being Configured with
-Duse5005threads).

Note that the 5.005 threads are unsupported and deprecated: if you have code written for the
old threads you should migrate it to the new ithreads model.

• The Gconvert macro ($Config{d_Gconvert}) used by perl for stringifying floating-point numbers
is now more picky about using sprintf %.*g rules for the conversion. Some platforms that used to
use gcvt may now resort to the slower sprintf.

• The obsolete method of making a special (e.g., debugging) flavor of perl by saying

make LIBPERL=libperld.a

has been removed. Use -DDEBUGGING instead.

New Or Improved Platforms
For the list of platforms known to support Perl, see ‘‘Supported Platforms’’ in perlport.

• AIX dynamic loading should be now better supported.

• AIX should now work better with gcc, threads, and 64-bitness. Also the long doubles support in
AIX should be better now. See perlaix.

• AtheOS (http://www.atheos.cx/) is a new platform.

• BeOS has been reclaimed.

• The DG/UX platform now supports 5.005-style threads. See perldgux.

• The DYNIX/ptx platform (also known as dynixptx) is supported at or near osvers 4.5.2.

• EBCDIC platforms (z/OS (also known as OS/390), POSIX-BC, and VM/ESA) have been regained.
Many test suite tests still fail and the co-existence of Unicode and EBCDIC isn’t quite settled, but
the situation is much better than with Perl 5.6. See perlos390, perlbs2000 (for POSIX-BC), and
perlvmesa for more information. (Note: support for VM/ESA was removed in Perl v5.18.0. The
relevant information was in README.vmesa)

• Building perl with -Duseithreads or -Duse5005threads now works under HP-UX 10.20
(previously it only worked under 10.30 or later). You will need a thread library package installed.
See README.hpux. [561]

• Mac OS Classic is now supported in the mainstream source package (MacPerl has of course been
available since perl 5.004 but now the source code bases of standard Perl and MacPerl have been
synchronised) [561]

• Mac OS X (or Darwin) should now be able to build Perl even on HFS+ filesystems. (The case-
insensitivity used to confuse the Perl build process.)

• NCR MP-RAS is now supported. [561]

• All the NetBSD specific patches (except for the installation specific ones) have been merged back
to the main distribution.

• NetWare from Novell is now supported. See perlnetware.

• NonStop-UX is now supported. [561]

• NEC SUPER-UX is now supported.

• All the OpenBSD specific patches (except for the installation specific ones) have been merged
back to the main distribution.

• Perl has been tested with the GNU pth userlevel thread package (
http://www.gnu.org/software/pth/pth.html). All thread tests of Perl now work, but not without
adding some yield()s to the tests, so while pth (and other userlevel thread implementations) can be
considered to be ‘‘working’’ with Perl ithreads, keep in mind the possible non-preemptability of

perl v5.36.0 2021-06-26 640

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

the underlying thread implementation.

• Stratus VOS is now supported using Perl’s native build method (Configure). This is the
recommended method to build Perl on VOS. The older methods, which build miniperl, are still
available. See perlvos. [561+]

• The Amdahl UTS Unix mainframe platform is now supported. [561]

• WinCE is now supported. See perlce.

• z/OS (formerly known as OS/390, formerly known as MVS OE) now has support for dynamic
loading. This is not selected by default, however, you must specify -Dusedl in the arguments of
Configure. [561]

Selected Bug Fixes
Numerous memory leaks and uninitialized memory accesses have been hunted down. Most
importantly, anonymous subs used to leak quite a bit. [561]

• The autouse pragma didn’t work for Multi::Part::Function::Names.

• caller() could cause core dumps in certain situations. Carp was sometimes affected by this
problem. In particular, caller() now returns a subroutine name of (unknown) for subroutines
that have been removed from the symbol table.

• chop(@list) in list context returned the characters chopped in reverse order. This has been
reversed to be in the right order. [561]

• Configure no longer includes the DBM libraries (dbm, gdbm, db, ndbm) when building the Perl
binary. The only exception to this is SunOS 4.x, which needs them. [561]

• The behaviour of non-decimal but numeric string constants such as ‘‘0x23’’ was platform-
dependent: in some platforms that was seen as 35, in some as 0, in some as a floating point
number (don’t ask). This was caused by Perl’s using the operating system libraries in a situation
where the result of the string to number conversion is undefined: now Perl consistently handles
such strings as zero in numeric contexts.

• Several debugger fixes: exit code now reflects the script exit code, condition "0" now treated
correctly, the d command now checks line number, $. no longer gets corrupted, and all debugger
output now goes correctly to the socket if RemotePort is set. [561]

• The debugger (perl5db.pl) has been modified to present a more consistent commands interface, via
(CommandSet=580). perl5db.t was also added to test the changes, and as a placeholder for further
tests.

See perldebug.

• The debugger has a new dumpDepth option to control the maximum depth to which nested
structures are dumped. The x command has been extended so that x N EXPR dumps out the
value of EXPR to a depth of at most N levels.

• The debugger can now show lexical variables if you have the CPAN module PadWalker installed.

• The order of DESTROYs has been made more predictable.

• Perl 5.6.0 could emit spurious warnings about redefinition of dl_error() when statically building
extensions into perl. This has been corrected. [561]

• dprofpp -R didn’t work.

• *foo{FORMAT} now works.

• Infinity is now recognized as a number.

• UNIVERSAL::isa no longer caches methods incorrectly. (This broke the Tk extension with
5.6.0.) [561]

• Lexicals I: lexicals outside an eval "‘‘ weren’t resolved correctly inside a subroutine definition
inside the eval ’’‘‘ if they were not already referenced in the top level of the eval’’"ed code.

• Lexicals II: lexicals leaked at file scope into subroutines that were declared before the lexicals.

perl v5.36.0 2021-06-26 641

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• Lexical warnings now propagating correctly between scopes and into eval "...".

• use warnings qw(FATAL all) did not work as intended. This has been corrected. [561]

• warnings::enabled() now reports the state of $ˆW correctly if the caller isn’t using lexical
warnings. [561]

• Line renumbering with eval and #line now works. [561]

• Fixed numerous memory leaks, especially in eval "".

• Localised tied variables no longer leak memory

use Tie::Hash;
tie my %tied_hash => 'Tie::StdHash';

...

Used to leak memory every time local() was called;
in a loop, this added up.
local($tied_hash{Foo}) = 1;

• Localised hash elements (and %ENV) are correctly unlocalised to not exist, if they didn’t before
they were localised.

use Tie::Hash;
tie my %tied_hash => 'Tie::StdHash';

...

Nothing has set the FOO element so far

{ local $tied_hash{FOO} = 'Bar' }

This used to print, but not now.
print "exists!\n" if exists $tied_hash{FOO};

As a side effect of this fix, tied hash interfaces must define the EXISTS and DELETE methods.

• mkdir() now ignores trailing slashes in the directory name, as mandated by POSIX.

• Some versions of glibc have a broken modfl(). This affects builds with -Duselongdouble.
This version of Perl detects this brokenness and has a workaround for it. The glibc release 2.2.2 is
known to have fixed the modfl() bug.

• Modulus of unsigned numbers now works (4063328477 % 65535 used to return 27406, instead of
27047). [561]

• Some ‘‘not a number’’ warnings introduced in 5.6.0 eliminated to be more compatible with 5.005.
Infinity is now recognised as a number. [561]

• Numeric conversions did not recognize changes in the string value properly in certain
circumstances. [561]

• Attributes (such as :shared) didn’t work with our().

• our() variables will not cause bogus ‘‘Variable will not stay shared’’ warnings. [561]

• ‘‘our’’ variables of the same name declared in two sibling blocks resulted in bogus warnings about
‘‘redeclaration’’ of the variables. The problem has been corrected. [561]

• pack ‘‘Z’’ now correctly terminates the string with ‘‘\0’’.

• Fix password routines which in some shadow password platforms (e.g. HP-UX) caused
getpwent() to return every other entry.

• The PERL5OPT environment variable (for passing command line arguments to Perl) didn’t work
for more than a single group of options. [561]

perl v5.36.0 2021-06-26 642

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• PERL5OPT with embedded spaces didn’t work.

• printf() no longer resets the numeric locale to ‘‘C’’.

• qw(a\\b) now parses correctly as 'a\\b' : that is, as three characters, not four. [561]

• pos() did not return the correct value within s///ge in earlier versions. This is now handled
correctly. [561]

• Printing quads (64-bit integers) with printf/sprintf now works without the q L ll prefixes
(assuming you are on a quad-capable platform).

• Regular expressions on references and overloaded scalars now work. [561+]

• Right-hand side magic (GMAGIC) could in many cases such as string concatenation be invoked too
many times.

• scalar() now forces scalar context even when used in void context.

• SOCKS support is now much more robust.

• sort() arguments are now compiled in the right wantarray context (they were accidentally using
the context of the sort() itself). The comparison block is now run in scalar context, and the
arguments to be sorted are always provided list context. [561]

• Changed the POSIX character class [[:space:]] to include the (very rarely used) vertical tab
character. Added a new POSIX-ish character class [[:blank:]] which stands for horizontal
whitespace (currently, the space and the tab).

• The tainting behaviour of sprintf() has been rationalized. It does not taint the result of floating
point formats anymore, making the behaviour consistent with that of string interpolation. [561]

• Some cases of inconsistent taint propagation (such as within hash values) have been fixed.

• The RE engine found in Perl 5.6.0 accidentally pessimised certain kinds of simple pattern matches.
These are now handled better. [561]

• Regular expression debug output (whether through use re 'debug' or via -Dr) now looks
better. [561]

• Multi-line matches like "a\nxb\n" =˜ /(?!\A)x/m were flawed. The bug has been fixed.
[561]

• Use of $& could trigger a core dump under some situations. This is now avoided. [561]

• The regular expression captured submatches ($1, $2, ...) are now more consistently unset if the
match fails, instead of leaving false data lying around in them. [561]

• readline() on files opened in ‘‘slurp’’ mode could return an extra "" (blank line) at the end in
certain situations. This has been corrected. [561]

• Autovivification of symbolic references of special variables described in perlvar (as in ${$num})
was accidentally disabled. This works again now. [561]

• Sys::Syslog ignored the LOG_AUTH constant.

• $AUTOLOAD, sort(), lock(), and spawning subprocesses in multiple threads simultaneously are
now thread-safe.

• Tie::Array’s SPLICE method was broken.

• Allow a read-only string on the left-hand side of a non-modifying tr///.

• If STDERR is tied, warnings caused by warn and die now correctly pass to it.

• Several Unicode fixes.

• BOMs (byte order marks) at the beginning of Perl files (scripts, modules) should now be
transparently skipped. UTF-16 and UCS-2 encoded Perl files should now be read
correctly.

• The character tables have been updated to Unicode 3.2.0.

perl v5.36.0 2021-06-26 643

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• Comparing with utf8 data does not magically upgrade non-utf8 data into utf8. (This
was a problem for example if you were mixing data from I/O and Unicode data: your
output might have got magically encoded as UTF-8.)

• Generating illegal Unicode code points such as U+FFFE, or the UTF-16 surrogates, now
also generates an optional warning.

• IsAlnum, IsAlpha, and IsWord now match titlecase.

• Concatenation with the . operator or via variable interpolation, eq, substr,
reverse, quotemeta, the x operator, substitution with s///, single-quoted UTF-8,
should now work.

• The tr/// operator now works. Note that the tr///CU functionality has been
removed (but see pack(’U0’, ...)).

• eval "v200" now works.

• Perl 5.6.0 parsed m/\x{ab}/ incorrectly, leading to spurious warnings. This has been
corrected. [561]

• Zero entries were missing from the Unicode classes such as IsDigit.

• Large unsigned numbers (those above 2**31) could sometimes lose their unsignedness, causing
bogus results in arithmetic operations. [561]

• The Perl parser has been stress tested using both random input and Markov chain input and the
few found crashes and lockups have been fixed.

Platform Specific Changes and Fixes
• BSDI 4.*

Perl now works on post-4.0 BSD/OSes.

• All BSDs

Setting $0 now works (as much as possible; see perlvar for details).

• Cygwin

Numerous updates; currently synchronised with Cygwin 1.3.10.

• Previously DYNIX/ptx had problems in its Configure probe for non-blocking I/O.

• EPOC

EPOC now better supported. See README.epoc. [561]

• FreeBSD 3.*

Perl now works on post-3.0 FreeBSDs.

• HP-UX

README.hpux updated; Configure -Duse64bitall now works; now uses HP-UX malloc
instead of Perl malloc.

• IRIX

Numerous compilation flag and hint enhancements; accidental mixing of 32-bit and 64-bit
libraries (a doomed attempt) made much harder.

• Linux

• Long doubles should now work (see INSTALL). [561]

• Linux previously had problems related to sockaddrlen when using accept(), recvfrom()
(in Perl: recv()), getpeername(), and getsockname().

• Mac OS Classic

Compilation of the standard Perl distribution in Mac OS Classic should now work if you have the
Metrowerks development environment and the missing Mac-specific toolkit bits. Contact the
macperl mailing list for details.

perl v5.36.0 2021-06-26 644

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• MPE/iX

MPE/iX update after Perl 5.6.0. See README.mpeix. [561]

• NetBSD/threads: try installing the GNU pth (should be in the packages collection, or
http://www.gnu.org/software/pth/), and Configure with -Duseithreads.

• NetBSD/sparc

Perl now works on NetBSD/sparc.

• OS/2

Now works with usethreads (see INSTALL). [561]

• Solaris

64-bitness using the Sun Workshop compiler now works.

• Stratus VOS

The native build method requires at least VOS Release 14.5.0 and GNU C++/GNU Tools 2.0.1 or later. The

Perl pack function now maps overflowed values to +infinity and underflowed values to -infinity.

• Tru64 (aka Digital UNIX, aka DEC OSF/1)

The operating system version letter now recorded in $Config{osvers}. Allow compiling with
gcc (previously explicitly forbidden). Compiling with gcc still not recommended because buggy
code results, even with gcc 2.95.2.

• Unicos

Fixed various alignment problems that lead into core dumps either during build or later; no longer
dies on math errors at runtime; now using full quad integers (64 bits), previously was using only
46 bit integers for speed.

• VMS

See ‘‘Socket Extension Dynamic in VMS’’ and ‘‘IEEE-format Floating Point Default on
OpenVMS Alpha’’ for important changes not otherwise listed here.

chdir() now works better despite a CRT bug; now works with MULTIPLICITY (see INSTALL); now
works with Perl’s malloc.

The tainting of %ENV elements via keys or values was previously unimplemented. It now
works as documented.

The waitpid emulation has been improved. The worst bug (now fixed) was that a pid of -1
would cause a wildcard search of all processes on the system.

POSIX-style signals are now emulated much better on VMS versions prior to 7.0.

The system function and backticks operator have improved functionality and better error
handling. [561]

File access tests now use current process privileges rather than the user’s default privileges, which
could sometimes result in a mismatch between reported access and actual access. This
improvement is only available on VMS v6.0 and later.

There is a new kill implementation based on sys$sigprc that allows older VMS systems
(pre-7.0) to use kill to send signals rather than simply force exit. This implementation also
allows later systems to call kill from within a signal handler.

Iterative logical name translations are now limited to 10 iterations in imitation of SHOW LOGICAL
and other OpenVMS facilities.

• Windows

• Signal handling now works better than it used to. It is now implemented using a
Windows message loop, and is therefore less prone to random crashes.

perl v5.36.0 2021-06-26 645

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• fork() emulation is now more robust, but still continues to have a few esoteric bugs and
caveats. See perlfork for details. [561+]

• A failed (pseudo)fork now returns undef and sets errno to EAGAIN. [561]

• The following modules now work on Windows:

ExtUtils::Embed [561]
IO::Pipe
IO::Poll
Net::Ping

• IO::File::new_tmpfile() is no longer limited to 32767 invocations per-process.

• Better chdir() return value for a non-existent directory.

• Compiling perl using the 64-bit Platform SDK tools is now supported.

• The Win32::SetChildShowWindow() builtin can be used to control the visibility of
windows created by child processes. See Win32 for details.

• Non-blocking waits for child processes (or pseudo-processes) are supported via
waitpid($pid, &POSIX::WNOHANG).

• The behavior of system() with multiple arguments has been rationalized. Each
unquoted argument will be automatically quoted to protect whitespace, and any existing
whitespace in the arguments will be preserved. This improves the portability of
system(@args) by avoiding the need for Windows cmd shell specific quoting in perl
programs.

Note that this means that some scripts that may have relied on earlier buggy behavior
may no longer work correctly. For example, system("nmake /nologo",
@args) will now attempt to run the file nmake /nologo and will fail when such a
file isn’t found. On the other hand, perl will now execute code such as
system("c:/Program Files/MyApp/foo.exe", @args) correctly.

• The perl header files no longer suppress common warnings from the Microsoft Visual
C++ compiler. This means that additional warnings may now show up when compiling
XS code.

• Borland C++ v5.5 is now a supported compiler that can build Perl. However, the
generated binaries continue to be incompatible with those generated by the other
supported compilers (GCC and Visual C++). [561]

• Duping socket handles with open(F, ‘‘>&MYSOCK’’) now works under Windows 9x.
[561]

• Current directory entries in %ENV are now correctly propagated to child processes. [561]

• New %ENV entries now propagate to subprocesses. [561]

• Win32::GetCwd() correctly returns C:\ instead of C: when at the drive root. Other bugs
in chdir() and Cwd::cwd() have also been fixed. [561]

• The makefiles now default to the features enabled in ActiveState ActivePerl (a popular
Win32 binary distribution). [561]

• HTML files will now be installed in c:\perl\html instead of c:\perl\lib\pod\html

• REG_EXPAND_SZ keys are now allowed in registry settings used by perl. [561]

• Can now send() from all threads, not just the first one. [561]

• ExtUtils::MakeMaker now uses $ENV{LIB} to search for libraries. [561]

• Less stack reserved per thread so that more threads can run concurrently. (Still 16M per
thread.) [561]

• File::Spec->tmpdir() now prefers C:/temp over /tmp (works better when perl is
running as service).

perl v5.36.0 2021-06-26 646

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• Better UNC path handling under ithreads. [561]

• wait(), waitpid(), and backticks now return the correct exit status under Windows 9x.
[561]

• A socket handle leak in accept() has been fixed. [561]

New or Changed Diagnostics
Please see perldiag for more details.

• Ambiguous range in the transliteration operator (like a-z-9) now gives a warning.

• chdir("") and chdir(undef) now give a deprecation warning because they cause a possible
unintentional chdir to the home directory. Say chdir() if you really mean that.

• Two new debugging options have been added: if you have compiled your Perl with debugging,
you can use the -DT [561] and -DR options to trace tokenising and to add reference counts to
displaying variables, respectively.

• The lexical warnings category ‘‘deprecated’’ is no longer a sub-category of the ‘‘syntax’’ category.
It is now a top-level category in its own right.

• Unadorned dump() will now give a warning suggesting to use explicit CORE::dump() if that’s
what really is meant.

• The ‘‘Unrecognized escape’’ warning has been extended to include \8, \9, and _. There is no
need to escape any of the \w characters.

• All regular expression compilation error messages are now hopefully easier to understand both
because the error message now comes before the failed regex and because the point of failure is
now clearly marked by a <-- HERE marker.

• Various I/O (and socket) functions like binmode(), close(), and so forth now more consistently
warn if they are used illogically either on a yet unopened or on an already closed filehandle (or
socket).

• Using lstat() on a filehandle now gives a warning. (It’s a non-sensical thing to do.)

• The -M and -m options now warn if you didn’t supply the module name.

• If you in use specify a required minimum version, modules matching the name and but not
defining a $VERSION will cause a fatal failure.

• Using negative offset for vec() in lvalue context is now a warnable offense.

• Odd number of arguments to overload::constant now elicits a warning.

• Odd number of elements in anonymous hash now elicits a warning.

• The various ‘‘opened only for’’, ‘‘on closed’’, ‘‘never opened’’ warnings drop the main:: prefix
for filehandles in the main package, for example STDIN instead of main::STDIN.

• Subroutine prototypes are now checked more carefully, you may get warnings for example if you
have used non-prototype characters.

• If an attempt to use a (non-blessed) reference as an array index is made, a warning is given.

• push @a; and unshift @a; (with no values to push or unshift) now give a warning. This
may be a problem for generated and eval’ed code.

• If you try to ‘‘pack’’ in perlfunc a number less than 0 or larger than 255 using the "C" format you
will get an optional warning. Similarly for the "c" format and a number less than -128 or more
than 127.

• pack P format now demands an explicit size.

• unpack w now warns of unterminated compressed integers.

• Warnings relating to the use of PerlIO have been added.

• Certain regex modifiers such as (?o) make sense only if applied to the entire regex. You will get
an optional warning if you try to do otherwise.

perl v5.36.0 2021-06-26 647

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

• Variable length lookbehind has not yet been implemented, trying to use it will tell that.

• Using arrays or hashes as references (e.g. %foo->{bar} has been deprecated for a while. Now
you will get an optional warning.

• Warnings relating to the use of the new restricted hashes feature have been added.

• Self-ties of arrays and hashes are not supported and fatal errors will happen even at an attempt to
do so.

• Using sort in scalar context now issues an optional warning. This didn’t do anything useful, as
the sort was not performed.

• Using the /g modifier in split() is meaningless and will cause a warning.

• Using splice() past the end of an array now causes a warning.

• Malformed Unicode encodings (UTF-8 and UTF-16) cause a lot of warnings, as does trying to use
UTF-16 surrogates (which are unimplemented).

• Trying to use Unicode characters on an I/O stream without marking the stream’s encoding (using
open() or binmode()) will cause ‘‘Wide character’’ warnings.

• Use of v-strings in use/require causes a (backward) portability warning.

• Warnings relating to the use interpreter threads and their shared data have been added.

Changed Internals
• PerlIO is now the default.

• perlapi.pod (a companion to perlguts) now attempts to document the internal API.

• You can now build a really minimal perl called microperl. Building microperl does not require
even running Configure; make -f Makefile.micro should be enough. Beware: microperl
makes many assumptions, some of which may be too bold; the resulting executable may crash or
otherwise misbehave in wondrous ways. For careful hackers only.

• Added rsignal(), whichsig(), do_join(), op_clear, op_null, ptr_table_clear(), ptr_table_free(),
sv_setref_uv(), and several UTF-8 interfaces to the publicised API. For the full list of the
available APIs see perlapi.

• Made possible to propagate customised exceptions via croak()ing.

• Now xsubs can have attributes just like subs. (Well, at least the built-in attributes.)

• dTHR and djSP have been obsoleted; the former removed (because it’s a no-op) and the latter
replaced with dSP.

• PERL_OBJECT has been completely removed.

• The MAGIC constants (e.g. 'P') have been macrofied (e.g. PERL_MAGIC_TIED) for better
source code readability and maintainability.

• The regex compiler now maintains a structure that identifies nodes in the compiled bytecode with
the corresponding syntactic features of the original regex expression. The information is attached
to the new offsets member of the struct regexp. See perldebguts for more complete
information.

• The C code has been made much more gcc -Wall clean. Some warning messages still remain
in some platforms, so if you are compiling with gcc you may see some warnings about dubious
practices. The warnings are being worked on.

• perly.c, sv.c, and sv.h have now been extensively commented.

• Documentation on how to use the Perl source repository has been added to Porting/repository.pod.

• There are now several profiling make targets.

Security Vulnerability Closed [561]
(This change was already made in 5.7.0 but bears repeating here.) (5.7.0 came out before 5.6.1: the
development branch 5.7 released earlier than the maintenance branch 5.6)

A potential security vulnerability in the optional suidperl component of Perl was identified in August
2000. suidperl is neither built nor installed by default. As of November 2001 the only known

perl v5.36.0 2021-06-26 648

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

vulnerable platform is Linux, most likely all Linux distributions. CERT and various vendors and
distributors have been alerted about the vulnerability. See
http://www.cpan.org/src/5.0/sperl-2000-08-05/sperl-2000-08-05.txt for more information.

The problem was caused by Perl trying to report a suspected security exploit attempt using an external
program, /bin/mail. On Linux platforms the /bin/mail program had an undocumented feature which
when combined with suidperl gave access to a root shell, resulting in a serious compromise instead of
reporting the exploit attempt. If you don’t have /bin/mail, or if you have ’safe setuid scripts’, or if
suidperl is not installed, you are safe.

The exploit attempt reporting feature has been completely removed from Perl 5.8.0 (and the
maintenance release 5.6.1, and it was removed also from all the Perl 5.7 releases), so that particular
vulnerability isn’t there anymore. However, further security vulnerabilities are, unfortunately, always
possible. The suidperl functionality is most probably going to be removed in Perl 5.10. In any case,
suidperl should only be used by security experts who know exactly what they are doing and why they
are using suidperl instead of some other solution such as sudo (see http://www.courtesan.com/sudo/).

New Tests
Several new tests have been added, especially for the lib and ext subsections. There are now about 69
000 individual tests (spread over about 700 test scripts), in the regression suite (5.6.1 has about 11 700
tests, in 258 test scripts) The exact numbers depend on the platform and Perl configuration used.
Many of the new tests are of course introduced by the new modules, but still in general Perl is now
more thoroughly tested.

Because of the large number of tests, running the regression suite will take considerably longer time
than it used to: expect the suite to take up to 4-5 times longer to run than in perl 5.6. On a really fast
machine you can hope to finish the suite in about 6-8 minutes (wallclock time).

The tests are now reported in a different order than in earlier Perls. (This happens because the test
scripts from under t/lib have been moved to be closer to the library/extension they are testing.)

Known Problems
The Compiler Suite Is Still Very Experimental

The compiler suite is slowly getting better but it continues to be highly experimental. Use in
production environments is discouraged.

Localising Tied Arrays and Hashes Is Broken
local %tied_array;

doesn’t work as one would expect: the old value is restored incorrectly. This will be changed in a
future release, but we don’t know yet what the new semantics will exactly be. In any case, the change
will break existing code that relies on the current (ill-defined) semantics, so just avoid doing this in
general.

Building Extensions Can Fail Because Of Largefiles
Some extensions like mod_perl are known to have issues with ‘largefiles’, a change brought by Perl
5.6.0 in which file offsets default to 64 bits wide, where supported. Modules may fail to compile at all,
or they may compile and work incorrectly. Currently, there is no good solution for the problem, but
Configure now provides appropriate non-largefile ccflags, ldflags, libswanted, and libs in the %Config
hash (e.g., $Config{ccflags_nolargefiles}) so the extensions that are having problems can try
configuring themselves without the largefileness. This is admittedly not a clean solution, and the
solution may not even work at all. One potential failure is whether one can (or, if one can, whether it’s
a good idea to) link together at all binaries with different ideas about file offsets; all this is platform-
dependent.

Modifying $_ Inside for(..)
for (1..5) { $_++ }

works without complaint. It shouldn’t. (You should be able to modify only lvalue elements inside the
loops.) You can see the correct behaviour by replacing the 1..5 with 1, 2, 3, 4, 5.

mod_perl 1.26 Doesn’t Build With Threaded Perl
Use mod_perl 1.27 or higher.

perl v5.36.0 2021-06-26 649

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

lib/ftmp-security tests warn ’system possibly insecure’
Don’t panic. Read the ’make test’ section of INSTALL instead.

libwww-perl (LWP) fails base/date #51
Use libwww-perl 5.65 or later.

PDL failing some tests
Use PDL 2.3.4 or later.

Perl_get_sv
You may get errors like ’Undefined symbol ‘‘Perl_get_sv’’’ or ‘‘can’t resolve symbol ’Perl_get_sv’’’, or
the symbol may be ‘‘Perl_sv_2pv’’. This probably means that you are trying to use an older shared
Perl library (or extensions linked with such) with Perl 5.8.0 executable. Perl used to have such a
subroutine, but that is no more the case. Check your shared library path, and any shared Perl libraries
in those directories.

Sometimes this problem may also indicate a partial Perl 5.8.0 installation, see ‘‘Mac OS X dyld
undefined symbols’’ for an example and how to deal with it.

Self-tying Problems
Self-tying of arrays and hashes is broken in rather deep and hard-to-fix ways. As a stop-gap measure to
avoid people from getting frustrated at the mysterious results (core dumps, most often), it is forbidden
for now (you will get a fatal error even from an attempt).

A change to self-tying of globs has caused them to be recursively referenced (see: ‘‘Two-Phased
Garbage Collection’’ in perlobj). You will now need an explicit untie to destroy a self-tied glob. This
behaviour may be fixed at a later date.

Self-tying of scalars and IO thingies works.

ext/threads/t/libc
If this test fails, it indicates that your libc (C library) is not threadsafe. This particular test stress tests
the localtime() call to find out whether it is threadsafe. See perlthrtut for more information.

Failure of Thread (5.005-style) tests
Note that support for 5.005-style threading is deprecated, experimental and practically
unsupported. In 5.10, it is expected to be removed. You should migrate your code to ithreads.

The following tests are known to fail due to fundamental problems in the 5.005 threading
implementation. These are not new failures — Perl 5.005_0x has the same bugs, but didn’t have these
tests.

../ext/B/t/xref.t 255 65280 14 12 85.71% 3-14

../ext/List/Util/t/first.t 255 65280 7 4 57.14% 2 5-7

../lib/English.t 2 512 54 2 3.70% 2-3

../lib/FileCache.t 5 1 20.00% 5

../lib/Filter/Simple/t/data.t 6 3 50.00% 1-3

../lib/Filter/Simple/t/filter_only. 9 3 33.33% 1-2 5

../lib/Math/BigInt/t/bare_mbf.t 1627 4 0.25% 8 11 1626-1627

../lib/Math/BigInt/t/bigfltpm.t 1629 4 0.25% 10 13 1628-
1629

../lib/Math/BigInt/t/sub_mbf.t 1633 4 0.24% 8 11 1632-1633

../lib/Math/BigInt/t/with_sub.t 1628 4 0.25% 9 12 1627-1628

../lib/Tie/File/t/31_autodefer.t 255 65280 65 32 49.23% 34-65

../lib/autouse.t 10 1 10.00% 4
op/flip.t 15 1 6.67% 15

These failures are unlikely to get fixed as 5.005-style threads are considered fundamentally broken.
(Basically what happens is that competing threads can corrupt shared global state, one good example
being regular expression engine’s state.)

Timing problems
The following tests may fail intermittently because of timing problems, for example if the system is
heavily loaded.

perl v5.36.0 2021-06-26 650

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

t/op/alarm.t
ext/Time/HiRes/HiRes.t
lib/Benchmark.t
lib/Memoize/t/expmod_t.t
lib/Memoize/t/speed.t

In case of failure please try running them manually, for example

./perl -Ilib ext/Time/HiRes/HiRes.t

Tied/Magical Array/Hash Elements Do Not Autovivify
For normal arrays $foo = \$bar[1] will assign undef to $bar[1] (assuming that it didn’t exist
before), but for tied/magical arrays and hashes such autovivification does not happen because there is
currently no way to catch the reference creation. The same problem affects slicing over non-existent
indices/keys of a tied/magical array/hash.

Unicode in package/class and subroutine names does not work
One can have Unicode in identifier names, but not in package/class or subroutine names. While some
limited functionality towards this does exist as of Perl 5.8.0, that is more accidental than designed; use
of Unicode for the said purposes is unsupported.

One reason of this unfinishedness is its (currently) inherent unportability: since both package names
and subroutine names may need to be mapped to file and directory names, the Unicode capability of the
filesystem becomes important — and there unfortunately aren’t portable answers.

Platform Specific Problems
AIX

• If using the AIX native make command, instead of just ‘‘make’’ issue ‘‘make all’’. In some setups
the former has been known to spuriously also try to run ‘‘make install’’. Alternatively, you may
want to use GNU make.

• In AIX 4.2, Perl extensions that use C++ functions that use statics may have problems in that the
statics are not getting initialized. In newer AIX releases, this has been solved by linking Perl with
the libC_r library, but unfortunately in AIX 4.2 the said library has an obscure bug where the
various functions related to time (such as time() and gettimeofday()) return broken values, and
therefore in AIX 4.2 Perl is not linked against libC_r.

• vac 5.0.0.0 May Produce Buggy Code For Perl

The AIX C compiler vac version 5.0.0.0 may produce buggy code, resulting in a few random tests
failing when run as part of ‘‘make test’’, but when the failing tests are run by hand, they succeed.
We suggest upgrading to at least vac version 5.0.1.0, that has been known to compile Perl
correctly. ‘‘lslpp -L|grep vac.C’’ will tell you the vac version. See README.aix.

• If building threaded Perl, you may get compilation warning from pp_sys.c:

"pp_sys.c", line 4651.39: 1506-280 (W) Function argument assignment between types "unsigned char*" and "const void*" is not allowed.

This is harmless; it is caused by the getnetbyaddr() and getnetbyaddr_r() having slightly
different types for their first argument.

Alpha systems with old gccs fail several tests
If you see op/pack, op/pat, op/regexp, or ext/Storable tests failing in a Linux/alpha or *BSD/Alpha, it’s
probably time to upgrade your gcc. gccs prior to 2.95.3 are definitely not good enough, and gcc 3.1
may be even better. (RedHat Linux/alpha with gcc 3.1 reported no problems, as did Linux 2.4.18 with
gcc 2.95.4.) (In Tru64, it is preferable to use the bundled C compiler.)

AmigaOS
Perl 5.8.0 doesn’t build in AmigaOS. It broke at some point during the ithreads work and we could not
find Amiga experts to unbreak the problems. Perl 5.6.1 still works for AmigaOS (as does the 5.7.2
development release).

BeOS
The following tests fail on 5.8.0 Perl in BeOS Personal 5.03:

perl v5.36.0 2021-06-26 651

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

t/op/lfs............................FAILED at test 17
t/op/magic..........................FAILED at test 24
ext/Fcntl/t/syslfs..................FAILED at test 17
ext/File/Glob/t/basic...............FAILED at test 3
ext/POSIX/t/sigaction...............FAILED at test 13
ext/POSIX/t/waitpid.................FAILED at test 1

(Note: more information was available in README.beos until support for BeOS was removed in Perl
v5.18.0)

Cygwin ‘‘unable to remap’’
For example when building the Tk extension for Cygwin, you may get an error message saying
‘‘unable to remap’’. This is known problem with Cygwin, and a workaround is detailed in here:
http://sources.redhat.com/ml/cygwin/2001-12/msg00894.html

Cygwin ndbm tests fail on FAT
One can build but not install (or test the build of) the NDBM_File on FAT filesystems. Installation (or
build) on NTFS works fine. If one attempts the test on a FAT install (or build) the following failures are
expected:

../ext/NDBM_File/ndbm.t 13 3328 71 59 83.10% 1-2 4 16-71

../ext/ODBM_File/odbm.t 255 65280 ?? ?? % ??

../lib/AnyDBM_File.t 2 512 12 2 16.67% 1 4

../lib/Memoize/t/errors.t 0 139 11 5 45.45% 7-11

../lib/Memoize/t/tie_ndbm.t 13 3328 4 4 100.00% 1-4
run/fresh_perl.t 97 1 1.03% 91

NDBM_File fails and ODBM_File just coredumps.

If you intend to run only on FAT (or if using AnyDBM_File on FAT), run Configure with the -Ui_ndbm
and -Ui_dbm options to prevent NDBM_File and ODBM_File being built.

DJGPP Failures
t/op/stat............................FAILED at test 29
lib/File/Find/t/find.................FAILED at test 1
lib/File/Find/t/taint................FAILED at test 1
lib/h2xs.............................FAILED at test 15
lib/Pod/t/eol........................FAILED at test 1
lib/Test/Harness/t/strap-analyze.....FAILED at test 8
lib/Test/Harness/t/test-harness......FAILED at test 23
lib/Test/Simple/t/exit...............FAILED at test 1

The above failures are known as of 5.8.0 with native builds with long filenames, but there are a few
more if running under dosemu because of limitations (and maybe bugs) of dosemu:

t/comp/cpp...........................FAILED at test 3
t/op/inccode.........................(crash)

and a few lib/ExtUtils tests, and several hundred Encode/t/Aliases.t failures that work fine with long
filenames. So you really might prefer native builds and long filenames.

FreeBSD built with ithreads coredumps reading large directories
This is a known bug in FreeBSD 4.5’s readdir_r(), it has been fixed in FreeBSD 4.6 (see perlfreebsd
(README.freebsd)).

FreeBSD Failing locale Test 117 For ISO 8859-15 Locales
The ISO 8859-15 locales may fail the locale test 117 in FreeBSD. This is caused by the characters \xFF
(y with diaeresis) and \xBE (Y with diaeresis) not behaving correctly when being matched case-
insensitively. Apparently this problem has been fixed in the latest FreeBSD releases. (
http://www.freebsd.org/cgi/query-pr.cgi?pr=34308)

IRIX fails ext/List/Util/t/shuffle.t or Digest::MD5
IRIX with MIPSpro 7.3.1.2m or 7.3.1.3m compiler may fail the List::Util test ext/List/Util/t/shuffle.t by
dumping core. This seems to be a compiler error since if compiled with gcc no core dump ensues, and
no failures have been seen on the said test on any other platform.

Similarly, building the Digest::MD5 extension has been known to fail with ‘‘*** Termination code 139

perl v5.36.0 2021-06-26 652

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

(bu21)’’.

The cure is to drop optimization level (Configure -Doptimize=-O2).

HP-UX lib/posix Subtest 9 Fails When LP64-Configured
If perl is configured with -Duse64bitall, the successful result of the subtest 10 of lib/posix may arrive
before the successful result of the subtest 9, which confuses the test harness so much that it thinks the
subtest 9 failed.

Linux with glibc 2.2.5 fails t/op/int subtest #6 with -Duse64bitint
This is a known bug in the glibc 2.2.5 with long long integers. (
http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=65612)

Linux With Sfio Fails op/misc Test 48
No known fix.

Mac OS X
Please remember to set your environment variable LC_ALL to ‘‘C’’ (setenv LC_ALL C) before running
‘‘make test’’ to avoid a lot of warnings about the broken locales of Mac OS X.

The following tests are known to fail in Mac OS X 10.1.5 because of buggy (old) implementations of
Berkeley DB included in Mac OS X:

Failed Test Stat Wstat Total Fail Failed List of Failed

../ext/DB_File/t/db-btree.t 0 11 ?? ?? % ??
../ext/DB_File/t/db-recno.t 149 3 2.01% 61 63 65

If you are building on a UFS partition, you will also probably see t/op/stat.t subtest #9 fail. This is
caused by Darwin’s UFS not supporting inode change time.

Also the ext/POSIX/t/posix.t subtest #10 fails but it is skipped for now because the failure is Apple’s
fault, not Perl’s (blocked signals are lost).

If you Configure with ithreads, ext/threads/t/libc.t will fail. Again, this is not Perl’s fault — the libc of
Mac OS X is not threadsafe (in this particular test, the localtime() call is found to be threadunsafe.)

Mac OS X dyld undefined symbols
If after installing Perl 5.8.0 you are getting warnings about missing symbols, for example

dyld: perl Undefined symbols
_perl_sv_2pv
_perl_get_sv

you probably have an old pre-Perl-5.8.0 installation (or parts of one) in /Library/Perl (the undefined
symbols used to exist in pre-5.8.0 Perls). It seems that for some reason ‘‘make install’’ doesn’t always
completely overwrite the files in /Library/Perl. You can move the old Perl shared library out of the way
like this:

cd /Library/Perl/darwin/CORE
mv libperl.dylib libperlold.dylib

and then reissue ‘‘make install’’. Note that the above of course is extremely disruptive for anything
using the /usr/local/bin/perl. If that doesn’t help, you may have to try removing all the .bundle files
from beneath /Library/Perl, and again ‘‘make install’’-ing.

OS/2 Test Failures
The following tests are known to fail on OS/2 (for clarity only the failures are shown, not the full error
messages):

../lib/ExtUtils/t/Mkbootstrap.t 1 256 18 1 5.56% 8

../lib/ExtUtils/t/Packlist.t 1 256 34 1 2.94% 17

../lib/ExtUtils/t/basic.t 1 256 17 1 5.88% 14
lib/os2_process.t 2 512 227 2 0.88% 174 209
lib/os2_process_kid.t 227 2 0.88% 174 209
lib/rx_cmprt.t 255 65280 18 3 16.67% 16-18

perl v5.36.0 2021-06-26 653

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

op/sprintf tests 91, 129, and 130
The op/sprintf tests 91, 129, and 130 are known to fail on some platforms. Examples include any
platform using sfio, and Compaq/Tandem’s NonStop-UX.

Test 91 is known to fail on QNX6 (nto), because sprintf '%e',0 incorrectly produces
0.000000e+0 instead of 0.000000e+00.

For tests 129 and 130, the failing platforms do not comply with the ANSI C Standard: lines 19ff on page
134 of ANSI X3.159 1989, to be exact. (They produce something other than ‘‘1’’ and ‘‘-1’’ when
formatting 0.6 and -0.6 using the printf format ‘‘%.0f’’; most often, they produce ‘‘0’’ and ‘‘-0’’.)

SCO
The socketpair tests are known to be unhappy in SCO 3.2v5.0.4:

ext/Socket/socketpair.t...............FAILED tests 15-45

Solaris 2.5
In case you are still using Solaris 2.5 (aka SunOS 5.5), you may experience failures (the test core
dumping) in lib/locale.t. The suggested cure is to upgrade your Solaris.

Solaris x86 Fails Tests With -Duse64bitint
The following tests are known to fail in Solaris x86 with Perl configured to use 64 bit integers:

ext/Data/Dumper/t/dumper.............FAILED at test 268
ext/Devel/Peek/Peek..................FAILED at test 7

SUPER-UX (NEC SX)
The following tests are known to fail on SUPER-UX:

op/64bitint...........................FAILED tests 29-30, 32-33, 35-36
op/arith..............................FAILED tests 128-130
op/pack...............................FAILED tests 25-5625
op/pow................................
op/taint..............................# msgsnd failed
../ext/IO/lib/IO/t/io_poll............FAILED tests 3-4
../ext/IPC/SysV/ipcsysv...............FAILED tests 2, 5-6
../ext/IPC/SysV/t/msg.................FAILED tests 2, 4-6
../ext/Socket/socketpair..............FAILED tests 12
../lib/IPC/SysV.......................FAILED tests 2, 5-6
../lib/warnings.......................FAILED tests 115-116, 118-119

The op/pack failure (‘‘Cannot compress negative numbers at op/pack.t line 126’’) is serious but as of
yet unsolved. It points at some problems with the signedness handling of the C compiler, as do the
64bitint, arith, and pow failures. Most of the rest point at problems with SysV IPC.

Term::ReadKey not working on Win32
Use Term::ReadKey 2.20 or later.

UNICOS/mk
• During Configure, the test

Guessing which symbols your C compiler and preprocessor define...

will probably fail with error messages like

CC-20 cc: ERROR File = try.c, Line = 3
The identifier "bad" is undefined.

bad switch yylook 79bad switch yylook 79bad switch yylook 79bad switch yylook 79#ifdef A29K
ˆ

CC-65 cc: ERROR File = try.c, Line = 3
A semicolon is expected at this point.

This is caused by a bug in the awk utility of UNICOS/mk. You can ignore the error, but it does
cause a slight problem: you cannot fully benefit from the h2ph utility (see h2ph) that can be used
to convert C headers to Perl libraries, mainly used to be able to access from Perl the constants
defined using C preprocessor, cpp. Because of the above error, parts of the converted headers will

perl v5.36.0 2021-06-26 654

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

be invisible. Luckily, these days the need for h2ph is rare.

• If building Perl with interpreter threads (ithreads), the getgrent(), getgrnam(), and getgrgid()
functions cannot return the list of the group members due to a bug in the multithreaded support of
UNICOS/mk. What this means is that in list context the functions will return only three values,
not four.

UTS
There are a few known test failures. (Note: the relevant information was available in README.uts until
support for UTS was removed in Perl v5.18.0)

VOS (Stratus)
When Perl is built using the native build process on VOS Release 14.5.0 and GNU C++/GNU Tools 2.0.1, all

attempted tests either pass or result in TODO (ignored) failures.

VMS
There should be no reported test failures with a default configuration, though there are a number of
tests marked TODO that point to areas needing further debugging and/or porting work.

Win32
In multi-CPU boxes, there are some problems with the I/O buffering: some output may appear twice.

XML::Parser not working
Use XML::Parser 2.31 or later.

z/OS (OS/390)
z/OS has rather many test failures but the situation is actually much better than it was in 5.6.0; it’s just
that so many new modules and tests have been added.

Failed Test Stat Wstat Total Fail Failed List of Failed

../ext/Data/Dumper/t/dumper.t 357 8 2.24% 311 314 325 327

331 333 337 339
../ext/IO/lib/IO/t/io_unix.t 5 4 80.00% 2-5
../ext/Storable/t/downgrade.t 12 3072 169 12 7.10% 14-15 46-47 78-79

110-111 150 161
../lib/ExtUtils/t/Constant.t 121 30976 48 48 100.00% 1-48
../lib/ExtUtils/t/Embed.t 9 9 100.00% 1-9
op/pat.t 922 7 0.76% 665 776 785 832-

834 845
op/sprintf.t 224 3 1.34% 98 100 136
op/tr.t 97 5 5.15% 63 71-74
uni/fold.t 780 6 0.77% 61 169 196 661

710-711

The failures in dumper.t and downgrade.t are problems in the tests, those in io_unix and sprintf are
problems in the USS (UDP sockets and printf formats). The pat, tr, and fold failures are genuine Perl
problems caused by EBCDIC (and in the pat and fold cases, combining that with Unicode). The
Constant and Embed are probably problems in the tests (since they test Perl’s ability to build
extensions, and that seems to be working reasonably well.)

Unicode Support on EBCDIC Still Spotty
Though mostly working, Unicode support still has problem spots on EBCDIC platforms. One such
known spot are the \p{} and \P{} regular expression constructs for code points less than 256: the pP
are testing for Unicode code points, not knowing about EBCDIC.

Seen In Perl 5.7 But Gone Now
Time::Piece (previously known as Time::Object) was removed because it was felt that it didn’t
have enough value in it to be a core module. It is still a useful module, though, and is available from
the CPAN.

Perl 5.8 unfortunately does not build anymore on AmigaOS; this broke accidentally at some point.
Since there are not that many Amiga developers available, we could not get this fixed and tested in time
for 5.8.0. Perl 5.6.1 still works for AmigaOS (as does the 5.7.2 development release).

The PerlIO::Scalar and PerlIO::Via (capitalised) were renamed as PerlIO::scalar and

perl v5.36.0 2021-06-26 655

PERL58DELTA(1) Perl Programmers Reference Guide PERL58DELTA(1)

PerlIO::via (all lowercase) just before 5.8.0. The main rationale was to have all core PerlIO layers
to have all lowercase names. The ‘‘plugins’’ are named as usual, for example
PerlIO::via::QuotedPrint.

The threads::shared::queue and threads::shared::semaphore were renamed as
Thread::Queue and Thread::Semaphore just before 5.8.0. The main rationale was to have
thread modules to obey normal naming, Thread:: (the threads and threads::shared
themselves are more pragma-like, they affect compile-time, so they stay lowercase).

Reporting Bugs
If you find what you think is a bug, you might check the articles recently posted to the
comp.lang.perl.misc newsgroup and the perl bug database at http://bugs.perl.org/ . There may also be
information at http://www.perl.com/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program included with your release.
Be sure to trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl -V, will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

HISTORY
Written by Jarkko Hietaniemi <jhi@iki.fi>.

perl v5.36.0 2021-06-26 656

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

NAME
perldelta - what is new for perl v5.36.0

DESCRIPTION
This document describes differences between the 5.34.0 release and the 5.36.0 release.

Core Enhancements
use v5.36

As always, use v5.36 turns on the feature bundle for that version of Perl.

The 5.36 bundle enables the signatures feature. Introduced in Perl version 5.20.0, and modified
several times since, the subroutine signatures feature is now no longer considered experimental. It is
now considered a stable language feature and no longer prints a warning.

use v5.36;

sub add ($x, $y) {
return $x + $y;

}

Despite this, certain elements of signatured subroutines remain experimental; see below.

The 5.36 bundle enables the isa feature. Introduced in Perl version 5.32.0, this operator has remained
unchanged since then. The operator is now considered a stable language feature. For more detail see
‘‘Class Instance Operator’’ in perlop.

The 5.36 bundle also disables the features indirect, and multidimensional. These will forbid,
respectively: the use of ‘‘indirect’’ method calls (like $x = new Class;); the use of a list
expression as a hash key to simulate sparse multidimensional arrays. The specifics of these changes
can be found in feature, but the short version is: this is a bit like having more use strict turned on,
disabling features that cause more trouble than they’re worth.

Furthermore, use v5.36 will also enable warnings as if you’d written use warnings.

Finally, with this release, the experimental switch feature, present in every feature bundle since they
were introduced in v5.10, has been removed from the v5.36 bundle. If you want to use it (against our
advice), you’ll have to enable it explicitly.

-g command-line flag
A new command-line flag, -g, is available. It is a simpler alias for -0777.

For more information, see ‘‘-g’’ in perlrun.

Unicode 14.0 is supported
See <https://www.unicode.org/versions/Unicode14.0.0/> for details.

regex sets are no longer considered experimental
Prior to this release, the regex sets feature (officially named ‘‘Extended Bracketed Character Classes’’)
was considered experimental. Introduced in Perl version 5.18.0, and modified several times since, this
is now considered a stable language feature and its use no longer prints a warning. See ‘‘Extended
Bracketed Character Classes’’ in perlrecharclass.

Variable length lookbehind is mostly no longer considered experimental
Prior to this release, any form of variable length lookbehind was considered experimental. With this
release the experimental status has been reduced to cover only lookbehind that contains capturing
parenthesis. This is because it is not clear if

"aaz"=˜/(?=z)(?<=(a|aa))/

should match and leave $1 equaling ‘‘a’’ or ‘‘aa’’. Currently it will match the longest possible
alternative, ‘‘aa’’. While we are confident that the overall construct will now match only when it
should, we are not confident that we will keep the current ‘‘longest match’’ behavior.

SIGFPE no longer deferred
Floating-point exceptions are now delivered immediately, in the same way as other ‘‘fault’’-like signals
such as SIGSEGV. This means one has at least a chance to catch such a signal with a $SIG{FPE}
handler, e.g. so that die can report the line in perl that triggered it.

perl v5.36.0 2022-05-25 657

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

Stable boolean tracking
The ‘‘true’’ and ‘‘false’’ boolean values, often accessed by constructions like !!0 and !!1, as well as
being returned from many core functions and operators, now remember their boolean nature even
through assignment into variables. The new function is_bool() in builtin can check whether a value
has boolean nature.

This is likely to be useful when interoperating with other languages or data-type serialisation, among
other places.

iterating over multiple values at a time (experimental)
You can now iterate over multiple values at a time by specifying a list of lexicals within parentheses.
For example,

for my ($key, $value) (%hash) { ... }
for my ($left, $right, $gripping) (@moties) { ... }

Prior to perl v5.36, attempting to specify a list after for my was a syntax error.

This feature is currently experimental and will cause a warning of category
experimental::for_list. For more detail see ‘‘Compound Statements’’ in perlsyn. See also
‘‘builtin::indexed’’ in this document, which is a handy companion to n-at-a-time foreach.

builtin functions (experimental)
A new core module builtin has been added, which provides documentation for new always-present
functions that are built into the interpreter.

say "Reference type of arrays is ", builtin::reftype([]);

It also provides a lexical import mechanism for providing short name versions of these functions.

use builtin 'reftype';
say "Reference type of arrays is ", reftype([]);

This builtin function mechanism and the functions it provides are all currently experimental. We
expect that builtin itself will cease to be experimental in the near future, but that individual
functions in it may become stable on an ongoing basis. Other functions will be added to builtin
over time.

For details, see builtin, but here’s a summary of builtin functions in v5.36:

builtin::trim
This function treats its argument as a string, returning the result of removing all white space at its
beginning and ending.

builtin::indexed
This function returns a list twice as big as its argument list, where each item is preceded by its
index within that list. This is primarily useful for using the new foreach syntax with multiple
iterator variables to iterate over an array or list, while also tracking the index of each item:

use builtin 'indexed';

foreach my ($index, $val) (indexed @array) {
...

}

builtin::true, builtin::false, builtin::is_bool
true and false return boolean true and false values. Perl is still perl, and doesn’t have strict
typing of booleans, but these values will be known to have been created as booleans. is_bool
will tell you whether a value was known to have been created as a boolean.

builtin::weaken, builtin::unweaken, builtin::is_weak
These functions will, respectively: weaken a reference; strengthen a reference; and return whether
a reference is weak. (A weak reference is not counted for garbage collection purposes. See
perlref.) These can take the place of some similar routines in Scalar::Util.

builtin::blessed, builtin::refaddr, builtin::reftype
These functions provide more data about references (or non-references, actually!) and can take the
place of similar routines found in Scalar::Util.

perl v5.36.0 2022-05-25 658

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

builtin::ceil, builtin::floor
ceil returns the smallest integer greater than or equal to its argument. floor returns the largest
integer less than or equal to its argument. These can take the place of similar routines found in
POSIX.

defer blocks (experimental)
This release adds support for defer blocks, which are blocks of code prefixed by the defer modifier.
They provide a section of code which runs at a later time, during scope exit.

In brief, when a defer block is reached at runtime, its body is set aside to be run when the enclosing
scope is exited. It is unlike a UNITCHECK (among other reasons) in that if the block containing the
defer block is exited before the block is reached, it will not be run.

defer blocks can be used to take the place of ‘‘scope guard’’ objects where an object is passed a code
block to be run by its destructor.

For more information, see ‘‘defer blocks’’ in perlsyn.

try/catch can now have a finally block (experimental)
The experimental try/catch syntax has been extended to support an optional third block introduced
by the finally keyword.

try {
attempt();
print "Success\n";

}
catch ($e) {

print "Failure\n";
}
finally {

print "This happens regardless\n";
}

This provides code which runs at the end of the try/catch construct, even if aborted by an exception
or control-flow keyword. They are similar to defer blocks.

For more information, see ‘‘Try Catch Exception Handling’’ in perlsyn.

non-ASCII delimiters for quote-like operators (experimental)
Perl traditionally has allowed just four pairs of string/pattern delimiters: () { } [] and < >, all in
the ASCII range. Unicode has hundreds more possibilities, and using this feature enables many of
them. When enabled, you can say qrX X for example, or use utf8; qXstringX. See ‘‘The
’extra_paired_delimiters’ feature’’ in feature for details.

@_ is now experimental within signatured subs
Even though subroutine signatures are now stable, use of the legacy arguments array (@_) with a
subroutine that has a signature remains experimental, with its own warning category. Silencing the
experimental::signatures warning category is not sufficient to dismiss this. The new
warning is emitted with the category name
experimental::args_array_with_signatures.

Any subroutine that has a signature and tries to make use of the defaults argument array or an element
thereof (@_ or $_[INDEX]), either explicitly or implicitly (such as shift or pop with no argument)
will provoke a warning at compile-time:

use v5.36;

sub f ($x, $y = 123) {
say "The first argument is $_[0]";

}

Use of @_ in array element with signatured subroutine is experimental
at file.pl line 4.

The behaviour of code which attempts to do this is no longer specified, and may be subject to change in
a future version.

perl v5.36.0 2022-05-25 659

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

Incompatible Changes
A physically empty sort is now a compile-time error

@a = sort @empty; # unaffected
@a = sort; # now a compile-time error
@a = sort (); # also a compile-time error

A bare sort used to be a weird way to create an empty list; now it croaks at compile time. This change
is intended to free up some of the syntax space for possible future enhancements to sort.

Deprecations
use VERSION (where VERSION is below v5.11) after use v5.11 is deprecated

When in the scope of use v5.11 or later, a use vX line where X is lower than v5.11 will now issue
a warning:

Downgrading a use VERSION declaration to below v5.11 is deprecated

For example:

use v5.14;
say "The say statement is permitted";
use v5.8; # This will print a warning
print "We must use print\n";

This is because the Perl team plans to change the behavior in this case. Since Perl v5.12 (and parts of
v5.11), strict is enabled unless it had previously been disabled. In other words:

no strict;
use v5.12; # will not enable strict, because "no strict" preceded it
$x = 1; # permitted, despite no "my" declaration

In the future, this behavior will be eliminated and use VERSION will always enable strict for
versions v5.12 and later.

Code which wishes to mix versions in this manner should use lexical scoping with block syntax to
ensure that the differently versioned regions remain lexically isolated.

{
use v5.14;
say "The say statement is permitted";

}

{
use v5.8; # No warning is emitted
print "We must use print\n";

}

Of course, this is probably not something you ever need to do! If the first block compiles, it means
you’re using perl v5.14.0 or later.

Performance Enhancements
• We now probe for compiler support for C11 thread local storage, and where available use this for

‘‘implicit context’’ for XS extensions making API calls for a threaded Perl build. This requires
fewer function calls at the C level than POSIX thread specific storage. We continue to use the the
pthreads approach if the C11 approach is not available.

Configure run with the defaults will build an unthreaded Perl (which is slightly faster), but most
operating systems ship a threaded Perl.

• Perl can now be configured to no longer allocate keys for large hashes from the shared string table.

The same internal datatype (PVHV) is used for all of

• Symbol tables

• Objects (by default)

• Associative arrays

The shared string table was originally added to improve performance for blessed hashes used as
objects, because every object instance has the same keys, so it is an optimisation to share memory

perl v5.36.0 2022-05-25 660

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

between them. It also makes sense for symbol tables, where derived classes will have the same
keys (typically method names), and the OP trees built for method calls can also share memory. The
shared string table behaves roughly like a cache for hash keys.

But for hashes actually used as associative arrays - mapping keys to values - typically the keys
are not re-used in other hashes. For example, ‘‘seen’’ hashes are keyed by object IDs (or
addresses), and logically these keys won’t repeat in other hashes.

Storing these ‘‘used just once’’ keys in the shared string table increases CPU and RAM use for no
gain. For such keys the shared string table behaves as a cache with a 0% hit rate. Storing all the
keys there increases the total size of the shared string table, as well as increasing the number of
times it is resized as it grows. Worse - in any environment that has ‘‘copy on write’’ memory for
child process (such as a pre-forking server), the memory pages used for the shared string table
rapidly need to be copied as the child process manipulates hashes. Hence if most of the shared
string table is such that keys are used only in one place, there is no benefit from re-use within the
perl interpreter, but a high cost due to more pages for the OS to copy.

The perl interpreter can now be Configured to disable shared hash keys for ‘‘large’’ hashes (that
are neither objects nor symbol tables). To do so, add
-Accflags='-DPERL_USE_UNSHARED_KEYS_IN_LARGE_HASHES' to your Configure
options. ‘‘Large’’ is a heuristic — currently the heuristic is that sharing is disabled when adding
a key to a hash triggers allocation of more storage, and the hash has more than 42 keys.

This might cause slightly increased memory usage for programs that create (unblessed) data
structures that contain multiple large hashes that share the same keys. But generally our testing
suggests that for the specific cases described it is a win, and other code is unaffected.

• In certain scenarios, creation of new scalars is now noticeably faster.

For example, the following code is now executing ˜30% faster:

$str = "A" x 64;
for (0..1_000_000) {

@svs = split //, $str
}

(You can read more about this one in [perl #19414] <https://github.com/Perl/perl5/pull/19414>.)

Modules and Pragmata
Updated Modules and Pragmata

• Archive::Tar has been upgraded from version 2.38 to 2.40.

• Attribute::Handlers has been upgraded from version 1.01 to 1.02.

• attributes has been upgraded from version 0.33 to 0.34.

• B has been upgraded from version 1.82 to 1.83.

• B::Concise has been upgraded from version 1.004 to 1.006.

• B::Deparse has been upgraded from version 1.56 to 1.64.

• bignum has been upgraded from version 0.51 to 0.65.

• charnames has been upgraded from version 1.48 to 1.50.

• Compress::Raw::Bzip2 has been upgraded from version 2.101 to 2.103.

• Compress::Raw::Zlib has been upgraded from version 2.101 to 2.105.

• CPAN has been upgraded from version 2.28 to 2.33.

• Data::Dumper has been upgraded from version 2.179 to 2.184.

• DB_File has been upgraded from version 1.855 to 1.857.

• Devel::Peek has been upgraded from version 1.30 to 1.32.

• Devel::PPPort has been upgraded from version 3.62 to 3.68.

perl v5.36.0 2022-05-25 661

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

• diagnostics has been upgraded from version 1.37 to 1.39.

• Digest has been upgraded from version 1.19 to 1.20.

• DynaLoader has been upgraded from version 1.50 to 1.52.

• Encode has been upgraded from version 3.08 to 3.17.

• Errno has been upgraded from version 1.33 to 1.36.

• experimental has been upgraded from version 0.024 to 0.028.

• Exporter has been upgraded from version 5.76 to 5.77.

• ExtUtils::MakeMaker has been upgraded from version 7.62 to 7.64.

• ExtUtils::Miniperl has been upgraded from version 1.10 to 1.11.

• ExtUtils::ParseXS has been upgraded from version 3.43 to 3.45.

• ExtUtils::Typemaps has been upgraded from version 3.43 to 3.45.

• Fcntl has been upgraded from version 1.14 to 1.15.

• feature has been upgraded from version 1.64 to 1.72.

• File::Compare has been upgraded from version 1.1006 to 1.1007.

• File::Copy has been upgraded from version 2.35 to 2.39.

• File::Fetch has been upgraded from version 1.00 to 1.04.

• File::Find has been upgraded from version 1.39 to 1.40.

• File::Glob has been upgraded from version 1.33 to 1.37.

• File::Spec has been upgraded from version 3.80 to 3.84.

• File::stat has been upgraded from version 1.09 to 1.12.

• FindBin has been upgraded from version 1.52 to 1.53.

• GDBM_File has been upgraded from version 1.19 to 1.23.

• Hash::Util has been upgraded from version 0.25 to 0.28.

• Hash::Util::FieldHash has been upgraded from version 1.21 to 1.26.

• HTTP::Tiny has been upgraded from version 0.076 to 0.080.

• I18N::Langinfo has been upgraded from version 0.19 to 0.21.

• if has been upgraded from version 0.0609 to 0.0610.

• IO has been upgraded from version 1.46 to 1.50.

• IO-Compress has been upgraded from version 2.102 to 2.106.

• IPC::Open3 has been upgraded from version 1.21 to 1.22.

• JSON::PP has been upgraded from version 4.06 to 4.07.

• libnet has been upgraded from version 3.13 to 3.14.

• Locale::Maketext has been upgraded from version 1.29 to 1.31.

• Math::BigInt has been upgraded from version 1.999818 to 1.999830.

• Math::BigInt::FastCalc has been upgraded from version 0.5009 to 0.5012.

• Math::BigRat has been upgraded from version 0.2614 to 0.2621.

• Module::CoreList has been upgraded from version 5.20210520 to 5.20220520.

• mro has been upgraded from version 1.25_001 to 1.26.

• NEXT has been upgraded from version 0.68 to 0.69.

• Opcode has been upgraded from version 1.50 to 1.57.

• open has been upgraded from version 1.12 to 1.13.

perl v5.36.0 2022-05-25 662

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

• overload has been upgraded from version 1.33 to 1.35.

• perlfaq has been upgraded from version 5.20210411 to 5.20210520.

• PerlIO has been upgraded from version 1.11 to 1.12.

• Pod::Functions has been upgraded from version 1.13 to 1.14.

• Pod::Html has been upgraded from version 1.27 to 1.33.

• Pod::Simple has been upgraded from version 3.42 to 3.43.

• POSIX has been upgraded from version 1.97 to 2.03.

• re has been upgraded from version 0.41 to 0.43.

• Scalar::Util has been upgraded from version 1.55 to 1.62.

• sigtrap has been upgraded from version 1.09 to 1.10.

• Socket has been upgraded from version 2.031 to 2.033.

• sort has been upgraded from version 2.04 to 2.05.

• Storable has been upgraded from version 3.23 to 3.26.

• Sys::Hostname has been upgraded from version 1.23 to 1.24.

• Test::Harness has been upgraded from version 3.43 to 3.44.

• Test::Simple has been upgraded from version 1.302183 to 1.302190.

• Text::ParseWords has been upgraded from version 3.30 to 3.31.

• Text::Tabs has been upgraded from version 2013.0523 to 2021.0814.

• Text::Wrap has been upgraded from version 2013.0523 to 2021.0814.

• threads has been upgraded from version 2.26 to 2.27.

• threads::shared has been upgraded from version 1.62 to 1.64.

• Tie::Handle has been upgraded from version 4.2 to 4.3.

• Tie::Hash has been upgraded from version 1.05 to 1.06.

• Tie::Scalar has been upgraded from version 1.05 to 1.06.

• Tie::SubstrHash has been upgraded from version 1.00 to 1.01.

• Time::HiRes has been upgraded from version 1.9767 to 1.9770.

• Unicode::Collate has been upgraded from version 1.29 to 1.31.

• Unicode::Normalize has been upgraded from version 1.28 to 1.31.

• Unicode::UCD has been upgraded from version 0.75 to 0.78.

• UNIVERSAL has been upgraded from version 1.13 to 1.14.

• version has been upgraded from version 0.9928 to 0.9929.

• VMS::Filespec has been upgraded from version 1.12 to 1.13.

• VMS::Stdio has been upgraded from version 2.45 to 2.46.

• warnings has been upgraded from version 1.51 to 1.58.

• Win32 has been upgraded from version 0.57 to 0.59.

• XS::APItest has been upgraded from version 1.16 to 1.22.

• XS::Typemap has been upgraded from version 0.18 to 0.19.

• XSLoader has been upgraded from version 0.30 to 0.31.

Documentation
New Documentation

Porting/vote_admin_guide.pod

This document provides the process for administering an election or vote within the Perl Core Team.

perl v5.36.0 2022-05-25 663

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

Changes to Existing Documentation
We have attempted to update the documentation to reflect the changes listed in this document. If you
find any we have missed, open an issue at <https://github.com/Perl/perl5/issues>.

Additionally, the following selected changes have been made:

perlapi

• This has been cleaned up some, and more than 80% of the (previously many) undocumented
functions have now either been documented or deemed to have been inappropriately marked as
API.

As always, Patches Welcome!

perldeprecation

• notes the new location for functions moved from Pod::Html to Pod::Html::Util that are no longer
intended to be used outside of core.

perlexperiment

• notes the :win32 IO pseudolayer is removed (this happened in 5.35.2).

perlgov

• The election process has been finetuned to allow the vote to be skipped if there are no more
candidates than open seats.

• A special election is now allowed to be postponed for up to twelve weeks, for example until a
normal election.

perlop

• now notes that an invocant only needs to be an object or class name for method calls, not for
subroutine references.

perlre

• Updated to discourage the use of the /d regexp modifier.

perlrun

• -? is now a synonym for -h

• -g is now a synonym for -0777

Diagnostics
The following additions or changes have been made to diagnostic output, including warnings and fatal
error messages. For the complete list of diagnostic messages, see perldiag.

New Diagnostics
New Errors

• Can’t ‘‘%s’’ out of a ‘‘defer’’ block

(F) An attempt was made to jump out of the scope of a defer block by using a control-flow
statement such as return, goto or a loop control. This is not permitted.

• Can’t modify %s in %s (for scalar assignment to undef)

Attempting to perform a scalar assignment to undef, for example via undef = $foo;,
previously triggered a fatal runtime error with the message "Modification of a read-only value
attempted.‘‘ It is more helpful to detect such attempted assignments prior to runtime, so they are
now compile time errors, resulting in the message ’’Can’t modify undef operator in scalar
assignment".

• panic: newFORLOOP, %s

The parser failed an internal consistency check while trying to parse a foreach loop.

New Warnings

• Built-in function ’%s’ is experimental

A call is being made to a function in the builtin:: namespace, which is currently
experimental.

perl v5.36.0 2022-05-25 664

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

• defer is experimental

The defer block modifier is experimental. If you want to use the feature, disable the warning
with no warnings 'experimental::defer' , but know that in doing so you are taking
the risk that your code may break in a future Perl version.

• Downgrading a use VERSION declaration to below v5.11 is deprecated

This warning is emitted on a use VERSION statement that requests a version below v5.11 (when
the effects of use strict would be disabled), after a previous declaration of one having a
larger number (which would have enabled these effects)

• for my (...) is experimental

This warning is emitted if you use for to iterate multiple values at a time. This syntax is currently
experimental and its behaviour may change in future releases of Perl.

• Implicit use of @_ in %s with signatured subroutine is experimental

An expression that implicitly involves the @_ arguments array was found in a subroutine that uses
a signature.

• Use of @_ in %s with signatured subroutine is experimental

An expression involving the @_ arguments array was found in a subroutine that uses a signature.

• Wide character in $0

Attempts to put wide characters into the program name ($0) now provoke this warning.

Changes to Existing Diagnostics
• ’/’ does not take a repeat count in %s

This warning used to not include the in %s.

• Subroutine %s redefined

Localized subroutine redefinitions no longer trigger this warning.

• unexpected constant lvalue entersub entry via type/targ %d:%d" now has a panic prefix

This makes it consistent with other checks of internal consistency when compiling a subroutine.

• Useless use of sort in scalar context is now in the new scalar category.

When sort is used in scalar context, it provokes a warning that doing this is not useful. This
warning used to be in the void category. A new category for warnings about scalar context has
now been added, called scalar.

• Removed a number of diagnostics

Many diagnostics that have been removed from the perl core across many years have now also
been removed from the documentation.

Configuration and Compilation
• The Perl C source code now uses some C99 features, which we have verified are supported by all

compilers we target. This means that Perl’s headers now contain some code that is legal in C99 but
not C89.

This may cause problems for some XS modules that unconditionally add
-Werror=declaration-after-statement to their C compiler flags if compiling with
gcc or clang. Earlier versions of Perl support long obsolete compilers that are strict in rejecting
certain C99 features, particularly mixed declarations and code, and hence it makes sense for XS
module authors to audit that their code does not violate this. However, doing this is now only
possible on these earlier versions of Perl, hence these modules need to be changed to only add this
flag for <$] < 5.035005>.

• The makedepend step is now run in parallel by using make

When using MAKEFLAGS=-j8, this significantly reduces the time required for:

sh ./makedepend MAKE=make cflags

perl v5.36.0 2022-05-25 665

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

• Configure now tests whether #include <xlocale.h> is required to use the POSIX 1003
thread-safe locale functions or some related extensions. This prevents problems where a non-
public xlocale.h is removed in a library update, or xlocale.h isn’t intended for public use. (github
#18936 <https://github.com/Perl/perl5/pull/18936>)

Testing
Tests were added and changed to reflect the other additions and changes in this release.

Platform Support
Windows

• Support for old MSVC++ (pre-VC12) has been removed

These did not support C99 and hence can no longer be used to compile perl.

• Support for compiling perl on Windows using Microsoft Visual Studio 2022 (containing Visual
C++ 14.3) has been added.

• The :win32 IO layer has been removed. This experimental replacement for the :unix layer never
reached maturity in its nearly two decades of existence.

VMS
keys %ENV on VMS returns consistent results

On VMS entries in the %ENV hash are loaded from the OS environment on first access, hence the
first iteration of %ENV requires the entire environment to be scanned to find all possible keys. This
initialisation had always been done correctly for full iteration, but previously was not happening
for %ENV in scalar context, meaning that scalar %ENV would return 0 if called before any
other %ENV access, or would only return the count of keys accessed if there had been no iteration.

These bugs are now fixed - %ENV and keys %ENV in scalar context now return the correct result
- the count of all keys in the environment.

Discontinued Platforms
AT&T UWIN

UWIN is a UNIX compatibility layer for Windows. It was last released in 2012 and has been
superseded by Cygwin these days.

DOS/DJGPP
DJGPP is a port of the GNU toolchain to 32-bit x86 systems running DOS. The last known attempt
to build Perl on it was on 5.20, which only got as far as building miniperl.

NetWare
Support code for Novell NetWare has been removed. NetWare was a server operating system by
Novell. The port was last updated in July 2002, and the platform itself in May 2009.

Unrelated changes accidentally broke the build for the NetWare port in September 2009, and in 12
years no-one has reported this.

Platform-Specific Notes
z/OS

This update enables us to build EBCDIC static/dynamic and 31-bit/64-bit addressing mode Perl.
The number of tests that pass is consistent with the baseline before these updates.

These changes also provide the base support to be able to provide ASCII static/dynamic and
31-bit/64-bit addressing mode Perl.

The z/OS (previously called OS/390) README was updated to describe ASCII and EBCDIC builds.

Internal Changes
• Since the removal of PERL_OBJECT in Perl 5.8, PERL_IMPLICIT_CONTEXT and MULTIPLICITY

have been synonymous and they were being used interchangeably. To simplify the code, all
instances of PERL_IMPLICIT_CONTEXT have been replaced with MULTIPLICITY.

PERL_IMPLICIT_CONTEXT will remain defined for compatibility with XS modules.

• The API constant formerly named G_ARRAY, indicating list context, has now been renamed to a
more accurate G_LIST. A compatibilty macro G_ARRAY has been added to allow existing code
to work unaffected. New code should be written using the new constant instead. This is
supported by Devel::PPPort version 3.63.

perl v5.36.0 2022-05-25 666

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

• Macros have been added to perl.h to facilitate version comparisons: PERL_GCC_VERSION_GE,
PERL_GCC_VERSION_GT, PERL_GCC_VERSION_LE and PERL_GCC_VERSION_LT.

Inline functions have been added to embed.h to determine the position of the least significant 1 bit
in a word: lsbit_pos32 and lsbit_pos64.

• Perl_ptr_table_clear has been deleted. This has been marked as deprecated since v5.14.0
(released in 2011), and is not used by any code on CPAN.

• Added new boolean macros and functions. See ‘‘Stable boolean tracking’’ for related information
and perlapi for documentation.

• sv_setbool

• sv_setbool_mg

• SvIsBOOL

• Added 4 missing functions for dealing with RVs:

• sv_setrv_noinc

• sv_setrv_noinc_mg

• sv_setrv_inc

• sv_setrv_inc_mg

• xs_handshake()’s two failure modes now provide distinct messages.

• Memory for hash iterator state (struct xpvhv_aux) is now allocated as part of the hash body,
instead of as part of the block of memory allocated for the main hash array.

• A new phase_name() interface provides access to the name for each interpreter phase (i.e.,
PL_phase value).

• The pack behavior of U has changed for EBCDIC.

• New equality-test functions sv_numeq and sv_streq have been added, along with
..._flags-suffixed variants. These expose a simple and consistent API to perform numerical
or string comparison which is aware of operator overloading.

• Reading the string form of an integer value no longer sets the flag SVf_POK. The string form is
still cached internally, and still re-read directly by the macros SvPV(sv) etc (inline, without
calling a C function). XS code that already calls the APIs to get values will not be affected by this
change. XS code that accesses flags directly instead of using API calls to express its intent might
break, but such code likely is already buggy if passed some other values, such as floating point
values or objects with string overloading.

This small change permits code (such as JSON serializers) to reliably determine between

• a value that was initially written as an integer, but then read as a string

my $answer = 42;
print "The answer is $answer\n";

• that same value that was initially written as a string, but then read as an integer

my $answer = "42";
print "That doesn't look right\n"

unless $answer == 6 * 9;

For the first case (originally written as an integer), we now have:

use Devel::Peek;
my $answer = 42;
Dump ($answer);
my $void = "$answer";
print STDERR "\n";
Dump($answer)

perl v5.36.0 2022-05-25 667

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

SV = IV(0x562538925778) at 0x562538925788
REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 42

SV = PVIV(0x5625389263c0) at 0x562538925788
REFCNT = 1
FLAGS = (IOK,pIOK,pPOK)
IV = 42
PV = 0x562538919b50 "42"\0
CUR = 2
LEN = 10

For the second (originally written as a string), we now have:

use Devel::Peek;
my $answer = "42";
Dump ($answer);
my $void = $answer == 6 * 9;
print STDERR "\n";
Dump($answer)'

SV = PV(0x5586ffe9bfb0) at 0x5586ffec0788
REFCNT = 1
FLAGS = (POK,IsCOW,pPOK)
PV = 0x5586ffee7fd0 "42"\0
CUR = 2
LEN = 10
COW_REFCNT = 1

SV = PVIV(0x5586ffec13c0) at 0x5586ffec0788
REFCNT = 1
FLAGS = (IOK,POK,IsCOW,pIOK,pPOK)
IV = 42
PV = 0x5586ffee7fd0 "42"\0
CUR = 2
LEN = 10
COW_REFCNT = 1

(One can’t rely on the presence or absence of the flag SVf_IsCOW to determine the history of
operations on a scalar.)

Previously both cases would be indistinguishable, with all 4 flags set:

SV = PVIV(0x55d4d62edaf0) at 0x55d4d62f0930
REFCNT = 1
FLAGS = (IOK,POK,pIOK,pPOK)
IV = 42
PV = 0x55d4d62e1740 "42"\0
CUR = 2
LEN = 10

(and possibly SVf_IsCOW, but not always)

This now means that if XS code really needs to determine which form a value was first written as,
it should implement logic roughly

perl v5.36.0 2022-05-25 668

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

if (flags & SVf_IOK|SVf_NOK) && !(flags & SVf_POK)
serialize as number

else if (flags & SVf_POK)
serialize as string

else
the existing guesswork ...

Note that this doesn’t cover ‘‘dualvars’’ - scalars that report different values when asked for their
string form or number form (such as $!). Most serialization formats cannot represent such
duplicity.

The existing guesswork remains because as well as dualvars, values might be undef, references,
overloaded references, typeglobs and other things that Perl itself can represent but do not map
one-to-one into external formats, so need some amount of approximation or encapsulation.

• sv_dump (and Devel::PeekXs Dump function) now escapes high-bit octets in the PV as hex rather
than octal. Since most folks understand hex more readily than octal, this should make these dumps
a bit more legible. This does not affect any other diagnostic interfaces like pv_display.

Selected Bug Fixes
• utime() now correctly sets errno/$! when called on a closed handle.

• The flags on the OPTVAL parameter to setsockopt() were previously checked before magic was
called, possibly treating a numeric value as a packed buffer or vice versa. It also ignored the
UTF-8 flag, potentially treating the internal representation of an upgraded SV as the bytes to
supply to the setsockopt() system call. (github #18660
<https://github.com/Perl/perl5/issues/18660>)

• Only set IOKp, not IOK on $) and $(. This was issue #18955
<https://github.com/Perl/perl5/issues/18955>: This will prevent serializers from serializing these
variables as numbers (which loses the additional groups). This restores behaviour from 5.16

• Use of the mktables debugging facility would cause perl to croak since v5.31.10; this problem
has now been fixed.

• makedepend logic is now compatible with BSD make (fixes GH #19046
<https://github.com/Perl/perl5/issues/19046>).

• Calling untie on a tied hash that is partway through iteration now frees the iteration state
immediately.

Iterating a tied hash causes perl to store a copy of the current hash key to track the iteration state,
with this stored copy passed as the second parameter to NEXTKEY. This internal state is freed
immediately when tie hash iteration completes, or if the hash is destroyed, but due to an
implementation oversight, it was not freed if the hash was untied. In that case, the internal copy of
the key would persist until the earliest of

1. tie was called again on the same hash

2. The (now untied) hash was iterated (ie passed to any of keys, values or each)

3. The hash was destroyed.

This inconsistency is now fixed - the internal state is now freed immediately by untie.

As the precise timing of this behaviour can be observed with pure Perl code (the timing of
DESTROY on objects returned from FIRSTKEY and NEXTKEY) it’s just possible that some code
is sensitive to it.

• The Internals::getcwd() function added for bootstrapping miniperl in perl 5.30.0 is now
only available in miniperl. [github #19122]

• Setting a breakpoint on a BEGIN or equivalently a use statement could cause a memory write to a
freed dbstate op. [GH #19198 <https://github.com/Perl/perl5/issues/19198>]

• When bareword filehandles are disabled, the parser was interpreting any bareword as a filehandle,
even when immediatey followed by parens.

perl v5.36.0 2022-05-25 669

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

Errata From Previous Releases
• perl5300delta mistakenly identified a CVE whose correct identification is CVE-2015-1592.

Obituaries
Raun ‘‘Spider’’ Boardman (SPIDB on CPAN), author of at least 66 commits to the Perl 5 core
distribution between 1996 and 2002, passed away May 24, 2021 from complications of COVID. He
will be missed.

David H. Adler (DHA) passed away on November 16, 2021. In 1997, David co-founded NY.pm, the
first Perl user group, and in 1998 co-founded Perl Mongers to help establish other user groups across
the globe. He was a frequent attendee at Perl conferences in both North America and Europe and well
known for his role in organizing Bad Movie Night celebrations at those conferences. He also
contributed to the work of the Perl Foundation, including administering the White Camel awards for
community service. He will be missed.

Acknowledgements
Perl 5.36.0 represents approximately a year of development since Perl 5.34.0 and contains
approximately 250,000 lines of changes across 2,000 files from 82 authors.

Excluding auto-generated files, documentation and release tools, there were approximately 190,000
lines of changes to 1,300 .pm, .t, .c and .h files.

Perl continues to flourish into its fourth decade thanks to a vibrant community of users and developers.
The following people are known to have contributed the improvements that became Perl 5.36.0:

Alyssa Ross, Andrew Fresh, Aristotle Pagaltzis, Asher Mancinelli, Atsushi Sugawara, Ben Cornett,
Bernd, Biswapriyo Nath, Brad Barden, Bram, Branislav Zahradník, brian d foy, Chad Granum, Chris
’BinGOs’ Williams, Christian Walde (Mithaldu), Christopher Yeleighton, Craig A. Berry, cuishuang,
Curtis Poe, Dagfinn Ilmari Mannsa°ker, Dan Book, Daniel Lau

..
gt, Dan Jacobson, Dan Kogai, Dave

Cross, Dave Lambley, David Cantrell, David Golden, David Marshall, David Mitchell, E. Choroba,
Eugen Konkov, Felipe Gasper, Franc,ois Perrad, Graham Knop, H.Merijn Brand, Hugo van der Sanden,
Ilya Sashcheka, Ivan Panchenko, Jakub Wilk, James E Keenan, James Raspass, Karen Etheridge, Karl
Williamson, Leam Hall, Leon Timmermans, Magnus Woldrich, Matthew Horsfall, Max Maischein,
Michael G Schwern, Michiel Beijen, Mike Fulton, Neil Bowers, Nicholas Clark, Nicolas R, Niyas Sait,
Olaf Alders, Paul Evans, Paul Marquess, Petar-Kaleychev, Pete Houston, Renee Baecker, Ricardo
Signes, Richard Leach, Robert Rothenberg, Sawyer X, Scott Baker, Sergey Poznyakoff, Sergey
Zhmylove, Sisyphus, Slaven Rezic, Steve Hay, Sven Kirmess, TAKAI Kousuke, Thibault Duponchelle,
Todd Rinaldo, Tomasz Konojacki, Tomoyuki Sadahiro, Tony Cook, Unicode Consortium, Yves Orton,
XXXXXX XXXXXXXX.

The list above is almost certainly incomplete as it is automatically generated from version control
history. In particular, it does not include the names of the (very much appreciated) contributors who
reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN modules included in Perl’s core.
We’re grateful to the entire CPAN community for helping Perl to flourish.

For a more complete list of all of Perl’s historical contributors, please

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at
<https://github.com/Perl/perl5/issues>. There may also be information at <http://www.perl.org/>, the
Perl Home Page.

If you believe you have an unreported bug, please open an issue at
<https://github.com/Perl/perl5/issues>. Be sure to trim your bug down to a tiny but sufficient test case.

If the bug you are reporting has security implications which make it inappropriate to send to a public
issue tracker, then see ‘‘SECURITY VULNERABILITY CONTACT INFORMATION’’ in perlsec for details
of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so by running the
perlthanks program:

perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

perl v5.36.0 2022-05-25 670

PERLDELTA(1) Perl Programmers Reference Guide PERLDELTA(1)

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

perl v5.36.0 2022-05-25 671

	General Commands Manual
	PERL5004DELTA(1)
	NAME
	DESCRIPTION
	Supported Environments
	Core Changes
	List assignment to %ENV works
	Change to ``Can't locate Foo.pm in @INC'' error
	Compilation option: Binary compatibility with 5.003
	$PERL5OPT environment variable
	Limitations on M, m, and T options
	More precise warnings
	Deprecated: Inherited AUTOLOAD for non-methods
	Previously deprecated %OVERLOAD is no longer usable
	Subroutine arguments created only when they're modified
	Group vector changeable with $)
	Fixed parsing of $$<digit>, &$<digit>, etc.
	Fixed localization of $<digit>, $&, etc.
	No resetting of $. on implicit close
	wantarray may return undef
	eval EXPR determines value of EXPR in scalar context
	Changes to tainting checks
	New Opcode module and revised Safe module
	Embedding improvements
	Internal change: FileHandle class based on IO::* classes
	Internal change: PerlIO abstraction interface
	New and changed syntax
	New and changed builtin constants
	New and changed builtin variables
	New and changed builtin functions
	New builtin methods
	TIEHANDLE now supported
	Malloc enhancements
	Miscellaneous efficiency enhancements

	Support for More Operating Systems
	Win32
	Plan 9
	QNX
	AmigaOS

	Pragmata
	Modules
	Required Updates
	Installation directories
	Module information summary
	Fcntl
	IO
	Math::Complex
	Math::Trig
	DB_File
	Net::Ping
	Object-oriented overrides for builtin operators

	Utility Changes
	pod2html
	xsubpp

	C Language API Changes
	Documentation Changes
	New Diagnostics
	BUGS
	SEE ALSO
	HISTORY

	PERL5005DELTA(1)
	NAME
	DESCRIPTION
	About the new versioning system
	Incompatible Changes
	WARNING: This version is not binary compatible with Perl 5.004.
	Default installation structure has changed
	Perl Source Compatibility
	C Source Compatibility
	Binary Compatibility
	Security fixes may affect compatibility
	Relaxed new mandatory warnings introduced in 5.004
	Licensing

	Core Changes
	Threads
	Compiler
	Regular Expressions
	Improved malloc()
	Quicksort is internally implemented
	Reliable signals
	Reliable stack pointers
	More generous treatment of carriage returns
	Memory leaks
	Better support for multiple interpreters
	Behavior of local() on array and hash elements is now well-defined
	%! is transparently tied to the Errno module
	Pseudo-hashes are supported
	EXPR foreach EXPR is supported
	Keywords can be globally overridden
	$^E is meaningful on Win32
	foreach (1..1000000) optimized
	Foo:: can be used as implicitly quoted package name
	exists $Foo::{Bar::} tests existence of a package
	Better locale support
	Experimental support for 64bit platforms
	prototype() returns useful results on builtins
	Extended support for exception handling
	Re-blessing in DESTROY() supported for chaining DESTROY() methods
	All printf format conversions are handled internally
	New INIT keyword
	New lock keyword
	New qr// operator
	our is now a reserved word
	Tied arrays are now fully supported
	Tied handles support is better
	4th argument to substr
	Negative LENGTH argument to splice
	Magic lvalues are now more magical
	<> now reads in records

	Supported Platforms
	New Platforms
	Changes in existing support

	Modules and Pragmata
	New Modules
	Changes in existing modules

	Utility Changes
	Documentation Changes
	New Diagnostics
	Obsolete Diagnostics
	Configuration Changes
	BUGS
	SEE ALSO
	HISTORY

	PERL5100DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	The feature pragma
	New E command-line switch
	Defined-or operator
	Switch and Smart Match operator
	Regular expressions
	say()
	Lexical $_
	The _ prototype
	UNITCHECK blocks
	New Pragma, mro
	readdir() may return a ``short filename'' on Windows
	readpipe() is now overridable
	Default argument for readline()
	state() variables
	Stacked filetest operators
	UNIVERSAL::DOES()
	Formats
	Byte-order modifiers for pack() and unpack()
	no VERSION
	chdir, chmod and chown on filehandles
	OS groups
	Recursive sort subs
	Exceptions in constant folding
	Source filters in @INC
	New internal variables
	Miscellaneous
	UCD 5.0.0
	MAD
	kill() on Windows

	Incompatible Changes
	Packing and UTF8 strings
	Byte/character count feature in unpack()
	The $* and $# variables have been removed
	substr() lvalues are no longer fixed-length
	Parsing of f _
	:unique
	Effect of pragmas in eval
	chdir FOO
	Handling of .pmc files
	$^V is now a version object instead of a vstring
	@ and @+ in patterns
	$AUTOLOAD can now be tainted
	Tainting and printf
	undef and signal handlers
	strictures and dereferencing in defined()
	(?p{}) has been removed
	Pseudo-hashes have been removed
	Removal of the bytecode compiler and of perlcc
	Removal of the JPL
	Recursive inheritance detected earlier
	warnings::enabled and warnings::warnif changed to favor users of modules

	Modules and Pragmata
	Upgrading individual core modules
	Pragmata Changes
	New modules
	Selected Changes to Core Modules

	Utility Changes
	New Documentation
	Performance Enhancements
	In-place sorting
	Lexical array access
	XS-assisted SWASHGET
	Constant subroutines
	PERL_DONT_CREATE_GVSV
	Weak references are cheaper
	sort() enhancements
	Memory optimisations
	UTF8 cache optimisation
	Sloppy stat on Windows
	Regular expressions optimisations

	Installation and Configuration Improvements
	Configuration improvements
	Compilation improvements
	Installation improvements
	New Or Improved Platforms

	Selected Bug Fixes
	New or Changed Diagnostics
	Changed Internals
	Reordering of SVt_* constants
	Elimination of SVt_PVBM
	New type SVt_BIND
	Removal of CPP symbols
	Less space is used by ops
	New parser
	Use of const
	Mathoms
	AvFLAGS has been removed
	av_* changes
	$^H and %^H
	B:: modules inheritance changed
	Anonymous hash and array constructors

	Known Problems
	UTF8 problems

	Platform Specific Problems
	Reporting Bugs
	SEE ALSO

	PERL5101DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Switch statement changes
	Smart match changes
	Other incompatible changes

	Core Enhancements
	Unicode Character Database 5.1.0
	A proper interface for pluggable Method Resolution Orders
	The overloading pragma
	Parallel tests
	DTrace support
	Support for configure_requires in CPAN module metadata

	Modules and Pragmata
	New Modules and Pragmata
	Pragmata Changes
	Updated Modules

	Utility Changes
	New Documentation
	Changes to Existing Documentation
	Performance Enhancements
	Installation and Configuration Improvements
	ext/ reorganisation
	Configuration improvements
	Compilation improvements
	Platform Specific Changes

	Selected Bug Fixes
	New or Changed Diagnostics
	Changed Internals
	New Tests
	Known Problems
	Deprecations
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5120DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	New package NAME VERSION syntax
	The ... operator
	Implicit strictures
	Unicode improvements
	Y2038 compliance
	qr overloading
	Pluggable keywords
	APIs for more internals
	Overridable function lookup
	A proper interface for pluggable Method Resolution Orders
	N experimental regex escape
	DTrace support
	Support for configure_requires in CPAN module metadata
	each, keys, values are now more flexible
	when as a statement modifier
	$, flexibility
	// in when clauses
	Enabling warnings from your shell environment
	delete local
	New support for Abstract namespace sockets
	32bit limit on substr arguments removed

	Potentially Incompatible Changes
	Deprecations warn by default
	Version number formats
	@INC reorganization
	REGEXPs are now first class
	Switch statement changes
	Smart match changes
	Other potentially incompatible changes

	Deprecations
	Unicode overhaul
	Modules and Pragmata
	New Modules and Pragmata
	Updated Pragmata
	Updated Modules
	Removed Modules and Pragmata
	Deprecated Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Selected Performance Enhancements
	Installation and Configuration Improvements
	Internal Changes
	Testing
	Testing improvements
	New Tests

	New or Changed Diagnostics
	New Diagnostics
	Changed Diagnostics

	Utility Changes
	Selected Bug Fixes
	Platform Specific Changes
	New Platforms
	Discontinued Platforms
	Updated Platforms

	Known Problems
	Errata
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5121DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Core Enhancements
	Modules and Pragmata
	Pragmata Changes
	Updated Modules

	Changes to Existing Documentation
	Testing
	Testing Improvements

	Installation and Configuration Improvements
	Configuration improvements

	Bug Fixes
	Platform Specific Notes
	HP-UX
	AIX
	FreeBSD 7
	VMS

	Known Problems
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5122DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Core Enhancements
	Modules and Pragmata
	New Modules and Pragmata
	Pragmata Changes
	Updated Modules

	Utility Changes
	Changes to Existing Documentation
	Installation and Configuration Improvements
	Configuration improvements
	Compilation improvements

	Selected Bug Fixes
	Platform Specific Notes
	AIX
	Windows
	VMS

	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5123DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Core Enhancements
	keys, values work on arrays

	Bug Fixes
	Platform Specific Notes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5124DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Selected Bug Fixes
	Modules and Pragmata
	Testing
	Documentation
	Platform Specific Notes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5125DELTA(1)
	NAME
	DESCRIPTION
	Security
	Encode decode_xs nbyte heap-overflow (CVE20112939)
	File::Glob::bsd_glob() memory error with GLOB_ALTDIRFUNC (CVE20112728).
	Heap buffer overrun in 'x' string repeat operator (CVE20125195)

	Incompatible Changes
	Modules and Pragmata
	Updated Modules

	Changes to Existing Documentation
	perlebcdic
	perlunicode
	perluniprops

	Installation and Configuration Improvements
	Platform Specific Changes

	Selected Bug Fixes
	Errata
	split() and @_

	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5140DELTA(1)
	NAME
	DESCRIPTION
	Notice
	Core Enhancements
	Unicode
	Regular Expressions
	Syntactical Enhancements
	Exception Handling
	Other Enhancements
	New C APIs

	Security
	User-defined regular expression properties

	Incompatible Changes
	Regular Expressions and String Escapes
	Stashes and Package Variables
	Changes to Syntax or to Perl Operators
	Threads and Processes
	Configuration

	Deprecations
	Omitting a space between a regular expression and subsequent word
	cX
	``''
	Perl 4era .pl libraries
	List assignment to $[
	Use of qw(...) as parentheses
	N{BELL}
	?PATTERN?
	Tie functions on scalars holding typeglobs
	User-defined case-mapping
	Deprecated modules

	Performance Enhancements
	``Safe signals'' optimisation
	Optimisation of shift() and pop() calls without arguments
	Optimisation of regexp engine string comparison work
	Regular expression compilation speed-up
	String appending is 100 times faster
	Eliminate PL_* accessor functions under ithreads
	Freeing weak references
	Lexical array and hash assignments
	@_ uses less memory
	Size optimisations to SV and HV structures
	Memory consumption improvements to Exporter
	Memory savings for weak references
	%+ and % use less memory
	Multiple small improvements to threads
	Adjacent pairs of nextstate opcodes are now optimized away

	Modules and Pragmata
	New Modules and Pragmata
	Updated Modules and Pragma
	Removed Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Utility Changes
	Configuration and Compilation
	Platform Support
	New Platforms
	Discontinued Platforms
	Platform-Specific Notes

	Internal Changes
	New APIs
	C API Changes
	Deprecated C APIs
	Other Internal Changes

	Selected Bug Fixes
	I/O
	Regular Expression Bug Fixes
	Syntax/Parsing Bugs
	Stashes, Globs and Method Lookup
	Unicode
	Ties, Overloading and Other Magic
	The Debugger
	Threads
	Scoping and Subroutines
	Signals
	Miscellaneous Memory Leaks
	Memory Corruption and Crashes
	Fixes to Various Perl Operators
	Bugs Relating to the C API

	Known Problems
	Errata
	keys(), values(), and each() work on arrays
	split() and @_

	Obituary
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5141DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	Security
	Incompatible Changes
	Deprecations
	Modules and Pragmata
	New Modules and Pragmata
	Updated Modules and Pragmata
	Removed Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Utility Changes
	Configuration and Compilation
	Testing
	Platform Support
	New Platforms
	Discontinued Platforms
	Platform-Specific Notes

	Internal Changes
	Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5142DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	Security
	File::Glob::bsd_glob() memory error with GLOB_ALTDIRFUNC (CVE20112728).
	Encode decode_xs nbyte heap-overflow (CVE20112939)

	Incompatible Changes
	Deprecations
	Modules and Pragmata
	New Modules and Pragmata
	Updated Modules and Pragmata
	Removed Modules and Pragmata

	Platform Support
	New Platforms
	Discontinued Platforms
	Platform-Specific Notes

	Bug Fixes
	Known Problems
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5143DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	Security
	Digest unsafe use of eval (CVE20113597)
	Heap buffer overrun in 'x' string repeat operator (CVE20125195)

	Incompatible Changes
	Deprecations
	Modules and Pragmata
	New Modules and Pragmata
	Updated Modules and Pragmata
	Removed Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Configuration and Compilation
	Platform Support
	New Platforms
	Discontinued Platforms
	Platform-Specific Notes

	Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5144DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	Security
	CVE20131667: memory exhaustion with arbitrary hash keys
	memory leak in Encode
	 [perl #111594] Socket::unpack_sockaddr_un heap-buffer-overflow
	 [perl #111586] SDBM_File: fix off-by-one access to global ``.dir''
	off-by-two error in List::Util
	 [perl #115994] fix segv in regcomp.c:S_join_exact()
	 [perl #115992] PL_eval_start use-after-free
	wrap-around with IO on long strings

	Incompatible Changes
	Deprecations
	Modules and Pragmata
	New Modules and Pragmata
	Updated Modules and Pragmata
	Removed Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	Utility Changes
	Configuration and Compilation
	Platform Support
	New Platforms
	Discontinued Platforms
	Platform-Specific Notes

	Selected Bug Fixes
	Known Problems
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5160DELTA(1)
	NAME
	DESCRIPTION
	Notice
	Core Enhancements
	use VERSION
	__SUB__
	New and Improved Built-ins
	Unicode Support
	XS Changes
	Changes to Special Variables
	Debugger Changes
	The CORE Namespace
	Other Changes

	Security
	Use is_utf8_char_buf() and not is_utf8_char()
	Malformed UTF8 input could cause attempts to read beyond the end of the buffer
	File::Glob::bsd_glob() memory error with GLOB_ALTDIRFUNC (CVE20112728).
	Privileges are now set correctly when assigning to $(

	Deprecations
	Don't read the Unicode data base files in lib/unicore
	XS functions is_utf8_char(), utf8_to_uvchr() and utf8_to_uvuni()

	Future Deprecations
	Core Modules
	Platforms with no supporting programmers
	Other Future Deprecations

	Incompatible Changes
	Special blocks called in void context
	The overloading pragma and regexp objects
	Two XS typemap Entries removed
	Unicode 6.1 has incompatibilities with Unicode 6.0
	Borland compiler
	Certain deprecated Unicode properties are no longer supported by default
	Dereferencing IO thingies as typeglobs
	User-defined case-changing operations
	XSUBs are now 'static'
	Weakening read-only references
	Tying scalars that hold typeglobs
	IPC::Open3 no longer provides xfork(), xclose_on_exec() and xpipe_anon()
	$$ no longer caches PID
	$$ and getppid() no longer emulate POSIX semantics under LinuxThreads
	$<, $>, $(and $) are no longer cached
	Which Non-ASCII characters get quoted by quotemeta and Q has changed

	Performance Enhancements
	Modules and Pragmata
	Deprecated Modules
	New Modules and Pragmata
	Updated Modules and Pragmata
	Removed Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation
	Removed Documentation

	Diagnostics
	New Diagnostics
	Removed Errors
	Changes to Existing Diagnostics

	Utility Changes
	Configuration and Compilation
	Platform Support
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Array and hash
	C API fixes
	Compile-time hints
	Copy-on-write scalars
	The debugger
	Dereferencing operators
	Filehandle, last-accessed
	Filetests and stat
	Formats
	given and when
	The glob operator
	Lvalue subroutines
	Overloading
	Prototypes of built-in keywords
	Regular expressions
	Smartmatching
	The sort operator
	The substr operator
	Support for embedded nulls
	Threading bugs
	Tied variables
	Version objects and vstrings
	Warnings, redefinition
	Warnings, ``Uninitialized''
	Weak references
	Other notable fixes

	Known Problems
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5161DELTA(1)
	NAME
	DESCRIPTION
	Security
	an off-by-two error in Scalar-List-Util has been fixed

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Configuration and Compilation
	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Known Problems
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5162DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Configuration and Compilation
	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Known Problems
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5163DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	Security
	CVE20131667: memory exhaustion with arbitrary hash keys
	wrap-around with IO on long strings
	memory leak in Encode

	Incompatible Changes
	Deprecations
	Modules and Pragmata
	Updated Modules and Pragmata

	Known Problems
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5180DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	New mechanism for experimental features
	Hash overhaul
	Upgrade to Unicode 6.2
	Character name aliases may now include nonLatin1range characters
	New DTrace probes
	${^LAST_FH}
	Regular Expression Set Operations
	Lexical subroutines
	Computed Labels
	More CORE:: subs
	kill with negative signal names

	Security
	See also: hash overhaul
	Storable security warning in documentation
	Locale::Maketext allowed code injection via a malicious template
	Avoid calling memset with a negative count

	Incompatible Changes
	See also: hash overhaul
	An unknown character name in N{...} is now a syntax error
	Formerly deprecated characters in N{} character name aliases are now errors.
	N{BELL} now refers to U+1F514 instead of U+0007
	New Restrictions in Multi-Character Case-Insensitive Matching in Regular Expression Bracketed Character Classes
	Explicit rules for variable names and identifiers
	Vertical tabs are now whitespace
	/(?{})/ and /(??{})/ have been heavily reworked
	Stricter parsing of substitution replacement
	given now aliases the global $_
	The smartmatch family of features are now experimental
	Lexical $_ is now experimental
	readline() with $/ = N now reads N characters, not N bytes
	Overridden glob is now passed one argument
	Here doc parsing
	Alphanumeric operators must now be separated from the closing delimiter of regular expressions
	qw(...) can no longer be used as parentheses
	Interaction of lexical and default warnings
	state sub and our sub
	Defined values stored in environment are forced to byte strings
	require dies for unreadable files
	gv_fetchmeth_* and SUPER
	split's first argument is more consistently interpreted

	Deprecations
	Module removals
	Deprecated Utilities
	PL_sv_objcount
	Five additional characters should be escaped in patterns with /x
	User-defined charnames with surprising whitespace
	Various XS-callable functions are now deprecated
	Certain rare uses of backslashes within regexes are now deprecated
	Splitting the tokens (? and (* in regular expressions
	Pre-PerlIO IO implementations

	Future Deprecations
	Performance Enhancements
	Modules and Pragmata
	New Modules and Pragmata
	Updated Modules and Pragmata
	Removed Modules and Pragmata

	Documentation
	Changes to Existing Documentation
	New Diagnostics
	Changes to Existing Diagnostics

	Utility Changes
	Configuration and Compilation
	Testing
	Platform Support
	Discontinued Platforms
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Known Problems
	Obituary
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5181DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5182DELTA(1)
	NAME
	DESCRIPTION
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5184DELTA(1)
	NAME
	DESCRIPTION
	Modules and Pragmata
	Updated Modules and Pragmata

	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5200DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	Experimental Subroutine signatures
	subs now take a prototype attribute
	More consistent prototype parsing
	rand now uses a consistent random number generator
	New slice syntax
	Experimental Postfix Dereferencing
	Unicode 6.3 now supported
	New {Unicode} regular expression pattern property
	Better 64bit support
	use locale now works on UTF8 locales
	use locale now compiles on systems without locale ability
	More locale initialization fallback options
	DL runtime option now added for tracing locale setting
	F now implies a and a implies n
	$a and $b warnings exemption

	Security
	Avoid possible read of free()d memory during parsing

	Incompatible Changes
	do can no longer be used to call subroutines
	Quote-like escape changes
	Tainting happens under more circumstances; now conforms to documentation
	{}, P{} matching has changed for non-Unicode code points.
	{All} has been expanded to match all possible code points
	Data::Dumper's output may change
	Locale decimal point character no longer leaks outside of use locale scope
	Assignments of Windows sockets error codes to $! now prefer errno.h values over WSAGetLastError() values
	Functions PerlIO_vsprintf and PerlIO_sprintf have been removed

	Deprecations
	The /C/ character class
	Literal control characters in variable names
	References to non-integers and non-positive integers in $/
	Character matching routines in POSIX
	Interpreter-based threads are now discouraged
	Module removals
	Utility removals

	Performance Enhancements
	Modules and Pragmata
	New Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Utility Changes
	Configuration and Compilation
	Testing
	Platform Support
	New Platforms
	Discontinued Platforms
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Regular Expressions
	Perl 5 Debugger and d
	Lexical Subroutines
	Everything Else

	Known Problems
	Obituary
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5201DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Performance Enhancements
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Diagnostics
	Changes to Existing Diagnostics

	Configuration and Compilation
	Platform Support
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5202DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	Changes to Existing Diagnostics

	Testing
	Platform Support
	Regained Platforms

	Selected Bug Fixes
	Known Problems
	Errata From Previous Releases
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5203DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Utility Changes
	h2ph

	Testing
	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5220DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	New bitwise operators
	New double-diamond operator
	New in regular expressions
	Non-Capturing Regular Expression Flag
	use re strict
	Unicode 7.0 (with correction) is now supported
	use locale can restrict which locale categories are affected
	Perl now supports POSIX 2008 locale currency additions
	Better heuristics on older platforms for determining locale UTF8ness
	Aliasing via reference
	prototype with no arguments
	New :const subroutine attribute
	fileno now works on directory handles
	List form of pipe open implemented for Win32
	Assignment to list repetition
	Infinity and NaN (not-a-number) handling improved
	Floating point parsing has been improved
	Packing infinity or not-a-number into a character is now fatal
	Experimental C Backtrace API

	Security
	Perl is now compiled with fstackprotectorstrong if available
	The Safe module could allow outside packages to be replaced
	Perl is now always compiled with D_FORTIFY_SOURCE=2 if available

	Incompatible Changes
	Subroutine signatures moved before attributes
	& and prototypes accepts only subs
	use encoding is now lexical
	List slices returning empty lists
	N{} with a sequence of multiple spaces is now a fatal error
	use UNIVERSAL ... is now a fatal error
	In double-quotish cX, X must now be a printable ASCII character
	Splitting the tokens (? and (* in regular expressions is now a fatal compilation error.
	qr/foo/x now ignores all Unicode pattern white space
	Comment lines within (?[]) are now ended only by a
	(? [...]) operators now follow standard Perl precedence
	Omitting % and @ on hash and array names is no longer permitted
	``$!'' text is now in English outside the scope of use locale
	``$!'' text will be returned in UTF8 when appropriate
	Support for ?PATTERN? without explicit operator has been removed
	defined(@array) and defined(%hash) are now fatal errors
	Using a hash or an array as a reference are now fatal errors
	Changes to the * prototype

	Deprecations
	Setting ${^ENCODING} to anything but undef
	Use of non-graphic characters in single-character variable names
	Inlining of sub () { $var } with observable side-effects
	Use of multiple /x regexp modifiers
	Using a NO-BREAK space in a character alias for N{...} is now deprecated
	A literal ``{'' should now be escaped in a pattern
	Making all warnings fatal is discouraged

	Performance Enhancements
	Modules and Pragmata
	Updated Modules and Pragmata
	Removed Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics
	Diagnostic Removals

	Utility Changes
	find2perl, s2p and a2p removal
	h2ph
	encguess

	Configuration and Compilation
	Testing
	Platform Support
	Regained Platforms
	Discontinued Platforms
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Known Problems
	Obituary
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5221DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Bounds Checking Constructs

	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Diagnostics
	Changes to Existing Diagnostics

	Configuration and Compilation
	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5222DELTA(1)
	NAME
	DESCRIPTION
	Security
	Fix out of boundary access in Win32 path handling
	Fix loss of taint in canonpath()
	Set proper umask before calling mkstemp(3)
	Avoid accessing uninitialized memory in Win32 crypt()
	Remove duplicate environment variables from environ

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Configuration and Compilation
	Platform Support
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5223DELTA(1)
	NAME
	DESCRIPTION
	Security
	Di switch is now required for PerlIO debugging output
	Core modules and tools no longer search ``.'' for optional modules

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Testing
	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5224DELTA(1)
	NAME
	DESCRIPTION
	Security
	Improved handling of '.' in @INC in base.pm
	``Escaped'' colons and relative paths in PATH

	Modules and Pragmata
	Updated Modules and Pragmata

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5240DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	Postfix dereferencing is no longer experimental
	Unicode 8.0 is now supported
	perl will now croak when closing an in-place output file fails
	New �{lb} boundary in regular expressions
	qr/(? [])/ now works in UTF8 locales
	Integer shift (<< and >>) now more explicitly defined
	printf and sprintf now allow reordered precision arguments
	More fields provided to sigaction callback with SA_SIGINFO
	Hashbang redirection to Perl 6

	Security
	Set proper umask before calling mkstemp(3)
	Fix out of boundary access in Win32 path handling
	Fix loss of taint in canonpath
	Avoid accessing uninitialized memory in win32 crypt()
	Remove duplicate environment variables from environ

	Incompatible Changes
	The autoderef feature has been removed
	Lexical $_ has been removed
	qr/�{wb}/ is now tailored to Perl expectations
	Regular expression compilation errors
	qr/N{}/ now disallowed under use re ``strict''
	Nested declarations are now disallowed
	The /C/ character class has been removed.
	chdir() no longer chdirs home
	ASCII characters in variable names must now be all visible
	An off by one issue in $Carp::MaxArgNums has been fixed
	Only blanks and tabs are now allowed within [...] within (?[...]).

	Deprecations
	Using code points above the platform's IV_MAX is now deprecated
	Doing bitwise operations on strings containing code points above 0xFF is deprecated
	sysread(), syswrite(), recv() and send() are deprecated on :utf8 handles

	Performance Enhancements
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Configuration and Compilation
	Testing
	Platform Support
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5241DELTA(1)
	NAME
	DESCRIPTION
	Security
	Di switch is now required for PerlIO debugging output
	Core modules and tools no longer search ``.'' for optional modules

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Testing
	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5242DELTA(1)
	NAME
	DESCRIPTION
	Security
	Improved handling of '.' in @INC in base.pm
	``Escaped'' colons and relative paths in PATH

	Modules and Pragmata
	Updated Modules and Pragmata

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5243DELTA(1)
	NAME
	DESCRIPTION
	Security
	 [CVE201712837] Heap buffer overflow in regular expression compiler
	 [CVE201712883] Buffer over-read in regular expression parser
	 [CVE201712814] $ENV{$key} stack buffer overflow on Windows

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Configuration and Compilation
	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5244DELTA(1)
	NAME
	DESCRIPTION
	Security
	 [CVE20186797] heap-buffer-overflow (WRITE of size 1) in S_regatom (regcomp.c)
	 [CVE20186798] Heap-buffer-overflow in Perl__byte_dump_string (utf8.c)
	 [CVE20186913] heap-buffer-overflow in S_pack_rec
	Assertion failure in Perl__core_swash_init (utf8.c)

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL5260DELTA(1)
	NAME
	DESCRIPTION
	Notice
	Core Enhancements
	Lexical subroutines are no longer experimental
	Indented Here-documents
	New regular expression modifier /xx
	@{^CAPTURE}, %{^CAPTURE}, and %{^CAPTURE_ALL}
	Declaring a reference to a variable
	Unicode 9.0 is now supported
	Use of {script} uses the improved Script_Extensions property
	Perl can now do default collation in UTF8 locales on platforms that support it
	Better locale collation of strings containing embedded NUL characters
	CORE subroutines for hash and array functions callable via reference
	New Hash Function For 64bit Builds

	Security
	Removal of the current directory (``.'') from @INC
	Escaped colons and relative paths in PATH
	New Di switch is now required for PerlIO debugging output

	Incompatible Changes
	Unescaped literal ``{'' characters in regular expression patterns are no longer permissible
	scalar(%hash) return signature changed
	keys returned from an lvalue subroutine
	The ${^ENCODING} facility has been removed
	POSIX::tmpnam() has been removed
	require ::Foo::Bar is now illegal.
	Literal control character variable names are no longer permissible
	NBSP is no longer permissible in N{...}

	Deprecations
	String delimiters that aren't stand-alone graphemes are now deprecated
	cX that maps to a printable is no longer deprecated

	Performance Enhancements
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Utility Changes
	c2ph and pstruct
	Porting/pod_lib.pl
	Porting/syncwithcpan
	perf/benchmarks
	Porting/checkAUTHORS.pl
	t/porting/regen.t
	utils/h2xs.PL
	perlbug

	Configuration and Compilation
	Testing
	Platform Support
	New Platforms
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Known Problems
	Errata From Previous Releases
	Obituary
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5261DELTA(1)
	NAME
	DESCRIPTION
	Security
	 [CVE201712837] Heap buffer overflow in regular expression compiler
	 [CVE201712883] Buffer over-read in regular expression parser
	 [CVE201712814] $ENV{$key} stack buffer overflow on Windows

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5262DELTA(1)
	NAME
	DESCRIPTION
	Security
	 [CVE20186797] heap-buffer-overflow (WRITE of size 1) in S_regatom (regcomp.c)
	 [CVE20186798] Heap-buffer-overflow in Perl__byte_dump_string (utf8.c)
	 [CVE20186913] heap-buffer-overflow in S_pack_rec
	Assertion failure in Perl__core_swash_init (utf8.c)

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5263DELTA(1)
	NAME
	DESCRIPTION
	Security
	 [CVE201812015] Directory traversal in module Archive::Tar
	 [CVE201818311] Integer overflow leading to buffer overflow and segmentation fault
	 [CVE201818312] Heap-buffer-overflow write in S_regatom (regcomp.c)
	 [CVE201818313] Heap-buffer-overflow read in S_grok_bslash_N (regcomp.c)
	 [CVE201818314] Heap-buffer-overflow write in S_regatom (regcomp.c)

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5280DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	Unicode 10.0 is supported
	delete on key/value hash slices
	Experimentally, there are now alphabetic synonyms for some regular expression assertions
	Mixed Unicode scripts are now detectable
	In-place editing with perl i is now safer
	Initialisation of aggregate state variables
	Full-size inode numbers
	The sprintf %j format size modifier is now available with preC99 compilers
	Close-on-exec flag set atomically
	String and number-specific bitwise ops are no longer experimental
	Locales are now thread-safe on systems that support them
	New read-only predefined variable ${^SAFE_LOCALES}

	Security
	 [CVE201712837] Heap buffer overflow in regular expression compiler
	 [CVE201712883] Buffer over-read in regular expression parser
	 [CVE201712814] $ENV{$key} stack buffer overflow on Windows
	Default Hash Function Change

	Incompatible Changes
	Subroutine attribute and signature order
	Comma-less variable lists in formats are no longer allowed
	The :locked and :unique attributes have been removed
	N{} with nothing between the braces is now illegal
	Opening the same symbol as both a file and directory handle is no longer allowed
	Use of bare << to mean <<``'' is no longer allowed
	Setting $/ to a reference to a non-positive integer no longer allowed
	Unicode code points with values exceeding IV_MAX are now fatal
	The B::OP::terse method has been removed
	Use of inherited AUTOLOAD for non-methods is no longer allowed
	Use of strings with code points over 0xFF is not allowed for bitwise string operators
	Setting ${^ENCODING} to a defined value is now illegal
	Backslash no longer escapes colon in PATH for the S switch
	the DH (DEBUG_H) misfeature has been removed
	Yada-yada is now strictly a statement
	Sort algorithm can no longer be specified
	Over-radix digits in floating point literals
	Return type of unpackstring()

	Deprecations
	Use of vec on strings with code points above 0xFF is deprecated
	Some uses of unescaped ``{'' in regexes are no longer fatal
	Use of unescaped ``{'' immediately after a ``('' in regular expression patterns is deprecated
	Assignment to $[will be fatal in Perl 5.30
	hostname() won't accept arguments in Perl 5.32
	Module removals

	Performance Enhancements
	Modules and Pragmata
	Removal of use vars
	Use of DynaLoader changed to XSLoader in many modules
	Updated Modules and Pragmata
	Removed Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Utility Changes
	perlbug

	Configuration and Compilation
	Testing
	Packaging
	Platform Support
	Discontinued Platforms
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5281DELTA(1)
	NAME
	DESCRIPTION
	Security
	 [CVE201818311] Integer overflow leading to buffer overflow and segmentation fault
	 [CVE201818312] Heap-buffer-overflow write in S_regatom (regcomp.c)

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5282DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Any set of digits in the Common script are legal in a script run of another script

	Modules and Pragmata
	Updated Modules and Pragmata

	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5283DELTA(1)
	NAME
	DESCRIPTION
	Security
	 [CVE202010543] Buffer overflow caused by a crafted regular expression
	 [CVE202010878] Integer overflow via malformed bytecode produced by a crafted regular expression
	 [CVE202012723] Buffer overflow caused by a crafted regular expression
	Additional Note

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Testing
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5300DELTA(1)
	NAME
	DESCRIPTION
	Notice
	Core Enhancements
	Limited variable length lookbehind in regular expression pattern matching is now experimentally supported
	The upper limit ``n'' specifiable in a regular expression quantifier of the form ``{m,n}'' has been doubled to 65534
	Unicode 12.1 is supported
	Wildcards in Unicode property value specifications are now partially supported
	qr'N{name}' is now supported
	Turkic UTF8 locales are now seamlessly supported
	It is now possible to compile perl to always use thread-safe locale operations.
	Eliminate opASSIGN macro usage from core
	Drv now means something on DDEBUGGING builds

	Incompatible Changes
	Assigning non-zero to $[is fatal
	Delimiters must now be graphemes
	Some formerly deprecated uses of an unescaped left brace ``{'' in regular expression patterns are now illegal
	Previously deprecated sysread()/syswrite() on :utf8 handles is now fatal
	my() in false conditional prohibited
	Fatalize $* and $#
	Fatalize unqualified use of dump()
	Remove File::Glob::glob()
	pack() no longer can return malformed UTF8
	Any set of digits in the Common script are legal in a script run of another script
	JSON::PP enables allow_nonref by default

	Deprecations
	In XS code, use of various macros dealing with UTF8.

	Performance Enhancements
	Modules and Pragmata
	Updated Modules and Pragmata
	Removed Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Diagnostics
	Changes to Existing Diagnostics

	Utility Changes
	xsubpp

	Configuration and Compilation
	Testing
	Platform Support
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5301DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Configuration and Compilation
	Testing
	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5302DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Configuration and Compilation
	Testing
	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5303DELTA(1)
	NAME
	DESCRIPTION
	Security
	 [CVE202010543] Buffer overflow caused by a crafted regular expression
	 [CVE202010878] Integer overflow via malformed bytecode produced by a crafted regular expression
	 [CVE202012723] Buffer overflow caused by a crafted regular expression
	Additional Note

	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Testing
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5320DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	The isa Operator
	Unicode 13.0 is supported
	Chained comparisons capability
	New Unicode properties Identifier_Status and Identifier_Type supported
	It is now possible to write qr/{Name=...}/, or qr!{na=/(SMILING|GRINNING) FACE/}!
	Improvement of POSIX::mblen(), mbtowc, and wctomb
	Alpha assertions are no longer experimental
	Script runs are no longer experimental
	Feature checks are now faster
	Perl is now developed on GitHub
	Compiled patterns can now be dumped before optimization

	Security
	 [CVE202010543] Buffer overflow caused by a crafted regular expression
	 [CVE202010878] Integer overflow via malformed bytecode produced by a crafted regular expression
	 [CVE202012723] Buffer overflow caused by a crafted regular expression
	Additional Note

	Incompatible Changes
	Certain pattern matching features are now prohibited in compiling Unicode property value wildcard subpatterns
	Unused functions POSIX::mbstowcs and POSIX::wcstombs are removed
	A bug fix for (?[...]) may have caused some patterns to no longer compile
	{userdefined} properties now always override official Unicode ones
	Modifiable variables are no longer permitted in constants
	Use of vec on strings with code points above 0xFF is forbidden
	Use of code points over 0xFF in string bitwise operators
	Sys::Hostname::hostname() does not accept arguments
	Plain ``0'' string now treated as a number for range operator
	K now disallowed in look-ahead and look-behind assertions

	Performance Enhancements
	Modules and Pragmata
	Updated Modules and Pragmata
	Removed Modules and Pragmata

	Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Utility Changes
	perlbug
	streamzip

	Configuration and Compilation
	Configure

	Testing
	Platform Support
	Discontinued Platforms
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Obituary
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5321DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	Changes to Existing Diagnostics

	Configuration and Compilation
	Testing
	Platform Support
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5340DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	Experimental Try/Catch Syntax
	qr/{,n}/ is now accepted
	Blanks freely allowed within but adjacent to curly braces
	New octal syntax 0oddddd

	Performance Enhancements
	Modules and Pragmata
	New Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Utility Changes
	perl5db.pl (the debugger)

	Configuration and Compilation
	Testing
	Platform Support
	New Platforms
	Updated Platforms
	Discontinued Platforms
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Known Problems
	Errata From Previous Releases
	Obituary
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5341DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Modules and Pragmata
	Updated Modules and Pragmata

	Testing
	Platform-Specific Notes

	Selected Bug Fixes
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL5360DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	use v5.36
	g command-line flag
	Unicode 14.0 is supported
	regex sets are no longer considered experimental
	Variable length lookbehind is mostly no longer considered experimental
	SIGFPE no longer deferred
	Stable boolean tracking
	iterating over multiple values at a time (experimental)
	builtin functions (experimental)
	defer blocks (experimental)
	try/catch can now have a finally block (experimental)
	non-ASCII delimiters for quote-like operators (experimental)
	@_ is now experimental within signatured subs

	Incompatible Changes
	A physically empty sort is now a compile-time error

	Deprecations
	use VERSION (where VERSION is below v5.11) after use v5.11 is deprecated

	Performance Enhancements
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Configuration and Compilation
	Testing
	Platform Support
	Windows
	VMS
	Discontinued Platforms
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Errata From Previous Releases
	Obituaries
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

	PERL561DELTA(1)
	NAME
	DESCRIPTION
	Summary of changes between 5.6.0 and 5.6.1
	Security Issues
	Core bug fixes
	Core features
	Configuration issues
	Documentation
	Bundled modules
	Platform-specific improvements

	Core Enhancements
	Interpreter cloning, threads, and concurrency
	Lexically scoped warning categories
	Unicode and UTF8 support
	Support for interpolating named characters
	``our'' declarations
	Support for strings represented as a vector of ordinals
	Improved Perl version numbering system
	New syntax for declaring subroutine attributes
	File and directory handles can be autovivified
	open() with more than two arguments
	64bit support
	Large file support
	Long doubles
	``more bits''
	Enhanced support for sort() subroutines
	sort $coderef @foo allowed
	File globbing implemented internally
	Support for CHECK blocks
	POSIX character class syntax [: :] supported
	Better pseudo-random number generator
	Improved qw// operator
	Better worst-case behavior of hashes
	pack() format 'Z' supported
	pack() format modifier '!' supported
	pack() and unpack() support counted strings
	Comments in pack() templates
	Weak references
	Binary numbers supported
	Lvalue subroutines
	Some arrows may be omitted in calls through references
	Boolean assignment operators are legal lvalues
	exists() is supported on subroutine names
	exists() and delete() are supported on array elements
	Pseudo-hashes work better
	Automatic flushing of output buffers
	Better diagnostics on meaningless filehandle operations
	Where possible, buffered data discarded from duped input filehandle
	eof() has the same old magic as <>
	binmode() can be used to set :crlf and :raw modes
	T filetest recognizes UTF8 encoded files as ``text''
	system(), backticks and pipe open now reflect exec() failure
	Improved diagnostics
	Diagnostics follow STDERR
	More consistent close-on-exec behavior
	syswrite() ease-of-use
	Better syntax checks on parenthesized unary operators
	Bit operators support full native integer width
	Improved security features
	More functional bareword prototype (*)
	require and do may be overridden
	$^X variables may now have names longer than one character
	New variable $^C reflects c switch
	New variable $^V contains Perl version as a string
	Optional Y2K warnings
	Arrays now always interpolate into double-quoted strings
	@ and @+ provide starting/ending offsets of regex submatches

	Modules and Pragmata
	Modules
	Pragmata

	Utility Changes
	dprofpp
	find2perl
	h2xs
	perlcc
	perldoc
	The Perl Debugger

	Improved Documentation
	Performance enhancements
	Simple sort() using { $a <=> $b } and the like are optimized
	Optimized assignments to lexical variables
	Faster subroutine calls
	delete(), each(), values() and hash iteration are faster

	Installation and Configuration Improvements
	Dusethreads means something different
	New Configure flags
	Threadedness and 64bitness now more daring
	Long Doubles
	Dusemorebits
	Duselargefiles
	installusrbinperl
	SOCKS support
	A flag
	Enhanced Installation Directories
	gcc automatically tried if 'cc' does not seem to be working

	Platform specific changes
	Supported platforms
	DOS
	OS390 (OpenEdition MVS)
	VMS
	Win32

	Significant bug fixes
	<HANDLE> on empty files
	eval ... improvements
	All compilation errors are true errors
	Implicitly closed filehandles are safer
	Behavior of list slices is more consistent
	(prototype and $foo{a}
	goto &sub and AUTOLOAD
	bareword allowed under use integer
	Failures in DESTROY()
	Locale bugs fixed
	Memory leaks
	Spurious subroutine stubs after failed subroutine calls
	Taint failures under U
	END blocks and the c switch
	Potential to leak DATA filehandles

	New or Changed Diagnostics
	New tests
	Incompatible Changes
	Perl Source Incompatibilities
	C Source Incompatibilities
	Compatible C Source API Changes
	Binary Incompatibilities

	Known Problems
	Localizing a tied hash element may leak memory
	Known test failures
	EBCDIC platforms not fully supported
	UNICOS/mk CC failures during Configure run
	Arrow operator and arrays
	Experimental features

	Obsolete Diagnostics
	Reporting Bugs
	SEE ALSO
	HISTORY

	PERL56DELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	Interpreter cloning, threads, and concurrency
	Lexically scoped warning categories
	Unicode and UTF8 support
	Support for interpolating named characters
	``our'' declarations
	Support for strings represented as a vector of ordinals
	Improved Perl version numbering system
	New syntax for declaring subroutine attributes
	File and directory handles can be autovivified
	open() with more than two arguments
	64bit support
	Large file support
	Long doubles
	``more bits''
	Enhanced support for sort() subroutines
	sort $coderef @foo allowed
	File globbing implemented internally
	Support for CHECK blocks
	POSIX character class syntax [: :] supported
	Better pseudo-random number generator
	Improved qw// operator
	Better worst-case behavior of hashes
	pack() format 'Z' supported
	pack() format modifier '!' supported
	pack() and unpack() support counted strings
	Comments in pack() templates
	Weak references
	Binary numbers supported
	Lvalue subroutines
	Some arrows may be omitted in calls through references
	Boolean assignment operators are legal lvalues
	exists() is supported on subroutine names
	exists() and delete() are supported on array elements
	Pseudo-hashes work better
	Automatic flushing of output buffers
	Better diagnostics on meaningless filehandle operations
	Where possible, buffered data discarded from duped input filehandle
	eof() has the same old magic as <>
	binmode() can be used to set :crlf and :raw modes
	T filetest recognizes UTF8 encoded files as ``text''
	system(), backticks and pipe open now reflect exec() failure
	Improved diagnostics
	Diagnostics follow STDERR
	More consistent close-on-exec behavior
	syswrite() ease-of-use
	Better syntax checks on parenthesized unary operators
	Bit operators support full native integer width
	Improved security features
	More functional bareword prototype (*)
	require and do may be overridden
	$^X variables may now have names longer than one character
	New variable $^C reflects c switch
	New variable $^V contains Perl version as a string
	Optional Y2K warnings
	Arrays now always interpolate into double-quoted strings
	@ and @+ provide starting/ending offsets of regex matches

	Modules and Pragmata
	Modules
	Pragmata

	Utility Changes
	dprofpp
	find2perl
	h2xs
	perlcc
	perldoc
	The Perl Debugger

	Improved Documentation
	Performance enhancements
	Simple sort() using { $a <=> $b } and the like are optimized
	Optimized assignments to lexical variables
	Faster subroutine calls
	delete(), each(), values() and hash iteration are faster

	Installation and Configuration Improvements
	Dusethreads means something different
	New Configure flags
	Threadedness and 64bitness now more daring
	Long Doubles
	Dusemorebits
	Duselargefiles
	installusrbinperl
	SOCKS support
	A flag
	Enhanced Installation Directories

	Platform specific changes
	Supported platforms
	DOS
	OS390 (OpenEdition MVS)
	VMS
	Win32

	Significant bug fixes
	<HANDLE> on empty files
	eval ... improvements
	All compilation errors are true errors
	Implicitly closed filehandles are safer
	Behavior of list slices is more consistent
	(prototype and $foo{a}
	goto &sub and AUTOLOAD
	bareword allowed under use integer
	Failures in DESTROY()
	Locale bugs fixed
	Memory leaks
	Spurious subroutine stubs after failed subroutine calls
	Taint failures under U
	END blocks and the c switch
	Potential to leak DATA filehandles

	New or Changed Diagnostics
	New tests
	Incompatible Changes
	Perl Source Incompatibilities
	C Source Incompatibilities
	Compatible C Source API Changes
	Binary Incompatibilities

	Known Problems
	Thread test failures
	EBCDIC platforms not supported
	In 64bit HP-UX the lib/io_multihomed test may hang
	NEXTSTEP 3.3 POSIX test failure
	Tru64 (aka Digital UNIX, aka DEC OSF/1) lib/sdbm test failure with gcc
	UNICOS/mk CC failures during Configure run
	Arrow operator and arrays
	Experimental features

	Obsolete Diagnostics
	Reporting Bugs
	SEE ALSO
	HISTORY

	PERL581DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Hash Randomisation
	UTF8 On Filehandles No Longer Activated By Locale
	Single-number vstrings are no longer vstrings before ``=>''
	(Win32) The C Switch Has Been Repurposed
	(Win32) The /d Switch Of cmd.exe

	Core Enhancements
	UTF8 no longer default under UTF8 locales
	Unsafe signals again available
	Tied Arrays with Negative Array Indices
	local ${$x}
	Unicode Character Database 4.0.0
	Deprecation Warnings
	Miscellaneous Enhancements

	Modules and Pragmata
	Updated Modules And Pragmata

	Utility Changes
	New Documentation
	Installation and Configuration Improvements
	Platform-specific enhancements

	Selected Bug Fixes
	Closures, eval and lexicals
	Generic fixes
	Platform-specific fixes

	New or Changed Diagnostics
	Changed ``A thread exited while %d threads were running''
	Removed ``Attempt to clear a restricted hash''
	New ``Illegal declaration of anonymous subroutine''
	Changed ``Invalid range ''%s`` in transliteration operator''
	New ``Missing control char name in c''
	New ``Newline in left-justified string for %s''
	New ``Possible precedence problem on bitwise %c operator''
	New ``Pseudo-hashes are deprecated''
	New ``read() on %s filehandle %s''
	New ``5.005 threads are deprecated''
	New ``Tied variable freed while still in use''
	New ``To%s: illegal mapping '%s'''
	New ``Use of freed value in iteration''

	Changed Internals
	New Tests
	Known Problems
	Tied hashes in scalar context
	Net::Ping 450_service and 510_ping_udp failures
	B::C

	Platform Specific Problems
	EBCDIC Platforms
	Cygwin 1.5 problems
	HP-UX: HP cc warnings about sendfile and sendpath
	IRIX: t/uni/tr_7jis.t falsely failing
	Mac OS X: no usemymalloc
	Tru64: No threaded builds with GNU cc (gcc)
	Win32: sysopen, sysread, syswrite

	Future Directions
	Reporting Bugs
	SEE ALSO

	PERL582DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Core Enhancements
	Hash Randomisation
	Threading

	Modules and Pragmata
	Updated Modules And Pragmata

	Selected Bug Fixes
	Changed Internals
	Platform Specific Problems
	Future Directions
	Reporting Bugs
	SEE ALSO

	PERL583DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Core Enhancements
	Modules and Pragmata
	Utility Changes
	New Documentation
	Installation and Configuration Improvements
	Selected Bug Fixes
	New or Changed Diagnostics
	Changed Internals
	Configuration and Building
	Platform Specific Problems
	Known Problems
	Future Directions
	Obituary
	Reporting Bugs
	SEE ALSO

	PERL584DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Core Enhancements
	Malloc wrapping
	Unicode Character Database 4.0.1
	suidperl less insecure
	format

	Modules and Pragmata
	Updated modules

	Performance Enhancements
	Utility Changes
	Installation and Configuration Improvements
	Selected Bug Fixes
	New or Changed Diagnostics
	Changed Internals
	Future Directions
	Platform Specific Problems
	Reporting Bugs
	SEE ALSO

	PERL585DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Core Enhancements
	Modules and Pragmata
	Utility Changes
	Perl's debugger
	h2ph

	Installation and Configuration Improvements
	Selected Bug Fixes
	New or Changed Diagnostics
	Changed Internals
	Known Problems
	Platform Specific Problems
	Reporting Bugs
	SEE ALSO

	PERL586DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Core Enhancements
	Modules and Pragmata
	Utility Changes
	Performance Enhancements
	Selected Bug Fixes
	New or Changed Diagnostics
	Changed Internals
	New Tests
	Reporting Bugs
	SEE ALSO

	PERL587DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Core Enhancements
	Unicode Character Database 4.1.0
	suidperl less insecure
	Optional site customization script
	Config.pm is now much smaller.

	Modules and Pragmata
	Utility Changes
	find2perl enhancements

	Performance Enhancements
	Installation and Configuration Improvements
	Selected Bug Fixes
	New or Changed Diagnostics
	Changed Internals
	Known Problems
	Platform Specific Problems
	Reporting Bugs
	SEE ALSO

	PERL588DELTA(1)
	NAME
	DESCRIPTION
	Incompatible Changes
	Core Enhancements
	Modules and Pragmata
	Utility Changes
	h2xs enhancements
	perlivp enhancements

	New Documentation
	Performance Enhancements
	Installation and Configuration Improvements
	Selected Bug Fixes
	no warnings 'category' works correctly with w
	Remove over-optimisation
	sprintf() fixes
	Debugger and Unicode slowdown
	Smaller fixes

	New or Changed Diagnostics
	Attempt to set length of freed array
	Non-string passed as bitmask
	Search pattern not terminated or ternary operator parsed as search pattern

	Changed Internals
	Platform Specific Problems
	Reporting Bugs
	SEE ALSO

	PERL589DELTA(1)
	NAME
	DESCRIPTION
	Notice
	Incompatible Changes
	Core Enhancements
	Unicode Character Database 5.1.0.
	stat and X on directory handles
	Source filters in @INC
	Exceptions in constant folding
	no VERSION
	Improved internal UTF8 caching code
	Runtime relocatable installations
	New internal variables
	readpipe is now overridable
	simple exception handling macros
	D option enhancements
	XS-assisted SWASHGET
	Constant subroutines

	New Platforms
	Modules and Pragmata
	New Modules
	Updated Modules

	Utility Changes
	debugger upgraded to version 1.31
	perlthanks
	perlbug
	h2xs
	h2ph

	New Documentation
	Changes to Existing Documentation
	Performance Enhancements
	Installation and Configuration Improvements
	Relocatable installations
	Configuration improvements
	Compilation improvements
	Installation improvements.
	Platform Specific Changes

	Selected Bug Fixes
	Unicode
	PerlIO
	Magic
	Reblessing overloaded objects now works
	strict now propagates correctly into string evals
	Other fixes
	Platform Specific Fixes
	Smaller fixes

	New or Changed Diagnostics
	panic: sv_chop %s
	Maximal count of pending signals (%s) exceeded
	panic: attempt to call %s in %s
	FETCHSIZE returned a negative value
	Can't upgrade %s (%d) to %d
	%s argument is not a HASH or ARRAY element or a subroutine
	Cannot make the non-overridable builtin %s fatal
	Unrecognized character '%s' in column %d
	Offset outside string
	Invalid escape in the specified encoding in regexp; marked by < HERE in m/%s/
	Your machine doesn't support dump/undump.

	Changed Internals
	Macro cleanups

	New Tests
	Known Problems
	Platform Specific Notes
	Win32
	OS/2
	VMS

	Obituary
	Acknowledgements
	Reporting Bugs
	SEE ALSO

	PERL58DELTA(1)
	NAME
	DESCRIPTION
	Highlights In 5.8.0
	Incompatible Changes
	Binary Incompatibility
	64bit platforms and malloc
	AIX Dynaloading
	Attributes for my variables now handled at run-time
	Socket Extension Dynamic in VMS
	IEEE-format Floating Point Default on OpenVMS Alpha
	New Unicode Semantics (no more use utf8, almost)
	New Unicode Properties
	REF(...) Instead Of SCALAR(...)
	pack/unpack D/F recycled
	glob() now returns filenames in alphabetical order
	Deprecations

	Core Enhancements
	Unicode Overhaul
	PerlIO is Now The Default
	ithreads
	Restricted Hashes
	Safe Signals
	Understanding of Numbers
	Arrays now always interpolate into double-quoted strings [561]
	Miscellaneous Changes

	Modules and Pragmata
	New Modules and Pragmata
	Updated And Improved Modules and Pragmata

	Utility Changes
	New Documentation
	Performance Enhancements
	Installation and Configuration Improvements
	Generic Improvements
	New Or Improved Platforms

	Selected Bug Fixes
	Platform Specific Changes and Fixes

	New or Changed Diagnostics
	Changed Internals
	Security Vulnerability Closed [561]
	New Tests
	Known Problems
	The Compiler Suite Is Still Very Experimental
	Localising Tied Arrays and Hashes Is Broken
	Building Extensions Can Fail Because Of Largefiles
	Modifying $_ Inside for(..)
	mod_perl 1.26 Doesn't Build With Threaded Perl
	lib/ftmpsecurity tests warn 'system possibly insecure'
	libwww-perl (LWP) fails base/date #51
	PDL failing some tests
	Perl_get_sv
	Self-tying Problems
	ext/threads/t/libc
	Failure of Thread (5.005style) tests
	Timing problems
	Tied/Magical Array/Hash Elements Do Not Autovivify
	Unicode in package/class and subroutine names does not work

	Platform Specific Problems
	AIX
	Alpha systems with old gccs fail several tests
	AmigaOS
	BeOS
	Cygwin ``unable to remap''
	Cygwin ndbm tests fail on FAT
	DJGPP Failures
	FreeBSD built with ithreads coredumps reading large directories
	FreeBSD Failing locale Test 117 For ISO 885915 Locales
	IRIX fails ext/List/Util/t/shuffle.t or Digest::MD5
	HP-UX lib/posix Subtest 9 Fails When LP64Configured
	Linux with glibc 2.2.5 fails t/op/int subtest #6 with Duse64bitint
	Linux With Sfio Fails op/misc Test 48
	Mac OS X
	Mac OS X dyld undefined symbols
	OS/2 Test Failures
	op/sprintf tests 91, 129, and 130
	SCO
	Solaris 2.5
	Solaris x86 Fails Tests With Duse64bitint
	SUPER-UX (NEC SX)
	Term::ReadKey not working on Win32
	UNICOS/mk
	UTS
	VOS (Stratus)
	VMS
	Win32
	XML::Parser not working
	z/OS (OS/390)
	Unicode Support on EBCDIC Still Spotty
	Seen In Perl 5.7 But Gone Now

	Reporting Bugs
	SEE ALSO
	HISTORY

	PERLDELTA(1)
	NAME
	DESCRIPTION
	Core Enhancements
	use v5.36
	g command-line flag
	Unicode 14.0 is supported
	regex sets are no longer considered experimental
	Variable length lookbehind is mostly no longer considered experimental
	SIGFPE no longer deferred
	Stable boolean tracking
	iterating over multiple values at a time (experimental)
	builtin functions (experimental)
	defer blocks (experimental)
	try/catch can now have a finally block (experimental)
	non-ASCII delimiters for quote-like operators (experimental)
	@_ is now experimental within signatured subs

	Incompatible Changes
	A physically empty sort is now a compile-time error

	Deprecations
	use VERSION (where VERSION is below v5.11) after use v5.11 is deprecated

	Performance Enhancements
	Modules and Pragmata
	Updated Modules and Pragmata

	Documentation
	New Documentation
	Changes to Existing Documentation

	Diagnostics
	New Diagnostics
	Changes to Existing Diagnostics

	Configuration and Compilation
	Testing
	Platform Support
	Windows
	VMS
	Discontinued Platforms
	Platform-Specific Notes

	Internal Changes
	Selected Bug Fixes
	Errata From Previous Releases
	Obituaries
	Acknowledgements
	Reporting Bugs
	Give Thanks
	SEE ALSO

